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ABSTRACT 

VW study two aspects of one loop structures in quantum field theories which 

describe two different areas of particle physics: the one loop unitarjly behavior of 

the Standard Model of clectroweak interactions and modular invariance of string 

model theory. Loop expansion has its importance in that it conttiis quantum 

fluctuations due to all physical states in the 'theory. Therefore, by studying the 

various models to one loop, we can understand how the contents of the theory can 

contribute to physically measurable quantities and how the consistency at quantum 

level restricts the physical states of the theory, as well. 

In the first half of the thesis, we study one loop corrections to the process 

e + e~ —» W+W~ . In this process, there is a delicate unitarity-saving cancella­

tion between s-channel and t-channel tree level Feynman diagrams. If the one 

loop contribution due to heavy particles corrects the channels asymmetrically, the 

cancellation, hence unitarity, will be delayed upto the mass scale of these heavy 

particles. We refer to this phenomena as the unitarity delay effect. Due to this 

effect, cross section below these mass scales can have significant radiative correc­

tions which may provide an appropriate window through which we can see the high 

energy structure of the Standard Model from relatively low energy experiments. 

En the second half, we will show how quantum consistency can restrict the 

physical states in string theory. Despite the absence of a complete formulation 

of string field theory, it is known that conventional Feynman loop diagrams of 

point field theory generalize to the two dimensional Riemann surface. Modular 

MASTER 
tf> 



transformation arc symmetries of the Rirmann surface and, therefore, a physical 

amplitude should be invariant under this operation. The zero-point ampitude 

on the torus can be inlrrprcled as the partition function of the underlying two 

dimensional (iinformal held theory. Modular invariance of the partition funrtion 

plays ihr role of it selection rule for the allowable physical spectrum of the rqrt formal 

field theory Complete cla.ssificat.ions of modular invariant partition functions for 

general conform*) field theories .\re i-.nporlant unsolved problems because they 

serve both AS the classical vacuua of string theory and as systems in statistical 

mechanic-sat t licit critical points. We provide a method to derive modular invariant 

paitiiion functions for Wess-Zumirio-WiLtcn models of general group manifolds 

us: ^ (he orbifold construction. When we add both the twisted and untwisted 

sectors correct ly. *'•• obtain the modular invariant partition functions on non-simply 

connected group manifolds. 
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1. L o o p E x p a n s i o n 

Quantum field theories fire very effective in rfo-S'-ribiiig tlic dynamics of pani­

cles The validity of a model for elementary particle interactions can be tested by 

comparing experiments with predictions based 01: the model using quantum field 

theory, While exact solutions of quantum field t h rones are very few in number. 

relativislic perturbation theories are well developed and are quite successful. For 

ihroric* with small expansion parameters , scattering amplitudes of physical pro­

cesses can be obtained up to a desired order of accuracy by computing the Feynman 

diagrams with appropriate numbers of external lines, propagators and loops. Un­

like tree diagrams, loop diagrams contain all possible quantum fluctuations of fields 

that are allowed by the symmetries of a theory. If a theory is renormalizable, one 

can absorb all diverges cs of loop diagrams into the parameters of t he theory. 

The loopwise perturbative expansion, i.e., the expansion according to the in­

creasing number of independent loops of connected Feynman diagrams, may be 

identified with an expansion in powers of ft. To see this , consider a loop diagram 

with /-internal lines, V-vert ices and X-independent loops. Due to the topology of 

the diagrams, the relation X — ] = J - V is satisfied- Because the Feynman rules 

are derived from the functional integral over expji J C/h], the propagator of each 

quantum field has a factor of h and each vertex has a factor of ft"1. Thus , the 

diagram is proportional to ft/_l or hL~l. Since there is an overall factor of ft-1 to 

make the effective action dimensionless, the scattering amplitude is proportional lo 

ft1. Therefore, the tree level diagrams, the leading order in ft describe the classical 

limit of the theory. For thf case of X > 1, that is. one or higher loop diagrams, the 

amplitude depends on A and, hence, are corrections due to quantum mechanical 

efforts. If the loop diagrams correct scattering ampl i tude through a systematic 

perturbation theory, higher loops will contain more powers of small coupling con­

stant. Therefore, one loop diagram is the most dominant quantum mechanical 

contribution to the perturbative computation of a scattering ampli tude. 

In addition to being the most dominant part of quantum corrections, the one 
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loop Mtruiiiin' »f « theory tan also he used to place rons l ramts on \\IV »ononis 

of the theory. \'<n example, lo guaran tw re not maliz ability, the Ward identii M-

must be preserved at loop levels. Quite generally, if there it% & possible difli<td(\. 

it arises at the one loop level. Consequently, if there is an anomaly at o w loup 

level, we must restrict t h r particle contents to cancel the anomaly. This quantum 

consistency condition, that certain fundamental properties of the theory should In-

maintained al the quan tum level, is an exact theoretical restriction which must he 

implemented in the theory from the beginning. 

In this thesis, these aspects of the one loop structure of quan tum field theories 

are investigated in detail by considering two quite different theories. In chapter 

U, we consider a physical process in the Standard Mode) in which the one loop 

diagrams with heavy internal particles give significant quantum corrections. In 

chapter 111, we show how an exact restriction on string models can be obiaim-d 

from the one loop s t ructure of string dynamics. In this case, the fundamental 

proper ty that must be implemented in the theory from t h e beginning is called 

modular tnvariance. This consistency condition is quite effective in constrairing 

two-dimensional, generally covariant theories, such as string theories. 

As in point particle theories, we can consider the loop diagrams of string the­

ories built from quantum fluctuation of string fields. Even without a complete 

construction of interacting string field theories, one can still, in principle, compute 

s t r ing scattering ampli tudes up lo any desired order of the loop expansion. Each 

order of the loop expansion corresponds to field theory on a two dimensional Rie-

maun surface at tached t o an appropriate number of external on-shell staips Tin-

number of loops corresponds to the genus of the surface in this case. In pari icular, 

one loop diagrams correspond to the torus. If we can quantize string fi-sL theories 

canonical))', the conclusion tha t the loop expansion is an expansion in powers of 

ft will hold for string theories, too. However, since the coupling constant i? d' 1 

termined dynamically and is not obviously weak, perlurbat ive analyses of string 

scattering ampli tudes may not be valid. 
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Nevertheless, by studying two dimensional surfaces with given topology, w<* 
nifty derive a consistency condition that string field theories must satisfy at the 
quantum level One such condition is modular invariance. The modular invariance 
condition arises for thr following reason: The set of all two dimensional Bur faces 
with a given topology is parametrized by a set of complex numbers called modular 
parameters. Such a paramelrization is unique up to a set of discrete transforma­
tions called modular transformation*. Since the loop computation should depend 
only on the topology Qf the surfaces, string scattering amplitudes must be invariant 
under the modular transformations. The modular transformations are inherent to 
3tring theories because they are symmetries of the space of Riemann surfaces. The 
tnodular Si:variance given strong constraints on the possible string compactifica­
tions. In chapter III, we investigate the consequences of imposing the modular 
invariance on the zero-point one loop scattering amplitudes. 

2. Unitarity Delay 

Since the S matrix, by definition, act? on in-coming states to generate out-going 
states in a scattering process, Jhr unitarily of the S marlrix reflects the fund*mm 
tal principle of probability conservation. Following the standard formulation of 
quantum field theories, the unilarity of S matrix, S^S = 1 becomes a relation be 
tween Green's functions. Writing S = 1 + i 7\ the unitarity condition becomes a 
relation between Feynman amplitudes, 

2 Im77, = £ Tln J?. • (21) 

For two particle scattering processes, it is very convenient to decompose the am­
plitudes into partial waves: 

T[s,t)= l 6 * £ ( 2 J - f l)aj{s) PJ(OPJP) . (2.2) 
J 

In the process / / —+ VVt where / and V denote a fermion and a vectoi boson, 
the partial-wave amplitude aj may be written as 

" = A 5» + B <-'-3> 

where A and B are dimensionless constants with some mass scale M. For two 
fermion annihilation processes, only J = 0,1 stales are allowed. \\ A ^ Q for 
dj, the theory may behave badly at high energies. To preserve the unitarity. tree 
diagrams must add to rrtakr 4 = 0. The second constant B need not be cancelled 
because it does not violate unitarity. 

In principle, the restriction A - 0 may appear only after a Ml, all-urdrr*. 
calculation. However, if a theory is consistently weakly coupled, we should find 
A = 0 (or the stronger restriction |aa| < 1 ) at each order of perturbation theory. 
If these perturbative unitariLy bounds are violated, we should conclude thai either 
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the theory is not unitary, and hence unphysical, or the perturbation theory in not 
valid. Since B depends only on the parameter* of thr theory, these perturbative 
unitarity bounds can also restrict the parameters of the theory. For example, in 
the standard theory of electroweak interactions, one can give the upper limits on 
masses of Higgs and heavy fermions using thr s-wuve unitarity bounds. 

These unitarity bounds become crucial in studying the high-energy limit of 
theories for the following reason. If the loop corrections increase as a power of the 
center of mass energy E of the tree fod S-matrix element, it is not difficult lo 
see that this theory is not renormalt2&ble. It is argued that in any renormalizable 
Lagrangian theory, the high-energy unitarity bounds should not he violated in 
perturbation theory. This leads to the specific requirement of tree unitarity: the 
iV-particle S-matrix dements in the tree approximation must grow no more rapidly 
than E*-*1 in the limit of high energy (£) at fixed, nonzero angles. If this condition 
is satisfied at tree level, the loop correction cannot violate unitarity bounds. 

White all renormaliaabUr theories satisfy this tree unitArity, in the case of spon­
taneously broken gauge theories, such as the Standard Model, the unitarity behav­
ior is particularly interesting- In processes Hkee+e-' —* W+W~ with longitudinally 
polarized IV's, or in any process that creates H'* and Z£, the S-matrix elemenl 
can satisfy tree unitarity only when wp add correctly both the s-channel and the 
t-channe! tree diagrams. Each of these diagrams contains unitarity violating terms* 
which are exactly cancelled when they are added together. In other words, A in 
(2.3) vanishes after adding all relevant diagrams. The gauge symmetry plays an 
important role in gaurantecing the delicate cancellation. This is another statement 
of the fact that the only renormalizable quantum field theories with massive vector 
bosons are spontaneously broken gauge theories Once tree unitarity is realized, 
unitarity will hold for all orders of perturbation expansion. 

However, if we consider one-loop correct ions to this process due to heavy par­
ticles with mass M, since only the s-ehanncl g«*ts the correction, the delicate can­
cellation between the s- and the t-channel is delayed until energy scale become* 

6 

comparable wilh the mass scale M. Below y/s = M, A gets non-vanishing radia­
tive corrections. Therefore, the tree unitarity is temporarily violated and scattering 
amplitudes increase linearly with the tenter of mass energy scale. Wc refer U> this 
phenomena as unitarity delay. 

In chapter II, we will show that we can get a significant enhancement factor 
like «/"*&' in (2,3) for the cross section due to this effect. The magnitude of 
this enhancement is eventually limited by the unitarity bounds on heavy fermions. 
The material in chapter II is based on the author's work with Pestcin, Lynn, and 
Selipsky. The results of this analysis have been published previously in ref A 



3. Modular Inviiriantr-

The propagation of strings on spare t ime mart)fold w described as a Lwi> <)j-

niriisi. *' world shif ts , which are Riemann surfaces with a given boundary. If 

wc consider only closed strings. Ibe surfaces are closed with no boundary. Su ing 

scattering amplitudes can he formulated as functional integrals over fields on I hose 

Kieutanji surfaces. The genus of the surface corresponds tu the number of loops 

in quantum field theory. In- and out-states of strings are represented by vertex 

operators which carry definite ronformal dimensions and momenta. Since the dy­

namics of strings does not depend on how we parametr ize t he world sheet, the 

classical action of string theory defined on the two-dimensional surface should 

have local reparametrizatroji invariancc. The action should have another symme­

try corresponding to the local Weyl scaling of two-dimensionaJ metric. These two 

symmetries of the classical, gauge-fixed string action combine to two-dimensional 

cotiformal symmetry. 

Tins symmetry is represented by two infinite dimensional chiral algebras for the 

left- and right-moving sectors of closed strings. These algebras are generated by 

hnlomorpnic energy-momentum tensor T{x) and anti-holomorphic 7*{5) and pos­

sibly by other generators. The fundamental parameters of these two-dimensional 

theories are r. the strength of the anomaly term in operator product expansion 

of 7"(:). (h^fr;) which are the conformal dimensions of primary fields and £7,^, 

die 01*E coefficients of the primary fields. The Hilbert space of the theory is 

represented by H = 3 ) n 'H, Q *H; for primary fields * , ; ( ; , z). 

The class of theories with ronformal symmetry, called conformal field theories, 

h a w many interesting features and much applicability to physical sysLems!""' 1 The 

main motivation for considering this class of theories is thai we can solve these 

theories exactly in the sense that We can compute any correlation function exactly 

with the abov» input parameters by solving a finite number of differential equa­

tions derived from Ward identities for the conforma.1 symmetry and from physical 

arguments There are two fundamental problems that one would like to solve in 

order to undeisiaud i informal field theories. The first one is the classification 

problem Ut deterMiiue the allowed values of {r.A,] unambiguously. The second 

problem is to rwnbine the left-moving and the right-moving sectors together. Tins 

sewing problem is very important in solving ronformal field thoet-irs coniplrtrlv 

The solution tn these problems would give a complete description of string corn 

partifiraticiEis. The point in this section is tha t modular invariant-*- is crucial m 

solving I hew 'wo problems. In addition to understanding string theorie.*, we can 

also understand two-dimensional statistical mechanics systems a t their criticality 

using the techniques of conformaf field theories. 

We *r«' g°t"g to examine the consequences of imposing modular in variance on 

the torus. We shall do this for several reasons. First* one loop is the simples! 

and most significant quan tum mechanical correction to the scattering amplitudes 

in per turbat ion theory. Second, the modular invariance of the torus is relatively 

simpler than those of higher genus surfaces. Lastly, the modular in variance of the 

torus is of a fundamental importance in conformal field theories- 1 "" 1 3 ' In particular, 

the lur lhcr conditions of modular invariants un Riemann surfaces of genus greater 

than one introduces no additional conditions on the '.he theory. 

Confer mally invariant parameters that enter in specifying the metric of a Nie­

mann surface of a given genus are known a i moduli of the Riemann surface, and 

the space of these parameters is called the moduli space. Some apparently I'isliiu'l 

values of different modular parameters may be equivalent, t ha t is, describe same 

Riemann surface. Therefore, the loop integrals over string world sheets include 

integrals over the set of points in the moduli space tha t are not related to each 

other via modular transformations. The set or all modular transformations form a 

discrete group, called the modular group. T h e conformal s t ructure of the Lor us is 

uniquely specified by a point T in the upper half of complex plane. The modular 

group is then 5 i ( 2 , 2 ) , namely the set of all t ransformalions T —* { AT + b)/( CT + d) 

where fl,6,cfd are integers satisfying ad - be - 1 . The moduli space is the quotient 

of the upper half plane by SL{2y Z). 
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The zrru pi'inl scattering amplitude is the simplest object on the torus tlwti 
one ran consider. It is also HU important quantity because it can be identified 
with ihr partition function of the underlying con formal field theory. The; partition 
function \b defined as 

Z = 7 r e " 2 , f l R e r ; > r l r U l ' r f ! (3.1) 

where the trace is over the Hilbert space, H = LQ+LQ — C/W, P ~- LQ-LQ, and T is 
the modular parameter. The partition function can be expressed as a scaquilinear 
form of characters of primary fields for left- and right-moving conformal algebra*. 

2 = E Nu **<T> *•<*> • &'V 

Each character is denned on a given hotomorphic (anti-holomorphic) primary field 
and its deccndcnls. The partition functicn in (3.2) shows how the left- and the 
right-moving sectors should be combined. Only A'ft ^ of the primary fields w-^ 
should appear in the spectrum. This is the solution for the sewing problem using 
the modular invariance. In the examples we will consider, these characters form 
finite dimensional unitary representations of modular group, and so only subset pf 
the primary fields are allowed in the modular invariant partition functions. Hence 
wc have a selection rule for the primary fields in conformal field theories. 

The complete classification problem of conformal field theories is very impor­
tant, unsolved problem. For c < 1 conformal field theories, called minimal models, 
unitarity condition is enough to classify the theories completely.'' Their mod­
ular invariants are also completely classified."'" However, if v > 1, unitarily 
is not sufficient. Moreover, imposing modular invariance on the theory results 
in an infinite number of primary fields. We may in this case introduce new ex­
tended chiral symmetries under which the number of primary fields become finite. 
Only a few classes of extended algebras are known so far. Examples of these 
symmetries are superconformal, parafermionic,3' Kac-Moody symmetries, and 
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IV algebras. Kaf Moody algebras, which come from tin- Iwo'dimeiibionnl Wess 
Zumino Wittcn niudcjs on gruup manifolds* ' are particularly interesting b<><:AUKf 
they may give gauge symmetries in low energy string models and because con formal 
field tht-tirirs of other classe are given a* coset constructions of these algebras. 
Furthermore, many exactly solvable two-dimensional lattice model* ha l fe been de­
rived from Kac-Moody algebras." Therefore* the classification of Kac Moody 
conformal field theories is a very important problem. 

There has been significant progress on classification of rational con formal field 
theories! 1 0 ' 3 M l which have a finite number of primary fields, Examining the be 
havior of characters on the torus under T —* — 1/T, Xn( —1/T) = 5" SnrTn \m. 
Verlinde, Moore and Seiberg, and others have shown that it might be possible to 
classify all rational conformal field tbeorie.-,. This implies that all properties at tree 
level, i.e. on the sphere, and on higher genus can be derived from the modular 
invariance of the partition functions defined on the torus. 

However, finding a complete classification of modular invariant partition unc­
tions for theories with extended algebras is still a hard problem. Only theories with 
the 51/(2) Kac-Moody algebra have been completely classified so far." For this 
theory, the modular invariants are classified by three classes A. I) and E. Class 
A consists of diagonal combinations of characters. The characters form a finite 
unitary representation under the modular group, and hence make the parti Lion 
function invariant under modular transformations. Class D consists of partition 
functions of non-simply connected 50(3) group manifolds. Class E consists of 
the three remaining invariants that do not belong to class A or D. Although the 
complete classification for general group manifolds is a very difficult subject, we 
construct some partition functions for more general theories using the orbifold ap­
proach in chapter III. The material in chapter III is based on work with M. Walton. 
Parts of this work have been published previously in ref. 27-
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II. DELAYED UNITARITY CANCELLATAION IN t + r ' - W + W~ 

12 

1- In t roduc t ion 

Radiative corrections allow us to probe the high-eneigy world with compara­
tively low-energy experiments. Because my intermediate state allowed by symme­
try, however heavy, can appear as a quantum fluctuation, precision experiments 
which isolate radiative corrections can probe for particles with masses much higher 
than the experimental energy scale, The moat sensitive such experiments are those 
which involve flavor mixing, such a* the measurement of the Ki'Ks mass differ­
ence. However, even quantities which entail no special flavor violation, such as 
the rnqon (g-2), can yield important information on heavy states. Now that we 
are entering the era of experiments on the properties of the weak vector bosons, 
it is interesting to think of precision experiments which might be carried out on 
these new fundamental particles. Such experiments would necessarily be done at 
energies of 100 GeV, or even much higher; still* extending tb* reach of the avail­
able machine energy by measurements sensitive to the radiative corrections is an 
attractive possibility. 

Two important experiments of this type which have been discussed extensively 
in the literature are the measurements of the W boson mass "~ a and the polar­
ization asymmetry Tor fermion pair production at the Z° resonance/'"" Doth 
of these experiments are difficult, requiring large statistical samples and methods 
which cancel systematic errors below the 1% level. Yet in both cases the influ­
ence of new heavy states is larger than one has a right to expect. Naively, one 
would predict thai electro weak radiative corrections due to new particles of mass 
M would affect the masses and couplings of the weak bosons by terms of order 
a/*, times a factor mJ^/Af2 representing the Appelqmsl-Car&zzone decoupling.** 
However, the Appelquisl-Carazzone theorem does not apply to theories with chiral 
gauge couplings or large m&ss splittings within gauge muliiplets, and indeed OIK" 
finds by explicit calculations both terms with no suppression for M2 » m$e and 
terms actually enhanced by the factor AiW 2 /m^. with AM2 the m*M-squared 
splitting within an isodoublet!"1 The chiral nature of the weak interactions thus 
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increases the power of radiative corrections to illuminate new physics, 

In this chapter we wonld tike to analyze another se', of weak-interaction ex­
periments, to be done at still higher energy. The next step for electron-po&itron 
colliders beyond the current generation of Z° resonance machines will be lo a linear 
collider with an energy of order 1 TeV in the center of mass. At auch a machine, 
the most-important single process contributing to thi electron-positron annihilation 
cross section is the production of W boson pairs. It is well known thai confirma­
tion of the qualitative, tree-level properties of the W pair production cross section 
already provides a stringent test of the standard model of weak interactions!"'171 

The various diagrams contributing to this process, considered individually, grow 
faster with : than would be permitted by unitarity. The unitarity constraint on thp 
tree-lftvel amplitude ;% maintained only by virtue of a delicate cancellation among 
the various diagrams; this cancellation requires the precise gauge-theory form of 
the vertices coupling W pairs to the photon and the J? f l.W This observation has 
been used to propose experimental tests of the idea that W bosons are composite 
states: indeed, models with composite W bosons produce wildly different cross 
sections from those of the standard model.1"1 

W> observe here that even within the standard model, the introduction of new 
heavy particles can cause large deviations from the tree-level cross section. New 
species with perfectly conventional electro weak couplings naturally yield different 
radiative corrections to the * and ( channel diagrams involved in the tree-levd 
unitarity cancellation. All of these corrections together must sum to zero (to 
leading order) for asymptotic s. However, the regime of greatest experimental 
interest corresponds to the case of a state with mass M loo large to allow its 
pair-production at the high-energy lepton collider: s < M7. while ,1 >> m j r . 
In this regime, then: is no reason for the unitarity cancellations lo occur, and. 
indeed, we find enhanced radiative corrections of order (o/*) (s/m'fc) Th«c 
effects can be readily identified experimentally. We call this phenomenon, in which 
heavy-p ani cl e radiative corrections postpone the asymptotic cancellation among 
diagrams, lunitarity delay'. 

As a part of our calculation, we will give » simplified analysis of the general 
structure of radiative corrections to W pair production. The radiative corrections 
due to the conventional states of the standard model have of course been calcu­
lated some time ago by Lemoine and Veltman," Philippe!"1 and others? However, 
the structure of the corrections is quite complex, since the theory must be renpr-
malized to the standard model's physical parameters as measured in lower-energy 
weak interactions. Et was observed in ref. 33 that the renormali/alion program for 
weak-interaction radiative corrections at the one-loop level js greatly simplified if 
one assumes that the virtual particles do not couple directly to light leptons but 
only to the gauge bosons through their standard-model gauge interactions. This 
assumption is valid for most new particles one might wish to introduce- heavy 
quarks, heavy leptons, technicolor bosons, and all of the states of supersymnielric 
theories except the selectron and the smuon. tynn, Pesltin, and Stuart termed this 
scheme of coupling 'oblique'. They showed that the oblique radiative corrections 
to the properties of the Z and W can be represented quite generally by straight 
forward and manifestly finite expressions. These expressions allow one lo classify 
the various corrections and to understand which precision experiments should give 
identical And which complementary information on new physics. One of our goal* 
in this chapter is to extend this analysis to the corrections to «"*«' —• W'+W"~, 

Accordingly, this chapter will proceed as follows. We beg!" in Section 2 by 
reviewing the basic Jnnematics of W pair production, Fo<.owii)g thr formalism 
of Hagiwara, Peccel, Zeppenfetd, and Hikasa.**1 we present formulae for observ­
able differential cross sections in terms of W pair form factors, which might then 
be analyzed at the one-loop level- In Section 3, we present a general analysis 
of the oblique weak-interaction radiative corrections to the If form factors. We 
explicitly extract correclions which are already observable in low-energy and Zv 

resonance experiments, incorporating these into the effective running elcclroweak 
parameters defined by Keimedy and Lynn. What remains i.s a wr. of intrinsically 

* $e* Heh 41, 42, md 43. An extensive bibliography of IneotcLieal work on in*- ruction 
t*e' — W+W- CM b* found in Ref. 44 
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new radiative effects; wr organize these into manifestly ultraviolet-finite comhina 
(ions Mnally. ivr evaluate these new corrections fur Uic case of heavy Ferniinns 
am' .!iirs. In Scrlion 4 we study the various asymptotic limits of the form far-
tors and confirm the kiiiematir enhancement of the radiative "-orrertions in the 
region s ~ M: >> »"&'• ^ ^ A ' 5 & check explicitly the restoration of the unitariiy 
cancellalion for asymptotic .v In Section 5 we discuss the physics underlying ob­
servability of the corrections, and pres, lit numerical examples relevant Lo future 
high-energy experiments. We find that a new heavy generation of fermions gives 
a sizable correction, an enhancement of roughly 0.02 ph, coiiBtf.nt in cos0. At 1 
TeV\ this represents a 5% enhancement of the total cross section at non-forn-ard 
angles. 
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2. GcucTiil Formalism 

Since on! analysis concerns oblique correction* due hi new heavy particles, we 
should expert that the most interesting effects we will uncover will be corrections 
to the form i»f the three-gauge.boson vertices. It is easiest to keep track of these 
corrections by studying the reaction r + r " -> H ' + H " for vertices of the most 
general structure, and then i.iscrling the spcific expressions for the form factors 
which arise from explicit one-loop computations. The general analysis which we 
require has been carried out most efficiently by Ilagiwsra, Peccei, Zeppenfcld, and 
Hilcasa (HPZII)."" ':» this section, we will review their results and express their 
formulae in a fashion convenient for our analysis. 

HPZtl begin their analysis with a general paramctrization of the WW A and 
WWZ vertices. In this chapter, we will work in the Euclidean metric. With that 
convention, their general vertex takes the following form: Let / , represent form 
factors (V = A or Z) and T, represent canonical Lorcntz structures (implicitly 
carrying three vector indices). The vertex shown in Fig. I is built from these 
ingredients as 

(2 1} 
+ 1% • {P"i'f - P"*1") + ft • HP°F" + ^ « ' ° ) 

+ /*'. <*<"»(«, -»}, + tf-i^'P,, 

^ ,v Ag-Wt°l"'PM-ii)> 
+ " ZX 

mw 

The form factors are dimensionlcss functions of .« and mw. We will consistently 

ignore the electron mass. 

17 



Figure 1. The general vertex for W p*in. 

At the tree level, the A and Z vertices h*ve the same kinematic structure; both 
are of the form gvTb, where 

J M = « , 9Z = C T (2.2) 

{s0 and eg denote cas0VT and sinSw), and 

To = T, + 2T3 = (9 - ^6afi 4 2 { / > ° i ^ - P V ° ) . (2.3) 

Thus., at the tree level, we would wiile 

St = fx = 1 • / / = / * = 2- (2.4) 

and set the other form factors to zero. 

Using (2.1), we can write the full amplitude arising from then-channel diagrams 

ie 

e t . R 

(b) 

Figure 2. The amplitude for t +e" ~W*W- (a) i-chanticl (tcactal vala); (b) l-rbund. 

for e + e - - . W+W~ (Fig. 2(a)) as 

M = . « ! 1 « ( 5 7 , « ) ^ r * ' ' f : ( , ) £ i ( ? ) 

(2.5) 

+ .v^pi (^ u )__L_rf''c(,)Q(?) 

where P* = —j, u and » are electron and positron Dirac spinors, and £a(q),£)(q) 
are polarization vectors of W T , respectively. We may consider the electron to have 
definite helicity and write h = — J for er,, /s = 0 for e«. Eq. (2.5) suggests that 
we combine the photon and Z vertices according to 

F, = QSt + ^ ^ f - h " ) / . " . • = I. • ,7, (2.6) 

and define P">" as the vertex built from these form factors according to (2.1): 

1 
r^'ii.ij.P) = ~£F.T,. (2.7) 
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Then the matrix element (2.5) can be written more cojicirely M 

M± = ( - ~ ) - ( B 7 n « ) r"w" rjq)r$lq). (2.8) 

The form factors F«, FS, and F7 multiply CP violating terms; these always vanish 

explicitly in the standard model and in the CP-conserving extensions that we will 

consider here. 

it is quite straightforward to evaluate (2.8) directly for each initial and final 

polarisation state by inserting explicit forms for the electron and positron spinors 

and the W boson polarization vectors. We sketch this development in Appendix 

A. Following this analysis, we can construct the differential cross section for IV 

scattering from electron and positron states of definite helicity into W states of 

definite polarization. Expressing these cross sections in units of the point cross 

section 1 R = ixoPffo, w e fi"d 

SjT = 28in 3fl[ |/t | p - ( 4 , / i ; + / l j / i ;)cosS+|4j |-( l + 2cos2ff)] 

Sr i = S i r =1 A3 | 2 |1 + cos3ff) + [A)Al + A4A'3)«»0sin2 0 + \A,f sin** 

E i i = M s l ' s i n 2 f ) , 

(2.9) 
where B is the scattering angle in the center-of-mass frame, and tin- subscripts T, L 
denote transverse or longitudinal polarization of the W~ and VV"* - For c^ + e j , the 
(-channel diagrai • does not contribute and so the coefficients A, are built directly 
from the F,: 

10 

~ ! 

••fi-Fi 

Ai = 0 

*-S£[?**rH 
* - • £ • » 
*-*I?-(i-*)- fi + 

(2.10) 

4 mfi, 

where /3 is the W velocity: & = (1 - 4mJ v/s)i. For «£ + e j , we find the more 
complicated result 

miv [ 2 2 2,tJ SJ/J 2 ! \ sV ) \ 

+ -?*.* + 
(2.11) 

"% 12 V.2 f / 4 mfy 4 J ; 

, 1 "w (, **\r\\ 

where /? is as above and 

C = 1(1 + / T J - 2 0 C « « ) . (2.12) 
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Figure 3 ( a ) . Tree level differentia] cross section M. 6: Longitudinal polarisations only 

(LL), mixed polarisations (LT). transverse polarizations (TT), and their sum. 

In practice, it is not experimentally straightforward to separate the cross sec­
tions fot W pair production into the various polarization 6tates. The easiest way 
to extract some of the information on the W polarization is to use the decay of the 
W to a charged leplon The decay distribution obviously depends on whether the 
W is longitudinally or transversely polarized Further, the parity violation in the 
decay amplitude allows one to distinguish the two transverse polarization states 
The explicit formula involves only the form factors A, of eqs. (2.10), (2-H), Let \ 
be the angle between the H-' momentum vector and the lepton momentum vector 

as measured in the W rest frame. Then the angular distribution in \ is given by 

dJL ( e + e - - W+/-D) 
drosSdcm\ 

= A.,? BR(iv-^ri>) 

• hirH - \ »in2 X) ± * «» flsin' fl|M2|2 • cos v 

+ E t r ( l + ^ sin2

 x) ± (2cos »|/ta|2 + sin2 6(AiA'4 + AtA',))axX 

+Ei£ • sin2 x , 

(2.13) 
where the upper (lower) sign refers to the cross section for e j e j (ejje£). The 
same formula holds for the v_ distributions in e + e~ —» W~t*v from each electron 
polarization state. This formula agrees with HPZH; it is a simple byproduct of the 
analysis leading to (2.9). We discuss its derivation in Appendix A. 

The tree-level differential cross sections predicted by eqs. (2.9) and (2.13) are 
shown in Fig. 3. In Fig. 3(a), we display the differential cross section predicted 
for W pair production by unpolarized e + e~ pairs at i/s = 3 TeV and the de­
composition of the cross section into the contributions from the various W boson 
polarization states. (In principle, one might also consider the effect of polarizing 
the electrons; however, the contribution from right-handed electrons is generally 
quite small.) In Fig %b), we plot the x distribution at three values of cost?. 
The change in the form of this distribution reflects the increasing proportion of 
longitudinally polarized W bosons produced as one moves toward the backward 
direction. 

Since the A, are dimensioniess scattering amplitudes, they will violate the uni 
tarity limit if they grow asymptotically with any positive power of s. For example, 
eqs. (2.10) and (2.11) show clearly that -45 will violate unitarity if the combina­
tion of form factors in brackets has asymptotic s" behavior, since this amplitude 
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Figure 3(b). Tr« lev«l x distribution ratio. 

contains an overall factor * / m w ' arising from the scalar product of longitudinal 

polarization vectors. At the tree level, (2.4) and (2.6) give 

1 h 1 mi\ m\ 
(2.14) 

Examining (2.10) and (2 11) we see that for right-handed electrons, h = 0 and the 
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uaiitriiy cancellation is inuiii'rliair. Tor left-handed '-l«-iIreu-. with h = - 3 . the 
residual term from tin- !>>"" factors is cancelled In the ronstanl t Tin l/4aj, which 
represents the asymptotic Vhavior of the 1-chamirl diagram. 

This type of cancellation should occur order by-order in perturbation theory. 
In section •!, we will show tnw explicitly for one loop radiative corrections due to 
a heavy generation. The cancellation guarantees good asymptotic behavior up to 
logarithmic factors. However, the cancellation is guaranteed only for values of s 
which are actually asymptotic. A new heavy particle of mass M could potentially 
produce very large radiative corrections by disturbing the delicate cancellations in 
As at energies of order M if M » mw- 'n the nest section, we will explain how-
to compute the corrections to the form factots F, which allow us to analyze that 
situation. 
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(a) (b) 

4-B8 ( C ) ( f j ) 6002A4 

Figure 4 . One-loop obliqite corrections to «+1~ — W + W: (a) corrections i.-> the t-chann',; 

diagram: (b) external leg corrections to the s-cb&nnel diagram, (c) propagator corrections to the 

s-channel diagram; (d] vertex corrections to the j-ch&nnel diagram. 

3. One-Loop Radiative Corrections 

if will be useful to consider the various contributions systematically before be­
ginning an explicit computation of the one-loop corrections. In this chaptei we deal 
only with oblique corrections; this still includes a variety of corrections, as we show* 
in Fig. 4. Jn the standard model, as long as we have no subdiagrams which involve 

26 

Figure 5. Notation for vector boarm setf-ejierg/e*. 

Higgs-Higgs or WW scattering processes (as is the case here), the divergences of 
all one-loop diagrams are removed when we adjust thiee basic parameters, which 
may be taken to be g, rf and the Higgs rata tan expectation value or, more con­
cretely, a, Gn, and m 2 . In this section, we will explain how to renormalize the 
various diagrams of Fig. 4 and organize them into finite corrections with direct 
physical meaning. 

We would particularly like to address the question of which part of the one-loop 
corrections to e + e~ —* W+W~ are already constrained by measurements at low 
energy or at the Z" and which are new to the W pair production process. To make 
this separation, we follow Kennedy and Lynn'" in parameterizing our amplitudes 
in terms of running electroweak parameters; ref. 32 shows in detail how these 
quantities summariM the information on weak interaction radiative corrections 
available from low-energy experiments. From the remaining corrections, we will 
also extract a finite overall factor representing the W boson wavefunction renor-
maliz&tion. This will leaveover other finite contributions which correct the various 
form factors /," in the ihree-gauje-boson vertices. These are the corrections which 
have the largest physical effect on W pair production. 

Wc begin our analysis by presenting our notation for the loop corrections. 
These will be given at first in terms of bare parameters (which always carry a 
subscript 0). The boson self energies will be denoted llvv{P2), as in Fig. 5, We 
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define 
p [ V ^ 

"vv - pi 

The virions boson self-energies can be written as two-point functions of the elec­
tromagnetic currents j £ M Mid the weak isospin currents j'J' according to 

ll/U = elTioq 

Hz* = — • (fliQ - 4!IQQ) 

e 2 (3.1) 
Kzz = -fe (nj3-2s2n3Q-f »jnQQ) 

nivw = -? Flu i 

where sa = sin0<j and Co = cosfl0 *rc Hefifted by j 0 = e0/go In general, only the 
real parts of these amplitudes Are relevant to the O(a) corrections. 

Following ref. 32, we can use Dyson's equations to account for vacuum po­
larisation and boson self energies by exchanging the bare coupling constants for 
renormailzed, running coupling constants (subscripted with a star). This results 
in an effective Lagrangian with the same form as £<>i but with al) bare quantities 
replaced by starred quantities. To include the effects of the oblique corrections we 
are accounting here, we thus write 

1 j-nfcM*) <5(P2) 

^ j - [ V ! i - V ) ) 
1 

(3.2) 

from these we define ,] = t2Jgl and <?. = 1 - «J. These formulae allow us to relate 

processes occurring at P2 to measurements performed at fi2. We similarly define 

running boson mass parameters to include self-energy and fixing effects: 

. 2 1 

m.= s\c\ 4v^G„.C. ' 

with 

6V.(P 2) = C„,(^) 
i - 4 x / 2 G M . ( ^ ) ( n „ - n 3 Q ) | ^ 

M P 2 ) = : 

(3.3) 

(34) 

(3.5) 
! - 4 \ Z 5 G „ ( n i i - n , i ) ' 

(All starred quantities in this chapter should be evaluated at P 2 . unless explicitly 
written otherwise). A little algebra yields an explicit form 

M\,(P-) = m | + *3 (n a g - nM)</>5) - (n,„ - nM)(-ra|> 

+ m l - ^ - ^ f n ^ p ' i - n ^ - m l ) ) 

+ m| • A (nJ„j{/>2) - n^9(-m|)) 

(3.6) 

'1 
The combination of self-energies on the right-hand side of (3.6) has no uncan­
celled ultraviolet divergences. With these definitions and light external fermions, 
the boson propagator and non-Abelian vertex contributions to the neutral-current 
interactions sum up to the fully renormaiized expression 

QQ1 ̂  e» (h-AQM-MU (3.7) 

We use the renormalization scheme detailed in ref. 32: 

m | = Af| . (P 2 = - m | ) = (93.00 GeV) 2 

4x/e 2(0) = 137.036 

G .̂fO) = 1.1581 x 10 _ 5 (GeV)- 2 . 

(S.S) 



(Gfi differs from Gp.(O) by residual vertex and box correct ions.) All of the diver­
gences in our calculation will he absorbed into the three functions M\my c\, and 
g\ or a*. Mole that in this rcnormalization scheme, j j ( - m | ) is extracted from 
the measured t»z through terms including p,. Thus. s1[~m],) will be affected by 
luge isospm mass splittings. 

With this ^normalization* contributions from individual frtnuon generation^ 
or scalar doublets are separately gauge invariant and finite; each such contribu­
tion can be considered on its own footing. Accordingly, while our calculations 
include all electroweak effects of the new heavy particles, they ignore the conven­
tional particles of the standard model, since the standard effects are of order n. 
unenhanced. and smooth as a function of 5. The standard contributions should of 
course be included to correctly analyze precision measurements. We also neglect 
minor corrections from the Higgs and vector boson sector; this eliminates longitu 
diiMJ self-energy contributions and the need to rediagonalizc the Z a..d photon," 
Breimstrahhmg effects merely produce an overall multiplicative factor convolved 
with a hard-photon energy shift, which can be treated ** straightforwardly and will 
have no qualitative influence on the effects reported here Finally. QCD corrections 
should b«* quite small at the energies we consider, and we neglect them as well. 

In our formulae, the influence of the running of r; and a; is relatively minor, 
and the reader may reproduce the value of any differential cross section thai we 
present to a few percent accuracy by fixing tlicsf running parameters z.\ the values 

Sg will be affected by the p parameter of course. The II' boson mass, unlike the 
£ mass, appears in our calculation only from the kinematics and should be set 
ditwtly to its physical value. In the calculations of Section 1. we have used the 
value of nifc ~ A/£^<-m; v.| computed from tin* electrowrak theory. in'hiding 
one loop radiative correct mux This means that wc change mw slightly in accord 
with (he properties of the new heavy particles; this change is small except when we 
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include heavy generations with very large jsospin splitting, Even in the worst case 
consistent with current p parameter measurements (\p — 1| < \% , translating to 
Am 2 < (200 GeV) 2]!"'" 1 one would make an error of less than 2% in the differential 
cross section by taking the value mw = 82 GeV. 

Having defined the parameters of the theory, we can now put together the 
various corrections to e 4 e~ -• IV+IV~. We begin with the external leg corrections 
shown in Fig. 4(a) and (b). These multiply the matrix element by an overall wave 
(unction renorrealization (actor 

zw = t + «o- CaP^ n | 0 l ( 3 l 0 ) 

For the i-channel diagram, this is the only one-loop correction. If we recall that 
the bare tree diagram is proportional to g\^ we can rewrite the overall factor so as 
to have the same $1 appearing in both channels: 

9iz»- = S . W ^ Z H * = s 2 ( ^ ) ( . (S.ii) 
9; 

where 

E = l + K l P ^ I l l l l - m H - J - n k l P 3 ) ) . (3.12) 

Since a Ward identity relates vertex and leg corrections, this is a finite object, as 
may be checked explicitly. 

The easiest way to analyze the s-channel diagrams is to use the effeetive-
Lagrangian insight in eq. (3-7) that the diagrams of the form 4(c) simply renor-
malize the parameters of the zeroth-order diagrams. Folding these corrections into 
the zeroth-order amplitude, we have 

M = (-v)-(^u>-|« + ^ i f ^ 7 r V " ] < T ° r ' ' a , ) r ' f ? ) - ( 3 1 3 ) 

where 7'o is the tensor (2.3). We then consider the diagrams of Fig. 4(b) to multiply 

31 



ihts tmphUnU- by the additional and divergent faclur 

2w = i-(\ + ^HSq(/ , : ,l) • (3.14) 

Finally, wr must include the true vertex corrections shown in Fig. 4(d). In order 

to keep track of the electroweak currents as in (3.1), we notate these corrections as 

rr '-crf-EB'/. , rp'-^-sJ-irCf-^-Effi?.). o.is) 

using pQ = gl to the required accuracy. Then the diagrams of Fig. 4(d) yield an 

additional term 

(3-16) 

Here we can neglect the 0(g2} difference between M\% and m\, although in 

(j.13) we must retain corrections proportional to M^, - m l . There it is useful 

to expand the denominator (s - M | . ) to first order about (j — m | ) ; then the 

zerolh-ordcr term can euLer the tree-level unilarity cancellation unchanged. The 

results of eqs. (3.13). (3 14), and (3.16) can thus be combined to form the following 

expression Tor the sum of the s-chanrjel diagrams: 
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si s — m£ a - m*z 

+ [Q-9l(^. + n'1QTr') 

+ S2J J-^9- (S34- " S - V - + C.n3Qr« )1 J 

•£l(q)£i{q). 
(3.17) 

Each line of (3.17) has cancelling ultraviolet divergences, since £ Q + _ , £$+-•> 
and - H J Q T O contain identical divergences. !n the first line* we have separated out 
a piece proportional to the zeroth order 5-channel amplitude; when this is added to 
the /-channel amplitude, the sum is simply the zeroth-order amplitude evaluated 
with running coupling constants and multiplied by (. The remaining three lines of 
'3.17) give intrinsically new corrections. 

We expect that the full one^loop-corrected amplitude should obey perluxbative 

uniLarky. In the combination of the l-channel amplitude with the first line of (3.17), 

the unitarity cancellation is explicit; eqn. (3.11) arranges for both channels to have 

fft[F") as ihe coupling and £ as an overall factor. For the remaining terms in (3.17), 

we can only check case by case that the leading, unitarity-violating 3 dependence 

cancels when s is large. If the Joop diagrams contain a heavy species of mass M, 

we cannot expect this cancellation to occur except when s > > M 2- Thus, when 

A «- M2 » m ^ , we expect the last three lines of (3.17) Lo produce radiative 

corrections enhanced by a factor ( s / " 1 ^) - These are the dominant effects arising 

from our analysis. 

We conclude this section by converting the amplitude (3.17) into a set of form 

factors which can be inserted into the formulae of Section 2. If we use To = Ti+2Tj 
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•and decompose each verlex function according to 

vtwd ~ ^ r , S M . (3.18) 

we can read from (3,17) 

? = , x | [ ( E ^ - ^ ' H ^ n y ^ 5 1 ^ 1 
(3.19) 

To use these form factors, we must also make two modifications in the formulae 
of section 2: first, the coupling constants e 2, JJ should be replaced by ej, sj; 
second, the final cross sections should be multiplied by the factor | { | 2 defined in 
eq. (3.12). Both of these corrections ate numerically quite small, although one 
should note that, for tight fermions or scalars, { coutains logarithmic factorB which 
ate important in the correct coupling constant evolution of the thTee-gauge-boson 
vertex. 
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Figure 6. Fcynmin diagrams renormiJwing the amplitude Tor e+e~ - . W+ W~: 
<») two-point function!, (b) three-point function!. 
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4. Low and High Energy Behavior 

We are now in a position to evaluate the various Feynman diagrams contribut­
ing one loop corrections to the process t+t" —* W+W~ and to organize the results 
explicitly into finite corrections. For heavy fcrmions, we consider the diagrams 
shown in Fig. 6(a), (b). The actual formulae for the various corrections are com­
plicated and, in themselves, rather umffuminating, so we haw chosen to display 
these expressions only in Appendix B. In this section and the next, we will dis­
cuss their important properties. Here, we analyse the formulae analytically in the 
limits of high and low energy. For a heavy generation of mass M we will show 
explicitly the presence of enhanced radiative corrections when 9 « M and also 
a perturbalivr unitarity cancellation in the radiative corrections for s » Af2, In 
section 5 we will study the formulae numerically for genera! values of s. 

In our presentation of the complete results given in Appendix B, we have fol­
lowed the method of Passarino and Veltman " in expressing the various diagrams 
in terms of a fix d set of standard one-loop integrals. One can then evaluate these 
integrals analytically; , , ] tailored computer programs exist for this purpose. ' In 
our analysis, we have found it convenient to make some further simplifications, in­
cluding the explicit cancellation of ultraviolet divergences, and to write our results 
in terms of a srt of finite and dimensionless reduced Passarino-Veltman functions. 
These functions are defined, and their asymptotir form? are presented, in Apperdix 
C. The results of IhU section can then be obtained by inserting the appropriate 
asymptotic formulae into tiie results for the form factors given in Appendix B. 

4.1. Nondtcoupling Efftcts ot Low Energy 

We consider first the case of radiative corrections for s well below the heavy 
fermion threshold. Aft we have explained, we expect in this region to find terms 
enhanced by a factor (a/m 2,,). Ordinarily, one might expect that loop corrections 
due to heavy fermions are suppressed by powers of (s/A/ 2) bccau.se of Appelquisl-
Caraz»>ne decoupling. However, with chiraJ currents or large doublet mass spljt-
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tings, it is possible to evade the decoupling theorem and isolate a finite contribu­
tion- Clearly, degenerate scalar particles will not exhibit this effect, as we discuss 
in section 5. 

Let u£ then expand the expressions of Appendix B, for s in the range m^, < 
s <€ M ? , assuming a fermion doublet with hypercharge Y and masses m« and rrij. 
Defining 

Am 2 = mj - mjj and m2 - ~{m\ + rnj), {4.1) 

with A m 2 <& n i ' , we find 

I - 4 w } P ' 3 « i ' ™2 44\ e 3 ' m 2 ) \ 
AST 0 

3 ~ixsl [ 12cf ' m» + ,ys \ 3 12 ' m z )] 

0 r_ i w \j i\ h ( i v i w \ i 
S _ 4 i 4 [ 24<:|' m2 ~ 3\ 4J 44\ 3 - ' " 24 ' m1 ) \ 

(4.2) 
where /3 = - 5 , 0 for e^,<^. These formulae sirnpJifj' dramatically if WP in­
clude a full generation in which all the doublets have the saihe -massed, namely, 

I^C=[#],—•and use thE fKl s * * - Y = ° -

F j S 0 

FiS _<* ( 4 / 3 \ 14.3) 

Note that only Fs depends on the mass splitting and F\, F2 and Fj are zero for 

3? 
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the right-handed electron. For left-handed electrons, the process e*cL —• W^WL 

will show leading behavior 

. 4 s ( l - ] 0 o p ) S - 4 - - - 2 T - i j (4.4, 

and the cross section foi e+e~L -> WfW^ becomes 

where /4s(tree) is given by (2.11); thus 

(Si) \3*°V ™2w <' 
This radiative correction is proportional to the number of heavy generations; aside 
from the effects of isospin mass splittings on the p parameter, it does not depend 
on the masses of the heavy generation as long as s < m 2 and lepton/quark mass 
differences are small. The factor 10~ J is typical of one loop radiative corrections, 
but the enhancement factor j /mj v , yields a 10% effect for \ / i = 500 GeV. This 
relative enhancement continues rising, quadralicatly in energy1, until it is cut off 
above threshold. In essence, the unitarity delay effect can be thought of as adding 
a constant 0.02 pbaxn to a tree-level cross section which is falling like l/s. The 
unitarity delay thus exists and is measurable at lower energies, but it would be 
advantageous to use as high an energy as possible. 

4.2. Asymptotic Behavior at High Entity 

We now consider the case s 3> m2 ^> m^., including one heavy generation 
where all fermions are of equal mass m. As already mentioned in section 2, any 
uncancelled leading s" behavior in the form factors Ft v ill violate unitarity because 
of the factor ^p- in A5. We check this cancellation beliw. keeping next-to-leading 
order terms as a check on our numerical results and tv provide physical insight into 
the system's high-energy behavior. 
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Referring to the appendices, the F, can be seen to tend asymptotically to 

F s^SL. 2!l 

thus 

^ ( l - l o o p J S . « . i £ . ( £ ( * 4 ) + » ) . [ ! » £ - 2 ] . (4.8) 

Notice thai the leading s° terms in tne Ft are cancelled in 4s, a result of unitarity 
cancellation at the one loop level. Also cancelled are all dilogarithms. Even so. if 
m2 > m$|r then the magnitude of /Is(l-loop) can be as large as that of /ts(tree) in 
(2.10) and (2.11). The perturbalive expansion requires careful exam :liation at high 
energy with a sufficiently heavy fermion generation, as we shall discuss in detail in 
section 5. 
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5. Numerical Results and Discussion 

We can now compare the above results with numerical calculations and discuss 
the experimental observability of the heavy particle corrections. In assessing tJir 
sii# of these corrections, one should remember that nondecouplmg effects generally 
arise from the- breaking of global symmetries in association with large dimension less 
parameters. For heavy fermions in the standard model, these parameters might 
arise either from isospin-breaking mass differences or from the Large Yukawa- cou­
plings needed to generate even large isospin-symmetric mas&ses. We should assess 
the relative importance of these two contributions. For scalar*, only the isospin 
splitting of masses arises from a symmetry breaking, and so here there is only one 
possible source for the effect. 

Let us begin with the case of a heavy, isospin-degenerate fermiona. The detailed 
forms of the radiative corrections to the W form factors, valid over the full range 
of energies, are presented in Appendix B By inserting these expressions into (2,9), 
we obtain the effects of the heavy fermions on the differential cross section for 
W pair-production. In Fig. 7, we plot the corrected differential cross section 
at cos0 = 0, incorporating effects of a degenerate heavy generation of fermions, 
for several different masses. (Integration over cos $ merely shifts the whole curve 
upward by including the urjenhanced forward peak). We can see that the radiative 
correction gives a. small but noticeable effect at low energies and contributes a 
significant enhancement of the cross section in a region within a factor of 2 in 
v>5 of t))c pair production threshold. The suggestion from the analytir formulae 
of an effect increasing quadratically with energy is actually well confirmed by the 
numerical results shown in Fig. 7. Note the rapid onset of unitarity cancellations 
above threshold. 

The physics of the correction terms is clarified by a more detailed look at the 
numerical results. Since the delayed unitarity cancellation affects mainly the cross 
section for producing pairs of longitudinal W bosons, we should expect that the 
enhanced radiative corrections appear mainly in that pai&rizatton si&te. Indeed, 
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Pig- 8 shows the contributions to the cross sections of Fig. 7 from longitudinally 
polarized W pairs; the enhancement of this polarization »tate is very Jarge and 
accounts for essentially the whole effect. The heavy fermion* make at most a 2% 
correction to the cross section due to the other polarization states. The importance 
of the longitudinal W pairs can be assessed in another way, which can be observed 
directly in experiments: in Fig. 9, we plot the distribution of the lepton decay 
angle cos \ in the presence of heavy fermion corrections. Th* enhancement near 
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Figure 8. Contribution to fig. 7 from longitudinal pollrisalioiu only, »l coifl = 0. 

cos x ~ 0 indicates the increasing importance of longitudinally polarized W bosons. 
The dependence on cosfi of the heavy fermion corrections shows less structure; the 
corrections are roughly independent of cos#. However, for cosfi > 0.5, the W 
pair production cross section IB dominated by transversely polarized pairs, and the 
relative enhancement due to radiative corrections disappears. 

Eq. (4.6) displays the low energy limit of the correction terrr. Well below 
threshold, this contribution is independent of the heavy fermion masses. We con­
firm this result in Fig. 10 by plotting the differential cross section at cosC = Ci for 
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Figure 9. Corrections to the x distributions at cos 6 = 0. for degenerate fermion*. 

relatively low energies. The 3% shift indicated in the figure is just that predicted 
by (4.&), diluted by the inclusion of the other W polarization states. 

Introducing an isospin.breakiDg mass splitting for the fermion or doublets 
breaks the standard model's custodial 5(7(2) symmetry. This is known to lead 
to a large ^normalization of the p parameter. In W pair-production, however, 
such a mass splitting does not generate additional large contributions; rather, its 
main effect is simply to split the existing peak of the correction term into two. 
Fig. 11 illustrates this behavior in the differential cross section at cos 9 = 0, for 

43 



m = 600 GeV 

4-88 

420 460 
Vs~ (GeV) 

500 
6002A1O 

Figure 10. Correction* to the differential croei eectioa at ce*6 = 0 at low energia, snowing 
the approximate mam independence of tfae fermion correction!. The 300 GeV fermioni are 
approaching threshold. 

">« - mj = ±100 GeV. The vertex corrections do give a small additional effect 
proportional to the mass splitting, visible in the last line of (4.3). However, this 
term contributes only to L i r of (2.9), and so it is unimportant at high energies. 
The pattern of shifts at low energy shown in Fig. 12 comes simply from the shifts 
of mw and s,(-m^) due to the renormalization of the p parameter; we note again 
that present data limit isospin mass splittings to Am 2 < (200 GeV)5!"1 

500 1000 1500 
4-88 ^S (GeV) eooj^ 

Figure 1 1 . Peak structure for split fermion double!.; m4 = 500 CeV, cost) = 0. 

Since the corrections to the tree level cross sections we have found are so large, 
we must address the question of their reliability. On the one hand, we have seen 
that the tree-level amplitudes for W pair production are unusually small, due to a 
cancellation of amplitudes. The large size of the corrections is the result of the fact 
that they do not exhibit the cancellation. On this ground, we would not expect 
radiative corrections of still higher order to show a further enhancement. 

This argument cannot be complete, however, because the size of our correction 
term, at threshold and above, increases rapidly with the mass of the heavy gener-
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Figure 12. Effects of frrmions with an isospin-breaking mass splitting, cos0 = 0. Dotted 
lines md = 350 GeV. Dashes. md = 650 GeV Solid lines: mt = 750 GeV 

atian. For example, the residual term (4.8) al very high energies is proportional to 
m . We can understand this dependence by recalling that the production of lon­
gitudinal W bosons at high energy is governed by the Equivalence Theorem,"1'"1 

which states that the production amplitude is equal to that for production of the 
Goldstone scalars eaten by the H' bosons in their mass generation. Indeed, the am­
plitude for production of scalars through a heavy fermion loop precisely reproduces 
(4.8), with the prefactor arising from the large fermion-Higgs Yukawa coupling 

"*-±<S>"-.V3-
It has been shown by ChanowiLz, Furman, and Hinchliffe'11 that quarks with masses 
above 550 GrV cannot be treated perturbatively, since their Yukawa couplings are 
sufficiently large to violate tree-level unitarity in four-fermion processes. For such 
heavy quarks, we must expect laige corrections to our calculation, proportional to 
additional powers of the Yukawa coupling, due to virtual Higgs bosons coupling 
to the fermion loop. Thus, while our calculations should be trustworthy for small 
enough quark masses (plausibly, for masses as high as 400 GeV), for higher masses 
they should be taken only as an indication of the size of the correction to be 
expected. We should recall, though, that for the main case of interest, s « m 2 , 
we predict an effect which is independent of mass and so extrapolates smoothly 
into the high-mass regime. 

Heavy scalars exhibit much smaller effects than heavy fermions. Scalars with 
no mass splitting can acquire large mass without coupling to the Higgs sector; 
at low energies these scalars decouple and at high energies they have no strong 
couplings to longitudinal IVY The only significant corrections for scalars, then, 
are proportional to the mass-squared splittings within isodoublets. Fig. 13 exhibits 
this behavior; we see that even for 200 GeV mass splittings in either direction., the 
vertex effect is small and only the p parameter effect is observable. Without a mass 
splitting, it is impossible to separate the corrected and tree-level curves. 

Let us finally discuss the size of the corrections we have found in terms of the 
expected event samples for future e + e~ colliders. A design for such a collider which 
is well matched to the requirements of the physics should provide data samples 
containing a few thousand events for typical annihilation processes; at •/? = 1 
TeV. such a sample would correspond to a luminosity of 3 x 10 3 3 c m - 2 s e r - ' over 
a running time of a year (3 x 10' sec), for a total integrated luminosity of 9 * lO4 

p b - 1 or 9000 R-' . The heavy fcrmion corrections could be sought either in the 
gross form of the dislribulion in cos 9 or in the shape of the cos \ distribution. 
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Figure 13. Effect of a Bupereymmellic generation of acalv partners; eoe0 = 0, m* = 500 
GeV Tlie upward shift arises almost entirely from the ihift in the p parameter. 

The measurement of cos x requires a leptonic decay. Determining the sign of cos 9 
also requires a lepton or a tightly constrained count of charged particles. However, 

measures of the differential cross section which ate symmetric about cost? = 0 can 

be evaluated with essentially the whole sample of W pair events. Our corrections 

predict a substantial percentage increa* .* in the cross section except at forward 

angles, suggesting use of the ratio 
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Ht = / drosflj - / / dcosfl , " , . (5.2) 
J dcasO I J rfcosff ' ' 

|c<M0|<(M |Cf»0|<O.S 

This rancels luminosity measurement errors. At ^/s = 1 TeV with a degenerate 
generation of ferrnions of mass 750 GeV, using our calculation as an estimate of 
the effect, wr find 

f 0,305 heavy fermions 
(5.3) 

0.289 standard model . 

For the conditions described at the beginning of this paragraph, the numerator 
of R( corresponds to 11,200 cents; these should be accepted with efficiency well 
above 50%. Thus the statistical erroT on Rj should be about 1.1%, and the effect 
indicated in (5.3) should be readily observable at nearly 5 standard deviations. An 
orthogonal measure of the heavy fermion corrections is 

R = * J — ^ - l i i „ . <*» 

* . { 

/ rfcos tWcos x~: -r\ / / < ĉos 6Vcos \ -
a cos 0a cos jt I J Q dcos&dcasx 

(5.4) 
where the denominator includes all events witr semileptontc decays and both inte­
grals are taken over ] cosff| < 0.6. For a heavy generation of fermions of mass 750 
GeV and y/s = 1 TeV, we predict 

l 0.1 
563 heavy fermio&s 
543 standard model . 

Roughly 40% of W pair events will involve one leptonic decay to c or /i, and these 
events will be readily reconstructed. Thus, for the same conditions, we expect a 
statistical error on Rx of 1.4%, At better than 2.5 standard deviations, thia can 
serve to at Jeasl independently confirm an effect discovered in the cos0 distribution. 
New fermions of lower mass, but s*,ill above threshold, will produce even larger 
deviations from the standard model predictions, while higher luminosity would 
lower the statistical errors. 



G. Conclusion 

Adding a hn)t«\ R«ugr inv A»-IA«I heavy sector to Ihr si and art) model gives risr 
to large rfleris in r + f" —* U* + H'", which wc liavr aiiHlyzrd in terms t>f nun-
decoupling BIU) unilariiy delay. Broken global symmetric and Urge dimension less 
parameters are responsible for non-decoupling, while tlir standard model's gauge 
cancellations an* responsible for unkaiity delay. Uniiarity delay is most important 
ih lhe case of longitudinal H"s with their kinemMkally enhanced s dependence. 
Since boson verify corrections generate the main part of the effect, we are able 
to glean from this process import Mi t information which no fermion production 
experiment can provide: the three-boson-vertex corrections EQ+_ and S3+- give 
new and independent contributions from the virtual states. Effects occurring in 
four-fermion processes (and most easily measured there), including isospin splitting 
effects on the p parameter and running of coupling constants and boson masses, 
are all summarized in the running clcctroweak parameters discussed in Section 3-

At low energy the new contributions arc not yet in the asymptotic regime; they 
disturb the delicate ttee-level unitarity cancellation and allow us to probe the non-
Abelian structure of the standard model's radiative corrections. At higher energies 
the cancellations are re-eslabfished. For sufficiently heavy fermions or sufficiently 
split scalars there is also a strong coupling regime; either strong coupling effects or 
our calculated results will be measurable, with a cross section shift on the order of 
0.02 picobarn. 
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APPENDIX A: Computation of Differential Cross Sections 

Jrt this apppndix. we give some details of the derivation of the genera] formulae 
for lhrf + <" -* H"MV~ differential cross sections (2.9), (2.13). These formulae fol 
low straightforwardly from (2.8) by inserting explicit forms for ihe fermion spinors 
and the VT bosons' polarization vectors. 

To define the electron sptnor matrix elements, choose the electron beam direc­
tion as the 3 axis. Then the matrix elements for spinors of definite heiicity are 
given by the simple expression: 

•77ntiR.L — V^' (£fc»0) , where £± = 1 ± i2 . (A.I) 

The upper sign refers to the hclicity state e^ 4- e. £, the lower sign to e~[ + c J . The 
W polarization vectors may be specified more directly as 

£f = («r-0) with q-tr = Q for transverse polarization 

1 / - > (A.2) 
£? = I flo-m.'I 9*1 I for longitudinal polarization. 

">W \ 11 I / 

With these choices, it is straightforward though a bit tedious to work out the 
explicit values of (2.8) and the f-channel exchange diagram for each polarization 
state. This calculation yields the following expression for the e 4 e~ -* W*W~ 
scattering amplitudes between states of definite heiicity: 

M = ~ie2A (A3) 

where for the various cases of IV polarizations: 

ATT = Ait* • qSj-• ?$• + A2\3-tj-e±i^ + 3£j-?±ir\ 

An = -'Ut± • $ ~ 4<3 • i f # i • $ 
(A.4) 

ALT = -Ai£±<$ + A|3-<f.e±-f 

-ALL = Astj. q , 
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where <j is a unil vector in the direction of the W momentum, '"j- a r c the transverse 
polarization vectors, and the factors At are jiwt ihtisc listed in (2,10), (2.11). 

Squaring this expression and summing over the transverse unit vectors e .̂, rj 
produces precisely the formula [2.9). To obtain (2.13). wc require only a small 
extra piece of analysis- The square of the amplitude for the decay of W~ to (~V, 
evaluated in the W" rest, frame, is proportional to 

<"• [^-„V-»r , J *n f c ] V , IA.5) 

where f is the polarization vector of the W~ and n is a unit vector in the direction 
of the lcpton's momentum a.s viewed from this frame. We may specify the direction 
of it in terms of two angle* —the angle t and an azimuth &1 angle j / 1 about the 9 
axis. We may define \ to be the polar angle between n and q. Although we can 
obtain interference terms between different polarizations from this formula, we find 
it simplest to average over \ : then we may replace in (A.5) 

nk -*cos,\ -qk

 t n ' n ; — cos2 \ • tfq* + siir \ -[6tf - tfij3) , (A.6) 

This simplified form of (A.,ri) may be combined with tJje squares of the amplitudes 
(A.A) and summed over W~ polarizations, to yield eq. (213) in the narrow-width, 
on-shell approximation. 
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APPENDIX B: Explicit Formulae for the W+W~ Form Factors 

In this appendix, we present explicit expressions for the Feynman diagrams of 
Fig. fi, a«J we ronv-erl these expressions to formulae for the ooe-]oop corrected 
form factors, n\. (3.1fl). We express these formulae in terms of the one-loop 
integrals defined by PasKarino and Veftman!" and in terms of a set of reduced 
Hassan no Veltman functions defined in Appendix C. 

B.l . HfcAW FERMIOKS 

We consider first the case of one generation of heavy fermions. To cancel 
anomalies, we must consider a full generation; our formulae will be written as 
sums over / = u 1 t d a i v , / or doublets A =. (ut%dt) (f,t), where i runs over 3 colors. 
When we sum over doublets, the subscripts u and <i will denote the up and down 
components. Q will denote the electric charge of a particle and /3, V its isospin 
and hypcrcharge: Q = Ii + Y. 

The vacuum polarization insertions defined in (3.1) are given in terms of the 
functions h, defined in appendix C by the following expressions; 

i&t'nfaiP-) = 853Qj[-|+b 3(P !,m},m})] 

/ 
-m}(A + b„(P2,m},m}))] 

w^n,, (/*> = £[*/"(-§ + *»U*.«A.«to) - ^ Y ^ A 

+ m3b,[Pt,m1

i,ml) + m^b,(P ?,m2,TnJ)] 

(B.1) 



Here, A is the divergence of dimensional regularization, A — K~W~V • I'(2 - j) ~» 
1/(2 - ^) - •/ - lnr . An arbitrary mass parameter Inm^, arising from coupling 
cons tan I dimensions and serving to eliminate dirncnsionful logarithms, follows A 
a^d cancels mil along with it. From these formulae, wr can immediately assemble 
expressions for the hea\y particle contributions to the running coupling constants, 
the running 2 mass, and thr wave function factor 4 For the running couplings. 

- I F T T ^ = - £ ^ ( W ^ . m J . ^ - W . ^ . m } ) ) 

1 
»;(P-) sUt>' 37r»T = £ T^IVW/tM/^.n^-W.mJ.™})) 

(B.2) 
The factor ^ limjnu's 

U - " = i ^ Z g | j { - ) ^ N / , - V m ; . m 3 ) + r , ! ib l (P- , ,n ; ,n , i l 

+ m 3 b ' t ^ - m 3 - , " ' ) } U „ . r „ . 1 | . (B.S) 

- >{r)(r, + » ) l » ( r - , . - 1 , ; . m J ) + j ( i - J ' ) b 3 ( ; ' J . m ; . n , 5 ) } . 

We require the running Z niasy in the particular form which appeals in PU. (3.17); 
foi a generation of fermion doublets thi* is 

4 4(hQt ;{ lP 2 + "4(1 - 2«:)] • b 3 ( / j 2 l + 2 m i s • b 3 (-n, ' i>} 

- P 2 - biiP-\ - m-z • h j ( -mj ) + i m j • lbD</> 2} - b 0 ( - m | l ] . 

(B.4) 

The computation of the vertex diagrams. Fig. 6(b), is less straightforward. Af­

ter performing the Dirac algebra, one must gather terms together into the Lorentz 

structures given in eq. (2.1), ignoring terms proportional to the electron mass and 

using the trick in Appendix A of ref. 44 to eliminate additional structures. Af­

ter thin rearrangement, the coefficients of the structures 7*, T§, and Ti disappear 

as required. Evaluating the integrals using dimensional regulariaation. we find 

additional finite terms of the form 

A {1-\) ^ 1 (B.5) 

arising from fermton traces. l! is essential to keep these terms in order to obtain the 

unitarity cancellation in the one loop corrections. The final result can be written 

as follows: 

U+- = \ 5 2 \Vi)<lH[P2.-n,l.-nll)-V3)>-H[P2,-mimi)\ 
doublet* 

ZQ+- = \ £ [Qi-W{.P}.mlml)-G{P\n,lml)\- (B.6) 
" doublet* 

Q*' lH(P 5 . n>$ , m 2)_G(P\>«3 .m;) l ] . 

where W = £ • //"» • 7. and tf = rt - 2.7 ,4> • Tt - 2 # , S | • 7'5. i.e. T4 and 7 5 reverse 

sign, and similarly with G. Finally, in terms of Passarino- \ reltman integrals 
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Uiir-'l.V'-'.iii-J.inil = I'/'n - V'i - 7'5) • -^-(cj -- c.,) 

T'o \rA\ - A) + c„ + c , - '-^-{c, - c.,, - 4 H c 6 + c , i ) 
V.3 m-„ mfc I 

_ 7 , . 4 

4 T 3 fct> - 3c, - ^f (2cj - 5c„ + 3c 5) + - 4 r ( c 6 + 3cr)) 

+T 5 ( - c o + 3c, - ^ f (c, - c s ) + -^-(cs - c 7 ) ) : 

(B.7) 

the Ci have arguments (/"-,mf. m.J). 

B.2. HEAVY SCALARS 

We now consider a hypothetical heavy scalar doublet $ — (^H. tfd) with St^[2)x 
('(1) quantum numbers /j = ±j> 0 = (Q*,Qi). masses (m u.m,(). and vanishing 
vacuum expectation value. We obtain vertex corrections 

Q + !6i7-' 

K?« ( l ^ -C,) • To - 2 ^ c , - 7', + (3c, - co) • T,\ [P2.mlm\) 

- Q4 ({l-£ - c,) T„ - 2 ^ c 7 T-} + (3c, - co) • Tj\ (P 2 ,mi , m 3) 

£ « - = ^ l ( ( ^ A - c i ) - 7 - „ - 2 ^ f e 7 - r 2 + l 3 c , - c o | T 3 ^ ( P J , m ; . m ^ 

+ U ^ - C i ) - 7 - o - 2 ^ 1 c 7 - 7 2 + (3c1 -cuhT3)(P\mlml) . 

(B.8) 
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IIKI tw()-,>ciui, rurrecluiu 1 

I n r 
"«« " I 6*-' 

y ; ( ^ + '!b J + bo)(P 2,r nJ,r ni) 

+ Qj • ( J + •tbj 4 bo)(F 2,m3,mJ) 

II!, 
1 1 

W~ ICTT* 2 
« . - ( - j +4bi + b„)(P2,m=,mi) 

ft] 

(?J ( y + ^ j + boK^.mJ.mJ) 

i r?2 f2A 

lOTT" 4 L o 

n „ = - ^ j • i [ P 2 ( | + 4b 3 + b o K ^ m J . m J ) 

+ [m\ - m\) • lb, (/*, raj, ml) - b , (P 1 , m\, rnj;]]. 
(B.9) 

For the case of a full generation of supe-rpartners, we can sum over sleplons and 

squarks. 



A P P E N D I X C. Rinhni-il Pnssariiio-Volt man Finn t RUIN 

All Infllii'i I'assarum Vrltinan functions may l»e uni(|u<'1\ deiimiposed intu liu 
ear <.viiiluualv.iiii. of the scalar integrals ftn and Cn, fu, wlmh closed form expro 
sion-- are knownf"" The decomposition alRorilhiu lias ln^ji implemented in an 
algrl.rajr manipulation program; " for purposes of a-symptolic analysis, however, 
we have found it convenient to define reduced Passarino-Yeltinan functions lepre-
sriiling finite, dimcnsionless parts of two- and three-point one-loop integral:*- All uf 
these functions include an arbitrary mass scale m/t, which cancels out of all phys­
ical results. For the two-poinl functions, it is straightforward to determine the 
asymptotic forms of these functions. For the three-point functions, the asymptotic 
analysis requires somi; effort, and so we have catalogued the required formular. 

The functions b,(P~.mf.m^) which appear in Appendix C are defined as fol­
lows: 

[bo.b,.bj] = /<iTlog(lxm; + ( l - r )m5 + i ( l - i)P'- ie]/m%) 
{ (CD 

- 1 . -T, x ( l - x ) J . 

These functions are related to the corresponding Passarino-Veltman integrals by 

B 0(ma,mi) = bo(mi.m2) + (A - InmJ) 

B,(mi,m,) = b i ( r n i , n i a ) - - ( A - l n m ^ ) 

Bl(m 2 ,m,) =b 3 (Oi | mj) - - (A - lnmj,). 

with Bs =• Ba -f B\: S3 and Bo are symmetric in mj .mj. 
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I'n-JSiuino anil Vellman's (' fund ion* are defined by 

<"n ,.,,'•-,../•('/.«"'• r"',ii);.m?,iiij) S 

J ,xUk1 + ",J){U- + q)1 -f mjJia- + P)* + m\\ 

and ran he written in term:* of form factors; 

('f* - •JU'TIICJI •+ W»Cn + \<fi\r»C-a + i^C'u 

with braces summing over distinct permutations. P = q + q always. 

In the present case we may s«t raj = m\ —> m\ and m\ -» m\\ then we 
define the reduced Pasaarino-Veltman functions c^P"1 ,m\,m\) in terms of the 
denominator 

D = zmf + (1 - :)ml - j ( l - J )m^ -1- TyP* - U (C.5) 

as follows: 

[co.cij = j dzdyd26(z + y + ; - [) log(0/m«) 

dxdydzi{x + y+ z - 1) ( - £ ) 

x [ 1, i , •:*, z J , xy, rtff ) . 
(C.6) 
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Note thai 

[c«,cT] = _ f i | - | , - i ] + - J | C 2 , C ] ] + ^ - ! i ^ | e 3 , c , ] + -^ : - [ c4 ,c 5 | . 

(C.7) 
These functions are related to the corresponding Passarino-Vellman integrals bj 

>nj,-Ct> = c 5 

'"R-Cn.r; = -J(c j ±c j ) 

"iR-rn = ^{c2 + c 4) - c 6 

mjjf j j = £(c 2 + ci) - c 3 - c 6 

™j(-Cj3 = j(C2 - C 3 ) - C S 

">K-C'JI = - j (C2 + C S) + ^(cs + C7) 

(C.S) 

'O-gCjJ = - 5(C|. - ,1CJ + 3C| - Cj) + | ( C 6 - C7) 

"'fl'C'33 = - j ( C 2 - c j ) + |ci; 4 ±C7 

"l5,-C3« = - j(C2 + C<) + CJ + | c 6 - ^C7 

r 2 < - - J c o + i f A - l n m i ) 

C« = i(ci) + c , ) - ^ A - l n m 2

s ] 

CM = |(co - C|) - 0(A - In m'ji) 

where 
C t J — Ci3[-mw,-mw.l* > Tn 2 ,m, .m 2 ) 

c, =C,(/ w ,mT,m|). 

We reduce the integrations over three Feynman parameters to one parameter 
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integrations for numerical analysis and asymptotic expression. 

n,cii = J d: \ (I - 2) (hi - 1 - 2 - ,>*(-/t)) + | M I , . I ) | ' " • /f(j) I • |1,« 

|c,,Cj,C4,CS| = y ^ ? 2 f i . | S ( l , , ) | "* . (?( . - ) '*• ( • ) • II.-".> 2 .^) 

where wr define 

/4(*) = ;m] + (1 - 2)77^ - z(l - .-)m'^ 

ft(.-,a) = i | i - < l - r ) J 

<?!•-) = { I for J > =+ 
J for i < *> 

A-(.-) = 

2arclan 1(1 - r)[ft(2,.i)| I for : 4 < » < 1 

In 
.)+[fi|»..|| 

~ i'l' -it-B(A) for 0 < ; < i 
( i - j ) - «[». . ) 

and ?+ , a solution for R[z,$) = 0, is given by 

i + 2(ro} - m|-m'{, ,) 
* + » - 4mh, 

(CIO) 

(CM) 

(C.12) 

(C.13) 

(CM) 

• \m\s + (mf - mi ) 2 - 2tr%(mf + m;) + i t i j , ] ' ' 8 . 
(CIS) 

For present purposes, we may disregard the imaginary parts 



For large and small values of a, the functions c, take the following asymptotir 

forms. We always assume that the mass difference between mi and mj is small 

and set Am 2 = m\ - mj . m 2 = \{™\ + ni?) . with Am 2 <; m 2 . Then for 

mJi, < j < m 2 . 

_1_ _J 1 Am 2 1 » 
" " l i . 1 , " 1 2 " m ^ - 2 4 m 2 

1 j 1 s_ 
C ' ~6 m 2 120 m' 

e,-=ifl+±=^! + ±JLl 
" m- [2 12 m s 24 m 2 J 

c,_=ifi + -L-L] 

C < _ m 2 [12 120 m 2 + 360 m 2 J 

_mj | f 1 1 Am 2 1 5 

(,=3 1 + 1^ 
6 m 2 I 24 + SO rr 

2! _L_L1 
2 + 180 m 2 J 

J_Am£ 1 * 
C ? ~ m ! 120 + 720 m 2 + 1260 in 2 

When * > > m J . dropping ^Tn2/m* and non-asymptotic terms. 
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(C.16J 

1 , j 3 

.1 12 m' m 2 J 

1 , s 11 
C , = 6 l n ^ - 1 8 

- — Ul*»*-=5 - -»1 - m-=3 + al 
a [2' m2 m* I 

4-.C3 = -I | ln 2-L-r 2) + 2|I,4_4 
mjf 2 m 2 m 2 

m 2 I , a T 
+ — - 2 l n — - 4 

a t m- J 

-l..e< = - I [ l n J A - » 2 ] + 3 l I . 4 j - 7 

fl I ' m 2 m 3 J 

•s 1 „ , 3 , , 11 , s 85 —5- • cj = - - In- —r - «•J + — In —7 - — mj, 2 m ! 3 m 2 9 

J) 1 m 2 f 1. , J ,.1 
mj, 2 j [ 2 m J 'J 

— • c, = - - + — - - I n 2 — - jr2 + 2 In - * - 4 . mj, 6 .1 [ 2 in' m 2 J 
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III. MODULAR INVARIANT PARTITION FUNCTIONS 

ON NONSIMPLV C O N N l JED GROUP MANIFOLDS 
1. Prel iminaries 

J.l . CONKUHMAL FIELD TJIECHUKS ON THE PLANE 1 ' 1 

Con formal field theories are quantum field theories with conformal symmetries. 
Tin* PuiucAre symmetry is exlrndrd to the conformal symmetry by requiring thai 
the anion he stale invariant. Since translational invariatice under j * -* i^ + a1' 
gives the energy- momentum tensor TfiV as the corresponding conserved rurreni. 
conservation of UIP dilatation current D^ = T^v xv implies that the energy mo­
mentum tensor is traceless. Using these two conditions on the energy-momentum 
tensor, we can construct additional currents of the form j£ =. T^ f[r). If the 
function a) parameter fir) satisfies 

*V* + 9,/,, = ^ 5 M , ( # • / } , (LI) 

the currents JJL are conserved and generate the generalized conformal group. Under 
the generalized coordinate transformations x" -* x'** = x" + f[x)t the metric gfiV 

transforms according to (1.11 » 

SMX) - 9^') = fi(r) fti„d) (L2) 

where d denotes the dimension of space-time and flfx) = I -f (2/rf) {8 / ) . Eq.( I .'2) 
shows that the transformation preserves angles between two vectors defined on the 

space-time, which is the original definition of a conformal transformation. 

In d > 2, the only non-trivial solutions of (1.1) arc f^{x) = a,,, j ^ u ^ a v and 
bpX2 — 2ipb- i where a and 6 are constant vectors. These form the finite confor-
maJ group: the Poincare group, plus scale transformations and special conformal 
transformations. In d = 2 with the Eucleadian metric g^v = tfpJ,, any holomorphic 
and anti-holomorphic functions, f(z) and f{z) satisfy (1.1), where zyl = x\ ±txa. 
Therefore, the conformaJ group in two dimensions is infinite dimensional and is 
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generated !>>• I wo independent coordinate transformations. 

.•-.ui(s). S-»U'(.-). (1-3) 

In two dimensions, scale invariance implies conformnl invariance. The encrgy-
momenium tensor has two non-vanishing components T : , = 7'(r) and T« ~ T(r), 
which become generators of the two conformal transformations. Using (1.3), we 
define : = vxp(-ri - in), '" = expi-ri - in) so thai as lime component T2 

goes to -oo, £ goes to 0. This is called radial quantization because equal ra­
dius meads equal time in this complex coordinate. Since these holomorphic and 
anti-hoiomorphic sectors are completely independent of each other, we can concen­
trate on holomorphic sector only from now on. However, these two sectors must 
eventually be combined together to fulfill the full consistency requirements on the 
theory. 

The conformal field theories are classified by an anomaly term called the central 
charge of the conformal algebra, which arises from operator product expansion of 
7"(=). The general form of the operator product is, 

where c denotes this central charge. Using a Laurent expansion (o the energy-
momentum tensor, one can define the mode l„ as £„ — f yj~'*+ T{z), From 
(1.4), we get the Virasoro algebra, 

(L«, t „ ] = (n - m) L » + m + ^ ( n 1 - n) *.+„,.„ . (1.5) 

We can define two vacuum states |0),(0| at t = 0,oo. In order to make sense out 
of r(z)|Q) as ; -• 0, (0|T*(i) as i — oo, we must require 

£,.10) = 0, ( 0 | 4 = (0|I-„ = 0, n > - l . (1.6) 

The operators £i, to, L.\ generate a SL(2,C) subalgebra of the Viraaoro algebra 
which preserves the vacuum. The primary field #a(r) generates highest weight 
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state \h) = «n(0)|0) which satisfies 

U\h) = \\h) L„|A) = 0, „ > 0 . (1.7) 

Here, h denotes the conformal dimension of the primary field. From the highest 
weight state |A), decendents are generated aa a form of i - m i - m • • L-nk\h) ( all 
n. > 0). The sum /V = £ * = | n, is celled the fever of the <fecendent field. The 
complete set of states descended from |A) is called a Verma module. A Verma 
module is a (possibly reducible) representation of the Virasoro algebra that is 
characterized by the central charge e and the dimension h of the highest-weight 
state. 

The correlation functions of quantum fields are central objects to compute 
in quantum field theories. The standard formulation for this compulation is ei­
ther canonical quantization formalism or path-integral method based on the given 
action. However, if the theory is interacting, these formalism can provide solu­
tions only perturbatively. Meanwhile, the two-dimensional conformal field theories 
promise a new possibility for exact solutions for the quantum field theories. Cor­
relation functions for the primary fields &(*,i) should satisfy conformal Ward 
identities from the invariance of vacuum under SL(2, C). 

£ a,,(#„(ji,ii)--•&,(*,,*.)) =o 

£ [ * A + Ai,i(«M*i.*i)---*.<*.-*.» =» 
i = i ( J - 8 > 

Correlators for the decendcnts can be derived from those of primaries using the 
conformal Ward identities. Equations (1.8) completely characterize one, two, and 
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three-point correlation functions up to some constants. These constants are con-
formal dimensions of primary fields n, and generalized three point couplings Cljt, 
Prom these solutions, we can deduce the operator product expansions 

W « , . ) . * , ( „ . * ) = ( ; _ w ) t , + t , . ^ _ a ) u ^ - t . ! « » . » ) + - I <»••> 

where the dots denote a sum over an infinite set of dependents with corresponding 
coefficients which, in principle, can be completely determined by the given input 
parameters, ht and Ci)fc. Using these operator product expansions, we can compute 
any correlation function. For example* the four-point function can be written down 
as 

where ^j[j( JJJ) are called as (anti-)holomorphic conformal blocks. In computing 
correlation functions, there is an arbitrariness in the order in taking the operator 
product- expansion. Since the final result should not depend oft the arbitrariness, 
we get the associativity condition for the operator expansion product algebra which 
goes under the name of duality, or crossing symmetry. 

The problem of solving the conformal field theories completely reduces to that 
of computing conformal blocks 3-f: for all the dependents for the given primaries. 
This is not easy because conformaJ blocks involve a sum over an infinite number 
of decendent fields- In special cases, however, we can derive differential equations 
for the conformaJ blocks. The differential equations arise from degenerate repre-
senl-ations of the conformal algebra. A degenerate representation of the Virasoro 
algebra is a representation that contains a null state, a state which is both primary 
and decendent state at the same time. Then \x) is a null state if 

U\k) = <* + JV)lx>- U\x) = « for n > 0 . (3.11) 

These conditions imply that \\) has zero norm. A typical example of null stale ts 
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given by 

w - h + jtsrnj^lw- < 1 1 2 > 
This stat? is null if 

h = ~[s-c±J(c-l){c-25)] (1.13) 

The correlator of any field with this null state should vanish. This condition gives a 
new differential equation for the conformal blocks. This equation can be solved for 
a certain class of theories called minimal models. The two-dimensional conformal 
field theories, therefore, are based on a different computational formalism from the 
conventional approach which can give non-perturb&tive solutions for the quantum 
field theories. 

1.2. UNETARITY IN CLASSIFrCATION 

The two-dimensional conformal field theories are classified by three input pa­
rameters, c, ft, and Ctjk- The problem of deciding all possible sets of parameters 
ie called the classification problem. The solution for the problem has fundameo-
laJ importance for both string theories and two-dimensional statistical systems. 
By taking vacuum expectation values for (1.4), e > 0 for a positive semi-definite 
Hilbert space. 

For a given Verma module of a highest weight |h}, the unitarity condition that 
all dependents should have positive definite norm can provide strong restriction 
on possible values of c and ft. For a given level JV, there we P[N) number of 
decendent states where physical states are given as linear combinations of positive 
norm. P(N) denotes the number of partitions of integer N* The determinant of 
the P(N) x P[/V) inner product matrix has been computed by Kac." The formula 
is 

d e l a t e , h) = QN I I (A - W * ) ) * * " " * < L M > 

where h r , f(c) is a positive number given as a function of c and integers ptq. By 
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excluding the region where the determinant becomes negative, one can classify the 
theory completely for 0 < r < 1 by discrete series of allowed values of c and h. 
This is called the unitary minimal series and the allowed values are 

c = 1 7-^-77 m = 3,4, . . . (1.15) 
m(m + 1) 

willi allowed primary finds of conforma! dimension for given 171 are given by 

K m + l j p - m o ] 2 - ! 
h ' ^ m ) - 4m(m + 1) ( U G ) 

where integers ji, q ar*- given as ! < p < m - 1,1 < q < p. The Verma rnodule of 
|Ap - 9) has a null state at level pq. 

For r* > 1, tho determinant becomes positive definite if the conformal dimen­
sion ft > 0, Therefore, we need another principle for these class of theories for 
complete classification. Most of all, there must exist extended con formal sym­
metries because the number of primaries with respect to the Virasoro algebra is 
infinite for c > I. If the number of primary fields are finite, the theories are called 
rational cfinforuial field theories. Recent progress shows that complete classifica­
tion for the rational conformal field theories may be possible by studying modular 
transformation properties of characters defined on torus. 

1 3 . MODULAR INVARIANCK ON Tiir TORUS 

Partition functions of conformal field theories on the torus are defined as 

y-[r.r) = 9 - " V * / M T r 9 S L ° = £ A '^ X h { q } ^ ( g ) , (1.17) 
U 

We use short notation q = cxp(2iriT) with the modular parameter r and N^ are 
nonnegative integers The Virasoro character \n is defined as 

wherp rfjun) is (*qual to the degeneracy of slates in the representation at level 
n. Since ihe trace is defined over all decendents of the primaries, we should not 

include the null states and their decendents in the trace. If there is no null state, 
df,{n) = p(n) and the character ia, 

*.<«) = « - ' / 2 , + ' ' ^ / > ( n ) ? " = r ( c - ' " » + ' , ( , ) " ' , (1.19) 
It 

wh«ir<: 

»(?) = 4 I / M f [ 0 - / ) (1.20) 

Par the minimal models, we should subtract the contribution from the Verma 
module generated by the null state at level pq. Since each null state of the minimal 
model has its corresponding null state, we should add and subtract these modules 
alternately to avoid overcounting: 

CO 

W?) = « - < "" / M 1/(71-' Y. [«*'-'"- - /•—'•"J . (1.21) 
k=-tx> 

Modular transformations on Lhe torus are generated by two fundamental trans­
formations T and S\ T : T —* T + 1 and 5 : T —• - 1 / T . The partition functions 
(1.17) must be invariant under the modular trasformations. Under the T. 

T : nil) - ^""-c/i,\l.M (1.22) 

and by 5 

S • n(q) -> u t f ) = £ &.*• n-(i) • (i-23) 

where ft' runs over all primary fields in the theory and q denotes exp (—2xi / r ) . The 
matrix Sh,h'- referred to S* transformation matrix, must satisfy unitary condition 
5 5 ' = 5 'S = 1 for the inverse 5 transformation. Also, 5 and T satisfy 1ST)' = 
1. S 2 = C ( C denotes complex conjugate coming tVim time reversal). The 
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S-tFansforMiMion (uatrvx -must be symmt'irk. !-\n \\,r miiiitunl modi-Is, ihr S-

transformation matrix is 

« \ni(trl + 1 ) / I ra/ V 111+1/ 

The modular invariance of the partition function gives a condition on tin1 matrix 
with nonnegative integer elements N^ : 

S N S1 = N (|.25| 

and on the ronforrnal dimensions of the primaries -. 

J VA.k=v' i' A - ' j * integer for r = c . (1 26) 

Finding the solutions for (t.25) is v.iry i'.lportanl both fw the classification of 
conforma] field theories and in understanding of operator contents of the theories. 
The only complete solutions found up to now arc (or the minima) models and Sll (2) 
Kae-Moody algebra.""" In these eases, the solutions are known as .4 — 0 - E 
classifications. The original nomenclature was motivated by the close relationship 
with the classification of simply-laced Lie algebras. Class A denotes the diagonal 
form jVkj, = 6h n, which is obvious from the unilarrty of S-lransforrnation matrix. 
Class D includes [he partition functions with off-diagonal farm of Nk 1 = o 4 ^ j , 
with a permutation jr. Class E contains three special modular invariants which do 
not belong to class A or D. The operators of class A are all spinless fields while 
class D and £ contain nonzero integer-spin fields. 

Modular invarjance can play important role in the classification of conformal 
field theories If there arc null states, the number of decendents of level n should 
he reduced, or <Jn(n) < P{,n). Therefore, if g and q are purely real, we get an 
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inequality 

X * ( e ) < - , " ( ' " , W M + S ( i r ' - (1.27) 

&y taking the limit of Iror -• 0 + or o —• 1 and q ~* 0, the right-hand of (1.27) 
becomes 11(7 -« I ) " ' and, using the identity r/(J) = (hnrj '/ 'nfa), 

<»(« - l ) " 1 = iim ( Imr ) " 2 f ' ' * . ( l 2 8 ) 
5-0 

Then, the partition function has the upper limit of* 

Z < ••}!--»•-lmT T.NkJ.- (>- 2 9) 
k.k 

While from the modular in variance of 2 and (1.17), as ij —» 0, Z = 2{<j,<i) T3 
"jM'+'VM ( r o m the fact that the most dominant contribution to (1.17) comes from 
the id'itity primary field with eonformal dimension 0. Therefore, the condition 
(1.29) becomes 

•fl-l-*'!/* < I f l - ' ^ l m T ^ i V ^ (1.30) 

If (c + e)/2 > 1 or, especially c > 1 lor the case of c = e, only solution for (1.30) is 
Hfc k ^k A = °°- ' n °tber words, we need an infinite number of Virasoro primaries 
for the conformal field theories with c > 1. However, we rr: v introduce a larger 
infinite dimensional algebra so that there may exist a finite number of primary 
fields with respect to this algebra. In next section, we will explain one typical 
example of this extended algebra. 

If one deals with rational conformal field theories with finite number of pri­
maries, ultimate classification may be possible by investigating the matrix 5 using 
the results of E. Vcrlinde!*1 The story starts with fusion rule algebra, which de­
scribes a selection rule for the operator product expansions. The fusion rule matrix 
element tftJ

k is defined as the number of different ways to fuse the primaries that is 
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consistent with ihe operator product expansion (I.ft). If C'.JA - 0, then A',, -. 0 
Ycrlinde's observation is that the modular transformation S' : T -» - 1 / r dingo 
nalizes the fusion rules. Therefore, for a given A'IJ* from ^t x 4>t — £tA", ; *£* 
one can find possible S-transformalion matrix clement >\j as eigenvectors of A y 1 

Using the identities $2 = C and (5T) J = I, all possible values ol {c,h) can be 
classified. Furthermore, one can get new modular invariant partition functions out 
of known ones using fusion rule automorphisms which preserve operator algebras 
under renaming of primary fields.' We want to emphasize again that the mod-
tilar invariants on the torus, which is an one-loop consistency condition for string 
field theory, is very important both for the determination of operator contents and 
for the complete classification of rational confoimal field theories. 
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2. Kaf -Moody Algebra r ? ' f l J 

In the previous section, we showed that conformal field theories with c > 1 can 
be rational only when the chiral algebra is extended from the Virasoro algebra. 
Every primary field with respect lo the new chiral algebra A creates highest-weight 
stale representation of the algbra A by acting on the vacuum. From the result of 
the previous section, it can be shown that a single -4 representation contains an 
infinite number of Virasoro primaries. We can formulate conforms! field theories 
with extended algebras in exactly the same fashion as with Virasoro algebra. 

Among the extended algebras, Kac-Moody algebra is particularly interesting 
as emphasized in the previous section. Mathematically, Kac-Moody algebra comes 
as an extension of a finite Lie algebra by adding an extra simple root to the finite 
roots. Physically, this algebra is realized as a continuous symmetry of the Wess-
Zumino-WiUen models on group manifolds. The Wess-Zumino-Witten action is 
given by 

S=±.J<PX Trfo.T'&s] + T , (2.1) 

where the Wess-Zumino term T is given by 

r = ~ j <?y (** TrliT'&s g-'dsg g^dta) (2.2) 

where the parameter *, called the level, must be integer for the consistency of 
Wess-Zumino term. This action describes the motion of string on group manifold 
G. If this manifold is taken to form some extra dimension of a string theory, 
the group C becomes the gauge group of the theory in space-time- The finite 
group G must be extended to the aifine algebra for describing local symmetry of 
two-dimensional world-sheet. In addition to string theories, Wess-Zumino-Witten 
models are also useful for statistical models. 

The action (2.1) is classically scale invariant. Quantum mechanically, it gives 

rise to a conformal field 'heory, whose central charge depends on the level k and 
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the finite group (7. The action is also invariant under the transformation 

g{ztz) -tt[s)git,2)U[s)t (2.3) 

where fi t G- Hero ; and ^ an* two-dimensional complex coordinates. The \Vess-
Zumino term is essential for the invariance. This G v. G local symmetry h the 
Kac Moody symmetry. The symmetry is generated by conserved currents J°{z) 
and Ja{:). They ate defined as 

JH) = J'(2)T' = --(aig->)g, 

where the r a ' s are antihermitiaii generators of the finite algebra G nomalizgd by 
Trr aT = ~|7>„fc. With energy-momentum tensor 7'(=) and T[z). i tie currents (2.4) 
generate the full crural algebra A x A which contains the Virasoro algebra as a 
siibalgvhra. In addition U\ <>}»•. aUtr prciiurl hpiween 7"s in (1.4), one can find 
operator products as follows, 

[2 - IB)' Z - W 

./°(.->./V) + J J ' M . 
( ; - i i ' ) - * - w 

Using the mode J« from J£ - /d . - ; "J°( r ) mid the morii* /..'a from T(?), We find 
the runniulAtion rc-latioil? f<ir A. 

l-C •£] = / • * •£+„ + 5 >> * a*« B +n,,o. . ( 2 ' 6 ) 

Of course, similar relations hold for the antiholomorphic generators 1„ and J j . 

From the action (2.1), we can find that the energy moim-tilum tensor is given as a 
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Sugawara form with the second Casimir of the adjoint representation C*, 

T(z) = - £ + c„ :J"[z)J'M: (2.7) 

In terms of the modes: 

£„ = - k + c. 
• ! " / * (2.8) 

Then, the centra] charge and conforms! dimension of a primary field of a represen­
tation A of G are given by 

tdimG 
* + c„ AA ' k + c,, (2-9) 

where ĉ  is the second Casimir of the A representation. If the vacuum is invariant 
under the extended symmetry, we can find an extra Ward identity corresponding 
to the Kac-Moody algebra in addition to (1.8), 

Y, l". <*.(=!, *l) -"*„<*..*.» = »• (2.10) 

This equation plus the previous informations determines the four-poini correlation 
functions completely in terms of the input parameters k and /"**", through the 
following procedure: We can find a null state for the Kac-Moody algebra which 
can be used to construct additional differential equations. The nidi state is derived 
by acting [K£- I - J1\J£\ on a highest weight stat?. This state can lead to the 
differential equation known as Knizhnik-Zamoldchikov equation!'1 

* T * T a 

« c \ - £ — (4M*l)---*n(.-«»=0, (2.11) 

where K = -{k + c*)/2. 
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The primary fields *,V of Kac-Moody algebra general*' the highest-weight state 
|A,). |Ai) = 4i(0)|0), with respect to both Virasoro and finite algebra G, One of 
great advantages of Kac-Moody algebra is that characters for the highest weights 
are given hy the well-known formula fi>r chararlrrs of alfine Lie algebras due to Weyl 
and Kac. Since in is added to the Caftan Bubalgebra, our definition of character 
(1.18) is consistent with the specialised Weyl-Kac formula with some vanishing 
parameters. The difficulty in expressing the character of a given highest-weight 
state explicitly arises from the problem of finding null slates systematically. It is 
particularly difficult for conformal field theories with extended symmetries because 
of their complicated structures. The reason why the IVey.1 Kae1 fcrniuia is powerful 
is that one can sum the allowed decendenU systematically using the extended Weyl 
group. The character is expressed as a certain sum over Weyl group: 

where the afline Weyl group W is a semidirect product of the finite Weyl group IV 
and translation group T in the root lattice M. The constant p is half the sum of 
positive roots. Furthermore, we can express the sum over M using theta functions 
whose modular transformation properties are welt-known. The formal definition of 
the tl.i'ta function is 

whew t is the imaginary root of the Kaf Moody algebra. Therefore, the specialized 
chararloi is given by 

E„. e iv '(«•) e„, ( ( > 1(0.r.O) 

wherr Ihr number s^ is given by 

IA -u / .I 3 l„|J 

(2.15) 

We use here the dual Coxeter number hv which is equal to the second Casimir <-,.. 

2(/- + /i v) 2h" 

n 

Using the standard formula of Lie algebra, one finds 

CJV 1 k dimG r 
aj> = 5 T T ^ " SI trTVT = AA - 57. (2.16) 

as one expects from the definition of a character. 

The modular transformations of the characters can be derived from those of 
the theta function. 

e A | 7 = e x p [ y ( A | A ) ] 0 , . 
(2.17) 

M' denotes the weight lattice and P^ is the set of allowed integer affinc weights 
for a given level k. By applying these equations to (2.14), the S transformation 
matrix element is given by 

3..A = ( - ' P Wt(k + hv)MrW J2 t(w) exp [ - j ~ ("<*)(,*)] , (2.18} 

where A = A + p and A is Die highest weight of the finite Lie algebra G. One 
can check that the matrix 5 is unitary. Although we derived explicit formulae for 
the modular transformations, solutions of (1.25) for the modular invariant partition 
functions are not easy to find. Only for SU(2), are the compete solutions known.' 
In the next section, we are going to find a set of modular invariants for nonsimply-
connected group manifolds defined by orbifold constructions, This approach -an 
be extended toward a complete classification of the conformal field theories with 
extended chiral algebras. 

We want to close this section with additional remarks on the possible appli­
cations of Kac Moody algebras. The coset construction of GjH models with any 
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subgroup H of (i ean desiTjIx1 many interesting known conformal field theories, 

llsing the fan that!'" 

lif.iE'Vl'.f.igl-lCia. (2-19) 

the central charge of G/W is given by ca<H = c" - c" The Hilbert spare «(A, A) 
of the cosel conformal field theory is defined by the relation 

H(A) = 5 3 « ( A | ® « ( A , A ) , (2.20) 

where Ji[A) and 7f(A) denote the Hilbcrt space of C and W, respectively. The 
case of c ^ " = 0 describes the equivalence of two conformal field theories of group 
manifolds. The condition can be satisfied only if the level of G equals 1. In this 
case. H is called a conformal suhalgebra, and we should conclude that the lower 
algebra H is extended to the higher algebra <?. If e c ' " j< 0, we have a new mode) 
which u-e can relate lo other known theories. For example, the eoBet model based 
on 

SI '(2), x WW, , . , . , 

describes the unitary minimal series when p = 1 and it& supersymmetric version 
when p = 2. In similar way, parnfrrtnionic theories are described by the coset mod­
els of St'(»0- Furthermore, the characters built on H^A.A), referred to branch-
ijig" functions can have direct physical meanings in two-dimensional lattice models 
where order parameters of the models are obtained from the Lhett function iden­
tities. Therefore, by understanding the modular invariant partition functions of 
general group manifolds, we ran understand the modular transformaion structures 
of the cosel models. 
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3, Modula r Invariant Par t i t ion Functions from Orbifolds 

Wi-HH Xumino-Witteri models '•" are prototypical rational conformal field Ihe-

urira. The classification of rational conformal field theories has been the focus of 

much recent attention. But even the small subclass consisting of Wess-Zumino-

Wittcn models is not well understood; all consistent models are not known. 

One powerful restriction is modular invariance. For example, the states of the 
theory must be such that the one loop partition [unction is modular invariant. A 
list of possible modular invariant partition functions has been compiled and proven 
complete only for the simplest case, that t?f $U(2)-

Remarkably, the $U{2) partition functions may be labelled by the simply-
laced Lie algebras, i.e. those of class AyD and £• There axe the trivial diagonal 
modular invariants (class A) and also exceptional ones (class E) occurring for 
isolated values of Kac-Moody central charge fc. The remaining modular invariants 
(class D) are the partition functions for strings propagating on the group manifold 
50(3) I*"**1 So besides the trivial and exceptional, »11 SV{2) modular invariants 
are partition functions for strings on nonsirnply-connected group manifolds. If 
this pattern rontinues for other Lie groups* strings on nonsim ply-connected group 
manifolds are certainly important. 

Feldtr, Gawedzki and Kupiainen M | have studied the canonical quantization 

of Wess-Zumi no-Wit ten models. Using th* geometry of line bundles over the 

loop groups of G, they derive consistent spectra for arbitrary nonsimply-ronntcted 

groups G - Gfft, where G is the covering group, and B a subgroup of its center 

B(G) In this letter we use the orbifold1"' approach advocated in reference S to 

construct the partition functions, thus providing a simple confirmation of their 

results. 

The crucial mathematical relation we use is the isomorphism between the outer 

automorphism group 0{g) of the (untwisted) Kac-Moody algebra g and the center 

* This was conj«:un*d for SV{&) in tefmnct 57 
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B{C), and its relation lo the modular transformations of the torus Bernard '"' lias 

bhown thai in the space of d iamete rs of highest weight i rp r r s rnUt ions of g. it is 

thf modular trAiiCxmation S [f —» - 1 / T ) t h f c t (ransfovnw an element A £ O(g) 

into an element a £ B[G), and vice versa. Ho and other:*1** have used this fact to 

derive man}' modular invariants. These arc now imdnsiocid to be some, bui not 

all, of the partition functions for strings on nonaimpl)'-connected group manifolds, 

A Wess Zuniino Wit ten model one-loup partition function is a se^qnilitiear 

combination of specialized characters 

U(r) = trx,1"^-*)' (3 .1 ) 

of highest weight representations of a Kac-Moody algebra g. Here A = Xitu)lt — 

(AD, A) is the highest weight of the corresponding representation, A € Z, and u»* are 

the fundamental affine weights. A is a. highest weight of the finite Lie algebra given. 

For a unitary representation, we must have A^*rv" = k. where k is the K i r - M o o d y 

centra] charge and fcv* are the dual Kac labels. 

In particular, the partition function for strings propagating on the nonsimply-

connected group manifold G = G(B, B C B{G), is of the form 

Z{G(B) - Y, V'v *Y* U . tf.'i) 

It can also be written as an orbifold b* partition function! If tr\ -+ ff.r arc tin-

coordinates of the torus and r its modulus, we let (aj,c*2) denote the contribution 

to the partition function from fields obeying the twisted boundary conditions 

typ\ -i-Sir.ffj) - a i^ (o i , c r^ ) 
(3-3) 

Since the boundary conditions are defined for real coordinates, and not for complex 

coordinates, it is not clear how the chiral structure of the original theory will change 

t Many of th«* may also br denved from the branching mlw. for the conform*! embedding 
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W\ ttrbiftihlnn;, . \ r tnally, using : * cxp|(tfi +03)*) and = = expj{i7] - f?j)i] one 

li;ids thai the I s o m o r p h i c and anti-holomorphic coordinates are invariant under 

the twi. 1, riidi-rstatiding cliira! structures of orbifold confurmal field theories is a 

very tliffif ill subject. Our way U> understand the chiral s t ruc ture is in find modu­

lar invariai l partition functions expressed with holomorphic and anti-holomorphir 

character?, To do this, we derive the partit ion function by adding untwisted and 

twisted sectors consistently. The guiding principle is modular i n v a r i a n t . Later, 

we express llir partit ion function using the characters. 

T h e partit ion function can be written as 

Z{GIB) = 1 y j (a,,Qj) (3.4) 

where \B\ is ihe order of B. T h e modular Invarianceof this expression is guaranteed, 

since under any transformation r—• (oT + 6 ) / ( c r + r f ) , [ad— he — 1; o , 6 , c , d e Z) , 

{01,02) transforms to ( a ' d ^ o t i c ^ ) - " " M F — Z # „ (3.4) reduces lo 

1 * - > 

ZIGfZs) = jj J2 « .«5) • (3-5) 
m.nsO 

The trivial example is the partition function on the simply connected group 

manifold 0 : 

NlGh-i = ( l , D v * = *»•*• (3.6) 

Untwisted fields a te those obeying (3.3) with o i = 1 The contribution to ( 3 5 ) 

from the untwisted sector is denoted Z\ : 

1 * _ 1 

ZIIG/ZN) = JjT. ( l ' ° " ) • , 3 - T ) 

Using these last two objects and the generators $ {r -» -l/r) and T ( r —• T + 1) 

of t he modular group, it is in principle possible to obtain the Full parti t ion function 

ft3 

file:///rtnally


Zfl/.'/Zjv ).* The following formula is valid for N prime: 

WIZs) = 
l'=0 

ZilG/Zs) - *('>')- (3.8) 

For JV not ptiiiu", the situation is more complicated. For example, one can verify 

ZIG/Z, 1 + £ r S Z , ( C / Z , v ) - Z(G) -Z«V/Z..) . (:i.!l) 

The Z2 group of the last term is griirrHted by o J if a general*"* 7,±. rW gem-ral A 
not prime, wr otpect subtract urn of terms proportional to r/,{Ci(Zr) for ;J|A' would 
be necessary. For simplicity, wc therefore restrict to /V prime, and use I3.fi). 

The 7' transform at ion is of quite simple form: 

, f in |A + p\7 

(3.10) 

Here /> = 5Z / J«' , J i * n <l the dual Owjter number is A v s= £ fc^uA Hut the diuu-ii 
si«n of tire ^-transformation matrix grows rapidly will: A\ and the expression for 
its «IemenU involves a sum over the Weyl group of g. So explicitly constructing 
tin* .9- transformation matrix is extremely tedious. This is the main obstruction 
to using Formulae like (3.8) to derive orbifold partition fund ions. 

However, identities proved hy Bernard aJU'H us 10 hyiaas tJiii diJiiruJ'.y. 
Consider an element A of thr out<T automorphism group Oiff) of g acting on a 
highest weight A for a given value of the Kac-Moody central charge k [X^k*1 = 
k). (An example j s the generator of 0(su(/V)}, which permutes the fundamental 

* This ia a tiignific&m r«lnclion only for 5 = A (wherp g is tlie LIL; ilflebra of <?). The first 
inlermting CMA e l u d e d is St'[4) Is with N primp covers all other cues, except for half 
ihe potuibilaitt wrtfi g = H 

weights as follows; Aw* = a;1**'; w* = u f l.) Restricting to the weight lattice of 
the finite Lie algebra g, one can write 

A{\ + p) = ( A + A V " 0 ' H U M ( J T 7 J • (3-1^ 

Here K = 5^ ( JO K ' u , f ' s l n e restriction of an affiue weight K to the g weight lattice, 
^Mb) _ û_,fli a n c j UJ^ i s a n element of the Weyl group of # acting in the following 

way: 

«*(*') = u/<'> - Jfe vV ,W. (3.12) 

Ftir 3ii(A:). it is straightforward to check that wA is given by 

uvi = u)», u>a, - " U'o»-> • (3.13) 

Substituting (3.11) to (2,18), we get an overall phase factor from the first term on 
the right-hand side of (3.11). Instead of summing over w in (2.18), we can sum 
over w' - UJ«M because w' covers the same set of elements of Weyl group as w. 
Finally, using I(UH'M) = c(u>)c(u<,0, ""•" obtain 

SAW* = **v «KA) e=P fa (-"""I V + p)} • (3-14) 

Here t(ir/\) is the signature of u'^; i.e. t = + l ( - l ) for the product of an even 
(odd) number of reflections. Now for all outer automorphisms A, we have 

c{wA) = e x p { 2 I t ( U . ^ 0 , | P ) } = «p{»iA v | - ; ' 1 " > >] '} . (3.15) 

So (3.14) reduces to 

S W V f - S „ . « p { 3 x , ( ^ ' » l | V ) } . (3.16) 

This last equation is the starting point. Considering it with A replaced by AT 
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yields 

{-U'"\\) - . - ( ^ < « ' | A ) m o d i (3.17) 

implying 

V ( ^ ( 0 ) | A ) = Omod I (3.16) 

if Ax = I So w SIT that the phase UIL tin- right hind side of (3.16) is an A'tli 
root of unity. In fact, il is the eigenvalue of an element of B{G) of order /V. So. 
as mentioned above, the modular transformation .S' maps elements of 0(g) inlu 
elements of tt(rj). 

Now the untwisted sector partition function XdO/Zy) is built from the di­
agonal partition function Z(G) by projecting onto Zy invariant states fconipare 
(3.7) and (3.5)). So 

1 _ ' 
A'IK;/Z.V)VA = «v* JTT £ « P { ^ " (-•'1""| A ) } 

r=0 

= 6va*l{(^<«|a)} 
(3.19) 

where «c have downed 

L 0. otherw 

I'sing (Xlfi) il is then easy 10 show 

( 1. if J = 0 mod I. 
M J ) = < . , (3.20) 

5:Vil67Z.vh'A - - £ ^ M - , * , (3.21) 

- transformations ytVlds 

' ' ."WVz, , , , . ; ^ v , . ..M.| ,... [ ' ' '«;^JA±W:]} . 

Applying *iurcessive 7-transformations yield 

(3.22) 

Since fcv-*'°) = l. 

( U / ( , " | « M » ) = (u>*«"|e) modi (3.23) 

for any element w of the Weyl group of j , and any integral weight v. This and 
equations (3.11) and (3.15) simplify (3.22) to 

rsNliG/zK}x-x-j!f!liVA.w «?{-&«[(«*'<•>]*) + llw4'""!']}. 
(3.2J) 

Twisting a siring by a " = 1 must make no difference, Replacing v with v + N 
ill (3.24) therefore demands 

™ | ^ ' < ° f = 0 mod 1 (3.25) 

for all r. This can be simplified, however, since 

— - L / , 0 > r = Omod 1 (3.2G) 

is sufficient to ensure (3.25) and furthermore that 

Equation 13/26] disallows certain integer values of Kac-Moody n- tral charge 

h. For 3w(.V), since L/'°M is the form of integer/A", (3.26) restricts the level k 
Ui he even integer. It was derived in reference 58 by requiring consistency of the 

Wess-?.nmifto term on a torus, with one of ila cycles mapped into ^ noptrivjji) 

closed path in Cr. Thus il is a consequence of the nontrivJH) fundamental group 

7T,(I7 = ( V Z A - ) = Z A - . 
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Substituting {{VIA) into tl»- general foi inula \'\ v * .m«i ,i-m.r * J7h we finally 

obi am 

V<C>/Zvivi = < V | ( / ? / Z N ) V A •+ 

£ \ ™ £*>..{ •-'-;;-• ;- r i n ,)]i 
(3.2K) 

Sinre :V is prime tin- fartcu r outsi<it- (lie square hr-i«lt-»*• in.i> t»r dropped, anti we 

can write 

.V(f>/Z.v)v* = ^ E *».*-,») « P { - 2 T , ( ^ l ">"> |> - r r > ' " " " ) } • (3.29) 

This is exactly the form found by 1'VMer, (Jaw.-ilxki anH Kupiainen. 5* Furthermore, 

it is easy to convince oneself that 

( o " \ o " ) = i X A . w e x p { - 2 r , ' ( ^ " l " ^ + * ^ ~ " » ) } . (3. 

This result shows how each twisted sector has chira) structure 

30) 

The condition (3.26) guarantees the integrality of the elements of the matrix 

Z[Ci[%s )• This must be, since these quantities count the numbers of primary fields. 

We may rewrite the final result in a way that manifests this property: 

We should emphasize here that (3.29) is a modular invariant for all cases, whether 

or not it is integer valued lint it reduces to the physicaliy sensible partition 

function (3.31) with integral values only when the Kac-Moody central charge k 

obeys (3.26) 

* The a u t h o r s of reference 58 also considered the unique semi-simple possibility for O simple 
B — ?*i x Z> for s — " i , ' even 

We will now write tin- piniitioii function in a more ruinpart notation, and use 

ir to verify modular invariam-e. (Considering an ouler automorphism A as acting 

on tin* apace of highest weights of unitary representation*., wc have 

-4VA = h-AU) • Ci-:«) 

T h m (3.16) becomes m matrix notation 

AS = Sa (3.33) 

where o £ B{(i) is of course diagonal 

<U'X - *v* exp J2iri ( W ^ J A ) ] - (5-34) 

Thus the modular transformation S di agonal ises the outer automorphisms of g. 

If we have another related pair A* € O(g), o ' £ B[C). i<- <VC< = -So', we 

define 

/ I ' o o = /I 'd exp +irt'Jt 

o o / t ' = a A1 e x p [ - * . A ( w ' , < 0 > | u ) ' , ' l 0 > ) ] 

so thai 

A' Oft = n o / . (3.36) 

Then the partition function may be written simply as 

N-\ 

Z(G/ZN) = jj £ A"oa" • ' 3 ' 3 7 ' 

m,nt=a 

If C is the charge conjugation matr ix, we have 

5 " = (/. CA = / t - l f : (3.38) 

(3.35) 



so thai (3.33* *IM> implies 

>^n.< = -t" 1 . (3.W) 

Tliercforr 

Finally. it >s straightforward to prove 

P[Aon)T = AOQO' . (3.41) 

establishing the r-invariance of Z(f7/Z\). 
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4. Further Remarks 

It. reference 13, it has been shown that unless A'ĵ  >R diagonal or a permu­
tation matrix (^,A.*(AJ)- t r i P chiral algebra of the theory extends to a higher one. 
Furthermore, the existence of nondiagona) theories can always be understood ei­
ther in terms of the existence of automorphisms of the fusion rule algebra, or in 
terms of an enhancement of the chiral algebra. For the fully extended algebra, 
the only nond'iagonal modular invariants come from automorphisms of ihe fusion 
rule algebra. The fusion rule automorphism is defined as a permutation of primary 
fields which leaves the fusion coefficients A/i;* invariant. 

We can classify our results (3.31} according to the Above results. Using the 
condition in (3-31} 

*,{(^»)|A+^(»))} , (4.1) 

we can select an appropriate integer m for a given weight A. Then, the permutation 
is given as IT = Am. We can easily prove that this permutation of highest weights 
is the automorphism of fusion rule algebra. By applying Eq- (3.16) to Verlinde's 
relation " 

one can see that the phase factors cancel in this expression to give 

However, some of the modular invariants in (3.31) are not associated with 
fusion rule automorphisms. These cases arise when (4.1) ie satisfied irrespective of 
m. For SU{N), this is satisfied if level k = p • N with some integer p. Then, the 
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condition reduces to 

A,{(U,*«" |A)} (4.4) 

and the partition function will be the form of 

where M is set of the highest weights which satisfy (4.4) and arc not related by 

outer automorphism A to another. As long as the order of the center TV is prime, all 

the weights generated from a weight A in M by applying A successively are different 

from another in the orbit, except for one special weight Ao given by [j>,p*"*,p| 

which satisfies J4(AQ) = AQ. Since the matrix N^.X' f° r (4-5) is not a permutation 

matrix, the chira) algebra is extended to a higher algebra. From the point of view 

of this extended algebra, the partition function (4.5) is a diagonal form with the 

characters \A defined by 

XA = ** + •••+ U " " | » ( 4- 6) 

and N \Xa>& which may represent different primary states of the higher algebra. 

Using this partition function, we may find exceptional modular invariants which 

an1 neither of diagonal nor permutational form. If there exists an automorphism of 

fusion rules of the extended algebra, we can find an additional nondiagonal mutlular 

invariant partition function. Since this partition function, as a combination of the 

original characters, cannot be obtained from (3.31), this should givr a n«*w modular 

invariant partition function for the original algebra. 

To find the fusion rule automorphism of the extended algebra, w try to find 

relation similar to (3.16) for the matrix S of the extended algebra. The matrix & 
for the extended algebra is completely determined by that of the original algebra 

because the phase factor exp [2*1 ( ^ A , 0 , J A ) 1 in (3.16) disappears as far AH A 
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satisfies (4.4). Therefore, we can get a new permutation n by finding a pair {A, A') 

such that 

$*!, = Sv , f«»H i«e M. (47) 

The permutation is given by the relation ir(A) = A'. By computing the matrix 

S numerically for SU(N), we have found two well-known exceptional partition 

functions:"9"1 SU[2)kTrl* and SU(3)*=*. For these solutions, one highest weight 

in the pair comes from the special weight Ao- But we did not find any other 

exceptional modular invariants of SU{N) from this method. 

The simple structure of F.q. (3.31) may exist in a more general class of rational 

ccmformal field theories, perhaps those obtained by the coset construction. Since 

the characters of the coset models are given as branching functions defined by 

A 

where XA. \A *re l»<" characters of G and H respectively, we can find new modular 
invariants for the coscl model from modular invariant partition functions for G and 
ft. The new modular invariant partition functions are given by 

Zc/H = £ A'AJi' «*.»'** * A - ' (4-9) 
A.A'.J.V 

H-illi two matrices AA.A'. ^'A.A' from (3.31). However, this expression may not be 

physically acceptable for two reasons." First, many pairs of weights (A, A) may not 

appear in the spectrum of the coset theory. Second, some slates may be labelled 

by several pairs (A. A) which should be identified. Although these two problems 

(selection rules and field identification) may be solved rather easily for the special 

coset models considered in the reference 65, this is much more difficult for a genera] 

coset theory 

Using the formalism presented in section 3, it is possible to solve these problems 

for the cases in which G and H are Kac-Moody algebras. This analysis will be 
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presented in reference 66. There we will present a projection matrix F lo find the 
relationship between the outer automorphisms of G and H. Since the modular 
transformation matrix S for the coset model is obtained as a direct product of I wo 
S matrices of G and H, if the phase factors in Eq (3.16) for G and H cancel each 
other we can identify two fields in the cosct models. Since the projection matrix / ' 
applies lo the highest weights of C to produce those of H, the outer automorphism 
A of G and a of M is related by 

F A = a F. (4.10) 

Since the phase depends on the nature of the automorphisms> the field identification 
for a general cosel mode) can be obtained by studying the projection matrix. 
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