A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR _g5-810

Los Alamos National Laboraiory 18 oparaied by the Univarsity of Califormia for 1he Uniled Siates Deparsiment of Energy under contrac' W-7405-ENG-38

TITLE A DISTRTBUTED IMPLEMINTATION OF FUNCTIONAL PROGRAM EVALUATTON

LA-UR--85-810

AUTHORIS) .Joseph II. Tascel, C-10
kobert J. Douplass, €-10 DE85 009573

Randy Michelsen, (-10
Paul Thudak, Yale University

sUBMITED TO I'apur to be presented at Al-85, Lonp Beach. CA, April 30, 1085

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor auy agency thereof, nor Jny of thelr
employees, makes any warranty, expreas or Implled, or assumes any legal llnbility or responsi-
bility for tho accuracy, comploleness, or usefulness of any Information, apparatus, product, or
proceas disclosed, or represents that Its use would not Infringe privately owned rights. Refer-
ence herein o any specific commercisl producl, proces, or servico by trade nams, tradomark,
manuiscturer, or oiherwise does not necesmarily conmtitute or imply its sndorsement, recom-
mendation. or favering by the linited States Government or any agency thereof. The views
and opinions oi authora expre: ~d hereln do not necossarily state or reflect those of the
United States Government of an agency thereol.

By accentane e ot g gei¢'p (e pubusner rpcognides (hatl the U S Governmen| rela-ng a nonesciusive royally.free icenae 1o publish or reproduc®
the ot yied nene of Ing cortnibubion of tu Alow others tn go so for US Government purpolses

The L ns siarr oy Natang L ahoratory requests that (he pubhisher identily this ariicle a5 wotk petiormeg under the auspies of thg U S Daeg arimen) of { neigy

Los AlamOS Lsshamos Natiol Laborstory

10 ND 836 RS MSTRAUTION OF TS DOCUMEN] IS UNLINRTED

51 NO MMM

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A DISTRIBUTED IMPLEMENTATION OF FUNCTIONAL PROGRAM EVALUATION

by
Joseph H. Fasel, Robert J. Douglasa, Randy Mickelsen!
University of California
Los Alamos National Laboratory e S,
Los Alamos. New Mexico

and

Paul Hudak? S T g

Yule University
New Haven, Connecticut

1. INTRODUCTION

1.1. Artificial Intelligence and the Need for Parallel Processing

Tremendous industrial and governmental interest in artificial intelligence has been sparked by
successful applications involving the use of expert systems in such ficlds as geology. chemistry,
medicine, and computer engineering: by the application of natural-language and specch processing 1o
provide a more human-oriented interface for computerized information systems: and by the
development of computer vision systems for industrial roboticz and military guidance and surveillance
applications,

Al applications developed Lo date are relatively small, yet they still consume a large quantity of
computer resources and run rather slowly on conventional computer architeetures. By the 10900s the
Strategic Computing PPlan of the U.S. Department of Defense's Delense Advaneed Rescarch I'rojects
Ageney (DARPA) anticipates expert systems with 30,000 rules executing at about 12,000 productions
per sceond, as opposed Lo today's machines, which exceute about 25 to 50 productions per second
[7. 13l In the area of computer vision, DARPA estimates that “one trillion von Neumann operations
per second are required” o perform their applientions and that 20 billion operations per secoml will he
required for some speech undemstanding applientions [7]. For natural-language processing, DARI'A
envisions the need for “massivedy parallel computational deviee:s,”

Thue Japanese Fifth Generation P’roject is even more ambitious, niming at expert svsteme
contalning more Gian 10,000 Horn elauses and exeeuting at the rate of 50 million to 1 billion logiea!
infereness per second (L1°8), as opposed Lo their estimates of today’s wmachines, which ran a1 10 to 100
thoweand LIPS (260, Other new industrial and government programs have sprung up with similar, if ne
as specifieally guantified, goalss for example, the Nieroeleetronies and Compmter Technology
Corporation in the U8, and the ESPRIT prograc in BEurope 12, 2],

The traditional von Neumann architecture is approsching execution speed limits imposed by the
speed of light and the time to communieate hits of Information eleetronieally within a single processor,
Clearly, obtaining the required speeds will regnire massive parallelisis “y the exeention of nrtificind
intelligence programs. Dozens of papers we enteriug the litepnture, advoeating different approaches to
achieving the npecessary parnllelism, many of which involve special-purpose parallel processor
110, 11,25, 0,27, 30, 5, 1]

"Wark donr under the puspices of the U'S DBepartment of Energy
Research supported i part by NSF Jrant MCS-RI0201K

MASTER

AL

STRRHON M 1y NOCUMINY 18 UNtinagED

1.2. The Functional and Logic Models

A common premise of [ifth-generation computing is that the traditional ‘‘word-at-a-time" von
Neumann computing model is inadequate as a foundation for parallel computing. Extending such a
sequential model to «be parallel world is like putting on a shoe Lthal doesn't fit — it makes much more
sense to begin with a foundation that has a nonsequential semantic base. There are several eomputing
models that fit this morc demanding description, but the two most popular ones are the functional
model (based on reduction in the lambda calculus) and the logic model (based on resolution in first-
order predicate calculus). Both offer several important advantages over conventional computing
models. For example, their lack of side effecis makes synchronization issues trivial, and the lack of a
single “thread of control™ simplifies the manifestation of parallelism. Doth models promise to he
valualle as a basis for fifth-generation computing.

It is not cntirely clear which of these two models is better, and indeed it is only through ongoing
rescarch that we may be able to shed some light on the question, In this paper we will explore the
details of a strictly funetional model called DAPS (for Distributed Applicative Processing Systems).
DAPS represcnts the cevimination of our research in graph-reduction techniques on parallel
architectures. Although the logic model has its clear advantages (such as the fact that resolution is a
superior mechanism for variable binding in funetion invocations), we see the following as advantages of
the functional model:

(1) The functional model is able to support higher order functions (that is, funetions passed s
arguments or relurned as values from expressions), whereas the typical logic model restricts
programs to first-order logical statements for reasons of efficiency.

(2) The generality of resolution makes it less efficient for the most common operations. which are
typically no more complex than a conventional procedure call.

(1 The Tunctional model can accomplish eontrolled seareh by enumerating alternatives, rather than
relving on the automatic backtracking in unification, which the programmer often wishies to defeat,

(1) Many of the features that we will deseribe as important to DAPS apply equally to logic computing

maodels Tadeed, we feel that we can support logic programming in our model by using one of
several reduetion-oriented approaches to resolution.

1.3. Summary

In this papers wo enplore the potentinl of the fuoetional model, pandealarly as it pertains
arclitecture, TnoSection 20 we deseribe the graph-reduction operationa model of computation and i<
reltion v AL pedboees T Seetion B0 we disenss o elies of areehitectures that hplement gragh
reduction aned aoprototy pe fimplementation in this elass being developed ot Los Alinos. Finally, we
speentite on the appdieability of graph reduetion to some ather elisoo of areliteetere,

2. GRAPH REDUCTION AND Al

2.1. Graph Reduction

We have argued that the fanetional computing model is one of the most vinble foundations for
parallel computing, (Indeed, it s on this same foundation that research on dataflow machines lies.)
Funetional progeam evaluntion strategies are derived from the Tambda eaiculus [:l]. whose nonsequential
nnture is quite suitable for parnllel computing, In particular, these strategios exhibit the well-known
Church-Itoaaer Praperty, which indircetly states that no matter what computation order is chosen in
executing n program, it is guaranteed to return the same resull (assuming termination). This murvelous
determinaey is invaluable in parnllel systems iC means that progrioms may be written and debugged in
n funetionn) Innguage on o sequential muehine, and then the amme programs may be exeeuted cn o
parallel mwaechine for improved performance. The key point here is that in funetional languages the
parallelism is Dnplieit and supported by the underlying semanties. There is no need for speeial
messnge-prssing, construets or ather communientions primitives, no need for synehronization primitives,

and in general no need for special *“parallel™ eonstruets such as parbegin...narend.

Given that implementation of the functional model is a reasonable goal to pursue, what kind of
physical architecture is most appropriate? That is, given that there are several reducible expressions
(redexes) in a program graph, what mechanism should be used to direct processing power to those
locales? There are, of course, many possibilities, bul early on we rejected several ideas, including
dataflow (since we view the distribution strategies as Loo fine-grained). multiprocessors with shared
memory (since we view the memory as an ultimate bottleneck), and systolic machines (since the
indcterminate behavior of recursion appears to be intractable in such a machine). The architecture that
we have scttled on instead is one in which a large number of processing elements (PEs) having only
local store and cormmunicating by messages are interconnected in A homogrneous communications
network. This idea is not new and is sometimes referred to as a network computer or enaembie
architeclure. It is especially attractive heeause it appears to be well suited for VLSI design and is
extensible; there are a growing number of real machines that fit its deseription.

Unfortunately. few (if any) of the network computers in existenee today have suceeeded in
extracling a reasonuble amount of parallelism from a general elass of programs. They have only
performed well when the parallel components of the program have been explicitly stated by the user, or
explicitly allocated on particular processors, and generally only for problems that have inherent
regularity and predietability. No one has demonstrated the overall feasibility of the network computer
for accomplishing the parallel execution of a general range of programs, or even for a restricted clase of
sav. Al programs. We feel that the network computer model is indeed a viable approach to “fifth-
generation” computer design, but current efforts have been lacking in several respeets:

(1} Most network computers lack a coherent global computation strategy (such as provided by the
functional computing model), The machines are too often treated simply as an array of
conventional processors that ‘‘eomnmunicate by messages.” resulting in ad hoe solutions to a very
difficult problem.

(2) Little attention has been paid lo the complex issue of managing n highly parallel, decentralized
computation, especizlly in the presence of “eager” and nondeterministic computations, Such isanes
beconme extremely complex in the deeentralized, distributed environment of the network computer
and cannot be taken for granted,

(3) There is little to be learned from the success of parallel machines in scientific computing, since
these machines dejend heavily on n program’s regularity and predietability. Such program
behavior is common in seientific computing, hut is rare ir Al and other more, data dependent
computations. New techniques neeid 1o be developed 1o deal with dynamic. unpredictalile behavior.
The DAPS mode] direetly addresses all of the issues raised above, ’hysically. it ean be viewed ns 0

netwerk computer, But Jogieally, it has n ecohersut global ecomputation strategy derived from the

lambda caleulus, togpether with effective meehanisms for managing the logisties of a highly parullel
computation. Al control it entirely decentralized, including memory and task management, thos
avoiding any bottlenecks to parallelism. Furthermore, it uses a techniaue called diffuaion scheduling
to handle the dynamic and unpredictable spawning of parallel tasks during a computetion. a feature
that is crucial to good performance on the less regular, unpredictable programs that are characteristic of
Al und other application areas, The DAPS model is discusse] in more detail below,

2.2. The Irregularity of Al Computation

Most Al problems Inck regularity and predictability, In econtrast to many scientific applications
whieh perforin compatations on very regular data objects, sueh as fixed sized areays, Al programs
proeess eoplex data struetures represented ns his's, sets, and graphs that are allocated and deallocated
in u variable pattern during execution. Much of the processing in symbolic computation involves
following linked lists by tracing chains of pointers through seattered loeations in memory. ixeeuticn
speeds for single serial processors are therefore fimited by the time it takes to make random retrievals of
individual words of data from memory,

Parallel execution of Al programs must also be dynamic, because for many Al problems the size
and form of the computation are determined dynamically as the computation unfolds, and an
architecture for Al should reflect this fact. In particular, it needs mechanisms to dynamically spawn
concurrent processes. to automatically manage the parallel vasks and their storage needs, and to
respond to the changing processing requirements of the computation with load-balancing strategies to
shift work {rom overloaded to idle processors.

Rule-based expert systzms provide an example of the irregularity of Al computation. They consist
of a sct of facts deseribing a particular problem domain and a set of inference rules that can be applied
Lo the lacls to deduce new facts. Rules consist of two parts: a condition part that is a conjunetion of
test conditions and an aclion part that specifies changes or addilions to be made to the facts if the
conditions are salisfied. Starting with a goal that is to be established as true, an expert system searches
for some combination of rules a:..l facts that will establish the goal. The form of this search for most
expert systems is that of an AND/OR tree. OR nodes represent points in the search where there are
alternaiive rules or facts that might lcad to a solution, and AND nodes represent points where all of
scveral test conditions in the condition part of one rule must be satisfied in order to apply the rule [10].

An AND/OR search tree is a very dvnamic structure. It is created on-the-fly for cach new goal to
he established, and it grows and shrinks depending on the particular facts and rules in the knowledge
base. Such a conmputation is markedly different Trom a tvpieal scientific computation, such as solving a
matrix of coefficients for a system of partial differential equations. If AND/OR trees are searched
concurrently. the search must be a dynamic one with processes spawned and managed automatically
during execution. The graph-reduction model is a good one for such unpredictable computations.

Graph reduction is also quite attractive for more regular Al tasks as well, for example, low-level
computer vision and speech processing [11. 25, 9. Many low-level vision algorithms operate on fixed
sized arrays representing the picture elements (pixels) in an image. We have experimented witl
automatically parallelizing and executing with the DAPS granh-reduction scheme described below a
functional specification of a sterco vision disparity algorithm. which matehes corresponding pars in a
slerco pair of piclures to determine their distance from the camera. We have been able to obtain
speedups comparable to or slightly bLetter than the speedups obtained by explicity hand-coding
parallelism for the same algorithm in HEP Fortran, The speedups for the graph reduction were
oblained using the DAPS simulator discussed below and compared with paralle]l speedups obtained
using the Dencleor HEP. In addition, the funetional specifieation of the algorithm is about 20 times
smaller than the HEDP Fortran program and miirors the original equations of the algorithm definition
[11].

3. GRAPH-REDUCTION ARCHITFECTURE
3.1. DAPS

In the DAPS functional model, a proaram is represented as a direeted grapls whose vertices are
labeled with primitive operators and values and whose edges refleet data dependencies between
operators and values (ef. [1, 4, 8, 22, 24, 25, 31]). I'rogram execulion is accomplishud via transmutations
(ealled reduetiona) to the graph, which essentially mimic the reduction rules of the lambda caleulus,
This includes not only relabeling vertices with their ultimate value but also changing the connectivity of
the graph, which can result ip the implicit deletion of somie verlices as well as the explicitl ereation of
new ones. (New vertiees, for example, are added as the result of a function invocation.) The graph thus
expands and contracts as the computation progresses, as shown in Figure 1.

To support the graph-reduction process there is a single global address space representing a free
space of available cells with which the program graph is constructed (and may be thought of as one
large heap, in the Lisp sense). Each IPE s responsible for one contiguous portior of this address space,
and thus parallelism comes to bear when concurrent redexes reside in the address spaces of different
I’Es. A task gueuc is maintained on each I'L that essentially contains pointers to vertices in the graph

N h e h
+ RN TN TN v N Jeiidevaa At taaaed
w N

W

2 2 3

Figure 1: Possible reduction sequence for f(x) == g(x,h(x)).

representing available redexes. Executicn oceurs by initially mapping the program graph onto th
global address space, and ax the evaluation unfolds, expanding porticns of the graph are allocated on
neighboring PEs for increased parallelism. The program thus “diffuses™ through the network: the
method for doing this is deseribed below,

There are several signifieant aldvantages to the geaph-reduction appreacls:

(1) Program and data are the same, simplifying the architeeture aned Facilitating important Al tasks
such ax graph searches in semantic networks.

(2) It i= fairly easy for a compiler to determine the purullel componenis of a computntion graph
through straightforward flow analysis.

(3) It is possible to deseribe jmportant properties of a parallel computation e terms of graph
conneelivity, ullowing the development of effective solutions memory snd task management
problems.

(1) Highly parallel computation involves frequent contert awitches, sinee hreadth-first evaluations are
usunlly performed to maximize the chanee for parallelism. Using graph reduction, the overhed for
context swilehing is exsentinlly zero, sinee all data relevant to the computation sre embedded in
the program graph,

3.1.1. Memory and task management

Underlving the graph-reduction machinery ix n powerful set of houseleeping processes that perform
crucinl tasks sueh as gorbage colleetion, ireelevant tesk deletion, and task prioritdzation. These
processes are based on parallel, decentralized algorithms that exeewte eonenreently with graph veduetion
and are lntended to be part of the underlying machinery, not something that the user need b
coneerned with, (These algorithms have bheen deseribed in detail elsewhere |17, 18010 ainl are nol
central to this diseussion.)

3.1.2. Scrial comblnatore

An important question in any parallel comjputing environment is what the “granularity™ of the
parallel tusks should be, In this section we digeuss the notlon of aerial combinatora used In DAPS,

A combinator (20, 6] is simply a lambda expression that has no free variables and is a conatant
applicative form; that is, it contains only bound variables and constants combined by application.
These properties are crucial for a graph reducer, since they ailow computed values Lo overwrite the
nodes from which they were derived, without making copies of the bodies of functions, Hughes [21]
introduced the notion of a supercombinator. derived from a lambda expression by abstracting out the
mazimally free expressions; that is, the largest subexpressions all of whose literals are either constants
(including basic functions) or free variables. Together with a few optimizations, the resulting
supercombinators have u very useful property: axeention of the original program results in a fully luzy
eraluation, in thal no subexpression internal 1o a combinator body need be recomputed as a result of
reapplication of the combinator to the same argument in several dJifferent plares. This is a
generalization of laziness as defined bLy Ienderson and Morris [16]. which zunrantees only that
argumenls in d function call are never computed more than once, Supereombinator exeention is also
generally more efficient than a compexition of many finer grained combinators.

We have recently developed a refinement of & supercombinalor called a serial eombinator with the
important additional property thal there s no concurrent substructure, and there are no larger
combinators with the same property. The purpose of this refinement should oe obvious: if the
combinator has no concurrent substructure, then there is no need to subdivide it further, since doing <o
can only add communication osts to an already sequential computation. To summarize, we argue that
serial combinators are at the ideal level of granularity in the following sense:

{1) They are combinators, facilitating their use in a graph-reduction machine (especially parallel ones).

(2) They result in a fully lazy evaluation, guaranteeing that no extraneous computations are
performed.

(3) They have no concurrent snbstracture, guarantecing that no available paradlelism will Le Jost.

() There are no larger nbjects having these same properties, so that o extraneoos ccanmubication
costs are ineurred beenuse of too Tne o gratiiariny,

serial eombinators are therefore the smatlest objects that are ddisteibuted for purallel exeention in DA,

3.1.3. Diffusion scheduling

Diffusion scheduling atiacks the problem of deciding when aned where to distribute new work 7201,
This decision is crucial to chiaining good performanee, espeeiadly in o wearest peighbor topolosy where
communicating to immediate nepzhbor is elieapest, ilowever, the alloeation Jdeeisions peed to e nede
quickly, at run time, and Lol an deeentealized (and thus incomplete) knowledae, 16 is not possible,
therefore, to miuke optimal ddecisions henpisties are peeded that balanee the proeessors” Joads (thos
inereasing e degren of parallelism) while maintaining loeality of reference ithus minimizing
contmunieations overhewd)h Given a PE p alout 10 ereate a new pode a, the hearisties that aalerlie
diffusion sehednling will alloeate noeither on p or on an immediante peialibaor of po based on oo weizhee
s of several Faetors, possibiy inelndin:

() Tae processing loned o poithat i the nnmbee of ks waitinz Faeooxesnttion onp's Gk quene,
(2 The memory lossd on p ithat is, ow mueli free space i= avaiiable),

(41 The processing awd memory loml of each neizhboring 'L,

11) A weighted measuee of the “direction” oF referenees from n to other nodes in the network.,

The effeet of (1F13) is 1o push work away from busy processors, and the effeet of 01} is teoadew
them toward those te which they nave glabal peferenees (thns maintaining loeality of refereneel. Inorhis
way work Udiffuses™ through the network in the direetion of least resistanee, ns suggested by Vizore 2
for a hypothetieal vwosdimensicanl network (e f, 115,23]),

Up
F=

l 4
Direction 2 references
of least
resistance

1 reference

Left Right

LF Lload Factor

Cown
LF=6

Figure 2: Diffusion scheduler spawns task upward.

3.1.4. Los Alamos implementation

There is currently under development al Los Alamos National Laboratory a system designed 1o
provide a testbed for research in distributed gruph reduction, This wlll allow us to further explore
many facets of distributed reduction, including hoth architerturul and language issues, The system is
comjrised of a group of Symbolies Lisp machines connected by a communications network. with the
functionality of communiration, scheduling, and reduction embodied in separate proresses on each
miachine, As illustrated by Figure 3. the testhed system consists of a colleetion of processes replieatre]
on each availabile Symbolies host.

The network aerver is the communieation interfuee W the network connecting tlie proeescors, Tt
distributes ineoming messages to the appropriate loeal processes nnd aceepts messages for transmission
to Leichboring processors. Typical messages include requests for values of nodes in the locally resident
portion of the program graph. values returned as the result of previous request., or spawned task
Fequests,

The ayatem acheduler is an implementation of the decentralized diffusion scheduling aleorithm
di~cussed above, Information charneterizing the available enpacity of neighboring processors,
periodically provided by the seheduler's counterparts on these processors, is used for load balancing
during the distribution or spawning of tasks. Failure to receive such information from a neighboring
processor, Indicating probable processor failure, may be used to initiate rescheduling of tasks previously
distributed to the effected processor. The scheduler Implicitly defines the term “neighboring PE™
through Its perception of the network topology. This knowledge of adjacency is londed into the
scheduler proces. s part of the system initialization prucedure. This allows us o experiment wlth
different interconnection topologies, even though the communications medium in this testhed
implementation is In fact a global bus.

The locally resideat portion of the program graph is maintained by the reduction manager., As the
program graph unfolds during reduction, portlons of the graph are dynamically alloeated and redueed
under control of the reduction manager resident on each processor. This process responds to requests
generater 18 a result of reduction activity, on the locel or neighboring proces.om.

Performance —I
Monitor
\— System
Scheduler
Network Network
[}
s L < Reduction
Connection Server Manager

Figure 3: Symbolics implementation bloek diagram.

The perfermanes monitor collects darn eeflecting peformanee of the reduetion system processes
re<itdent on euch provessor, Locally pertinent information regarding network teaffie, reduction activity,
and interproress enmnunieation is maintained on eacly processor. The collection activity is contraiied
by u ~oftware 1oz,

Thic implomentation effort prevides us the alility (o evaluate combinator-hased grap b redoetion in
an actual multiprocessor environment, In addition, it allows us to further study related issnes in
coampilation, sehedyling, and communiention.

3.2. Other Architectures

Having diseussed the merits of graph reduetion for distributed computing, we must ad] that we se
ne diffieulty in applying it as well to shared-memory multiprocessor arclitectyres. sech a~ the Deneleor
HEP, Cray X-AMDPP, or NYU Ultracomputer. In fact, such & m-~chine could be considered the ideal
graph-reduetion engine. Instead of the neeessity (o distribute the graph to the processors, the
proceseors can directly reduee the graph in common me.ory: the ability to share values, one of the
chiel virtues of the grapli-reduetion maodel, is thus greatly enhanced. The problem of load halancing is
vastly simplified; the processors can take work from a common queue of available reductions.

A variation on the shared-memory multiprocessor s a machine such as the BBN Butterfly, in
which processor-memory pairs are connected by a global switeh, lere, ench processor has fust access to
it~ associated memory and relatively slower but uniform access Lo any other memory. A likely strategy
for load balaneing in this ease is again to use R common queue, but organized sueh that each processor
can [rform reductions that ean be accomplished In its loeal memaory before looking for work elsewhere.

Shared-memory multiprocessors thus appear to be a hospitable environment for parallel graph
reduction, but we are devoting most of our atlention to the more difficult preblem of distributed
computing because we believe that shared-memoery architectures cannot ultimately deliver the
performance gains that have motivated research in parallel processing. One cannot indefinitei add
processors to a common memory without suffering a performance (legradation from memory cont.:ntion
or increased memory access time. Indeed. shared-memory architeciures thit achieve a uniform memory
access Lime generally dn so by making this time uniforn:ly worst-case. As these architectures are sealed
up to large numbers of processors, thi; becomwes significant. Thus, it appears that the only way s muxe
effective use of massive parallelism is to distribute computing resonrces and exploit locality in programs
to minimize commuuirations overhead,

The attractiveorss of shared memory aside from performance problems, toeetier with the nlti
necessity for distribution, suggest that a hybrid approach is reasonable: we constrinet shared-memery
muliiprocessors of whatever size is eneficial. and these become the nodex in g disteibated netwers, In
such a syvstem, we think of parallelism as being available on two levels: o tichtly eonpled, perhaps
small-grained parallelism within a processing element, and loosely coupled, larger grained parailelism
over the network a~ a whole, A third level should be considered, that of the fanetional nnits witlin o
processor; it is here that current veetor supercomputers achieve noieh of their periormaner, iy
pipelining these units so that Jata can be streamed through them at a high rate, and by everlapping the
execution of instructions for independent units. For single-instruetion, multiple-data (SIND,
parallclism, such processors achieve an execution rate that would be Jifficult to equal with
asvnchronous multiprocessing. To the extent, therefore, that SINID parallelisi i= o faerer in Al
problems, we may expeet veclor processors to be important in fifth generntion arelizeeture, Porliugs
future high-performaner computing svstems will be large-senle distributed peraopine D shumeomemory,

pipelined vector multiproeessors, ike the Cray N-NPU Althonsl the applicability oF craph cedietinn o

i

vector processing has yvet 1o be evaluuted, we suspect that any applieative medel cf eosmpotation is

likely 1o be advantuneecus, considerinzs that seetorization of selentific eodes on o enrrent veetor mashines
seems Lo be limited by the ability of optimizing compiler to deteripine data dependencies 1o exreer
parallelism from seuential imperative programs,

REFERENCES

1. Berkling. K. J. Reduction lansuages for redinetion machines, rocc 2nd Ano Sypip, Coneputer
Arehitecture (1975). IEELE, py. 133-110.

2. Bragguur, 1L ESPRIT: Forepe ehallenges Ulso and Japanese eompetie v n o rnari o
technology. Future Generations Computer Systems 1o {July 1O%40.

3. Church. A. The Cualeuli of Lambda Conversion. Anuals ol Nathematien) Stdies, v fn,
Princeton University Press, Priuceton, NJ, 1041,

4. Clarke, T, J. Wo Glolstone, P00 S0 Naclean, Co Doand Normane AL O, SKIN The S0 KL
reduction machine, Confo Ree, fas0 Lisp Con fo (Stantord, CAL August 19805 12821235,

5. Conery, J.. and Kibler. D, Parallel interpretation of logie programming. roes Confo Funetional
Programming Languages and Computer Architectare (Portsmouth, NIH, October 1OS1). ACN]

6, Currv. IL B.oand Fey<, Ro Combinatory Logie. vol. 1. North-Tollan:l, Xosterdam, 1958,

7. DARDA. Strategie Computing. DoD. Oetoher 1983,

8. Darlingron, Jo and Reeve, Mo ALICE: A multi-processor reduction machine for the parailel
evalnation of applicative langnazges. Proe, Conf. Funetional Programming Languages ol
Computer Architecture (Portsmouth, NI, October TOR1), ACNL pp. 65-75.

9. De Mori. R., Lafaee, Pooand Mong, Yoo Paradlel alzorithms for syllable pecocnition in continuons
speech. JELF PANIT 7,1 (January 1985.).

10,

11.

1%,

14,

),

3.

d1.

Douglass, It. A quulitutive assessmint of parallelism in expert systems. JEEE Software 2, 2 (May
1083).

Douglass, R., end Lincoln, Patrick. Automatic versus hand-rode parallelization: A stereo-vision
example. In K. Preston and L. Ulir (Ed.) Parallel Cemputer Vision, Academic Press, New York,
1085.

Fischetti, Al. Next generation computers: The United States, JEEE Spectrum £0, 11 (November
1083).

Forgy. C.. Gupta, A.. Newell. A.. and Wedig. R. Initial assessment of architectures for productiun
systems. Proe, NC AT (Austin, TX. 1084,), 116.

Goto, A., Tanakn, 1., and NMoto-oka, T. Highly paruliel inlerence engine PIE - Goal rowritine
madol an! machine architecture, New Generation Computing 2, 1 (1954), 87,

Iulstead. R. 1. Jr. HReference tree networks: Virtual machine and implementation.
MIT/LCS/TR-22, NMIT Laboratory for Computer Science, 1979,

Henderson, Poand NMorrise Jo N A lazy evaluawtor, Proe. Srd ACXN] Symp. Prin. Prog, Lang.
(Adanta. GA, Junuary 1976), 95-103,

Hudak, P.. aml Keller, R M Garbaze ecollection and task deletion in distribagted appieative
processing sysvatems. Conf. Reeo ACN Symp. Lisp and Funetional Progranoning (itsbargh,
I’AL August 10%2), 168-17x,

Huduk, . Disrribmted graph marking, Recearel Report 265, Dept. of Comgp. Sebe, Yale University.
Junuary JOxg,

Hudak, P. Distrituted sk and meemory manazement. Proe, Symp. Preiv Distedbuted Congaiting
(NFatreal, Auznst 1083, 277280,

Hulak, Poomed Geldboerss 100 Exprriments in diffused cambinntor sedwetion. ACN Sgoaps Lieps
and Funstional Programondng (Austin, TX, Anzust TONT)L 1672176,

Huglees, BN Super-combinarors A s fmnplomentation teelimigne for applientive Jainznnses,
Conf. Lves ACN Syngey Liepoand Punetiondd Progeramondng (1iosbareh, PAL Angust 082y, 1-10,
Keller, 18 N Semanties and applications of funetion graphs. Tochuival Report UUCSs0R112,
Dept. of Comp. Sei, Univ, of Utal, Salt Lake City, Octolier 1950,

Keller, R Mooand L Fo CO 1L Simahavad porlDrmnnee of a0 pedietjon-lesed g tpeoseess o,
IELE Computer 17,7 (luly 1081, 7082,

Kluge, W, and Selhilutter, 1L Au arcliteeture Tor direet execution of reduetion languages, Proe,
Datern, Workshop on High-Level Lungung: Computer Avehitecture (Nay 195G), 17 =180,

AMago. G. A A network of mieroprocessors to exeevte reduetion laannses, Part 1o Intern. Jowen,
Comp. and Info, Sei. &5 (Nareh 1OTHL 3192385,

Moto-oka, T, and Stone, 1 Filth-Generation Computer Systems: A Japanese projeet. [EEE
Computer 17. 3 (March 1081), G.

Pollack, J., and Waltz. DL Parallel interpratation of natural langeagee, Proe, Intern. Con f. Fifth
Cenerulion Computer Syetema (Tokyo, 1954).

P'reston, Ko and Uhr. L. Mullicomputers for Inage Processing. Aeadenmic Press, New Yorl:,
1082,

Sehénfinkel, M. Cher die Bunsteine der mathematisehen Logik, AMeth. Aunal. 9.2 (19240, 305816,
Stolfo, 8. nnd Miranker, D. DADO: A parsilel processor for expert systems, Proe, Int. Conf. on
Puaralld Proecasing (August 19R4). IEEL Computer Society Press, p. 74,

Turner, D. A, A new implementation technique for applicative languages. So, are Practice &
Erperience 0 (1079), 31-40.

