Transition from mixed to forced convection for opposing vertical flows in liquid-saturated porous media

PDF Version Also Available for Download.

Description

Mixed-convection phenomena can occur within liquid-dominated geothermal reservoirs due to interactions of injected flows, or ground-water flows, with the buoyancy-induced fluid motion. This problem was studied experimentally and numerically for the case of opposing flows about a vertical heat source in a liquid-saturated porous medium. The ratio of the Rayleigh number (Ra) to the Peclet number (Pe) was identified as the nondimensional parameter which characterizes the relative influence of buoyancy-driven to pressure-gradient-driven fluid motion. The transition from mixed to forced convection was numerically determined to be (Ra/Pe) approx. = -0.5, where the minus sign denotes superimposed downflow. Agreement between measured ... continued below

Physical Description

Pages: 7

Creation Information

Reda, D.C. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Mixed-convection phenomena can occur within liquid-dominated geothermal reservoirs due to interactions of injected flows, or ground-water flows, with the buoyancy-induced fluid motion. This problem was studied experimentally and numerically for the case of opposing flows about a vertical heat source in a liquid-saturated porous medium. The ratio of the Rayleigh number (Ra) to the Peclet number (Pe) was identified as the nondimensional parameter which characterizes the relative influence of buoyancy-driven to pressure-gradient-driven fluid motion. The transition from mixed to forced convection was numerically determined to be (Ra/Pe) approx. = -0.5, where the minus sign denotes superimposed downflow. Agreement between measured and predicted thermal-field results showed that the finite-element code of Gartling and Hickox (1982 a,b) can be used to model low-temperature (single-phase) geothermal reservoirs throughout the natural, mixed, and forced convection regimes. 9 refs., 6 figs.

Physical Description

Pages: 7

Notes

NTIS, PC A02/MF A01.

Source

  • International symposium on geothermal energy, Kailua Kona, HI, USA, 26 Aug 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85010662
  • Report No.: SAND-85-0270C
  • Report No.: CONF-850801-32
  • Grant Number: AC04-76DP00789
  • Office of Scientific & Technical Information Report Number: 5700439
  • Archival Resource Key: ark:/67531/metadc1090953

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • May 18, 2018, 4:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Reda, D.C. Transition from mixed to forced convection for opposing vertical flows in liquid-saturated porous media, article, January 1, 1985; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1090953/: accessed March 21, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.