The biophysical stage of radiation carcinogenesis

PDF Version Also Available for Download.

Description

The dependence of the induction of cancer on the absorbed dose of ionizing radiations has been specified in terms of increasing complexity. The first notion of the linear hypothesis is now frequently replaced with a dependence on both the first and second powers of the dose the linear-quadratic model, which implies proportionality at low doses only. Microdosimetric considerations and in particular the theory of dual radiation action would be in accord with this relation if tumors were to arise from single cells as the result of a transformation that depends only on the radiation received by the cell. In this … continued below

Physical Description

23 pages

Creation Information

Rossi, H.H. & Zaider, M. January 1, 1986.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The dependence of the induction of cancer on the absorbed dose of ionizing radiations has been specified in terms of increasing complexity. The first notion of the linear hypothesis is now frequently replaced with a dependence on both the first and second powers of the dose the linear-quadratic model, which implies proportionality at low doses only. Microdosimetric considerations and in particular the theory of dual radiation action would be in accord with this relation if tumors were to arise from single cells as the result of a transformation that depends only on the radiation received by the cell. In this case it must be expected that the linear portion of the dose-effect curve is dose rate independent but that the quadratic component may decrease with decreasing dose rate because of repair. However it was shown some time ago that the dose-incidence relation of a neoplasm indicates a non-autonomous response because of departure from a linear dependence when the mean number of events in cells is much less than one in neutron irradiations. Another discrepancy is the repeated observation that reduction of dose rate, while resulting in the expected lessening of the effectiveness of low-LET radiation, increases the effectiveness of neutrons especially in the case of oncogenic cell transformation. 32 refs., 3 figs.

Physical Description

23 pages

Notes

NTIS, PC A03/MF A01; 1.

Source

  • 25. Hanford Life Sciences symposium: radiation protection-a look to the future - celebrating four decades of research at Hanford, Richland, WA, USA, 21 Oct 1986

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE88004758
  • Report No.: CONF-861044-10
  • Grant Number: FG02-86ER60449
  • Office of Scientific & Technical Information Report Number: 5672792
  • Archival Resource Key: ark:/67531/metadc1090790

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1986

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • Jan. 19, 2021, 2:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 24

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Rossi, H.H. & Zaider, M. The biophysical stage of radiation carcinogenesis, article, January 1, 1986; United States. (https://digital.library.unt.edu/ark:/67531/metadc1090790/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen