LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments. Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

THE DESIGN AND PERFORMANCE OF THE FNAL HIGH-ENERGY POLARIZED BEAM FACILITY

AUTHOR(S): Nobuyuki Tanka

> SUBMITted to Manuscript of talk presented at the 1909 lUCE Topical Conference "Physics with Polarized Beams on Polarized Targets, MCCormick's Creek State Park, Spencer, Indiana, October $16-18,1989$

DISC I.AIMFR

$$
\begin{aligned}
& \text { This report wan prepared an an account of work sponsored by an agency of the Iniled Staten }
\end{aligned}
$$

ability for the accuracy. completerisw, it usefulnean of any information, mporatun, prombit, or
prices dishomel, ur represents that its use would nut infringe privately owned righin Ruler

THE DESIGN AND PERFORMANCE OF THE FNAL HIGH-ENERGY POLARIZED BEAM FACILITY ${ }^{2}$

Nobuyuki Tanaka
(For the E-581/704 Collaboration ${ }^{\text {b }}$)

Los Alamos National Laboratory
P. O. Box 1663, MS H841

Los Alamos, NM 87545

1. Introduction

We describe a new polarized-proton and -antiproton beam with $185-\mathrm{GeV} / \mathrm{c}$ momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-nonconserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect ${ }^{1]}$ and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. ${ }^{2)}$ Another experiment ${ }^{3 /}$ measured the π^{0} production asymmetry of large- x_{F} values; this process may now be used as an on-line beam polarimeter.

Since polarized benms and polarized proton targets became available for use in high-energy experimento, various measurements of the polarized phenomens. have been made. The physics objectives for the Fermilab polarized benm faciity up to $185 \mathrm{GeV} / \mathrm{c}$ are in part based on the fact that there are already several experimental indicationa ${ }^{4}$ that spin effects are significant at high energy. They are: (s) measurements of π^{0} production at high $p \perp(p \perp>2.0 \mathrm{GeV} / \mathrm{c})$ in protonproton collisions at CERN and in π^{-}proton collision at Serpukhov revealed sizable nammetriee at $24 \mathrm{GeV} / \mathrm{c}$ and $\approx 0 \mathrm{GeV} / \mathrm{c}$, respectively. (h) Hyperons produced at large x_{F} inclusively off nuclei and hydrogen at CERN, Fermilab, and ISR were observed to have high polarizntions. (c) Inelastic seattering of longitudinally polarized electrons on longitudinally polarized protons at SLAC yielded a large nsymmetry, implying that proton helicity orimatation is communicated to the constituent quarks. Thus, spin dependence in quark-quark collisions can be inferred from mensurements of spin dependence in proton proton collisions in nppropriate
kinematic regions. A number of theoretical models have been introduced to explain these polarization phenomena and predictions for future measurements have been made.

2. Polarized_ Beam Facility

During the last decade, construction of a high-energy (above $100 \mathrm{GeV} / \mathrm{c}$) polarized beam has been attempted. In order to eliminate possible complications involving depolarization at high energies, polarized protons can be produced from decaying hyperons, lambdas or sigmas. The Fermilab polarized-beam facility was constructed and operated during the TeV -II fixed target period.

A polarized proton beam from Λ^{0} decay at Fermilab was suggested by Overset ${ }^{51}$ in 1969 using the fact that the protons from lambda decay are polarized along their direction of motion in the lambda rest frame. This polarization has been measured by Cronin and Overseth ${ }^{6]}$ to determine the relative amounts of s and p-waves in the decay. For unpolarized lambda, the polarization of the proton in the direction of the motion is 64%. It has been shown that we can select protons or antiprotons at various momenta which are decaying around $\theta_{\text {c.m. }}=90^{\circ}$ from lambdos or antilambdas, respectively. ${ }^{7}$) Spin direction in the lambda center-of-mass (decay frame) is shown in Fig. 1. We note that spin direction is almost unchanged

Fig. 1. Spin direction of protons va decay angles. The spin direction is indicated by the narrow.
in transforming from the lambda-decay frame to the laboratory. Therefore protons and antiprotons decaying around $\theta_{\text {c.m. }}=0^{\circ}$ and 180° are longitudinally polarized while those with $\theta_{\text {c.m. }}=90^{\circ}$ are transversely polarized in the laboratory. Protons or antiprotons with $\theta_{\text {c.m. }}=90^{\circ}$ and -90° have opposite laboratory decay angles, which are not zero. They can be distinguished from those decaying at $\theta_{\text {c.m. }}=0^{\circ}$ from lambda or antilambda with the production target as the source of the beam. Virtual sources for $\left|\theta_{\text {c.m. }}\right|=90^{\circ}$ particles are shown in Fig. 2.

Fig. 2. Diagram of the primary production target, Λ decay procesa, and virtual source of polarized protons. Lambda particle, produced from incident $800-\mathrm{GeV} / \mathrm{c}$ protono on a beryllium target, decay into proton (shown) and pions (not shown). The polarization state of the proton is correlated with the position in the plane of the virtual source. The virtual source points are shown by the dashed lines traced back to this plane from the proton trajectory.

Unpolarized protons are accelerated to $800 \mathrm{GeV} / \mathrm{c}$ in the superconducting ring of the Tevatron and are extracted during a 20 -sec spill. The extracted primary proton beam strikes a beryllium target and creates unpolarized lambdas. The promary beam line is shown in Fig. 3 where a parasitic target is typicully used to produre an electron benm for calibration purposes. The secondary benm line up to 200 (GeV/e is shown in Fig. 4. The S-type beam is produced before reaching the sunke magnets which enuse fast reversal of spin direction (typically every 10
spills). The snake magnets, consisting of 12 dipole magnets with 45° precessions, can also change the spin direction from \hat{S} to \hat{N} or \hat{S} to $\hat{\mathrm{L}}$ without altering beam direction and phase space before and after the magnets. These magnets are expected to control systematic errors by periodic reversal. A spin rotator is used in the beam line for two reasons: (a) to periodically reverre the polarization direction so t at experimental systematic errors are controlled, and (b) to change the spin direction from horizontal (\hat{S}-spin direction), which is the spin component actually tagged, to vertical ($\hat{\mathrm{N}}$ spin direction) or longitudinal ($\hat{\mathrm{L}}$-spin direction) for different experimental measurements. Polarized protons from the virtual sources are focused in the tagging section, where both the momentum and polarization are selected.

Fig. 3. Diegram of the MP primary beam line (not to scale). Shown are the split from the MC beam line, the two sets of cryogenic bending magnets, beam-line detectors (SWIC-segmented wire ion chambers and SEMsecondary emisaion monitor), and the production target.

Fig. 4. Layout of elements along the MP polarized beam line. Shown here are a side view of the production target, neutral particie dump, adjustable collimator, beam tagging region, snake magneta, Cerenkov counters and experimental target. Note the difference in scale betweeen the horizontal and vertical axis.

Polarized protons have their polarization and momenturi values electronically "tagged" within 250 ns after they reach the intermediate focus, using the correlation between the proton trajectory and its transverse polarization state. A total of ten beam scintillator hodoscopen, six located at the intermediate focus and four near the experimental target, detect the particle trajectory in the vertical (y) direction and the horizontal (x) direction. The beam is designed so that the particle momentum is measured in the vertical direction and the polarization in the horizontal. Polarized antiprotons are tagged in a similar manner as the polarized protons. The beam-tagging system must operate reliably and efficiently during data-taking periods. It is also used as an aid in optimizing the beam parameters and in beam tuning.

The polarization is strongly related to the x-position at the tagging section and the nverage polarization, $\langle\boldsymbol{P}\rangle$, and $\mathrm{I}\langle\mathrm{P}\rangle^{2}$, where I represents actually measured beam intensity, is shoven in Figs. 5 and 6, respectively, with respect to x in
mm . The beam line was operated at $800 \mathrm{GeV} / \mathrm{c}$ incident momentum. The intensities of the total (not tagged) protons and antiprotons at $185 \mathrm{GeV} / \mathrm{c}$ were $1.5 \times$ $10^{7} /$ spill and $7.5 \times 10^{5} /$ spill, respectively, for incident protons with $10^{12} /$ spill. The intensities of tagged polarized protons and antiprotons with polarization higher than 35% were 8×10^{6} and 4×10^{5}, respectively. The results are consistent with the tagged values.

Fig. 5. $\langle\mathrm{P}\rangle$ vs x in the tagging section.

Fig. 6. $\mathrm{I} \ll \mathrm{P}\rangle^{2}$ (arbitrary unit) vs x in the tagging system.

3. Polarimeters

As discussed previously, the beam-tagging system assigns a polarization value for each beam particle relative to a known irajectory. An absolute measurement of the beam polarization is necessary to confirm these values. Two polarimeters have been developed for use with high-energy particles. The polarimeters are based on the following reactions that result in an asymmetry in the scattering process: (a) the dissociation of polarized protons in the Coulomb field of a nucleus (Primakoff-effect polarimeter), and (b) the Coulomb-nuclear interference in the elastic acattering of polarized protons by a proton target (CNI polarimeter). Because the analyzing power is known, the observed asymmetry measured by these polarimeters determines the absolute magnitude and sign of the polarization of the proton and antiproton beams. The measurement of the beam polarizations by these polarimeters serves both as a crucial test of the beam-tagging system and also as an independent measure of the beam polarization.

4. Pimakoff-Effect Polarimeter

The Primakoff-effect polarimeter determines the proton-beam p larization by measuring the asymmetry of the Primakoff process, or coherent, Coulonb
dissociation. ${ }^{1]}$ An incident proton is converted to a $\mathrm{p}-\pi^{0}$ system in the Coulomb field of a high $-Z$, nuclear target, given by

$$
\begin{equation*}
p+Z \rightarrow p+\gamma^{*}+Z \rightarrow p+\pi^{0}+Z \tag{1}
\end{equation*}
$$

where Z is the high- Z nucleus and γ^{*} is the exchanged virtual photon. This reaction is related to low-energy photoproduction, including polarization effects, of a π^{0} by a proton. The polarization of the $185-\mathrm{GeV} / \mathrm{c}$ proton beam can be determined from the measured value of the polarized-target psymmetry parameter from this low-energy ($\sim 700 \mathrm{MeV}$) photoproduction process. ${ }^{\text {8) }}$

The cross section, $\sigma_{\text {Prim }}$, of the Primakoff process is described in terms of the corresponding low-energy photoproduction cross section, $\sigma_{\text {photo }}$, by:

$$
\begin{equation*}
\frac{d \sigma_{\mathrm{Prim}}}{d M_{\mathrm{p} \pi^{0}} d t d \phi}=\frac{\alpha Z}{\pi} \frac{\sigma_{\mathrm{Photo}}}{M_{\mathrm{p} \pi^{0}}^{2}-M_{\mathrm{p}}^{2}} \frac{t^{\prime}}{t^{2}}|F(t)|^{2}\left[1+T(\theta) P_{B} \cos \phi\right], \tag{2}
\end{equation*}
$$

where $M_{\mathrm{p} \boldsymbol{r}^{0}}$ is the invariant mass of the $\mathrm{p}-\pi^{0}$ system, M_{p} is the proton mass, t is the four-momentum transfer squared and $t^{\prime}=t-t_{\text {min }}=-p_{T}^{2}$ for the virtual photon, $F(t)$ is the form factor for the target nucleus, $T(\theta)$ is the polarized-target asymmetry parameter from the photoproduction experiments, θ is the scattering angle between the π^{0} and the virtual photon, P_{B} is the polarization of the incident protons, and ϕ is the azimuthal angle of the π^{0} relative to the direction of the polarization vector of the incident proton.

The apparatus for the Primakoff-effect detector is shown in Fig. 7. It consists of a Pb target, 3 -mm thick, surrounded by several lead-scintillator sandwich veto counters, a 156 -element iead-glasa calorimeter, 12 multiwire proportional chambers (MWPCs), a $2.6 \mathrm{~T}-\mathrm{m}$ integrated-field analyzing magnet, and four trigger scintillation counters. A set of plastic scintillation counters placed upstream of the calorimeter is used as a charged-particle veto.

Five MWPCs, located upstream of the target, measure the trajectory of the incident beam particle. Downstream of the target, seven MWPCs trace the trajectory of the scattered proton and, along with the analyzing magnet, measure the proton momentum. Typical values measured for the proton momentum are from 110 te $i 00 \mathrm{GeV} / \mathrm{c}$ with a scatiering angle from 1 to 4 mrad. The momentum resolution is about 1% (rms) and the angular resolution is about $6 \times 10^{-2} \mathrm{mrad}(\mathrm{rms})$, which includes the contribution of multiple scattering in the Pb terget.

Fig. 7. Layout of the Primakoff-effect polarimeter. The dimensions transverse to the beam are not to scale.

The lead-glass calorimeter, located 17 m downstream of the target, detects the position and energy of the two photons from the π^{0} decay. Each block of the 156 -element array measures $3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm} \times 45 \mathrm{~cm}$, corresponding to about 19 interaction lengths, and is placed into an array. A hole in the center of the array, 4×4 blocks in size, allows passage through the calorimeter of the scattered protons and the unscattered beam. The typical energy range of the reconstructed π^{0}, as measured by the calorimeter, was from 30 to $70 \mathrm{GeV} / \mathrm{c}^{2}$. The mass resolution for the reconstructed neutral pion was $8.4 \mathrm{MeV} / \mathrm{c}^{2}$ (rms). The typical range of π^{0} production angles was from 6 to 10 mrad , with a resolution of about 0.2 mrad (rms).

The detectors accept the events which are in the region of the maximum analyzing power $\left|t^{\prime}\right|<0.001(\mathrm{GeV} / \mathrm{c})^{2} 1.34 \leq \mathrm{M}_{\mathrm{p} \pi^{0}} \leq 1.50 \mathrm{GeV} / \mathrm{c}^{2}, 70^{\circ} \leq \theta_{\mathrm{c} . \mathrm{m} .}^{\pi} \leq$ 120° and $\Delta \phi= \pm 30^{\circ}$ on both sides of the beam line.

The Primakoff-effect polarimeter colle ited data during about 50 hours, using a vertically-polarized proton beam at a rate of 10^{7} incident protons per 20 -sec spill on the Pb target. This produced a trigger rate of approximately 1000 events per spill and a total of 2.7×10^{6} events were recorded. The spin direction of the
polarized-proton beam was changed every 10 min by 180° using the spin-rotation system. This minimized the systematic errors in the asymmetry measurement. Data were also taken using carbon and copper targets to understand the diffractive background. The data analysis is still in progress, but preliminary results are given here. The average beain polarization is meastred as $\uparrow 0 \pm 9 \pm 15 \%$, compared to the average tagged-beam polarization value of 45%. The first value of the stated error is statistical, and the second value arises from the uncertainty in the subtraction of the ciffractive background process. A small sample of data was taken with the Primakoff-effect polarimeter using polarized incident antiprotons. Even though the amount of data was too small to determine an antiproton-bean polarization, the Primakoff process was clearly observed using antiprotons. Within the systematic and statistical errors discussed above, the Primakoff-effect polarimeter has measured the absolute magnitude and sign of the proton-beam polarization and confirmed the polarization of the beam as measured by the beam-tagging system.

5. Coulomb-Nuclear_Interference (CNI) Polarimeter

The CNI polarimeter determines the proton beam polarization by measuring the asymmetry parameter for proton-proton elastic scattering in the Coulombnuclear interference region of the momentum transfer squared, $|t| \approx 1$ to $30 \times$ $10^{-3}(\mathrm{GeV} / \mathrm{c})^{2}$. The analyzing power for this process arises from the interference term between the nuclear non-flip amplitude and the olectromagnetic spin-fip amplitude, ${ }^{2]}$ and is approximated by:

$$
\begin{equation*}
A(t)=A_{m}\left(\frac{4 z^{3 / 2}}{3 z^{2}+1}\right) \tag{3}
\end{equation*}
$$

At $z=1, A(t)$ has a maximum value of

$$
\begin{equation*}
A_{m}=\frac{\sqrt{3}}{4}(\mu-1) \frac{\sqrt{\left|t_{m}\right|}}{m}, \tag{4}
\end{equation*}
$$

where $z=t / t_{m}$ and $t_{m}=8 \pi \alpha \sqrt{3} / \sigma_{t o t}$. The quantil $(\mu-1)$ represents the anomalous magnetic moment of the proton, α is the fin structure constant, and $\sigma_{\text {tot }}$ is the total cross section of the reaction. This analyzing power is well-known for both p-p and $\overline{\mathrm{p}}-\mathrm{p}$ interactions, and is virtually independent of the energy. The analyzing power has a maximum value of 4.6% at $t=-3.2 \times 10^{-3}(\mathrm{GeV} / \mathrm{c})^{2}$.

The CNI polarimeter, shown schematically in Fig. 8, consists of seven scintillator targets surrounded ty lead-scintillator sandwich veto counters, the two sets
energy-loss distribution for a minimally-ionizing proton (this requirement does $n \mathrm{n}$ apply to the stilbene counter), (3) no veto counter signal, (4) a proton scattering angle corresponding to an elastic p-p interaction with $|t|>0.001(\mathrm{GeV} / \mathrm{c})^{2}$, and (5) a calculable proton polarization value from the beam tagging.

Data with the polarized-proton beam were takea during two different periods, accumulating a total of 3×10^{6} events in 29 hours. ine direction of the verticallypolarized proton beam was periodically reversed by the snake magnets to minimize systematic errors. About 20% of the total number of events had tracks consistent with elastic p-p scattring and $|t|>0.001(\mathrm{GeV} / \mathrm{c})^{2}$; more than one-half of the other events were due to noninteracting protons or very small angle scattering. The measured result is $41 \pm 26 \%$, compared to the beam-tagged value of 42%. A small amount of data was taken using the polarized-antiproton beam. Assuming that the analyzing power for inclusive small-angle scattering of antiprotons is the same as that for protons, the measured autiproton beam polarization was $47 \pm$ 16%, compared to an expected value of 43% from the beam-tagging.

The result from the CNI polarimeter, although limited by low statistics, is consistent with the expected average bearn polarization as given by the beam tagging system.

6. Larre-xf Pion Production

Along with the measurements made by the two polarimeters, the inclusive production of neutral pions at lerge x_{r} han also shown a spin-dependent asymmetry in the production cross section. ${ }^{3 /}$ A nonvanishing analyzing power found in this inclusive reaction means that it can be used as an on-line beam polarization monitor for future experiments. Several features make this an attractive choice: (1) the reaction has a large crose section, (2) detection of the two photona from the π^{0} decay is a relatively simple meajurement, (3) no charged-particle track reconstruction is necessary, and (4) this detector does not interfere with detectors from other experiments. The required calibration of this pola-imeter is provided by the absolute measurements of the Primakoff-effect and CNI polarimeters.

The detector used to measure the position and energy of the two photons is a segmented, electromagnetic calorimeter located 50.5 m downstream of the experimental target. The inner edge of the calorimeter is displaced 30 cm to the right of the nominal bean axis to enhance the acceptance of larger transversemomentum particles and reduce unwanted backgrounds. The calorimeter consists of two parts: (1) an array of 123 lead-glass blocks, cach $6.35 \mathrm{~cm} \times 6.35 \mathrm{~cm}$ and
of hodoscopes located upstream of the experimental target, a "Gray code" transmission hodoscope, ${ }^{9]}$ twelve MWPCs, and a dipole analyzing magnet. The trigger for an elastic $p-p$ scattering event is defined by signals from both the scintillating target and the hodoscopes.

Fig. 8. Layout of the CNI polarimetet: The dimensions transverse to the beam are not to scale.

The target consists of seven scintillation counteis, which are 4.0 cm in diameter and range in thickness frrm 0.5 to 5.0 mm . Six of the acintillation counters are made of Pilot B material and are spaced at $20-\mathrm{cm}$ intervaly alung the beam direction. The seventh, which is the $5.0-\mathrm{mm}$ counter, is made of stilbene and is located 71 cm upaiream of the first plastic scintillator. The signal from each scintillator goes into an ADC so that recoil protons can be separated from the transmitted protons by integrated pulse height. The recoil protons in the region of inierest have energies ranging roughly from 1 to $: 0 \mathrm{MeV}$, compared to the tranamitted protons, which deposit between 0.1 and 0.0 MeV in the plastic scintillators and nbout 1 MeV in stilbene.

The CNI trigger usen only acintillator information to quickly determine n valid event. The trigger requirements are: (1) only one proton detected before and nfter the target, (2) at least one nignal from the plantic-target acintillatorn must have a pulae height greater than n threshold that ncroptes only 5% of the Landan

13 radiation lengths, and (2) a downstream section consisting of a 16 -layer, leadscintillator sandwich calorimeter, with 6.35 mm of lead and 1.27 cm of scintillator per layer. The lead-glass portion absorbs about 75% of the energy in a particle shower and provides the necessary position measurement for the π^{0} reconstruction. The blocks are stacked in the shape of a semicircle, placed symmetrically with respect to the horizontal plane, so that the acceptance is the same for pions with the same transverse momentum. The lead-scintillator sandwich portion is divided into five sections vertically, with each section using four photomultiplier tubes. A veto scintillation counter is used upstream of the calorimeter to discriminate charged-particle from neutral-particle events.

A total of 2.85×10^{5} triggers were recorded from a sotal beam flux of $1.17 \times$ 10^{10} protons. One-half of the data was accumulated with a $10-\mathrm{cm}$ polyethylene target, while the remaining portion used the CNI scintillator target. An average trigger rate was 300 per $20-\mathrm{sec}$ spill, of which 7% reconstructed to a neutral pion. The average beam polarization was 44% for protons with tagged polarization magnitudes between 30 and 55%.

The average analyzing power measured ${ }^{41}$ for the inclusive π^{0} production at $\left\langle\mathrm{x}_{F}\right\rangle=0.52$ and $\left\langle\mathrm{p}_{T}\right\rangle=0.8 \mathrm{GeV} / \mathrm{c}$ is $10 \pm 3 \%$. The analyzing power for background events is consistent with a zero value. With this new analysing power measurement, the π^{0} incl'sive process at large $\mathrm{x}_{\mathrm{F}} \mathrm{can}^{-}$serve as a useiul monitor oi the beam polarization for future experimental needs.

7. Conclusione

A polarized-proton and polarized-antiproton beam line using a new design has been built and teated at Fermilab. Its succersful initial operation at $185 \mathrm{GeV} / \mathrm{c}$ makes this the highent-energy polarized-proton beam in the world and the only available polarized-antiproton beam. Future experiments planned for this facility include: a measurement of $\Delta \sigma_{L}$, the difference in the parallel and antiparallel total cross sections for pure helicity states, the large transverse momentum production of neutral pions and large- x_{F} production of Λ and Σ^{\bullet} hyperons and pions. Most of the detectors are already set up in the MP-Hall (see Fig. 9) for use in performing these experiments

Fig. 9. Detectora in the MP experimental hall (top view) HB1,2,3: beam hodoscope, HB4,5,6: transmission hodoncrpe, Target: polarized proton/hydrogen target/polarimeter larget, H1 to H4: trigger hodoncope, MSD1,2: multistrip detectci, PC1 to 14, MWPC, V1,V2: veto hodoncope, G1,2: lead glase calimer, G3,4: lend ginse hodomcope.

8. References

a) Work supported by the United States Department of Energy, Division of High Energy Physics, Contract W-31-109-ENG-38.
b) The E-581/704 Collaboration-N. Akchurin, R. Eirsa, F. Bradamante, D. C. Carey, R. N. Coleman, J. D. Cossart, M. D. Corcoran, A. A. Derevschikov, A. de Lesquen, M. Gazzaly, M. Georgi, D. P. Grosnick, D. A. Hill, K. Imai, K. Kuroda, M. R. Laghai, F. Lehar, D. Lopiano, F. C. Luehring, A Maki, S. Makino, A. Martin, A. Masaike, Yu. A. Matulenko, A. P. Meschanin, A. Michalowicz, D. H. Miller, K. Miyake, T. Nagamine, M. Nessi, F. NessiTedaldi, C. Nguyen, S. B. Nu: Ohev, Y. Ohashi, Y. Onel, G. Pauletta, A. Penzo, G. C. Phillips, A. L. Read, J. B. Roberts, R. A. Rzaev, G. Salvato, R. Schailey, P. Schiavon, G. Shapiro, T. Shima, H. Spinka, V. L. Solovyanov, !. W. Stanek, R. Takashima, F. Takeutchi, N. Tamura, N. Tanaka, S. Dalla Torre-Colautti, D. G. Underwond, L. van Rcssum, J. L. White, A. Yokosawa, A. Zanetti.

1) H. Primakoff, Phys. Rev. 81, 899 (1951); A. Halprin, C. M. Andersen, and H. Primakoff, ibid., 152, 1295 (1966); K. Kuroda, AIP Conference Proceedings No. 95, "Kigh Er: :rgy Spin Physics,"(Brookhaven, 1982), edited by G. M. Bunce (American lnstitute of Physics, New York 1981), p. 618; D. G. Underwood, Argonne National Laboratory Document ANL-HEP-PR-77-56, 1977.

2] B. Z. Kopeliovich and Lapidus, Yad. Fiz. 19, 218 (1974) [Sov. J. Nucl. Phys. 19, 114 (A74)]; N. H. Buttimore, E. Gotsman, and E. Leader, Phys. Rev. D18, 694 (1078); J. Schwinger, Phys. Rev. 73, 407 (1048).
3) B. E. Bonner et al., Phys. Rev. Lett. 61, 1918 (1088).

4] See for example, "Proceedings of the Symposium on Future Polarisation Phyaics at Fermilab," Fermi National Accelerntor Laborntory, Batavin, Illiuoin, 1088; edited by E. Berger, J. C. Mortin, A. L. Reed, and A. Yokonawn, or "Proceedings of the VII International Symposium of High Energy Spin Physics, "Protovino, USSR, 1080 (Serpukhov, 1087).
5) (). E. Overseth, NAL 1000 Summer Study Report, SS-118, Vol. 1.

6] J. W. Cronin and O. E. Overseth, Phys. Rev. 129 (1963) 1795; O. E. Overseth et al., Ph,s. Rev. Lett. 19 (1967) 391.

7] P. Dalpiaz et al., CERN/ECFA/72/4, Vol. I, p. 284; CERN proposal SPSC, p. 87, July 1977.

8] B. Margolis and G. H. Thomas, in AIP Conference Proceedings No. 42 Higher Energy Polarized Proton Beams, Ann Arbor 1977, edited by A. D. Krisch and A. J. Salthouse (Amc. .can Institute of Physics, New York, 1978) p. 173; G. Fäldt et al., Nucl Phys. B41, 125 (1972).

9] M. Arignon et al., Nucl. Instrum. \& Methods A235, 523 (1985).

