A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state, and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.
TITLE REMOTE HANDLING AT LAMPF

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AUTHOR(S) D. L. Grisham J. E. Lambert

SUBMITTED TO ICANS, September 12-16, 1983, Ontario, Canada
Introduction

Experimental area "A" at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. Figure 1 is a layout of experimental area "A."

The Monitor remote handling system was developed to perform in situ maintenance at any location within area "A." Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon "hot cell" and/or "hot bay" concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools.

The Monitor System

A Monitor system consists of a pair of slave manipulators mounted on the boom of a portable hydraulic crane positioned at the work location. Figure 2 is a view of the slave unit.

Operations are conducted from a master control station, installed in a trailer, positioned at a safe distance from the radioactive work area. Viewing is accomplished only by closed circuit television. Figure 3 is a view inside the master control station.

Fig. 1. Area A

Work supported by the US Department of Energy.
The Monitor operating crew consists of:

1. The manipulator operator (seated as shown) performs the actual work using master/slave manipulator and various tools as required for the job.

2. The crane operator (not shown) operates remote controls for the hydraulic crane from the console in the right rear, to maintain proper working position for the slave manipulators.

3. The camera operator (not shown) operates the pan, tilt and zoom functions for the television cameras from the center rear console to provide optimum viewing for the manipulator operator. As many as six cameras may be in use at one time.

The prototype Monitor system was first used in 1976 to replace an air cooled beam window in the beam stop area with a newer water cooled version to allow higher beam current. The prototype Monitor used a hydraulic servomanipulator (without force reflection) and an electric manipulator (AR model 300.) The operating end of the slave unit is shown in Fig. 4. The master control station consisted of a pair of panel racks and "stick" master located in the experimental hall. This system is shown in Fig. 5.

Since 1976, many ongoing improvements were made to keep pace with increasing radiation levels and continually increasing complexity of tasks to be performed. The most significant single improvement was the addition of bilateral force reflecting servomanipulators (mfg. to LAMPF specifications by Telesoperator Systems, Inc., Batavia, NY.) Other important improvements were climate controlled trailers for master stations, better control systems, and improved control and viewing console layout.

At the present time, two systems (Monitor I and Monitor II) are fully operational. A third system (Monitor III) is now under construction.

Monitor I and Monitor II were designed to operate primarily within experimental area "A" as they depended upon overhead radio-controlled cranes for mobility and require electrical power from the facility.
Monitor III will be a totally portable system, with its own power generator, capable of operating at any location accessible by truck.

Monitors I and II have served well in maintaining existing experimental equipment within area "A". However, Monitor III will be needed to accomplish major rebuilding of target cells A1 and A2, particularly from the standpoint of removal and disposal of radioactive structural components. Figure 6 is a sketch of the Monitor III system. In addition to maintenance and construction, Monitor III will be used in transport and disposal of radioactive materials removed from the facility.

Major Accomplishments

Since 1976, the Monitor system has developed and expanded to keep pace with maintenance requirements and improvements to experimental area "A." The original Monitor system was limited to performing relatively simple tasks, while the present systems have evolved to the point where it is possible to remotely perform tasks previously possible only by direct "hands on" methods. Some of the more complex tasks now performed by Monitor or a routine basis include "in place" fabrication of piping systems, soldering, brazing and grinding.

The most significant accomplishment to date for Monitor was the total rebuilding of LAMPF target cell A2. This involved the replacement of the target chamber, upstream collimator, three large magnets, profile monitor, and a myriad of piping and electrical systems. Weights of the components replaced ranged from a few kilograms to 25 metric tons. Since most of the components replaced were newly designed, the existing piping and electrical systems had to be totally replaced to suit the geometry of the new components. The new target chamber had to perfectly match four existing vacuum flanges from the main beam line, two secondary beam lines and target insertion port. This was accomplished by positioning an alignment fixture with adjustable flanges in the target cell and mating the flanges to the existing ports.

![Figure 6. Monitor III](image)

After the adjustable flanges were mated, they were remotely tack welded to preserve alignment during removal from the cell. The fixture was then removed, decontaminated, and placed on a large metal table. An external jig was then adjusted to match the flanges on the alignment fixture, then the jig was used for construction of the new target chamber. Figure 7 is a partial view of target cell A as built in 1976. Figure 8 is a view of the same cell with all the components removed. Figure 9 is the new target chamber just before installation. Figure 10 is a view of the partially reconstructed target cell.

Conclusions

The Monitor system has been totally successful in maintaining LAMPF experimental area "A." In addition to performing planned improvements to the facility during scheduled down times, it has performed emergency repairs with minimal loss of operating time. The useful work output of the Monitor system has risen by a factor of four since 1976, with a less than 20% increase in operating personnel.
In its present state of development the system is capable of performing any foreseen task; however, in order to satisfactorily meet the future programmatic needs to LAMPF, operating efficiency must continue to improve at the same rate or greater, than experienced between 1976 and 1983.

References

Fig. 9. New A-2 Target Box

Fig. 10. Target Cell A-2, 90% Complete 1983