Interception of comets and asteroids on collision course with earth

PDF Version Also Available for Download.

Description

I derive expressions for the weight and range of applicability of interceptors capable of deflecting a comet or asteroid on collision course with Earth. The expressions use a fairly general relationship between the energy deposited and the mass of material blown off the astral assailant. To assess the probability that the astral assailant will fracture, I also calculate the fraction of the astral assailant's mass that will be blown off. The interaction is calculated for both kinetic-energy deflection and nuclear-explosive deflection. In the nuclear-explosive case, I calculate the interceptor mass and cratering effect for detonations above the surface and below … continued below

Physical Description

24 pages

Creation Information

Solem, J.C. January 1, 1992.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 251 times, with 24 in the last month. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

I derive expressions for the weight and range of applicability of interceptors capable of deflecting a comet or asteroid on collision course with Earth. The expressions use a fairly general relationship between the energy deposited and the mass of material blown off the astral assailant. To assess the probability that the astral assailant will fracture, I also calculate the fraction of the astral assailant's mass that will be blown off. The interaction is calculated for both kinetic-energy deflection and nuclear-explosive deflection. In the nuclear-explosive case, I calculate the interceptor mass and cratering effect for detonations above the surface and below the surface as well as directly on the surface of the astral assailant. Because the wide range of densities and material properties that the astral assailant may possess, the principal value of this work is to show the relationships among the salient parameters of the problem.

Physical Description

24 pages

Notes

OSTI; NTIS; GPO Dep.

Source

  • Workshop on near earth objects, Los Alamos, NM (United States), 14-26 Jan 1992

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE92007431
  • Report No.: LA-UR-92-231
  • Report No.: CONF-920180--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5693171
  • Archival Resource Key: ark:/67531/metadc1090076

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1992

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • May 17, 2019, 12:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 24
Total Uses: 251

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Solem, J.C. Interception of comets and asteroids on collision course with earth, article, January 1, 1992; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1090076/: accessed March 19, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen