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ABSTRACT

We sludy lwo aspects of one loop structures in quantum field theories which
describe two different areas of particle physics: the one loop unitarjty behavior of
the Standard Model of clectroweak interactions and modular invariance of string
mode} theory. Loop expansion has its importance in that it contxins quantum
fluctuations due to all physical states in the theory. Therefore, by studying the
various models 1o one ioop, we can understand how the contenta of the theory can
contribule to physically measurable quantities and how the consistency at quantum

level restricts the physical states of the theory, as well.

In the first half of the thesis, we study one loop corrections to the process

ete” — W+HW= . In this process, there is a delicate unitarity-saving cancella-

tion bet s-ch ] and t-ch 1 tree level Feynman diagrams. If the one
loop contrihution due to heavy particles corrects the channels asymmetrically, the
cancellation, hence unitarity, will be delayed upto the mass scale of these heavy
particles. We refer to this phenomena as the unitarity delay effect. Due to this
effect, cross section below these mass scales can have significant radiative correc-
tions which inay provide an appropriate window through which we can see ihe high

energy structure of the Standard Model from relatively low energy experiments.

In the second balf, we will show how quantum consistency can restrict the
physical states in string theory. Despite the absence of a complete formulation
of string field theory, it is known that conventional Feynman loop diagrams of

point field theory generalize to the two dimensional Riemann surface. Modular
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transformations are symmetries of the Riemann surface and, therefore, a physical
amplitude should be invariant under this operation. The zere-point ampitude
on the torus can be mterpreted as the pertition function of the underlying two
dimensional conformal field theory. Modular invariance of the partition function
plays 1he role of a selection rule for the allowable physical spertrum of the conformal
field theory. Complete elassificavions of modular invariant partition functions for
general conformal field theories are inportant unsolved problems because they

serve both as the classical vacuua of string theory and as systems in statistical

mechanics at their critizal points. We provide a method Lo derive modular invariant
partition functions for Wess-Zumino-Witten models of general group manifolds
usi -¢ the orbifold construction. When we add both the wwisted and untwisted
seclars correctly, we obtain the modular invariant partition functions on non-simply

cannected growp manifolds.
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1. Loop Expansion

Quantum ficld theories are very effective in deseribing the dynamics of parti-
cles. The validity of a maodel for elementary particle interactions can be tested by
conuparing experiments with predictions based o the model using quantum field
theory. \While exact solutions of quantum field theuries are very few in number.
relativistic perturbation theories are well developed and are guite successful, For
theories with small expansion parameters, scattering amplitudes of physical pro-
tesses can be obtained up to a desired order of accuracy by compuling the Feynman
diagrams with appropriate numbers of external lines, propagators and loops. Un-
like tree diagrams, loop diagrams contain all possible quantum fiuctuations of fields
that are allowed by the symmetries of a thecry. If a theory is renormalizable, one

can absorb all diverger. ‘es of loop diagrams intoc the parameters of the theory.

The loopwise perturbative expansion, i.e., the expansion according to the in-
creasing number of independent loops of connected Feynman diagrams, may be
identified with an expansion in powers of k. To see this, consider a loop diagram
with Finternal lines, V-vertices and L-independent loops. Due to the topology of
the diagrams. the relation L — 1 = J — V is satisfied. Because the Feynman rules
are derived {rom the functional integral over exp {7 [ £/4], the propagator of each
quantom field has a factor of /i and each vertex has a factor of A~!. Thus, the
diagram is proportional to #1=Y or RY3. Since there is an overall factor of =" to
make the effective action dimensionless, the scattering amplitude is proportional to
L. Therefore, the iree level diagrams, the leading order in ki describe the classical
limit of the theory. For the case of L > 1, that is. one or higher loop diagrams. the
aniplitude depends on A and, hence. are cortections due Lo quantum mechanical
eflects. 1 the loop diagrams carrect scatiering amplitude through a systematic
perturbation theory, higher loops will contain more powers of smal) coupling con-
stant. Therefore, one loop diagram is the most dominant quantum mechanical

contribution to the perturbative computation of a scattering amplitude.

In addition to being the most dominant part of quantum corrections, the one

loops structure of & theory can also he used to place canstraints on the contents
of Lthe theory, For example, to guarantee repormalizability. the Ward identy e
must be preserved at loop levels. Quite generally. if there is a possible difficulis.
it arises at the one loop level. Consequently, if there is an anomaly at one laop
leve), we must restrict the particle contents 1o cancel the anomaly. This quaninm
consistency condition, that certain fundamental properties of the theory should li
maintained at the quantum level, is an exart theoretical restriction which must he

implemented in the theory from the beginning.

In this thesis, these aspects of the one luop structure of quantum field theories
are investigated in detail by considering two quite differcnt theories. In chapter
11, we consider a physical process in the Standard Model in which the one loop
diagrams with heavy internal particles give significant quanium corrections. In
chapter 111, we show how an exact restriclion on siring models can be obtained
from the one loop structure of string dynemics. In this case, the fundamentai
propurty that musl be implemented in the theory from the beginning is called
modutar invariance. This consistency condition is quite effective in constraiving

two-dimensional, generally covariant theories. such as string theories.

As in point particle theories, we can consider the loop diagrams of string the-
ories built from quantum fluctuation of string fields. Even without a complete
construction of interacting string field theories, one can still, in principle. compute
string scattering amplitudes up to any desired order of the loop expansion. Each
order of the leop expansion corresponds Lo field theory on a two dimensional Rie-
mann surface attached to an approptiate number of external on-shell states. The
number of loaps corresponds Lo the genus of the surface in this case. In particular,
one loop diagrams correspond to the torus. If we can quantize string f=l: theonies
canonically, the conclusion that the loop expansion is an expansion in powers of
h will hold for string theories, too. However, since the coupling constant is de-
termined dynamically and is nol obviously weak, perturbative analyses of string

scattering amplitudes may not be valid.



Nevertheless, by studying two dimensional surfaces with given topology, we
way detive a consistency condition that string field theories must satisfy at the
quantum level. One auch condition is modular invariance. The modular invariance
condition arises for the following reason: The set of all two dimensional surfaces
with a given topology is parametrized by a sel of complex numbers called modular
parameters. Such a parametrization is unique up to a set of discrete transforma-
tions called modular transformations. Since the loop computation should depend
only on the topology of the surfaces, string scattering amplitudes must be invariant
under the modular transformations. The modular transfoymations are inherent 1o
string theories because they are symmetries of the space of Riemann surfaces. The
irodular invariance gives strong constraintz on the possible string compactifica-
tions. In chapter I, we investigate the consequences of imposing the modular

invariance on the zero-point one loop scattering amplitudes.

2. Unitarity Delay

Since the S matrix, by definition, acts on in-coming states to generate out-guing
atates in a scailering process, the unitarity of the S martrix reflects the fundamen-
1al principle of probability conservation. Following the standard formulation of
quantum field theories, the unitarity of $ matrix, $'S = 1 becomes a relation be
tween Green's functions, Writing § =1 +1 T, the unitarity condition becomes a

relation between Feynman amplitudes,
2imTy = 3~ Tyn T - (1)
L]

For two particle scaltering processes, il is very convenient to decompose the am-

plitudes into partial waves:

T(s.1)= 16 ,Z (2J + 1) as(s) Prlcosh) . (2.2)
2z

In the process ff —+ V'V, where f and V denote a fermion and a veclor boson.

the partial-wave amplitude ay may be written as

s

aj= A m + B 2.3)
where A and B are dimensionless constants with some mass scale M. For two
fermion annihilation processes, only J = 0,1 stales are allowed. §if A # 0 for
d), the theory may behuve badly at high energies. To preserve the unitarity, tree
diagrams must add to meke A = 0. The second constant B need not be cancelled

because it does not violate umitarity.

In principle, the restriction 4 = O may appear only after a full, all-orders
calculation. However, if a theory is consistently weakly coupled, we should find
A = 0 (or the stronger restriction [ag] < ! } at cach order of perturbation theory.

If these perturbative unitasity bounds are violated, we should conclude thal either



the theory is not unitary, and hence unphysical, or the perturbation theory is not
valid. Since B depends only on the parameters of Lhe Lheory, these perturbative
unitarity bounds can also restrict the parameters of Lthe theory. For example, in
the standard theory of electroweak interactions, one can give the upper limits on

masses of Higgs and heavy fermions using the s-wave unitarity bounds!"

These unitarity bounds become crucial in studying the high-energy limit of
theories for the following reason. If the loop corrections increase as a power of the
center of mass cnergy £ of the tree level S-matrix element, it is not difficult to
see that this theory is not renormalizable, It is argued that in any renormalizable
Lagrangian theory, the high-energy unitasity bounds should not be violated in
perturbation theory™ This leads to the specific requirement of tree unitarity: the
N-particle S-matrix elements in the tree approximation must grow no more rapidly
than £4~¥ in the limit of high energy ( £) at fixed, nonzero angles. If this condition

is satisfied at tree level, the loop correction cannot violate unitarity bounds.

While all renormalizable theories satisfy this tree unitarity, in the case of spon-
taneously broken gauge theories, such as the Standard Model, the unitarity behav-
ior is particularly interesting. In processes like ete™ — W+W ™ with Jongitudinally
polarized W's, or in any process that creates Wf and 29, the S-matrix element
can salisly tree unitarity only when we add correctly both the s-channel and the
t-channel tree diagrams. Each of these diagrams contains unitarity violating terms
which are exactly cancelled when they are added together. In other words, A in
(2.3) vanishes after adding all relevant djagrams. The gauge symmetry plays an
important role in gaurantecing the delicate cancellation. This is another statement
of the fact that the only renormalizable quantum field theories with massive vectos
bosons are spontaneously broken gauge theories. Once Lree unitarity is realized.

umitarity will hold for all erders of perturbativn expansion.

However. if we consider ane-loop correctivns ta this process due to heavy pat-
ticles with mass M. since only the s-channel gets the correction, the delicate can-

cellation between the s- and the t-channel is delayed uatil energy scale becomes

comparable wilth the mass scale M. Below /3 = M, A gets non-vanishing radia-
tive corrections. Therefore, the tree unitarity is Lemporarily violated and scattering
amplitudes increase linearly with the center of mass energy scale. We refer 1o this

phenomena as unitarity delay.

In chapter 11, we will show that we can get a significant enhancement factor
tike s/ﬂlfy in (2.3) for the cross section due to this effect. The magnitude of
this enhancement is eventually limited by the unitarity bounds on heavy fermions.
The material in chapter I1 is based on the author’s wotk with Peskin, Lynn, and

Selipsky. The results of this analysis have been published previously in ref. 1



3. Modular Inviriance

The propagation of strings on space-time manifold s described as a Lwo di.
mensi. -' world sheets. which are Riemann surfaces with a given boundary. If
we consider only closed strings, the surfaces are closed with no boundary. String
scattering ampittudes can be formulated as functional integrals over fields on these
Ricmann surfaces’” The genus of the surface corresponds to the number of loops
is quantum field theory. In. and out-states of strings are represented by vertex
aperators which carry definite conformal dimensions and motmenta. Since the dy-
namics of strings does nol depend on how we parametrize the world sheet, the
classical action of string theory defined an the two-dimensional surface should
have local reparametrization invariance. The action should have another symme
try corresponding to the local Wey! scaling of two-dimensional metric. These two
synunetries of the classical, gauge-fixed string action combine o two-dimensional

conformal symmetry.

This symmetry is represented by two infinite dimensional chiral algebras {or the
lefi- and right-moving sectors of closed strings. These algebras are generated by
holomorphic energy-momentum tensor T(z) and anti-holmnorphic 7(3) and pas-
sibly by other generators. The fundamental parameters of these two-dimensional
theories are r. the strengih of the anomaly term in operator product expansion
of T(z). (h. ;) which are the conformal dimensions of primary fields and €.
the OPE roefficients of the primary fields. The Hilbert space of the theory is
represented by H = &,; H, € N, for primary fields (=, 7).

The class of theories with conformal symunetry, called conformal ficld theories,
have many interesting features and much applicability Lo physical systems®~" The
main motivation for considering this class of theories is that we can solve these
theories exactly in the sense that we can compute any correlation function exactly
with the abov= input parameters by solving a finite number of differential equa-
tions derived from Ward identities for the confarmal symmetry and from physical

151 .
arguments” There are two fundarnental problems that one would like te solve in

otder to understand conformal field theories. The first one is tie classification
problens 1o determice the allowed values of (e hy) ullambiguuusly_ The scond
problen is te rumbine the leli-muving and the right-moving sectors together. This
sewing problem is very important in solving ronformal field thoeriezs completely
The solution to these problems wonld give a camplete description of string com
pactifications. The point in this section is that modular invariance s crucul m
solvipg these two problems. In addition to understanding string theorics, we can
also understand two-dimensional statistical methanics systems at their criticality

using the techniques of conformal field theories”

We are gaing o examine the consequences of imposing medular invariance o
the torns. We shall do this for several rcasons. First, one loop is the simplest
and most significant quantum mechanical correction 1o the scattering amplitudes
in perturbation theory. Second, the modular invariance of the torus is relatively
sitnpler thao those of higher genus surfaces. Lastly, the modular invariance of the
torus is of a fundamental importance in conformal field theories!'*™"" [n particular.
the {urther conditiens of medular invariance un Riemann surfaces of genus greater

than one introduces no additional conditiens on the the theory™**"

Conformally invariant parameters that enter in specifying the metric of a Rie-
mann surface of a given genus are known ac moduli of the Riemann sutface, and
the space of these parameters is called the moduli space. Some apparently Cistinct
values of different modular parameters may be equivalent, that is, describe same
Riemann surface. Therefore, the loop integrals over string world sheets include
integrals over the set of points in the moduli space that are not related to cach
other via modular transformations. The set of all modular transformations form a
discrete group, called the modular group. The conformal structure of the torus is
uniquely specified by a point 7 in the upper half of complex planc. The modular
group is then SL{2, Z), namely the set of all transformations 1 — (ar + b)/(c7 + d)
where a,b,¢,d are integers satisfying ad — bc = 1 . The moduli space is the quotient
of the upper half plane by SL{2, Z).



The zero-poinl scattering amplitude is the simplest object on the torus that
one can consider. It is also an important quantity hecause it can be identified
with the partition function of the underlying conformal field theory. The partition

funrction is defined as

Z = Tr c—z:merl' r-ltluur" (3.1}

where the trace is over the Hilbert space, H = Lo+ Lo--¢/12, P = Lg— Lo, and T is
the modular parameter. The partition function can be expressed as a sesquilinear

form of characters of primary fields for left- and right-moving couformal algebras,

Z = z Nugp xalr) () 3.2)
b

Each chararter is deiined en a given holomorphic (anti-holomorphic) primary field
and its decendents. The partition functicn in (3.2) shows how the left- and the
right-moving sectors should be combined. Only N, ) of the primary fields &, ,
should appear in the spectrum. This is the solution for the sewing problem using
the medular invariance. In the examples we will consider, these characters form
finite dimensianal unitary representations of modular group™™ and so only subset of

the primary fields are allowed in the modular invariant partition functiong. Hence

we have a selection rule for the primary fields in conformal field theories.

The compiete classification preblem of conformal field theories is very impor-

tant, unsolved problem. For ¢ < 1 conformal field theories, called minimal models,

unitarity condition is enough te classily the theories cumpletely!m Their mod-

L e IS
ular invariants are alse completely classified™ "

However. il ¢ 2 1, unitarity
is not sufficient. Moreover, imposing modular invariance on the theory results
in an infinite number of primary fields. We may in this case introduce new ex-
tended chiral symmetries under which the number of primary fields become finite.
Only a few classes of extended algebras are known so far. Examples of these

symmetries are superconformal™ pa.ra.l'ermionicf]Il KRa¢-Moody symmetries, and

10

W algebras™ Kae Moody algebras, which come from the two.dimensional Wess
Zumino Witten mudels on group manifolds”™ are particularly interesting becanse
they may give gauge symmetries in low energy string models and because confurmal
field theorics of other classe are given as coset constructions of these algebras™ ™
Furthermore, many exactly solvable two-dimensional lattice models have been de-
rived from Kag-Moody algebras’™ Therefore, the classification of Kaé Moody
conformal field theories is a very important problem.

There has been significant progress on classification of rational conformal field
thearies™*>* which have a finite number of primary ficlds. Examining the be-
havior of characters on the torus under 7 — —1/7, xal=1/7) = Tom Sum A
Verlinde, Moore and Seiberg, and others have shown that it might be possible to
classify all rational conformal field theorie.. This implies that all properties at tree
level, i.e. on the sphere, and on higher genus can be derived from the modular

invariance of the partition functions defined on the torus,

However, finding a complete classification of modular invariant partition iunc-
tions for theories with extended algebras is still 2 hard problem. Only theories with
the SU(2) Kac-Moody algebra have been completely classified so far'™ For this
theory, the modular invariants are classified by three classes A, I} and £. Class
A consists of diagonal combinations of characters. The characters form a finite
unitary representation under the modular group, and hence make the partition
function invariant under modula; transformations. Class D consists of partition
functions of non-simply connected SO(3) group manifolds. Class E consists of
the three remaining invariants that do not belong to class A or [7. Although the
complete classification for general group manifolds is a very difficult subject, we
construct some partition functions for more general theories using the orbifold ap-
proach in chapter III. The material in chapter Il is based on work with M. Walton.
Parts of this work have been published previously in ref. 27.



II. DELAYED UNITARITY CANCELLATAION IN cte” - WHW-
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1. Introduction

Radiative corrections allow us ta probe the high-eneigy world with compara-
tively low-energy experiments. Because any intermediate state a)lowed by symme-
try, however heavy, can appear as a quantum fluctuation, precision experiments
which isolate radiative corrections can probe for particles with masses much higher
than the experimental enetgy scale. The most sensitive such experiments are those
which involve flavor mixing, such as the measurement of the X - Ks mass differ-
ence. However, even guantities which entail no special flavor violation, such as
the muon (g-2), can yield important information on heavy states. Now that we
are enlering the era of experiments on the properties of the weak vector bosons,
it s interesting to think of precision experiments which might be carried out on
these new fundamental particles. Such experiments would necessanly be done at
enctgies of 100 GeV, or even much higher; still, extending the reach of the avail-
able machine energy by measurements sensitive to the radiative corrections is an
attractive possibility.

Two important experiments of this type which have been discussed extensively

in the literature are the measurements of the W bason mass™ ™"

and the polar-
ization asymmetry for fermion pair production at the 2° resonance’™ ™ Both
of these experiments are difficult, requiring large statistical samples and methods
which cancel systematic errors below the 1% level. Yet in both cases the influ-
ence of new heavy states is larger than one has a tight to expect. Naively, one
would predict that electroweak radiative corrections due to new particles of mass
M would afect the masses and couplings of the weak bosons by terms of order
o7, times a factor mi, JM? reprosenting the Appelquist-Carazzone decoupling®™
However, the Appelquist-Carazzone theorem does not apply to Lheories with chiral
gauge couplings or large mass splitlings within gauge mulliplets, and indeed one
finds by explicit calculations both terms with no suppression for M? >> m}, and
terms actually enhanced by the factor AM?fm,, with AM? the mass-squared

splitting within an isodoublet™ The chiral nature of the weak interactions thus

13



increases the power of radiative corrections to illuminate new physics,

In this chapter we weuld like to analyze another se’ of weak-interaction ex-
periments, 1o be done at still higher energy. The nexi step for electron-positron
colliders beyond the current generation of Z® resonance machines will be to a linear
collider with an energy of order 1 TeV in the cenler of mass. At such a machine.
the most. imporLant single process contributing to the electron-positron annikilation
cross section is the production of W boson pairs. It is well known that confirma-

tion of the qualitative, tree-level properties of the W pair production cross section
{sean

already provides a stringent test of the standard model of weak interactions
. The variaus diagrams contributing 1o this process, considered individually, grow
faster with « than would be permitted by unitarity. The unitarity constraint on the
tree-level amplitude s maintained only by vistue of a delicate cancellation among,
the various diagrams; this cancellation requires the precise gauge-theory form of
the vertices coupling W pairs to the pholon and the 29" This observation has
been used 1o propose experimental tests of the idea that W bosons are composite
states; indeed, models with composite W bosons produce wildly different cross

sections from those of the standard model”

We observe hiere that even within the standard model, the introduction of new
heavy particles can cause large deviations from the tree-level cross section. New
species with perlectly conventional electroweak couplings naturally vield different
radiative corrections o the s and { channel diagrams involved in the tree-level
unilarity cancellation. All of these corrections together must sum to zero (to
leading order) for asymptotic s. However, the regime of greatest experimental
interest corresponds to the case of a state with mass M 100 large to allow its
pair-production at the high-energy lepton collider: s < M?, while s >> miy.
In this regime. there is no reason for the unitarity cancellations Lo occur, and.
indeed, we find enhanced radiative corrections of order {a/7) - (s/mi). These
effects can Le readily identified experimentally. We call this phenomenen, in which
heavy-particle radiative corrections pastpone the asymptotic cancellation among

diagrams, ‘unitarity delay'.

As a part of our calculation, we will give a simplified analysis of the general
structure of radiative corrections to W pair production. The radiative corrections
due to the conventional states of the standard model have of course been calcu-
lated some time ago by Lemoine and Veltman®™ Philippe™ and others’ However,
the structure of the corrections is quite complex, since the theory must be renor-
malized to the standard model’s physiczl parameters as measursd in lower-energy
weak interactions, [t was observed in ref. 33 that the renormalization program for
weak-interaction radiative corrections at the one-loop level is greally simphfied if
one assumes that the virtual particles do not couple directly to light leptons but
only to the gauge bosons through their standard-model gauge interactions. This
assumption is valid for most new particles one might wish to introduce-- heavy
quarks, heavy leptons, technicolor bosons, and all of the states of supersymmetric
theories except the selectron and the smuon. Lynn, Peskin, and Stuart termed this
scheme of coupling ‘oblique’. They showed that the oblique radiative corrections
to the properties of the Z and W can be represented quite generally by straight-
forward and manifestly finite expressions. These expressions allow one to classify
the various corrections and to understand which precision experiments should give
identical and which cemplementary information on new physics. One of our goals

in this chapter is to extend this analysis to the corrections 1o c*e™ — WY -,

Accordingly, this chapter will proceed as follows. We begin in Section 2 by
reviewing the basic kinematics of W pair production. Fouowing the formalism
of Hagiwara, Peccei, Zeppenfeld, and Hikasa!™ we present formulae for obsers.
able differential cross sections in terms of W pair form factors, which might then
be analyzed at the onc-loop level. In Section 3, we present a general analysis
of the oblique weak-interaction radiative corrections 1o the W form factorx. We
explicitly extract corsections which are already observable in low-energy and Z°
resonance experiments, incorporating these into the effective running electroweak

parartieters defined by Keunedy and Lynn!’;: What remains is a set of intrinsscally

= See RHefs 41,42, and 43, An extensive bibliography of theotctical work on the reartion
ete™ — W*HH'- can be found in Ref. 44
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new radiative effects; we organize these inta manifestly ubtraviolet-finite combina
Gions  Vinally. we ovaluate these new carrections for Lhe case of heavy Fermiiony
anv  ars. In Sertion 4 we study Lhe various asymptolic mits of the form fac-
tors and confirm the kinematic enhancement of the radiative rorrections in the
region s ~ M* >> mj-. We also check explicitly the restoration of the unitarity
cancellation for asympiotic 3. In Section 5 we discuss the physics underlying ol
servability of the corrections, and pres.nt numerical examples relevant Lo future
high-energy experiments. We find thal a new heavy generation of fermions gives
a sizable correction, an enhancement of roughly 0.02 pb, constent in cos. At}
TeV, this represents a 5% enhaucement of the total crass section at non-forward

angles.

- gy

2. General Formalism

Since ouy analvsis concerns obligne corfectiont due 1o new heavy particles, we
should expect that the most interesting effects we will uncover will be corrections
to the form of the three-gauge.-boson vertices. 1t is easiest to keep track of these
carrections by studying Lhe reaction ete” — WHW™ for vertices of the most
general structure, and then Liserling the sperific expressions for the form Factars
which arise from explicil one-loop computations. The general analysis which we
requite has been carried out most efficiently by Hagiwara, Peccei, Zeppenfeld. and
Hikasa (HPZ313."" 1: this section, we will revicw their results and cxpress their

formulac in a fashion convenient for our analysis,

HPZH begin their analysis with a general parametrization of the WW A and
W Z vertices. In this chapter, we will work in the Euclidean metric. With that
cenvention, their general vertex takes the following form: Let 1Y represent form
factors (V = A or Z) and T, represent canonical Lorentz structures (implicitly
carrying three vector indices), The vertex shown in Fig. 1 is built from thes:

ingredients as

7
Mefe.q.P) = 3 AT
=]
{g-g*PopP?

2

=i a-aret + B

, 2.}
+ Y (Poe — pRgrey + f) (PR 4 PPER) @n
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Giretee Pyla - 3k
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The form factors are dimensionless functions of s and my. We will consistently

ignore Lthe eleclron mass.
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Figure 1. The general vertex for W paim.

At the tree level, the A and Z vertices have the same kinematic structure; both

are of the form gy Tq, where

>

ga=e, gzr=e 2.2)
{3y and ¢y denate cosd,, and sinfy), and
To = Ti + 2Ty = (g - G160 + 2 Pos#? - PAgre), 23
Thus, at the tree level, we would write
=5t=1. =5 =2 (2.4)

and sel the other form factors to zero.

Using (2.1}, we can wrile the full amplitude arisiog from the s-channel diagrams

H:

B
w" +
: "
Y
7 ™
- LR
LR

{a) (b)

4-08 600242

Figure 2.  The amplitude for ete~ ~ W4W-: (a) s-channel (general vertex); (b) f-rhunpel.
for ete~ — WW~ (Fig. 2(a)) as

M = ieQ(Fne) 53 T5° EQIEQ)
(2.5)

(i~ Q ! *(QIENT
+ it 10 55 rr A CLT)

where P? = —s, u and v are electron and positron Dirac spinors, and £4(g), £5(7)
are polarization vectars of W7, respectively. We may consider the electron to have
definite helicity and write I3 = —* for eg, I3y = 0 for ep. Eq. (2.5) suggests that
we combine the photon and Z vertices according to

fe o BIEO( Y g o
L]

J—m%

and define I'**8 as the vertex built from these form factors according to (2.1):

1
5Py = 3 FT0. 21

12




Then the matrix element {2.5) can be writien more conciscly 82

ie?
s

My = (_—-) (Fru) - TR E2(q) E3(3) - (2.8)

The form factors Fy, Fg, and F; multiply CP violating terms; these always vanish
explicitly in the standard model and in the CP-conserving extensions that we will

consider here.

It is quite straightforward to evaluate {2.8) discctly for each initial and final
pelarization state by inserting explicit forms for the electron and positron spinors
and the W boson polarization vectors. We sketch this development in Appendix
A. Following this analysis, we can construct the differential cross section for W
scattering from electron and positron states of definite helicity into W states of
definite polarization. Expressing these cross sections in units of the point cross

section 1 R = 4xa®/3s, we find

do
dcasf

3
~§-ﬂ-2 (R}
Err = 2sin? 8 || Ay 2 —(A1A] + A24]) cos B4 | AP} + 2eos? 8)
Tre = Epr =) As ' (1 4 cos?8) + {AsA] + A4 A3) cos Dsin® 0 + | Ayf sin* @

11 =] As |? sin? 8,
(2.9)
where 8 is the scaltering angle in the center-of-mass frame, and the subscripts T, L
denote transverse or longitudinal polarization of the W~ and W*. For ci+c£, the

t-channel diagra: * does not contribute and so the cocflicients A, are built directly
from the F,:

20

Ai=g-F

Az= 0

2

A3=B\/3[f_3+’3“2”9.p5]

mw |2 (2.10)
_ BN

A=A o

Mgt (B _(L_mb\ g B2 g
=T 2 U IR AL I M

where g is the W velacity: 8 = (1 -- 4m}, fs}b. For ¢f + ¢}, we find the more

complicated result

8
=8 F ——
Ay =B :+233,D

Az =£:—D

BV [Fs Beost b, my 2_"-’)
Aa—mw 22 'Fb+2.1;+sgﬁzs - sD

(2.11)
e BNE o mw
= T S 83 J/aD
s [F 1 m%y) 1
- hraiiad ——— " r— F -
As ﬁmﬁ, 2 (2 R AR ™ 2+4s§
L L mi ) 2miy
Bsi s D
where £ is as above and
D= %(I + 3 -28c0). (212}
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Figure 3(a).  Tree level differential croms section zs. #: longitudinal polarizations only

(LL}, mixed polarizations {LT). transverse polarizations {TT), and their sum.

In practice, it is not experimentally strsightforward to separate the cross sec:
tions for W pair preduction inte the various polarization states. The easiest way
to extract some of the inforination on the W polarization is to use the decay of the
W to a charged lepton. The decay distribution obvieusly depends on whether the
W is longitudinally or transversely polarized. Further, the parity violation in the
decay amplitude allows one to distinguish the two transverse polarization states.
The explicit formula involves only the form factors A, of egs. (2.10), {2.11}. Let 5

be the angle hetween the W' momentum vector and the lepton mementum vector

2

2s measured in the W rest frame. Then the angular distribution in x is given by

do P P
dr,\')sadcmax(e o Wi

= %.a.an(w-_. -%)
- LI .3 2
. -arr'(l—illn X} % 4 con @sin’ A]A;|* - cos x
1. A
+r(l + 58"11){}* (Zcos 0] A} + sin® H{ A3 A} + AyA3)} - eo8 x

+E;. -sin x|,

(2.13)
where the upper (lower) sign refers to the cross section for eje} (egef). The
same formula holds for the y distributions in ete~ — W~+v from each clectron
polarization state. This formula agrees with HPZH; it is a simple byproduct of the
analysis leading to (2.9). We discuss its derivation in Appendix A.

The trce-level differential cross sections predicted by eqs. (2.9) and (2.13) are
shown in Fig- 3. In Fig. 3(a), we display the differential cross section predicted
for W pair production by unpolarized e*e™ pairs at /s = 1 TeV and the de-
composition of the cross section into the contributions from the various W boson
polarization states. (In principle, cne might also consider the effect of polarizing
the electrons; however, the contribution from right-handed electrons is generally
quite small.) In Fig. ¥b), we plot the x distribution at three values of cos 8.
The change in the form of this distribution reflects the increasing proportion of
longitudinally polarized W bosons produced as one moves toward the backward
direction.

Since the A, are dimensioniess scattering amplitudes, they will violate the uni-
rarity limit if they grow asymptotically with any positive power of s. For example.
eqs. (2.10) and (2.11) show clearly that Ay will violate unitarity if the combina-

tion of form: factors in brackets has asymptotic s* behavior, since this amplitude

23
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Figure 3(b).  Tree level v distribution ratio.

contains an overall factor 8/m}, anising from the scalar product of longitudinal

polarization vectors. At the tree level, (2.4] and (2.6) give

l 2 2
F1=-F3='—2(1+ﬂ)+ﬂ+w (2.14)
2 85 s s

Examining {(2.10} and (2.11) we see that for right-handed electrons, I3 = 0 and the

24

unitarity cancellation s immediate. For left lianded electrons, with [y = —%. the
residual term from the fotin factors is cancelied by the constant trm 1/4:3. which

represents the asymptotic behavior of the t-channel diagram.

This type of cancellation shuuld occur order-by-order in perturbation theory.
In section 4, we will show this explicitly for one Joop radiative corrections due to
a heavy generation. The cancellation guarantees good asymptotic behavior up to
logarithmic faclors. However, the cancellation is guaranteed only for values of s
which are actually asymptotic. A new heavy particle of mass M could potentially
produce very large radiative corrections by disturbing the delicate cancellaticns in
As al energies of nrder M if M >> mw. In the ne~t section, we will explain how
to compute the corrections to the form factors Fy which allow us to analyze that

situation.
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Figure 4.  One-loop oblique carrections to e* ¢~ — W* W= (a) corrections v~ the t-chann-;
diageam: (b external leg catrections 1o the s-channel diagram, {¢) propagatar corrections to the

s-channe! diageam: (d} vertex corrections ta the s-chanael diagram.

3. One-Loop Radiative Corrections

It will be useful to consider the various contributions systematically before be-
ginning an explicit computation of the ane-loop corrections. In this chapter we dea!
only with oblique corrections; this still includes a variety of corrections, as we show

in Fig. 4. Jn the standard medel, as long as we have no subdiagrams which involve

26
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Figure 5.  Notation for vecior boson self-energies.

Higgs-Higgs or W-W scattering processes (as is the case here), the divergences of
all one-loop diagrams are removed when we adjust thiee basic parameters, which
may be taken to be g, ¢’ and the Higgs vacuum expectation value or, more con-
cretely, &, Gy, and mz. In this section, we will explaiz how to rencrmalize the
various diagrams of Fig. 4 and organize them imto finite corrections with direct

physical meaning.

We would particularly like to address the question of which part of the one-loop
corrections to ete™ — WFW™ are already constrained by measurements at low
energy ot at the Z° and which are aew to the W pair production process. To make

this separation, we follow Kennedy and Lynn"™"

in parameterizing our amplitudes
in terms of running elettroweak parameters; ref. 32 shows in detai) how these
quantities sunmarize the information on weak interaction radiative corrections
available from low-energy experiments. From the remaining correcrions, we will
also extract a finite overall factor representing the W boson wavefunction renor-
malization. This will leave over ather finite contributions which correct the various
form factors f¥ in the three-gauge-boson vertices. These are the corrections which

have the largest physical effect on W pair productien.

We begin our analysis by presenting our notation for the loop corrections.
These will be given at first in terms of bare paramelers [which always carry a

subscript 0). The boson self energies will be denoted My P?), as in Fig, 5. we

k1



define

Myy:
P = VYV
My = 5

The various boson self-energies can be written as two-point functions of the elec.

tromagnetic currents j&,, and the weak isospin currents j4* according to

Nax = eflgo

2
sy = D, &
iz = pon (Tlag - s3'laq)

e2 3.1
Mzz = <% (My ~ 255030 + siflqq)
B
2
-
@ M

NMww = 2
where sg = sinfg and ¢g = cos @y are defined by sp = ¢9fg0 In general, only the

real parts of these amplitudes are relevant to the O{a) corrections.

Following ref. 32, we can use Dyson’s equations to account for vacuum po-
larization and boson self encrgies by exchanging the bare coupling constants for
renntmalized, running coupling constants [subscripted with a star). This results
in an effective Lagrangian with the same form as Lp, but with al) bare quantities
replaced by starred quantities. To include the effects of the oblique corrections we

are accounting here, we thus write

1 1
&P = 3 el
- ) (d 2 4 2
T eR(u?) - [“QQ(P )—HQQ(F‘ )]
. X (3.2)
g~ el

1 . 2
= g~ [MhatP) - Mot
from these we define 52 = €2/¢? and ¢ = 1 — s, These formulae allow us to relate
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pracesses occurring at P? to measurements performed at p?. We similarly define

running boson mass parameters to include sell-energy and rixing effects:

1 e; 1 2 el 1

=33 A . M Ty Ry 0

M= 33 TiGes MW= G 43
wiLh
. G v(ﬁ")
Gu(PYy = £ 3.4
w(P) 1- 426, (p?){In — Mag)l 7 @4
2 1

p{ P} (3.5)

ic 423G (M — )

(All starred quantities in this chapter should be evaluated at P?, unless explicitly
writlen otherwise). A little algebra yields an explicit form

2
ME(P) =md + 5 [(nw =My }(P?) - (T — Tlaa)(-mi})
+ m - (cd - 57 (W(P?) ~ Mg(-m})) (3.6)

+ m3 - st (Wl P - nzq(—m’z))l :

The combination of self-energies on the right-hand side of {3.6) has no uncan-
celled ultraviolet divergences. With these definitions and light external fermions,
the boson propagator and non-Abelian vertex contributions to the neutral-current

interactions sum up 1o the fully renormalized expreasion'w

PP RY-ANENUCE L EL 1Y

& 3.7
24 e+ M, @1
We use the renormalization scheme detailed in ref. 32:
m} = M2, (P? = —m}%) = (93.00 GeV)?
4x fe2(0) = 137.036 (3.8)

Gpe(0) = 1.1581 x 1075(GeV) ™2
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(G differs from Gual0) by residual vertex and box corrections.) All of the diver-
gences in cur calculation will be absorbed into the three functions M3Z,, cZ, and
¢? or s2. Note that in this renormalization acheme, sf(~m%) is extracted from
the measured mz through terms including p,. Thus, s2(~m}%) will be affected by

targe isospin mass splittings.

With this renormalization, contributions from individual fevmion gencrations
ar scalar doublets are separately gauge invariant and finite; cach such contribu-
tion can be considered on its own footing. Accordingly. while our calculations
include all electrowesk effects of the new heavy particles, they ignore the conven-
tioual particles of the standard model, since the standard effects are of order a.
unenhanced. and smooth as a function of 5. The standard contributions should of
course be included to correctly analyze precision measurements. We alsa neglect
minor corrections from the Higgs and vector boson sector; this eliminates longitu
dinai self-energy contributions and the need to rediagonalize the Z a.d pllolunf"'
Bremsstrahlung effects merely produce an overall muliiplicative factor convolved
with a hard-photon energy shift, which can be treated™ straightforwardly and will
have no qualitative influence on the effects reported here. Finally, QCD corrections

should be quite small at the energies we consider. and we neglect them as well.

. I ed . B N S
In our formufae, the influence of the running of ¢ and 57 is relativeiy minor,
and the reader may reproduce the value of any differential cross section that we

present 1o a few percent accuracy by fixing these runping parameters at the values

4mf = 1280,

(3.9}

s3 will be affected by the p parameter of course. The W' boson mass. unlike the
£ mass. appears in our calculation only from the kinematics and should be set
ditectly to its physical value, In the calculations of Sertion 3. we have used the
value of mi- = M (—miy ) computed fram the electroweak theory, in tuding
one loup radiative corrections  This means that we change my- slightly in accord

with the properties of the new heavy particles: this change is small except when we
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include heavy generations with very large isospin splitting. Even in the worst case
cansistent witlh curcent p parameter measurements (jp — 1} < 1% , translating to
Am? < (200 GeV12)"**" one would make an error of less than 2% in the differential
cross section by taking the value my = 82 GeV.

Having defined the parameters of the theory, we can now put together the
various corrections to e*e™ — W*W~. We begin with the external leg corrections
shown in Fig. 4(a) and {b). These multiply the matrix element by an overall wave

{uuction renormalization factor
P ;]
Zw = 1443 5-’-,-5[]“ . (3.10)
Pr=-mi.

For the t-channel diagramn, this is the only one-loop correction. If we recall that
the bare tree diagram is proportional to gg, we can rewrite the averall factar sc as

Lo have the same g2 appearing in bath chanaels:
@
2w = gl(P)-Baw = allP)-L. (3.11)
where
£ = 14 2P (Wl -miy) ~ NGl PY) . 1312)

Since a Ward identity relates vertex and leg corrections, this is a finite object, as

may be checked explicitly.

The easiest way to analyze the s-channel diagrams is to use the effective-
Lagrangian insight in eq. {3.7) that the diagrams of the form 4{c) simply renor-
malize the parameters of the zeroth-order diagrams. Folding these corrections into

the zeroth-order amplitude, we have

i) o -5y s 0d go(or £2(a) . {
M = (~T)»(mu)- o+ =52 i L g . 3131

where Ty is the tensor (2.3], We then consider the diagrams of Fig. 4(b} to multiply
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this amplitude by the additional and divergenl factor
Zw = ¢ (1 + gMr) . (3.14)

Finally, we must include the (rue vertex correclions shown in Fig. 4(d). In order

to keep track of the electroweak currents as in (3.1), we notate these corrections as

. 5 0 &,
l:"’ = .97 - Z‘éf_ . l"";"p = ;“T.!Ze . (Eé'if —s- E‘é’l’-) < (33)

using g3 = g2 to the required accuracy. Then the diagrams of Fig. 4(d) yield an
additional term

M = (—%) (Bl

Nl hh- 3 L3 po » -
x[oss? 4+ “—ss‘_ﬂ-a—%ﬁ(zﬁ’;—ézqﬁ_ |-&0) €303

(3.18)

Here we can neglect the O(g?) difference between M%, and m%, although in
15.13) we inust retain corrections proportional to M}’ - m?z. There it is useful
to expand the denominator (s — M2,) to first order about (s — m%); then the
zeroth-order term can enter the tree-level unitarity cancellation unchanged. The
results of eqs. (3.13), {3.14), and (3.16) can thus be combined to form the following

expression for the sum of the s-channel diagrams:
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M = (—'—Zl)-f-(i‘mu)-{[Q + ("";’f_Q)._._“.._._] -T;""

a2 s—mi

+ (Ih—-d2Q) s M%,—m%_

THaf
83 8- mzz s — m’z o

+ (@ gl (Uil + mgTe”)

Us—s2Q) 5 4 B _ 2ywad 8
+ T s—_mgg' - (ThsE - 5.2'&:__ + cfﬂ:qT;" )1

- Ea(q) £5(7) .
(3.17)
Each line of (3.17) has cancelling ultraviolet divergences, since £q4-, L14-,
and —HgoTn contain identical divergences. In the first line, we have separated out
a piece proportional to the zerolh order s-channel amplitude; when thie is added ta
the t-channel amplitude, the sum is simply the zeroth-order amplitude evalvated
with running coupling constants and multiplied by £. The remaining three lines of

3.17) give intrinsically new corrections.

We expect that the full oneloop-corrected amplitude should obey perturbative
unitarity. In the combination of the {-channel amplitude with the first line of (3.17),
the unitarity cancellation is explicit; eqn. (3.11) arranges for both channels to have
g2(F?) as the coupling and ¢ as an overall factor. For the remaining terms in (3.17),
we can only check case by case that the leading, unitarity-violating s dependence
cancels when s is large. If the joop diagrams contain a heavy species of mass M,
we rannot expect this cancellation to occur except when s >> M2. Thus, when
s ~ M? >> m,, we expect the last three lines of (3.17) to produce radiative
corrections enhanced by a factor (s/mi, ). These are the dominant effects arising

from our analysis.

We conclude this section by converting the amplitude (3.17) into a set of form

factors which can be inserted into the formulae of Section 2. If we use Ty = Ty +2Th
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and decomposc each vertex function a-:cotding fo

T
POLLL N ZT-‘EN A
=i
we can tead (rom (3.17)

f]A =1+ gf[!}g)-iﬂiq]

ME, -~ mi
- g+ dngg) + Ml

[,
=N
[
+
RN

w

H=24 g (g8 +om]
q * 2

2
=2+ B - A5 4 adnly) + 2 —L-———':Z
A 2 a)
=gl 28]

iz - o258 =25

=
N
»
AR,

(3.18)

(3.19)

To use Lthese form factors, we must also make two modifications in the formulae
of section 2: first, the coupling constants e?, 4% should be replaced by e?, s2;
second, the final cross sections should be multiplied by the factor |£)? defined in
eq. (3.12). Both of these corrections are numerically quite smail, although one
should note that, for Light {ermions or scalars, { contains logarithmic factars which

are important in the correct coupling constant evolution of the three-gauge-boson
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4. Low and High Energy Behavior

We are now in a position to evaluate the various Feynman diagrams contribut.
ing one loop corrections to the process e¥e™ — W W~ and to organize the results
explicitly inle finite correciions. For heavy fermions, we consider the diagrams
shown in Fig. 6{a). (b). The actual formulae for the various corrections are com-
plicated and, in themsclves, rather unilluminating, so we have chasen to display
these expressions only in Appendix B. In this section and the next, we will dis.
cuss their important properties. Here, we analyze the formulac analytically in the
limits of high and low energy. For a heavy geueration of mass M we will show
explicitly the presence of enhanced radiative correetions when § << M? and also
a perturbative unilarity cancellation in the radiative corrections for s >> M2, In
section 5 we will study the formulae numerically for general values of s.

In our presentation of the complete results given in Appendix B, we have fol-

lowrd the method of Passarino and Veltman' " in expressing the various diagrams

in terms of & fix--d set of standard one-loop integrals. One can thep evaluate these

sb.51} ln

" yailored computer programs exist for this purpose.

integrals analytically;
our analysis, we have found it convenient to make some [urther simplifications, in-
cluding the explicit cancellation of ultraviolet divergences, and Lo write our results
in terms of a st of finite and dimensionless reduced Passarino-Vejtman functions,
These functions are defined, and their asymptolir forme are presented, in Apperdix
C. The results of this section can then be obtained by inserting the appropriate

asymptotic formulac into the resuits for the form factors given in Appendix B.
4.1. Nondiecoupling Effects at Low Enevgy

We consider first the case of radiative corrections for s well below the heavy
fermion threshold. As we have explained, we expect in this region 1o find 1erms
enhanced by a factor (s/md,.). Ordinarily, one might expect that loap corrections
due to heavy ferinions are suppressed by powers of (s/Af?) because of Appelquist-
Carazzone decoupling. However, with chiral currents or large doublet mass split-
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Lings, it is possible to evade the decoupling theorem and isolate a finite contriby-
tion. Clearly, degenerate scalar particles will not exhibit this effect, as we discuss

in section 5.

Let us then expand the expressions of Appendix B, for s in the range m}, €
s € M?, assuming a fermion doublet with hypercharge Y and masses m, and my.
Defining

(m3 +m}), @)

LEEH ’ 3(.'5 azcg 3 m?
A= D
o 7T A L 75} Am?
Ay Ay =y Ly 2
? 4”3[ 12¢  m? +sfc§( 3 2 m )]
a 1 am? 1 1 I 1 1 am?
o ————— Y.~ —_ .V . —.F
s rers [ el m? 3 (1 * c;) * ez ( 3 24 m? )]
4.2)
where f3 = —%,0 for ¢7,¢p. These formulae simplily dramatically if we in-

clude a full generation in which all the doublets have the saine masses, namely,
an? = [9,5: oy 2nd use the fact Sdoutiers Y =0
guar

m
an‘ o { 213)

T4 \'-ﬁ

] lepton

P o (_ﬂ) 4.3)
: T4rst \ 38t

I 1 Am?
R=2 (, 1 (-—_ .
e A R 63 wa?
Note that only F5 depends on the mass splitling and Fy, Fz and F3 are zero for
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the right-handed electron. For left-handed electrons, the process etep — Wf Wy

will show leading behavior

a 1

]
- o R,
As(1 ~ loop) = ;17; 4183 633 (4.4)
and the cross section for e*ey — W/ W} becomes
do As{l — loop)
2 —— 4.5
an = (l.ree) [1 * As{tree) (4.5)
where As(tree) is given by (2.11); thus
da
8 () = (ﬁ) LS =29 x 207, "HT" {4.6)
(:‘ﬁ 3#33 mﬁ- iy

This radiative correction is proportional to the number of heavy generations; aside
from the eflects of isospin mass splitlings on the p parameter, it does not depend
on the masses of the heavy generation as long as s < m? and lepton/quark mass
differences are small. The factor 103 is typical of one loop radiative corrections.
but the enhancement factor s/mjy yields a 10% effect for /5 = 500 GeV. This
relative enhancement continues rising, quadratically in energy. until it is cut off
ahove threshold. In essence, the unitarity delay effect can be thought of as adding
a constant 0.02 pbarn to a tree-level cross section which is falling fike 1/s. The
unitarity delay thus exists and is measurable at Jower energies. but it would be

advantageous to use as high an energy as possible.
4.2, Asymptotic Behavior ai High Encrgy

We now consider the case s » m? » mﬁ-, including one heavy generation
where all fermions are of equal mass m. As already mentioned in section 2, any
uncancelled leading s® behavior in the form factors F, v ill violate unitarity because
of the factor 5-"3; in As. We check this cancellation below. keeping next-to-leading
order terms as a check on our numerical results and t provide physical insight into

the system’s high-energy behavior.

8

Referring to the appendices, the F; can be seen to tend asymptotically to

213
.2 23
! ixs] 3s}
S R=- [“’ "’"“(32-16111 +“n——-41)]
my, 41rs 3a% (4.0
. a mi4
I [ RO
Fs=0;
thus
e m (I3?2 2 $
- e — [ S5 -)+5 ) = -2]. 4.8
As(1 - loop) yrp ey (93(53 )+C%) [lnmz ] (4.8)

Notice that the leading s% terms in tne F, are cancelled in As, & result of unitarity
cancellation at the one loop level. Also cancelled are all dilogarithms. Even so, if
m? 3 m¥, then the magnitude of Ag{1-loop) can be as large as that of As(tree) in
(2.10) and (2.11). The perturbative expansion requires careful exam‘nation at high
energy with a sufficiently heavy fermion generation, as we shall discuss in detail in

section 5.
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5. Nnmerical Results and Discussion

We can now compare the above results with numerical calculations and discuss
the experimental observability of the freavy particle corrections. In assessing the

size of thesc corrections, one should ber that 4 pling effects generally

arise from the breaking of global symmetries in association with large dimensionless
parameters. For heavy fermions in the standard model, these parameters might
arise either from isospin-breaking mass differences or from the large Yukawa cou-
plings needed to generate even large isospin-symmetric massses. We should assess
the relative importance of these twa contributions. For scalars, only the isospin
splitting of masses arises from a symmelry breaking, and so here there is only one

possible source for the effect.

Let us begin with the case of a heavy, isospin-degenerate fermions. The detailed
forms of the radiative corrections to the W form factors, valid over the full range
of energics, are presented in Appendix B. By inserting these expressions into (2.9),
we obtain the effects of the heavy fermions on the differential cross section for
W pair-production. In Fig. 7, we plot the corrected differential cross section
at cos8® = 0, incorporating effects of a degenerate heavy generation of fermions,
for several different masses. (Integration over cos8 merely shifts the whole curve
upward by including the unenhanced forward peak). We can see that the radiative
correction gives a small but noticeable effect at low energies and contributes &
significant enhancement of the cross section in a region within a factor of 2 in
V% of the pair produclion threshold. The suggestion from the analytic formulae
of an effect increasing quadratically with energy is actually well confirmed by the
numerical results shown in Fig. 7. Nole the rapid onsel of unilarity cancellations

above tireshold.

The physics of the correction terms is clarified by a more detailed look at the
numerical results. Since the delayed unitarity cancellation affects mainly the cross
section for producing pairs of longitudinal W bosons, we should expect that the
enhanced radiative corrections appear mainly in that polarization state. Indeed,

10

2.0
€ 18
% 16
=]
Q
14
<

1.2
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500 1000 1500
488 v§  (GeV) S002A7

Figure 7.  Corrections 1o the differentind crom section for e*e™ — W+ W= with various

degenerate fermion masses, at coed = 0,

Fig. B shows the cantributions Lo the cross sections of Fig. 7 from longjitudinally
polarized W pairs; the enhancement of this polarization state is very large and
accounts for essentially the whole effect. The heavy fermions make at most a 2%
correction to the cross section due to the other polarization states. The importarce
of the longitudinal W pairs can be assessed in another way, which can be observed
directly in experiments: in Fig. 9, we plot the distribution of the lepton decay

angle cos x in the presence of heavy fermion corrections. The enhancement near
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Figure 8. Contribution to fig. 7 from Jongitudinal polarizations only, aL cos# = 0.

cos x = 0 indicates the increasing importance of longitudinally polarized W bosons.
The dependence on cos 8 of the heavy fermion corrections shows less structure; the
corrections are roughly independent of cosf. However, for cosé > 0.5, the W
pair praduction cross section is dominated by transversely polarized pairs, and the

relative enhancement due to radiative corrections disappears.

Eq. {4.6) displays the low energy limit of the correction terrr. Well Lelow
threshold, this contribution is independent of the heavy f2rmion maases. We con-

firm this result in Fig. 10 by plotting the differential cross section at cos# = 0 for

4?2

Tree * m = 250 G‘lF}Vﬁ
0.40 ' L 1

-1.0 -0.5 0 0.5 1.0
cos Y

2 (d2c/dcose dcosy )/ (do/dcos@)

Figure 8. C ions to the x distributions at cos # = 0, for degenerate fermions.

relatively low energies. The 3% shift indicated in the figure is just thal predicted
by (4.6), diluted by the inclusion of the other W polanization states.

Introducing an iscepin-breaking mass splitting for the fermion or dowblets
breaks the standard model's custodial SU(2) symmetry. This is known to lead
to a large renormalization of the p parameter. In W pair-production, however,
such a mass splitting does not generate additional !arge contributions; rather, its
main effect is simply to split the existing peak of the correction term into two.
Fig. 11 illustrates this behavior in the differential cross section at cosd = 0, for
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Figure 10. G ions to the differential crom wection at cosf = 0 at low energies, showing
the approxi mam ind d of the fermion cor . The 300 GeV fermions are
approaching threshold.

my — my = =100 GeV. The veriex corrections do give a small additional effect
proportional to the mass splitting, visible in the last line of {4.3). However, this
term contributes only to Lyr of {2.9), and so it is unimportaat at high energies.
The pattern of shifts at low energy shown in Fig. 12 comes simply from the ahifts
of m}, and s}(~m%) due Lo the renormalization of the p parameter; we note again
that present data limit isospin mass splittings to Am? < (200 GeV)?*"

“
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Fisul‘e 11. Peak strugture for split fermion doublels; mg = 500 GeV, cosd = 0.

Since the corrections to the tree level cross sections we have found are o large,
we must address the question of their reliability. On the one hand, we Lave seen
that the tree-level amplitudes for W pair production are unusually small, due to &
cancellation of amplitudes. The large size of the corrections is the result of the fact
that they do not exhibit the :apcellation. On this ground, we would not expect

radiative corrections of still higher order to show a further enhancement.

This argument cannot be complete, however, because the size of our correction

term, at threshold and above, increases rapidly with the mass of the heavy gener-
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Figure 12.  Effeets of fermions with an 1sospin-breaking mass splitting, cosf = 0. Dotted

hnes mg = 350 GeV'. Dashes. my = 550 GeV Salid linea: m, = 750 GeV

ation. For example, the residual tern: (4.8) at very high energies is proportional to

m?. We can understand this dependence by recalling that the production of lon-

J13.39]

giludinal W~ bosons at high energy is governed by the Equivalence Theorem
which states that the production amplitude is equal to that for production of the
Goldstone scalars eaten by the W bosons in their mass generation. Indeed, the am-
plitude for production of scalars through a heavy fermion loop precisely reproduces

{4-B), with the prefactor arising from the large fermion-Higgs Yukawa coupling

46

g = LMY @
Mam = o ((es)) T 2 mg, (5-1)

1t has been shown by Chanowilz, Furman, and Hinchliffe™

that quarks with masses
above 550 Ge'V cannot be trealed perturbatively, since their Yukawa couplings are
sufficiently large to violate tree-level unitarity in four-fermion processes. For such
heavy quarks. we must expect large corrections to our calculation, praportional to
additional powers of the Yukawa coupling, due to virtual Higgs bosons coupling
to the fermion loop. Thus. while our calculations should be trustworthy for small
enough quark masses (plausibly, for masses as high as 400 GeV), for higher masses
they should be taken only as an indication of the size of the correction 10 be
expected. We should recall, though, that for the main case of interest, s << m?,
we predict an effect which is independent of mass and s0 extrapolates smoothly

into the high-mass regime.

Heavy scalars exhibit much smaller effects than heavy fermions. Scalars with
no mass splitting can acquire large mass without coupling to the Higgs sector;
at low energies these scalars decouple and at high energies they have no strong
couplings to longitudinal W™s. The only significant corrections for scalars, then,
are proportional to the mass-squared splittings within isodoublets. Fig. 13 exhibits
this behavior: we see that even for 200 Ge\' mass splittings in either direction, the
vertex effect is small and only the p parameter effect is observable. Without a mass

splitting, it 3s impossible to separate the corrected and tree-level curves.

Let us finally discuss the size of the corrections we have found in terms of the
expected event samples for future e*e~ colliders. A design for such a collider which
is well matched to the requirements of the physics should provide data samples
containing a few thousand events for typical annihilation processes; at /3 = 1

2 gpc~!

TeV. such a sample would rorrespond to a luminosity of 3 x 10% em™ over
a running time of a year {3 x 107 sec). for a total inlegrated luminosity of 8 x 107
pb~! or 9000 R~'. The heavy fermion corrections could be sought either in the

gross form of the distribution in cos@ or in the shape of the cosy distribution.
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Figure 13, Effect of a supersymmettic generation of scalar partners; cos8 = 0, my = 500

GeY' The upward shift atises almost entirely from the shift in the g parameter.

The measurement of cos x requires a leptonic decay. Determining the sign of cos 8
also requires a leplon or a tightly constrained count of charged particles. However,
measures of the differential cross section which are symmetric about cos# = @ can
be evaluated with essentially the whole sample of W pair events. Qur corrections
predict a substantial percentage increa: z in the cross section except al forward

angles, suggesting use of the ratio
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do do
Rs = / zlcosod—;a:ﬁ / / dcosﬂdcma . (5.2)

| con B|<0.4 |cos @] <0.8

This cancels Juminosity measurement errors. At /5 = 1 TeV with a degenerate
generation of ferenions of mass 750 GeV, using our calculation as an estimate of
the effect, we find

Ry = {0.305 heavy fermions 53

0.289 standard mode) .

For the conditions described at the beginning of this paragraph, the numerator
of Ry corresponds to 11,200 events; these should be accepted with efficiency well
above 50%. Thus the statistical error an Ry should be about 1.1%, and the effect
indicated in {5.3) should be readily observable at nearly 5 standard deviations. An

orthogonal measure of the heavy fermion corrections is

do do
R, = f dcos fdcos xm / jd:os edcosxd‘_——_cosedcosx '
fcon §<0.6
(54)

where the denominator includes all events witl semileptonic decays and both inte-
grals are taken over | cos#| < 0.6. For a heavy generation of fermions of mass 750
GeV and /3 = | TeV, we predict

R = {6.563 heavy fermions (55)

0.543 standard model .

Roughly 40% of W pair events will involve one leptonic decay to € or g, and these
events will be readily reconstructed. Thus, for the same conditions, we expect a
statistical error on R, of 1.4%. At better than 2.5 standard deviations, this can
serve 10 at Jeast independently confirm an effect discovered in the cos 8 distribution.
New fermions of lower mass, but still above threshald, will produce even lareer
deviations from the siandard model predictions, while higher luminosity would

fower the statistical errors.
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6. Conclusion

Addmg a fimte, gange invariam heavy seclor 1o the standard model gives rise
to farge effects in (¥e” — W which we have apnlyzed in terms of non-
decoupling and npiariy delay. Broken global symmetries and large dimensionless
parameters are responsible for non-decoupling, while the standard model's gauge
cancellations arc responsible for unitarity delay. Unitasity delay is most important
in the case of longitudinal H's with their kinematically enhanced s dependence.
Since hoson veriex corrections generatr the main part of the eflect, we are able
to glean from this process important information which no fermion production
experiment can provide: the three-boson-vertex corrections Lg,_ and L34 give
new and independent contributions from the virtual states. Effects occurring in
four-fermion processes (and most easily measured there), including isospin splitting
effects on the g parameter and running of coupling constants and boson masses.

are all surnmarized in the running cleciroweak parameters discussed in Section 3.

At low energy the new contributions are not yet in the asymptotic regime; they
disturb the delicate tiee-leve] unitarity cancellation and allow us to probe the non-
Abelian structure of the standard model's radiative corrections. At higher energies
the capcellations are re-established. For sufficiently hesvy fermions or sufficiently
split scalars there is also a strong coupling regime; either strong conpling effects or
our calculated results will be measurable, with a cross seclion shift on the order of

0.02 picobarn.
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APPENDIX A: Compntation of Differential Crass Sections

In this appendix. we give sume details of the derivation of the general formulac
for the e*«= — WHW = differential cross sections (2.9}, {2.13). These formulac fol-
low straightlorwardly from (2.8) by inserting explicit forms for the fermion spinors

and the W' busons’ polarization vectors.

To define the electron spinor matrix elements, choose the electron beam direc-
Lion as the 3 axis. Then the inatrix elements for spinors of definite helicity are

given by the simple expression:
TtrL = V3 (8,01, where & =1i+id. (A1)

The upper sign refers to the helicity state e + ef, the lower sign to e + ¢&. The
W polarization vectars may be specified more directly as

& = (é7.0) with §-er=10 for Lransverse polarization
) . i ) (A.2)
& = —e mm.' l§ l) for longitudinal polarization.

With these choices, it is straightforward though a bit tedious to work out the
explicit values of (2.8) and the t-channel exchange diagram for each polarization
state. This calculation yields the following expression for the ete~ — W+W'=
scattering amplitudes between states of definite helicity:

M = —ie’A (A.3)
where for the various cases of W polarizations:
Arr = Aifx iG55+ 436G + 1 58-3)

Ary = .4.3&'1-?1'-— Aaj-(‘}f&'é
(A4)
Air = —A]Ei-(} + Aqi-i}‘g-q

App = Asfy-§,
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where § is a unit vector in the direction of the W~ momentum, ¢ are the Lransverse

polarization vectors, and the factors A, are just those listed in (2.10), (2.11).

Squaring this expression and summing over the transverse unit vectors &, T},
produces precisely the formula (2.9). To obtain (2.13). we require only a small
extra piece of analysis. The square of the amplitude for the decay of W= Lo 675,

evaluated in the W~ rest frame, is proportional to
- [6" ~ntnt — it o fA5)

where ¢is the polarization vector of the W™ and 1T 1s a unit vector in the direction
of the lepton’s momentum as vicwed {rom this frame. We may specify the direction
of 1 in tecrus of two angles-—-the angle x and an azimuthal angle ¥ about the ¢
axis. We may define y to be Lhe polar angle between 7 and §. Although we can
abtain interference teems between different polarizations from this formula, we find

it simplest Lo average over y: then we may replace in (A.5)
nt cosy-gt,  n'n? —cos?y @ 4 sin®y %(5" -¢'¢) . {A.6)
This simplified form of (A5} may be combined with the squares of the amplitudes

(A.4) and sumined over W™ polarizations, Lo yield eq. (2.13) in the parrow-width,

on-shell approximation.
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APPENDIX B: Explicit Formulae for the W*W= Form Factors

In this appendix, we present explicit expressions for the Feynman diagrams of
Fig. 6, and we canverl these expressions to formulae for the one-loop corrected
formn factors, eq. (3.18). We express these formulae in terms of the one-loop
integrals defined by Passarino and Veil.man!"J and in terms of a set of reduced

Passarino Veltman {unctions defined in Appendix C.
B.1. Heavy FERMIONS

We consider first the case of one generation of heavy fermions. To cancel
anomalies, we must consider a full generation; our formulae will be writien as
sums over f = u,,d,, v, { or doublets d = (u,,d,) (v, €}, where i runs over 3 colors.
When we sum over doublets. the subscripts u and d will denote the up and down
components. ) will denote the clectric charge of a particle and /3, ¥ its isospin
and lypercharge: Q@ = I3+ V.

The vacuum polarization insettions defined in (2.1] are given in terms of the

functions b, defined in appendix C by the following expressions;"™*"

R .1 A
168Ny (P*) BZQ;I—E+b;(P2,m’,,m})]
!

1671, (P7) = 4 ):(Ql;),[-% + b;(P’.m}.mgy]
i)

167703 (P?) = 23 (1)} [2P’(—£— + b;(Pz,m;‘,—n";))
!

{B.1)
- m} (& + bo(P?,m}.m})) |

if A ml 4+ m}
16520y, (PY) = 2‘:[2P'(—E +ba( P ml,m}) - Te2Tda
+m3) (PR, md,m) + mib (PP, md,m3)]
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Here, A is the divergence of dimensional regularization, & = w(2-§), (- gl ~
17(2 - g) — 3 —Inx. An arbitrary mass parameter Inm¥, arising from coupling
constant dirmensions and serving to eliminate dimensionful Jogarithms, follows &
and cancels out along with it. From these formulae, we can immediately assemble
expressions {or the heavy particle contributions to the running coupling constants,

the running Z mass. and the wave function factor £. For the running couplings,

1 1 —| 8
::.(—P,—)— m = —%’[]ﬁrZQ (ba(Pg,m}.mI) bylp® m/.ml))}

1 1
2Ph T aum T -Z,:[lﬁﬂ(qu)’(bj(p? mj. m,)——b:(.u mj rn,))]
(B.2)
The factor € hecomies
-1y = léf:? Z[ap?{)P ba( F*, mu.md] + b (P ls,mﬁl
+1n§b;(l’2.m;.vns)}lp}ﬂ_m" (B.3)

1 N )
- I{ (é + ¥y P mi ) + %[% - )')ba(!”mv;.m;)}] .

We reguire the runming Z mass in the particular form which appears in ey. {3.17):

for a generation of fermion doublets thiy is
2 2 9 ke 2
M3 -m}= T )[: [hQ}m} - [by(#7) = by(-m%))
+ 4(1:\Q\]{[l" + m; 23] by Py 4+ "mzs b;(—ﬂ.z)}

3 4 2 ; I 4 3 a
= PP oby Py - by(~m%) 4 SMe [oo( %) - bp{—m3))

(B.4)

54

The computation of the vertex diagrams, Fig. 6(b), is less straightforward, AL
ter performing the [irac algebra, one must gather terms together into the Lorentz
structures given in eq. (2.1}, ignoring terms proportional to the electron mass and
using the trick in Appendix A of ref. 44 to eliminate additional structures. Af-
ter this rearrangement, the coefficients of the structures Ty, T, and T3 disappear
as required. Evaluating the integrals using dimensional regularization, we find

additional finite terms of the form

d
A@-3) =1 (B.5)

arising {rom fermion traces. It is essential to keep these terms in order to abtain the

unitarity cancellation in the one loop corrections. The final result can be written

as follows:
1 N
Sae=3 [(130- HOPZ md 3y = (o) - HEP2 mimd)]
amm.
So4- = 3 Z [Qd |H(P? mE, md) - G(FP?, mi, mi)]- (B.6)
doudlets

Q. [H(P""m; mi] - G( P"'Jn;‘,.m";)]]q

where H = 5 HW . T, and H = H - 24" . T, — 2. Ty, 1.e. Ty and Ts reverse

sign. and similarly with G. Finally, in terms of Passarino- Veltman integrals
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16=" i P ’”1 nhl =(Th-Ta~Ts1- ~—((‘- - c3)
R
1652 H (P miomi) =

P mi, 5
To (r(l - Altent o - ~'_:{Ca =€) = —~{cs + n))
3 my my

+T3 (En ~3c) - ——(263 — bey + des) +og (Co + JC‘"))

+Ty (—tu +3ey - ~T(C4 -e)+ ;z(ts - C:)) :
my my
(B.T)
the ¢, have arguments (P?, mi. ).
B.2. HEAvY SCALARS
We now consider a hypothetical heavy scalar doublet & = (dy. d4) with SU(2)x

{(1) guantum numbers J3 = 21, @ = (Q.,Qu). masses (m,.mg). and vanishing

vacuum expectation value. We obtain vertex corrections
1
oy .
R AT ] *
1 mly . 2 2 _a
Qul(zd~—c)}-Th-2—Fc1-Th+ (3c; — o) - T3 } (P myg.m)
6 my "
!
- Qq ((EA —-¢)) - To— 2——Rc- T2+ (3c; — <o) TJ) (P{mi,ms)]

1/2
4= = -1_./_2. {(( A-e}- Ty ——2——.3- -T2 4 (3cy — eo) -T;) (PQ,ma.mi)
R

+(t

D) =

A-e)-To- 2%?4cr~Tz + (3cy - Cu)'TJ) (Pz.mimf)}.
]
(B.8)
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. . 23,54
and two-point corrections"

. A
Woo = =757 [gﬁ ("j+4h3+bp)(P2,m£,m:)
A 2 2. 2
+ Q- (5 +4by + bo)(P¥,my,wmig)
Wy = - 1672 z{Q"' 5 + 4by + bo)(P?.my, m})
a 2 2 2
-Qu- (3 +dbg + bp)(P*, my.myg)
P22 2 3 32 2 2 2
M3 T ‘§-+(4b3+bu)(P smg, my )+ (dba + ba)(P7,mg,m3)
1 1 A
My == EIPZ(-&- + by + be)(P?,m?,m})

+ (= ) - ol P, ml, ) = bl P23, )]
(B.9)
For the case of a full generation of superpartners, we can sum over sleptons and

squarks.
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APPENDIN C: Redueed Passarino-Veltinan Functions

All ngher Passarino Veltman functions may be uniquely decaruposed inta lin
ear conthnations of the scalar integraly By and Cr. fon which closed form expres
sions are known™ ™ The decompeosition algorithn has been implemeuted in an
algebraic manipulation pmgram:‘“‘ for purposes of asvmptolic analysis. however,
we have found it convenient to define reduced Passarino-Veltman functions repre-
senting finjie. dimensionless parts of two- and three-point one-loep integrals. Allof
these funciions include an arbitrary mass scale n1g, which cancels out of all phys.
ical resulls. For the two-point functions, it is straightforward to determine the
asymptotic [orms of these functions. For the three-point functions, the asymptotic

analysis requires some effort, and so we have catalogued the sequired formular.

The functions b,( P2, m?, m3) which appear in Appendix C are defined as fol-

lows:

1
[bo.bg.b;] = [dr ]og([:m% + (1=rIm3 + z(1 - x)P? - l't]/m}z)
[ (c.y

S -3 z(1 -1].
These functions are related Lo the corresponding Passarino- Veltman integrals™! by

Ba(mz.m)) = by(m).ma) + (A — Inm¥)

1
Byimz mi) = balmy,ma) = (A ~ Inmp) ©2)

1
By(ma,m ) = by(my. ma) — E(A -1In m’f}}.

with B3 = By + Bi: B; and By are symmetric in mf,m%.
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Passaring and Veltman's € functions are defined by

. 77 a1
e AH‘!'(’I"l’-‘ " .mi.mf,mﬁ) =

] Uoka kb bk} ()
ik )k + g} 4 mi][(k+ PP+ m])

and can be witten in terms of lorn factors;

Ca=700+ gl

Cour = TG0 4 0u0.Caz + {g@)0Cna + 8,0Caq

Cuvo = GuinGoCa + umgsCaz (c4)
+ {997} uvaCa3 + (F99}00sCre
+ 136} uwpCas + {96} 40pCrss

with braces summing over distinct permutations. P = q + 7 always.

In the present case we may set mi = m? — m} and m§ = m?; then we
define the reduced Passarino-Veltman functions ¢;(P?,m?,ml) in terms of the
denominator

D = zmd+(1-2)md = z(l - z)mdy + 2¢P% — ic (C-5)

as follows;

[coe1] = /dxdyd:&(:+y+: — ) log{D{fm%)}
x (1, 2]
[ez,ca,c0,05005, 6] = /d.rdydzé(r+y +:-1) (Egi)
A

x[1, 2 22 2 oy e ).

(C6)
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Note that

2 ] 2 2 2
m m (mi - mi - miy)
feoer] = ZR{go b1+ Mg e 4 (I TE 2 )

2
m
lea eq] + -:mlchcsk .

(C.7)

These functions are related to the corresponding Passarino-Veltman integrals by

m:ng:ca
m%‘-Cu,u = -%(Cg % ca)

myCn = Hea+co) - cs

my-Cp=4ez+c)-ca—cg

myCa3 = $ea —ca) — ¢

mlCy = —§{c2 + cs5) + $cs + <1)

myCo = - §(e2 - 3ea + Iy —cs) + Jleg ~<1)
myCa3 = ~}lea — €a) + Jeg + dez

mi‘-C;u = —%(c-_» +o)te3t %c - %:7

Ca = —keo + 1A = Inm¥)
C1s = §lco + 1) - }(A - lam})
C36 = flea — 1) — H(d —lumb)

where

=" 2 2 2
Cyy =Cyy(—miy, —my,. Iﬂ.mz. m:f. m%)

[+ =C.( Pz,mf,mg).

We reduce Lhe inmlegrations over three Feynman parameters to one parameter
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{C.8)

(€9

integrations for numerical analysis and asymptotic expression.

1
fen,cij = /d:{(l -2)-(In ;:TR—Z—!'W(-AJH {I\’(z.s}
0

z
2my

‘H(:,s)\_lﬂ Q=) K{z) o2t 2Y

s

1
lenaencsl = /dz
[i]

where we define

Alz) = :mi + {1 - z)mg -z(l = ;)m'f.\_,
R(z,5) = 4 —(1-zp
$

Q(:):{ ! for 2>z

-1 for EX A

~1/2
2arctan {(l - :)IR(;,.:)I ] for RS XS
K(z)= '
(=) (1-z)+|Riz.p) "
n | = ir - 8(A) for 0<:<1y
(1-:)—{)1(.‘,;'

and z; , a solution for R(z,s) = 0, is given by

s+ 2(!713 - m% - m‘f‘.)

Sy =

2
s — dmy,

2 . 5 , .
- imis (- m3)? — 2miy(mi + md) + miy’%.

5 — -Imi,‘

For present purpases, we inay disregard the imaginary parts.
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" K(z)} )

(1.2]

(C.10)

©.11)

(C.12)

(C.13)

(C.14)

(C-15)



For large and small values of s, the functions c, take the following asymptotic

forms. We always assume that the mass difference between m and mg is small

and set Am® = m§ - mg .

mi, € s € m?,

1
co==In
2
1
c1==In
6
2
m
cr=—£%
m?
H
m
(41 =&
m
2
m
o =—-|z“-
m
mZ
R
cy =—5
m?
m
e =—L8
m?
b
m
<y :—R
m

m? = %(m'f +m}) . with Am?> € m2% Then for

3 Lam? 1 s
12 m AYm?
s 1 s

m, 120m?

[1 s
tmm
[ (C.16)

L_LAmt 1 s
127 120 mE T Foom?

1 1 Am? 1 s

120 m TEOm?
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111 MODULAR INVARIANT PARTITION FUNCTIONS

ON NONSIMPLY CONNL

JED GROUP MANIFOLDS

1. Preliminaries

1.1. CoONFORMAL FIELD THEORIES ON THE PLANE™

Conforinal field theories are quantum field theories with conformal symmetries.
The Poiucare symmetry is extended to the conlormal symmelry by requiring that
the action be seale invariant. Since translational invarianice under z# -+ 1# + a”
gives Lhe energy-momentum tensor T, as the cocresponding conserved current,
conservation of Lhe dilatation curremt Dy = T, 7 implies that the EHETEY Do~
mentum tensor is traceless. Using these two conditions on the energy-momentum
tensor, we can construct additional currents of Lhe form J,{ = Ty fH(r). Hihe

functional paramneter f*(r) satisfies
2
6,.f.+6,,f,,=2g..u (@) (1.1}

the currents J,;r are conserved and generate the generalized conformal group. Under
the gencralized coordinate transformations z# — 1 = 2% + f¥#(x), the metric g

transforms accerding to (1.1) ,
Guv(2) = g (') = Q1) guu(3) (1.2)

where d denotes the dimension of space-time and ()(z) = 1 +(2/d) (8- f}. Eq.(1.2}
shows that the transformation preserves angles between two vectors defined on the

space-time, which is the original definition of a conformal transformation.

ln d > 2, the only non-trivial solutions of (1.1} are fu(r) = a,, 2u,wp "7, and
buz? — 21,b- 2 where a and b are constant vectors. These forin the finite confor.
mal group: the Poincare group, plus scale transformations and special conformal
transformations. In d = 2 with the Eucleadian metric g, = §,,,, any holomorphic
and anti-holomorphic functions, f(z) and f{z) satisfy (1.1), where z,2 = x; 2 ira.

Therefore, the conformal group in two dimensions is infinite dimensionat and is
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genvrated by two independent coordinate transformations.
e wlz). I~ ifz) (1.3}

In two dimensions, scale invariance implics conformal invariance. The energy-
momentum tensor hax Lwo non-vanishing components T, = T{x) and Tss = T(z),
which become generators of the two conformal transferinations. Using (1.3), we
define = = exp(x2 ~ éx1), § = expl—x7 — tx() 5o that as time component r;
goes to —oo, ¢ gocs Lo 0. This is called radial quantization because equal ra-
dius means equal time in this complex coordinate. Since these holomorphic and
anti-holomorphic sectors are completely independent of cach other, we ¢can concen-
trate on holomorphic sector only from now on. However, these two sectors must
eventually be combined together to fulfill the full consistency requirements on the

theory.

The conformal field theories ate classified by an anomaly term called the central
charge of the conformal algebra, which arises from operator product expansion of

T(2). The general form of the operator product is,

T(2)T{w) ~ ——/‘;—)‘ +— w)" T{w) + P — BT(w) (1.4)

where ¢ denctes this central charge. Using a Laurent expansion fo the energy-

momentum tensor, one can define the mode L, a5 Ly = _f 4z .n+17(2), From

(1.4), we get the Virasoro algebra,
{La. L} = (1 = m) L + (07 = 1) nymo - (L.5)

We can define two vacuum states |0), {0f at z = 0,00. In order to mnke sense out

of T(z)|0} as = — 0, (D]T(z) as 2 — oo, we must require
Lal0) =0, (0L} = {0llew=0, n>-1. (1.6)

The operators Ly, Lo, L, generate a SL(2,C) subalgebra of the Virasoro algebra
which preserves the vacuum. The primary field ¢4(<) generates highest weight
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state |h) = ¢)({0)|0} which satisfies
Lolh) = h]k) LRy =0, n>0. (1.7)

Here, h denotes the conformat dimension of the primary field. From the highest
weight state |4), decendents are generated as a form of L_n,Ln, - - Ln, Jh) ( all
M > 0). Thesum N = Y70 n, is colied the Jevel of the decendent field. The
complete set of states descended from |h) is called & Verma module. A Verma
module is a (possibly reducible} representation of the Virasoro algebra that is
characterized by the central charge ¢ and the dimension h uf the highesti-weight
state.

The correlation functions of quantuemn fields are centra! objects to tompute
in quantum field theories. The standard formulation for this computation is ei-
ther canonical quantizatjon formalism or path-integral method based on the given
action. However, if the theory is interacting, these formalism can provide solu-
tions only perturbatively. Meanwhile, the two-dimensional conformal field theories
promise a new possibility for exact solutions for the quantur field theories, Cor-
relation functions for the primary fields ¢i(x,z) should satisfy conformal Ward
identities from the invariance of vacuum under SL{2,C).

3 8y (diler, 21) - dilem Bn)) =0

=1

j==z| [2;0:, + 4i,[{@i (2 1) - Bin(zmi &)} =0 0.8

Y (30, + 22, i 212 51) -+ - Ginfzn. Za)) =0

3=

Correlators for the decendents can be derived from those of primaries using the

conformal Ward identities. Equations (1.8) completely characterize one, two, and

.
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three-point correlation functions up to some constants. These constants are con-
formal dimensions of primary fields A, and generalized three point couplings C,,.

From these solutions, we can deduce the operator product expansions

Cut
(2 — wibethy=ha(z w)t

#(z.2)- é)lw.B) = pryyen vl LOCACI R S B TR
where the dots denote a sum over an infinite set of decendents with corresponding
coeflicients which, in principle, can be completely determined by the given input
parameters, b, and Cyjy. Using these operator product expansions, we can compute
any correlation function. For example, the four-point function can be written down

as

{8ilans1) - iz, 20)) =3 Ffitpln) Filpl) (1.10)
»

where FJj(F}]) are called as (anti-)holomorphic canformal blocks. In computing
correlation functions, there is an arbitrariness in the order in taking the operator
product expansion. Since the final result should not depend on the arbitrariness,
we get the associativity condition for the operalor expansion product algebra which

goes under the name of duality, or crossing symmetry.

The problem of solving the conformal field theories completely reduces to that
of computing conformal blocks f‘f’" for all the decendents for the given primaries.
This is not easy because conformal blocks involve a sum over an infinite number
of decendent. fields. In special cases, however, we can derive differential equations
for the conformal blocks. The differential equations arise from degenerate repre-
sentations of the conformal algebra. A degenerale represeniation of the Virasoro
algebra is a representation thal contains a null state, a state which is both primary
and decendent state at the same time. Then |x) is a null state if

Lalx) = (h + N)ix),

Lax} =0 for n>0. (1.11)

These conditions imply that |x} has zero norm. A Lypical example of null state is
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given by

) = [L-z + 2(2++1)L1"1 18) . (L12)

This state is puld if

= 11~6[5—c:|:\/(c—1)(c-25)] . (1.13)

The correlator of any field with this null state should vanish. This condition gives a
new differential equation for the conformal blocks. This equation cau be solved for
a certain class of theories called minimal models. The two-dimensional conforma!
field theories, therefore, are based on a different computational formalism from the
conventional approach which can give non-perturbative solutions for the quantum
field theories.

1.2. UNITARITY IN CLASSIFICATION

The two-dimensional conformal ficld theories are classified by three input pa-
rameters, c,h, and C,jx. The problem of deciding all possible sets of parameters
is called the classification problem. The solution for the problem has fundamen-
tal importance for both string theories and two-dimensional statistical systems.
By taking vacuum expectation values for (1.4), ¢ 2 0 for a positive semi-definite
Hilbert space.

For a given Verma module of a highest weight |4}, the unitarity condition that
all decendents should have positive definite norm can provide strong restriction
on possible values of ¢ and k. For a given level N, there are P(N) number of
decendent states where physical states are given as linear combinations of positive
norm. P(N) denotes the number of partitions of integer N. The determinant of
the P(N) x P(N) inner product matrix has been computed by Kaé"™! The formula
is

detMu(c. k)= ay [ (h— g™ (1.1a)
MEN

where hp4(c) 18 a positive number given as a function of ¢ and integers p,q. By
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excluding the region where the determinant becomes negative, one can classify the
theory completely for 0 < ¢ < 1 by discrete series of allowed values of ¢ and R
This is called the unitary minimal series and the allowed values are
6

= e —— =3.4,... 115

€ m(m + 1) " (115}
with allewed primary fields of conformal dimension for given m are given by
[(m +1)p - mq)* - 1

hpqlm) = Im(m + 1)

(1.16)

where integers p,g are given as 1 < p < m - 1,1 € g < p. The Verma module of

|Apq) has a null state at level pq.

For ¢ 2 1, the determinant becomes positive definite if the conformal dimen-
sion h > 0. Therefore, we need another principle for these class of theories for
complete classification. Most of all, there must exist extended conlormal sym-
metries because the number of primaries with respect to the Virasoro algebra is
infinite for ¢ > 1. Il the number of primary ficlds are finite, the theories are called
rational conformal field theories. Recent progress shows Lhat complete classifica-
tion for the rational conformal field theories may be possible by studyving modular

transformation properties of characters defined on torus.
1.3. MobULAR INVARIANCE ON THE TORUS
Partition functions of conformal field theories on the torus are defined as

Z{r ) = MG Ty anéLv - ZM.» anlgh alg). (1.17)
hA

We use short notation ¢ = exp(2#47) with the modular parameter 7 and N, are

nonnegative mtegers. The Virasoro character x is defined as

Aalg) = g7/ Ty gl = q (/200 5™ gy () (1.18)

n=0
where dy (1) is equal to the degeneracy of states in the representation at level

n. Since ihe trace is defined over all decendents of the primaries. we should not
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include the null states and their decendents in the trace. If there is no null state,
dy(n) = P(n) and the character is,

xa(4) = gAY Pla)gt = gl VI gy, (1.19)
where
UOEPYLS | FEr) (3.20)
t=1

Far the minimal models, we should subtract the contribution from the Verma
module generated by the null state at level pg. Since each null state of the minimal
model has its corresponding null state, we should add and subtract these modules

alternately to avoid overcounting:

a0
Aoelgl = g WM g(q) Z [q"""“"' — ghmaee] (1.21)

FER-S

Modular transformations on the torus are generated by two fundamental trans-
formations T and §; T : v — 74 ] and §: 7 — —1/7. The partition functions

{1.17) must be invariant under the modular trasformations. Under the 7.
T:aalg) — 2204 (g) (1.22)

and by S
S xnlal = i) = Y San wrle) . (1.23)
-
where &' runs over all primary fields in the theory and § denotes exp {(—2xi/r). The
matrix 5y ). referred to S-transformation matrix, must satisfy unitary condition

551 = §15 = 1 for the inverse § transformation. Also, S and T satisfy (ST)® =

1. 82 = C ( C denotes complex conjugate coming hinm time reversal). The

7
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. . LIEIIN . .
S-transformation tatrix must be aymimmetric” For the minimal models, the 8-

transformation matrix is

» ] 1/2 ) , ( r ¢
e o 1y e et o PPy a9 Y
Spet = (m(m-H}) {(-1% qm\rm) sin (nm-} 7) - {1.24)

The modular invatiance of Lhe partition function gives & condition on the matrix

with nonnegative integer elements Ny ), :
SNSt=N (1.25)
and on the conformal dimensions of the primaries :
Nap=0 if  h-—hginteger for r=é. (1.26)

Finding the solutions for (1.25) is very iraportamt both for the classification of
conforma) ficld theories and in understanding of operator contents of the Lhcories.
The only complete solutions found up to now are jor the minimal models and SU(2)
Kaé -Moody algebra™'™ Iy these cases, the solulions are known as 4 — D ~ E
classifications. The origina) nomenclature was motivated by the close relationship
with the classification of simply-laced Lic algebras. Class A denates the diagonal
form Ny 4 = & ), which is abvious from the unitarity of S-transformation matrix.
Class I includes the partition functions with off-diagonal form of Ny g = by xih)
with a permutation =, Class E contains three special modular invariants which do
not belong to class A or D. The aperaters of class A are all spinless fields while
class [ and E coplain nonzero integer-spin fields.

Modular invariance can play important role in the classification of conformal
field theories . If there asc null states, the number of decendents of level n should

be reduced, or dy(n) < P(n). Therefore, il ¢ and § are purely real, we get an
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inequality
10 P R " ') p 0.27)

By taking the limit of Imr ~ 0% or ¢ — 1 and § ~ 0, the right-hand of (1.27)
becomes y(g — [)! and, using the identity 0(§) = (Imr)Y3q(q),

e — 1" = Jir (Imr)t/2 g-tim {1:28)
Then, the partition function has the upper limit of

Z< R me 3N, (1.29)
ak

While from the modular invariance of Z and {1.17), a5 § — 0, Z = Z{(3,§) =
G-+ from the fact that the most dominant contribution 1o (1.17) comes from
the ideatity primary field with conformal dimension 0. Therefore, the condition
{1.29) becomes

[ < G dmr SN, (1.30)

hA

If (c+E)/2 2 1 or, especially ¢ > | for Lthe case of ¢ = £, only solution for {1.30) is
2oap Nap = oo, In other words, we need an infinite number of Virasoro primaries
for the conformal field theories with ¢ > 1™ However, we . .+ introduce a larger
infinite-dimensional algebra so that there may exist a finite number of primary
fields with respect to this algebra. In next section, we will explain one typical

example of this extended algebra.

If one deals with rational conformal field theories with finite number of pri-
maries, ultimate classification may be possible by investigating the matrix § wsing
the results of E. Verlinde!™ The story starts with fusion rule algebra, which de-
scribes a selection rule for the operator product expansions. The fusion rule matrix

element a\f.,i is defined as the number of different ways to fuse the primaries that is
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consistent with the operator product expansion (1.9). If (,,; = 0, then ,\',,‘ =0
Verlinde's ohservation is that the medular transformation S : 1 — ~1/r diage
nalizes the fusion rules. Therefore, for a given ,V._,* from oy x &, = 3., J\",,*m.
one can find possible S-transformation matrix element ¥, as eigenvectors of A5,*
Using the identities 5% = C and {STY = |, all possible values of (¢, #) can be
classified. Furthermore, one can get new modular invariant partition funciions out
of known ones using fusion rule automorphisms which preserve operator algebras
under renaming of primary fields"™"! We want 1o emphasize again thal the mod-
ular invariance on the torus, which is an one-loop consistency condition for string
field theory, is very important both for the determination of operator contents and

for the complete classification of rational conformal field theories.

i

2. Kaé-Moody Algebra™

In the previous section, we showed that conformal field theories with ¢ 2 1 can
be rational only when the chiral algebra is extended from the Virasoro algebra.
Every primary field with respect to the new chiral algebra A creates highest-weight
state yepresentation of the algbra A by acting on the vacuum. From the result of
the previous section, it can be shown that a single A representation contains an
infinite number of Virasoro primaries. We can formulate conformal field theories
with extended algebras in exactly the same fashion as with Virasoro algebra.

Among the extended algebras, Ka¢-Moody algebra is particularly interesting
as emphasized in the previous section. Mathematically, Kag-Moody algebra comes
as an extension of a finite Lie algebra by adding an extra simple root to the finite
roots. Physically, this algebra is realized as a continuous symmetry of the Wess-
Zumino-Witlen models on group manifolds. The Wess-Zumino-Witten action is
given by

k
S= -!-6—’-/!{11 Tl'[aag—laag] +T, (2:1)

where the Wess-Zurmnino term I' is given by
T= 53"; [ &y * Trlg ' dig g~ 059 97 Bag) (2.2)

where the parameter k, called the level, must be integer for the consistency of
Wess—Zumitio term. This action describes the motion of string on group manifold
G. If this manifold is taken to form some extra dimension of a string theory,
the group G becomes the gauge group of the theory in space-time. The finite
group G must be extended to the affine algebra for des¢ribing local symmetry of
two-dimensional world-sheet. In addition to string theories, Wess~Zumino-Witten

models are also useful for statistical models.

‘The action (2.1) is classically scale invariant. Quantum mechanically, it gives

rise to a conformal field *heory, whose central charge depends on the level k and
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the finite group (7. The artion is also invariant under the transformation
glzoz) - z) gz, 2) S3Y . (2.3)

where ¢ G. Here » and 2 are two-dimensional complex coordinates. The Wess-
Zumino term is essential for the invariance. This G x & local symmetry is the
Kaé Moody symmetry. The symmetry is gencrated by conserved currents Jo(:)
and J9(5). They atc defined as

J(2)= St = —-;(B,y) gt

. k (24)
Jiey=Jo3)r" = —E(r‘hg") g,

where the r%’s are antilicrmitian generatars of the finite aigebra (7 nomalized by
Trrorb = ~ 16,4 With energy-momentum tensor 7'(=) and Tz}, he currents (2.4)
generale the {ull chiral algebra A x A which contains the Virasoro algebra as a
subalgebra. Tn addition to operator pseduct between 775 in (1.4), one can find
operator products as follows,
T(2)J%w) ! Jow) + L g
H ) ~—— ) o
[z - w)? u r-w w}

. gab abe (2.5)
ké / J(w) .

Jo ) ~— v
(M) (z-w)?  z-w
Using the mode J2 from J§ = § d:2".0%(z) and the modes Ly's fram T(2), we find

the comunitation relations for A,

[La, J8) = ~m s

k 2.6)
I":"]r‘;ll = f'k Fupm + 3 n 6“56n+m‘0 . . (
Of course, simiiar relations hold for the anti-holomerphic generators L, and Jo.

From the action (2.1}, we can find that the energy-momentum Lensor is given as a

7

Sugawara form with the seccond Casimir of the adjoint represemtation cp.

1
T(z)= —o0—:J° z): .
(z) e Jo(2) JHz) (2.7)
In terms of the modes:
1
1 . o a .
Ln= e .,.z=.: A L (2.8)

Then, the central charge and conformal dimension of a primary field of a represen-

tation ) of G are given by

. kdimG o
k+co *Thte

. (2.9)

where ¢, is the second Casimir of the A representation. If the vacuum is invariant
undes the extended symmetry, we can find an extra Ward identity corresponding
to the Kat-Moody algebra in addition to (1.8),

3 (Bl B} G fzada)) = D {2.10}
k=1

This equation plus the previous informations determines the four-poim correlation
functions completely in terms of the input parameters k and fo, through the
following procedure: We can find a null state for the Kat-Moody algebra which
can be used o canstruct additional differential equations. The null state is derived
by acting [kL-1 — J2,J§] on a highest weight state. This statc can lead 1o Lhe

diffesential equation known as Knizhnik-Zamoldchikov equation!”

xdy, — ¥ z,T'-TJz, (G1{z1) - dnlzal) =0, (2.11)
I

where & = —(k+ £,)/2.
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The primary fields ¢,'s of Ka¢-Moody algebra generate the highest-weight state
A A} = 4.(0)]0), with respect to both Virasoro and finite algebra G, One of
great advantages of Kaé-Moody algebra is that chatacters for the highest weights
are given by the well-known lormula for characters of affine Lie algebras due to Wey)
and Kat. Since Lg is added to the Cartan subalgebra, our definition of character
{1.18) is consistent with the specialized Weyl-Kaé formula with seme vanishing
parameters. The difficulty in expressing the character of a given highest-weight
state explicitly arises from the problem of finding null states systematically. It is
particularly difficult for conformal field theories with extended symmetries because
of their complicated structures. The reason why the Wevi-Kaé formula is powerful
is that one can sum the allowed decendents systematically using the extended Weyl

group. The character is expressed as a certain sum over Weyl group:

. w(A+p)—p
A= ;ﬁ‘_‘_..f.(i.”)_r__ (2.12)

Zu'EH' e(w) evir)~a
where Lhe affine Weyl group W' is a semidirect product of the finite Weyl group W’
and translation group T in the root lattice M. The constant p is half the sum of
positive roats. Furthermore. we can express the sum over M using theta functions
whose modular trausformation properties are weli-known. The formal definition of
the theta function is
2
9, = ¢ Z LU (2.13)
1€T

where ¢ is the imaginary root of the Ka¢ Moody algebra. Therefore. the specialized

character is given by

Loeit 00} Ougn4(0.7.0)

(0, 7.0) = PR
) T oen € B gy (0.7.0)

. (2.14)
where the nurnber s4 is given by

2 2
o= Wtel” _ ol

LI 219

We use here the dual Coxeter number hY which is equal to the second Casimir c..

1)}

Using the standard formula of Lic algebra, one finds

€A lkdimG_h c
k+hv 3 k+h AT o

(2.16)

as one expects from the definition of a character.

The modular transformations of the characters can be derived from those of

the theta function.

Ouls = (—ir)AM (kM2 Y exp {—3,? (Aw] 6,
nePy (2.17)
i
oulr = exp [ 3 014] 0.

M* denotes the woight lattice and F% is the set of allowed integer affine weights
for a given level k. By applying these equations to (2.11), the S-transformation

matrix element is given by

Syp = (—i g k4 KM Z e(w) exp {—ki”;v (w(i}f,:)} . (2.18)
wEW

where A = A + 5 and A s the highest weight of the finite Lie algebra G. One
can check that the matrix S is unitary. Although we derived explicit formulae for
the modular transformations, solutions of (1.25) for the modular invariant partition
functions ate not easy Lo find. Only for SU(2), are the complete solutions known""
In the next section, we are going to find a set of modular invariants for nonsimply-
connected group manifolds defined by orbifold constructions. This approach _ar
be extended toward a complete classification of the conformal field theoties with

extended chiral algebras.

We want to close this section with additional remarks on the possible appli-

cations of Kaé Moody algebras. The coset construction of G/ models with any
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subgroup H of ¢ can describe many interesting known conformal field theories,

Using Lhe fact that™
M = S -l (2.19)

the central charge of G/ H in given by ¢S/ = ¢ — ¢# Tie Hilberl space H(A, A)
of the coset conformal field theory is defined by the relation

Hia)= Y MA@ H(AN (2.20)
A

where H(A) and H(A) denote the Hilbert space of G and H, respectively. The
case of /% = 0 describes the equivalence of two conformal field thearies of group
manifolds. The condition can be satisfied only if the level of G equals 1. In this
case. H is called a conlormal subalgebra, and we should conclude Lthat the lower
algebra # is extended to the higher algebra G. If <%/Y % 0, we have a new mode!
which we can relate to othes known theories. For example, the eoset model based
on
St{e St/

{ (-"1’)7(;):':1(2)1 2
describes the unitary minimal series when p = 1 and its supersymmetric version
when p = 2. lu similar way, parafernionic theories are described by the coset med-
els of SU'(n). Furthermore, the characters built on H(A, 1), referred to branch-
ig lunctions can have direct physical meanings in two-dimensional lattice madels
where order parameters of the models are obtained from the thetz function iden-
tities™ Thetefore, by understanding the modular invariant partition functions of
general group manifolds. we ran understand the modular transformaion structures

of the cosel models.
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3. Modular Invariant Partition Functions frem Orbifolds

Woess Zumino- Witten madels™ are prototlypical rationa) conformal field the-
uties. The classification of rationa) conformal field theories has been the focus of
much recent attention. But even the small subclass consisting of Wess-Zumino-

Witten madels is not well understood; all consistent models are not known,

One powerful restriction is modular invariance. For example, the states of the
theory must be such that the one loop partition function is modular invariant. A
list of passibir modular invariant partition functions has been compiled and proven

complete only for the simplest case, that of 5'1.’(2)»'"l

Remarkably, the SU(2) pastition functions may be labelled by the simply-
[aced Lie algebras, i.e. thase of class A, 7 and £. There are the trivial diagonal
modular invariants (class A) and also exceptional ones {class E) occurring for
isolated values of Kaz-Moody central charge k. The reniaining modular invariants
{class D) are the partition functions for strings propagating on the group manifold
SO(3) ** So besides the trivial and exceptional, all 51(2) modular invariants
are partition functions for strings on nonsimply-connected group manifolds. If
this patiern conlinues for other Lie groups, sirings on nonsimply-connected group

manifolds are certainly important.

Felder, Gawedzki and ]\’upia.inen‘“' have studied the canonical guantization
of Wess-Zumino-Witten models. Using the geometry of line bundles over the
loop groups of G. they derive consistent spectra for arbitrary nonsimply-connected
groups (¢ = G/H. where G is the covering group, and 8 a subgroup of its center

[s9)

B(f-v‘)v In this letter we use the orbifold”™” approach advocated in reference 8 to
construct the partition functions, thus providing a simple confirmation of their

results.

The crucial mathematical relation we use is the isomorphism between the outer

automorphism group O1#) of the {untwisted) Ka¢-Moody algebra g and the center

+ This was conjectured for 517{3) in reference 57
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B((3]. and its relation to the modular translormations of the torus. Bernard " as
shown that m the space of characters of highest weight representations of g. it is
the modular tranformation S (7 = = 1/7) that vransfonns an clement A4 € ()
into an element a € B(C). and vice versa. 1le and othera" have used this fact to
detive many modular invariants! These are now uaderstoad Lo be some, bul ot

all, of the partition functions for strings ou nonsiimply-connected group manifolds,

A Wess Zumine Witten model one-loop partition funchion is a sesquilinear

combination of specialized characters
() = try Pt (3.1)

of highest weight representations of a Kai-Moody algebra §. Here A = Auw# =
(%0, 1) is the highest weight of the carresponding representation, A € Z, and w* are
the fundamental affine weights. X is a highest weight of the finite Lie algebra given.
For a unitary representalion, we must have A, kV# = k, where k is the Kaé-Moody
central charge and kY# are the dual Kat labels.

In particular, the partition function for strings propagating on Lhe nonsimply-

connected group manifold G = GfB. B ¢ B(G), is of the form
ZGIB) = 3 xi Maaaa- {3.2)
Y2

It can also be written as an orbifold™ partition function' 1If 71 + o7 are the

coordinates of the torus and r its modulus, we let (a), az) denote Lhe contribution

to the partition function from fields obeying the (wisted boundary conditions
${o + 2%, 02) = audlo),a9)

(3.3)
o(o1,00+ 21) = ardey,a2) .

Since the boundary condilions are defined for real coordinates, and not for complex

coordinates, it is not clear how the chiral structure of the ariginal theory will change

t Many of these may also be derived from the branching rules for the conformal embedding
su(p) ® sulg) C suipg) ™"

a2

Iy orbifoldng, Arteally, nsing = = exp{(a1 +03):] and = = explie; - 73] one
lizrds that the holomorphic and anti-holomorphic coordinates are invariam under
the twi . Understanding chiral structures of arbifald conformal field theoties is a
very ditfie )t subject™ One way to understand the chiral structure is 16 find modu.
Jar invariai | partition functions expressed with holomorphic and anti-helomarphir
characters, To do this, we derive the partition lanction by adding untwisted and
twisted sectors consistently. The guiding principle is modular invariance. Later,

we express the partition function using the characters.

The partition funclion can be wrilten as

Z(G/B)=—|;' > (er.az) (3.4)
oy g8
a1 @z]we

where | Bl is the order of B. The modular invariance of this expression is guaranteed,
since under any transformation r — (a7 + b)/{er +4d), (ad—bc = 1; a,b,c,d € T),
{0y, a2) transforms to (u‘;u;.a;’u;)!“'"] X B=2Zy.{34) reduces to

N-1
Z(G/Zy) = % 37 (@.ef) . (3.5}
m.n=0

The trivial example is the partition function on the simply connected group
inanifold G :®

NiGhs = (1, 1w = baa - (3.6)

Untwisied fields are those obeying (3.3) with a; = 1. The contribution te (3.5)

from the untwisted sector is denoted Z, :
)
- _ 1 . -
ZiG/Lx) = N§ {1.a") (3.7)

Using these last lwo objects and the generatars § (r — —1/r)and T (v ~ 7 +1)

of the modular group, it is in principle possible to obtain the full partition function
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ZG 2y 1™ The following formula is valid for N prime:

N-1
2(G120) = (1 + ZT"SJ 2UGILy) - £0). (3.8
=1

For N not ptime, the situation is more complicated. For example, ene can verify

3

. - N 1 .

Z(GIZ4) = [1 + Z’I"‘S} niGizy) - ZG) - GEGIZY . (39)
e={l

The Zz group of the last torm s generated by a* if o generates Z4. For general A

not prime, we expect subtraction of terms proportional to Z(ﬁ'/ZP) for p|A wonld

be necessary. For simplicity, we therefore restrict to N prime, and use (3.8)7

The T transformation ix of yuite simple form:

mA+ ol wilpl’
Tas = baa oxl){—-;lﬂéd— - %} . (3.10)

Here p = 3, «* and the dual Coxeter number is hY = E" Yo But the dimen
sion of the S—iransformation matrix grows rapidly with &, and the expression jor
its elements involves a suin uver the Weyl group of g. So explicitly coustructing
the S- transformation matrix is extremely tedious. This is the main obstruction

to using formulac like (3.8) to derive orbifold partition functions.

However. identities proved by Bernard™ allow us 100 bypass thas diflicuby.
Consider an element A of the outer automorphism group O(¢) of § acting on
highest weight A for a given value of the Kat-Maody central charge & (A k* =

k). {An examiple is the generator of O(su(N)), which permutes the fundamental

 This is a significant restriction only for g = A (where g is the Lic slgebra of G). The Rrst

interesting casn excluded 1s S1'(4) Zy with N prime covers all other cases, except for hall
the possitulitice with ¢ = {7
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weights as follows: Aw* = W+l u¥ = %) Restricting Lo the weight lattice of

the finite Lie algebra g, one can write
AP+ pl = (k+ MY 4 wad Fp). (3.11}

Here ® = 37, 49 ksw" is the restriction of an affine weight x to the g weight lattice,
w0 = AP and w, is an element of the Wey! group of g arting in the following
way:

walw') = wiAl - EVA (3.12)

Far su{N). it is straightforward to check that w, is given by
WA = ey, - Wapy_, - (3.13)

SubsLituting (3.11) to (2.18), we get an overall phase factor from the first term on
the right-hand side of {3.11). Instead of summing over w in (2.18), we can sum
over w' = ww, because w' covers the same set of elements of Wey) group as w.
Finally, using efunng) = e{w)e(w 1), we obtain

Sappnw = S elwa) exp {'Zﬂ (WA“”

¥+o)} (3.14)

Here ¢(try) is the signature of wy: i.e. ¢ = +1(~1) for the product of an even

(odd) number of reflections. Now for all outer antomorphisms A. we have™!

((wa) = exp {27n (..,-"‘“’]p)} = exp{m‘h" w"“”]!} . (3.15)
So {3.14) reduces Lo

Sapgw = S exp {2m (‘.-'"")l )«')} ) (3.16)

This Jast equation is the starting paint. Considering it with A replaced by A"
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yields
(*_4'(u|\l \) -y (E.A«m"\) mad 1 (317
implying

IS (u““'|x) = Omod | (3.18)

if AY = 1. S0 we see that the phase on the right hand side of (3.16) is an Nth
root of unity. In fact. it 1s the eigenvalue of an elemient of E(G) of order N. So.
as mentioned above, the modular transformation & maps elements of O{§) inte
elements of B(G).

Now the untwisted sector partition function Z)((;/Zx) is built from the di-

agonal partition function Z(€7) by projecting onto Zy invarianl states (compare
(3.7) and (3.5)). So

A-1

Sxea —!lc Z exp {'_)hr (u."“"li f'\)}

= (3.19)

NERD:

NYGIZy )

whure we have defined

i I ifr=0mod 1.
M) = { ) (3.20)
0. otherwise.
Using (3.16) it is then casy 1o show
~ | Ny
SNG/2xha = 5 3 fran (321

Applying successive T— transformations viekls

V
= 2ok + h

.22)

. Ao
TSN T ) = ‘\ E”‘ . 4_“,{ e { i oi? o - (A 4+ of ”
(3

RG

Since kVAM®) = 1,
(u‘““kw(v)) - (w'“m‘u) med 1 (3.23)

for any element w of the Weyl group of g, and any integral weight v. This and
equations (3.11) and (3.15) simplify (3.22) 1o

N1
T SNUGITN Ya = % > Baae exp {—2m [(M’“"lx) + ;{w"“"r]} .
= (3.24)

Twisting a string by a” = 1 must make no difference. Replacing v with v+ N

in {3.24) therefore demands

A’
Bk ""”) = Omod1 (3.25)

for all r. This can be simplified, however, since
Nk
5 | MO»] = 0mod (3.26)

s sufficient to ensure (3.25) and furthermore that

P

(w‘"“’(«:".‘o) +u’)'“”) = %( A lo’l -+-m) mod [ . (3.27)

(X7}

Equation (1.26) disallows certain integer values of Raé-Moody retral charge
k. For su(N), since |u."‘“”r is the form of integer/A’, (3.26) restricts the level &
1o he even integer. It was detived in reference 58 by requiring consisiency of the
Wess-Znmino term on a torus, with ane of its eycles mapped inte = pontrivial
closed patb in (7. Thus it is a consequence of the nontrivial fundamemal group
m(G = GlZx) =2



Substituting (3.2 mto the general formmla 13~ wina asmg -3 271 we finally
obtam

V(G/Zx = Nl((}fz,'\').\'l +
N-1 Ny .

M T
X Saan y L rxp{ tra L( ! e ' ‘"’)}} .
r=l »=0
13.28)
Since N is prime the factoy r outside the square brackets may be dropped. and we
can write

N-1
» { " f
N(GIZN)ay = v E by qmia) nxp{—?m (u"‘ ““l.\-f 5_-" “”)} . (3.29y

m,n=0

This is exactly the form found by Felder, Gawedzki and I\upiainen.'”" Furthermore,

it is easy 1o convince oneself that
m on LA k amo)
(67.a") = by qmpz) exp | ~2mi (u IA + 5w . (3.30)

This result shows how cach 1wisted sector has chiral structure.

The condition (3.26) guarantees the integrality of the elements of the matrix
Z(G/2x). This must be, since these quantities count the numbersof primary fields.

We may rewrite the final result in a way that manifests this property:
- el km
WG/Zxbn = F buaon e { (A0 AN aan
m=0

We should emphasize here that (3.29) is a modular invariaat for all cases, whether
or not it is integer valued. But it reduces to the physically sensible partition

function {3.3]1) with integral values only when the Kaé-Moody central charge k
obeys (3.26).

» The authors of reference 58 also considered the unique semi-simpl ibifity for G simple
B=2;%x2,forg= D, ieven
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We will now write the paitition funclion in a more compart notation, and use
it to verify modular invariance. Considering an ouler automorphism A as acting
on the space of highest weights of unitary representations, we have

Ayy = Q\AA“] . (1.32)
Then (3.16) becomes in matrix nolation
AS = Sa (3.33)
where o € B(€2) is of course diagonal

ayy = Gy exp (21" (u’m”!A)} . (3.34)

‘Thus the modular transfurmation S diagonalises Lthe onter automerphisms of g.

If we have another related pair A' € O(g), o' € BIG) iv. A'S = 5o, we

define
Aca = Aa exp [-Hn'k (w"m'lw’”a’)l
. (3.35)
ao A =ad exp [—mk (uMo)|u)A m’)l
so that
Ava = aod'. (3.36)
Then the partition function may be written simply as
R ] N=1
HGITw) = ...% Amoa" . (3.37)
If 7 is the charge conjugation matrix, we have
=0 CA= A (3.38)
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<o that (3.3 also implies

Stas = A7Y (3.39)
Therelore
St | m -n I
S2(G/2Z0) = .\-,zn o A" = Z(GjTN). (3.10)
T mm

Finally. it is straightforward to prove

THA0a\T = Acnad'. (3.41)

establishing the T invariance of Z(G/ZN),

4. Further Remarks

In reference 13, it has been shown that unless Ny, is diagonal or a permn-
tation matrix (&, (), the chiral algebra of the theory extends to a higher one.
Furthermnore, the existence of nondiagonal theories can always be understood ei-
ther in terms of the existence of automorphisms of the fusion rule algebra. or in
terins of an enhancement of the chiral algebra. For the fully extended algebra.
the only nondiagonal modular invariants come from aulomorphisms of the fusion
rule algebra. The fusion rule automorphism is defined as a permutation of primary
fields which leaves the fusion coefficients A,,* invariant.

We can classify our results (3.31} according to the above results. Using the
condition in (3.31}

by { (u‘“”)l A+ %m’“n,)} \ (4.1)

we can select an appropriate integer m for a given weight A. Then, the permutation
is given as x = A™. We can easily prove that this permutation of highest weights

is the automorphism of fusion rule algebra. By applying Eq. (3.16) to Verlinde's

relation™”

Sin Sin Siné
Nty s — {4.2)

one can see that the phase (actors cancel in this expression to give

Nig* = Natiyeiny™. (4.3)

However, some of the modular invariants in (3.31) are not associated with
fusion rule automarphisms. These cases arise when (4.1} ie satisfied irrespective of

m. For SU{N), this is satisfied if level ¥ = p . N with some integer p. Then, the
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condition reduces to

s {(o]) w

and the partition function will be the form of

2= a4 xamylP+ N ixal {1.5)
AcM

where M is set of the higheat weights which satisly {4.4) and are not related by
outer automorphism A to another. As long as the order of the center N is prime, all
the weights generated from a weight A in M by applying A successively are different
from another in the orbit, except for one special weight Ag given by [p.p -« g}
which satisfies A(Ap) = Ao. Since the matrix Ny for (4.5) is not a permutation
matrix, the chiral algebra is extended Lo a higher algebra. From the point of view
of this extended algebra, the partition function (4.5) is a diagonal form with the
characters yu defined by

XA = At v {1.6)

and & yy,'s which may represent different primary states of the higher algebra,
Using this partition function, we may fud cxceptional modular invariants which
are neither of diagonal ner permutational forn. I7 there exists an automorphisi of
fusion rules of the extended algebra. we can find an additional nondiagenal imudular
invariant partition function. Since this partition function, as a combination of the
original characters, cannot be obtained from (3.31), this should give a new modular

invariant partition function for the original algebra.

To find the fusion rule automorphism of the extended algebra, we Lry to find
relation similar to {3.16) for the matrix § of the extended algebra. The matrix §
for the extended algebra is completely determined by that of the original algebra
because the phase factor cxp [21!' (w"(“)l A)J in (3.16) disappears as far as A
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satisfies (4.4). Therefore, we can get & new permutation 7 by finding a pair (A, A’}
such that

S =Sy, forall pe M 4.m

The permutation is given by the relation x(}) = X'. By computing the matrix
& numerically for SU/(N), we have found two well-known exceptional partition
functions:"**" SU/(2)*=1¢ and SU(3)*=". For these solutions, one highest weight
in the pair cores from the special weight Ao. But we did nol find any other

exceptional modular invarianis of SU(N) from this method.

The simple structure of Eq. (3.31) may exist in a more general class of rational
conformal field theories, perhaps those obtained by the coset construction” Since

the characters of the cosel models are given as branching functions defined by
xabr) = Y, $rlr) xalr) (4.8)
A

where 3 a. 1) are the characters of G and H respectively, we can find new modular
invariants for the coset model from modular invariant partition functions for G and

H. The new modular invariant partition functions are given by

Zog= Y. Nan Miyo o)’ (49)
AN

witlt two matrices Na ar My from (3.31). However, this expression may not be
physically acceptable for two reasons! First, many pairs of weights (A, A) may not
appear in the spectrum of the coset theory. Second, some states may be labelled
by several pairs {A.A) which should be identified. Although these two problems
(selection rules and field identification) may be solved rather casily for the special
coset models considered in the reference 65, this is much mare difficult for 8 general

coset theory.

Using the formalism presented in section 3, il is possible Lo solve these problems

for the cases in which G and H are Kat-Moody algebras. This analysis will be
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presented in reference 66. There we will present a projection matrix # 10 find the
relationship between the outer automorphisms of G and H. Since the modular
transformation matrix § for the coset model is obtained as a direct product of 1wo
S matrices of G and H, if the phase factors in Eq. (3.16) for G and H cancel each
other we can identify two fields in the coset models. Since the projection matrix £
applies to the highest weights of G to produce thase of H, the outer automorphism
Aaof G and a of H is related by

FA=aF (4.10)

Since the phase depends on the nature of the autamorphisms, the field identification

for a general coset model can be obtained by studying the projection matrix.
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