WHIST CODE CALCULATIONS OF IGNITION MARGIN IN AN IGNITION TOKAMAK*

PRESENTED AT THE
IGNITION DESIGN POINT WORKSHOP
PRINCETON PLASMA PHYSICS LABORATORY
MARCH 12, 1985

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its uses would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BY

JOHN SHEFFIELD
ASSOCIATE DIRECTOR FOR CONFINEMENT
FUSION ENERGY DIVISION
OAK RIDGE NATIONAL LABORATORY

A simple global model was developed to determine the ignition margin of tokamaks including electron and ion conduction losses - John Sheffield, ORNL/TM-8924, 1984 and updated by Nermin Uckan, January 1985.

- The model has now been compared for a reference ignition device,

\[R = 1.5\text{m}, \ a = 0.5\text{m}, \ K = 1.6, \ \delta = 0.2 \]
\[B_0 = 9\text{T}, \ \psi \approx 3, \ \text{Z}_{\text{eff}} = 1.5 \]

against results from Wayne Houlberg's 1 1/2 D-Whist code.

- Both calculations show that under the physics constraints presently imposed on the ignition tokamak ion confinement plays an important role

\[\beta_{\text{crit}} = 3 \times 10^{-2} \left(\frac{I \text{(MA)}}{a \text{(m)} B_0 \text{(T)}} \right) \]

\[\text{VOLUME} \]
\[\text{AVERAGE} \]
\[\text{VALUES} \]

and \(n_{20} \leq n_{\text{crit}} = 1.7 \frac{B_0}{a R_0} \)

- Therefore it is important to establish a criterion (\(Cx \)) for ion confinement

\[\chi_i = C \times \chi_i \text{ (Chang-Hinton)} \]
FORMULA FOR IGNITION MARGIN (M)

\[M \left[\chi_e + \left(\frac{n_i}{n_e} \right) \frac{T_i}{T_e} \chi_i \right] \leq 0.162 F_\alpha \left[4 f_D (1 - f_D) f DT \right] n e20 T e10 \left(\frac{T_i}{T_e} \right)^2 a^2 \left(\frac{2 \kappa^2}{1 + \kappa^2} \right) \]

\[F_\alpha \approx 0.8 \text{ fraction of alpha power to support conduction losses} \]

\[f_D = \frac{n_d}{n DT} = 0.5, \quad f DT = \frac{n DT}{n e} \approx 0.84 \]

\[\frac{n_\alpha}{n e} \approx 0.05, \quad \frac{n_\alpha}{n_e} \approx 0.007 (\alpha \approx 8), \quad \frac{n_i}{n e} \approx 0.9 \]

\[n e20 T e10 \approx 1.15 \beta B_0^2 \text{ allowing for alpha pressure} \]

\[M \left[\chi_e + 0.9 \frac{T_i}{T_e} \chi_i \right] \approx 0.105 \beta B_0^2 a^2 \left(\frac{2 \kappa^2}{1 + \kappa^2} \right) \]
\[\mathbf{\chi}_e = f_{\text{ex}} \mathbf{X}^\text{OH} \text{ Neo Alcator} = f_{\text{ex}} \frac{2.7a}{n_{e20} R_0^2 q} \left(\frac{2K^2}{1+K^2} \right) \text{ m}^2 \text{ s}^{-1} \]

\[\mathbf{\chi}_i = f_{\text{ix}} \mathbf{X}_{\text{iCH}} = f_{\text{ix}} \left[2.06 \times 10^{-2} K^*_2 \frac{n_{e20} Z_{\text{eff}}}{T_{i10}^{1/2}} \left(\frac{q^2}{B_0^2 (1+K^2)} \right)^{3/2} \right] \text{ m}^2 \text{ s}^{-1} \]

\[K^*_2 = (0.66 + 1.88 \epsilon^{1/2} - 1.54 \epsilon)(1 + 1.5 \epsilon^2) \]

\[\epsilon = \frac{a}{R_0} \]

For \(Z_{\text{eff}} = 1.5, K = 1.6, F_\infty = 0.8, A = 3, \epsilon = 0.33, q = 5, T_e = T_i \)

\[\frac{a B_0^2}{q} \geq M \left(10.1 f_{\text{ex}} + \frac{4.5}{T_{i10}^{1/2}} f_{\text{ix}} \right) \]

(1) \(f_{\text{ix}} = 0, M = 1.5 \) need \(\frac{a B_0^2}{q} \geq 15 \)

\(f_{\text{ex}} = 1 \)

(2) \(f_{\text{ix}} = 1, M = 1.5 \) need \(\frac{a B_0^2}{q} \geq 22 \)

\(f_{\text{ex}} = 1, T_{i10} = 1 \)

(3) \(f_{\text{ix}} = 2, M = 1.5 \) need \(\frac{a B_0^2}{q} \geq 29 \)

\(f_{\text{ex}} = 1, T_{i10} = 1 \)

(4) \(f_{\text{ix}} = 2, M = 1.0 \) need \(\frac{a B_0^2}{q} \geq 29 \)

\(f_{\text{ex}} = 2, T_{i10} = 1 \)

At the Murakami and \(\beta_{\text{crit}} \) limit, for \(T_i \sim T_e, T_{i10} \sim T_{i1}, n_{e20} \sim 3.9 \)

\[\mathbf{\chi}_e \text{ Neo Alcator} \sim 0.085 \text{ m}^2 \text{ s}^{-1}, \mathbf{X}_{\text{iCH}} \sim 0.032 \text{ m}^2 \text{ s}^{-1} \]

\((r = 0.5, Z_{\text{eff}} = 1.5) \)
WHIST CODE CALCULATIONS

- CASES WERE RUN WITH:
 \[R = 1.5\text{m}, \quad a = 0.5\text{m}, \quad K = 1.6, \]
 \[B_0 = 9\text{T}, \quad q_\psi = 3, \quad \text{NO RIPPLE LOSSES}, \]
 \[\text{NO THERMAL ALPHAS} \]
 \[\text{FAST ALPHA PRESSURE, } Z_{\text{eff}} = 1.5 \]
 \[X_e = f_{\text{ex}} X_{\text{Neo Alcator}}, \quad f_{\text{ex}} = 1, 2 \]
 \[\text{Higher losses inside } q = 1 \]
 \[X_i = f_{\text{ix}} X_{\text{i Chang-Hinton}}, \quad f_{\text{ix}} = 1, 2 \]
 \[\text{surface.} \]

- THE RESULTS ARE SLIGHTLY MORE FAVORABLE THAN THE GLOBAL MODEL BUT THE SAME TREND SHOWS THAT
 - GOING FROM \(f_{\text{ix}} = 1 \rightarrow 2 \) SUBSTANTIALLY REDUCES \(M \).
 - GOING FROM \(f_{\text{ex}} = 1 \rightarrow 2 \) ELIMINATES IGNITION.

- A RECENT TFTR/JET WORKSHOP SUGGESTED USING \(f_{\text{ix}} = 3 \) !

- REMOVAL OF THE HIGHER LOSSES FOR \(q < 1 \) DOES NOT CHANGE \(P_\alpha \) MUCH AT THE \(\beta \)-LIMIT.
WHY IS ION CONFINEMENT IMPORTANT?

1. IGNITION MARGIN IS SENSITIVE TO T_i and $T_i \geq 1$
 \[\frac{T_i}{T_e} \]

2. THE BULK OF THE ALPHA POWER GOES TO THE ELECTRONS,
 TO ACHIEVE $T_i \geq 1$ REQUIRES THAT $\chi_i \frac{P_{\alpha i}}{P_{\alpha e}} \chi_e$.

3. FOR THE HIGH FIELD IGNITION DEVICES THE MAXIMUM IGNITION MARGIN IS FOR $n_{20} \sim 4$ and $T_{i10} \sim 1$ AND

 \[\chi_i \approx \frac{P_{\alpha i}}{P_{\alpha e}} \chi_e \]

CONCLUSION

BOTH χ_e AND χ_i CRITERIA SHOULD BE GIVEN.