LBL-7868 († UC-94a

- 72 62

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT DIVISION

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

Joshua Dayan, Scott Lynn and Alan Foss

RECEIVED LAWRENCE BERKELEY LABORATORY

July 1979

LIBRARY AND DOCUMENTS SECTION

SEP 28 1979

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

- LEGAL NOTICE ·

À

έQ.

63

V

This report was prepared as an account of work sponsored by the United States Government, Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT*

Joshua Dayan, Scott Lynn, and Alan Foss

This report is a revision and condensation of the Master of Science Thesis of Steven A. Hill, Department of Chemical Engineering, University of California, Berkeley, June 1978.

Work supported by the Division of Energy Storage Systems, U.S. Department of Energy under Contract No. W-7405-ENG-48.

. .(~

Ì

TABLE OF CONTENTS

					Page
SUMMA	ARY	•••	•••	• •	. viii
Ι.	INTRODUCTION	••		• • •	. 1
II.	DAYTIME OPERATION: THE CHARGING SYSTEM	• •	• • •		. 4
	A. GENERAL DESCRIPTION OF THE PROCESS	• •	•••	•••	. 4
	B. DETAILED DESIGN CONSIDERATIONS	••			. 8
	1. The Receiver	• •	•••	• • •	. 9
	2. Heat Exchanger 1	••	• • •	• • •	. 13
	3. The Condensers	•••		• • •	. 15
	4. Reboiler	•••	•••	• • (. 15
	5. Boiler Feed Water Heater	•••	• • •	• • •	. 15
	6. Trimmer	• •	• • •	• • •	. 15
	7. The Distillation Column	• •	• • •	• • •	. 16
	8. Make-Up Reboiler	• •	• • •	• • •	. 16
	9. SO ₃ Vaporizer	• •	• • •	• • •	. 16
	10. The Parallel Power Plant	• •	• • •	• • •	. 17
III.	NIGHTTIME OPERATION: THE DISCHARGING SYSTEM		• • •	• • •	. 18
	A. GENERAL DESCRIPTION OF PROCESS	• •	• • •	••	. 18
	B. DETAILED DESIGN CONSIDERATIONS		• • •	• • •	. 23
	1. The Low-Temperature Reactors	••		• • •	, 23
	2. LTR Heat Exchangers	•••	• • •	• • •	. 26
	3. Electricity Generating System	• •	• • •	• • •	. 28
	4. Heat Economizers	••	•••	•••	. 31
IV.	STORAGE VESSELS	• • •		• • •	. 33
V.	CATALYST EVALUATION	• •		• • •	. 36

TABLE OF CONTENTS (Continued)

i.

					Page
VI.	MATI	TERIALS OF CONSTRUCTION			37
VII.	SYS	STEM ENERGY ACCOUNTING			38
	Α.	ENERGY ACCOUNTING			38
	Β.	EFFICIENCY CALCULATIONS			40
	С.	SYSTEM COSTS	• • •		45
		1. The Tower, Receiver, and Mirror Field .) 0 .		45
		2. Turbines	• • •		46
		3. Distillation Column) .ā ē		46
		4. Heat Exchangers			47
		5. Storage	• • •		48
		6. Reactors and Catalysts	•••	• • • •	50
		7. Reactants		• • • •	52
		8. Dry Cooling Tower	,	• • • •	52
	D.	SUMMARY OF COSTS	,		53
		1. Entire Power PlantStorage System	•••		53
		2. Incremental Cost of Storage		• • • •	53
		3. Cost of Power	• • •		55
VIII.	SEN	NSITIVITY ANALYSIS	••••		57
	Α.	PARAMETERS VARIED	,	• • • •	57
	B.	RESTATEMENT OF EFFICIENCY INDICES			58
	С.	EFFECT OF TUBE-WALL TEMPERATURE			59
	D.	EFFECT OF TEMPERATURE RISE IN THE REACTOR, 4	^{\T} 5-6		59
	E.	EFFECT OF CHANGING PRESSURE, P, IN THE			
		SOLAR RECEIVER-REACTOR	,		62

-iv-

TABLE OF CONTENTS (Continued)

Page

64
64
70
71
73
74
74
75
76
77
79
82
02
82
87
87
91
91

- ۷-

LIST OF TABLES

	<u> </u>	age
Table 2.1	Stream conditions and heat duties for the daytime	
	operation of the high-temperature side	6
Table 3.1	Stream conditions and heat duties for the	
	nighttime operation of the low-temperature side	21
Table 3.2	Stream conditions, heat loads, and conversions	
	for the low-temperature reactor system	22
Table 3.3	Flows and stream conditions in steam power cycle	30
Table 4.1	Reactant storage	35
Table 7.1	Total plant energy balance. Base case	39
Table 7.2	Storage system energy balance. Base case	41
Table 7.3	Heat exchanger sizes and costs	49
Table 7.4	Plant cost summary	54
Table 8.1	Effect of eliminating the distillation column	
	and BFW preheat	67
Table 8.2	Total plant energy balance. Base case without	
	distillation	68
Table 8.3	Storage system energy balance. Base case without	
	distillation	69

í,

e.

-vi-

LIST OF FIGURES

			Page
Fig.	2.1	Flowsheet for the daytime (charging) storage process	5
	2.2	Boeing solar receiver [5]	7
	2.3	Internal detail of Boeing solar receiver [5]	10
	2.4	Heat exchanger tube panel [5]	10
	2.5	Temperature and conversion profiles along the	
		reactor tube	14
	3.1	Flowsheet for the nighttime (discharge) process	19
	3.2	Low-temperature reactor heat exchanger series	20
	3.3	Volumes of low-temperature reactor beds	24
	3.4	Conversion and temperature changes in the	
		low-temperature reactor system	27
	3.5	Steam power cycle	29
	8.1	Efficiencies vs. maximum reactor wall temperature	60
	8.2	Efficiencies vs. temperature increase in reactor	61
	8.3	Efficiencies vs. reactor pressure	63
	8.4	Efficiencies vs. minimum system temperature	65
	8.5	Efficiencies vs. Q_{PR}/Q_{SR}	72

-vii-

SUMMAR Y

Economical energy storage is essential if solar power plants are ever to supply a significant fraction of the needs of a power grid. The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system,

 $2 SO_3 \ddagger 2 SO_2 + O_2$,

in energy storage. The forward reaction for this system is endothermic and can be used to absorb energy. The reverse reaction is exothermic and releases the energy that has been stored. In this study the storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant.

In this report a technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details.

-viii-

In the base case the solar tower receives heat at a net rate of 230 MW_t for a period of eight hours. Daytime electricity is about 30 MW_e. Nighttime generation is at a rate of about 15 MW_e for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. A similar steam-cycle power plant without a storage system would operate at an efficiency of about 40%, but would have no nighttime capability. The total capital cost for the base case is estimated at about \$68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. If the base case is compared to a daytime-only steam-cycle solar power plant, then about two-thirds of the cost of the heliostats and receiver must also be ascribed to the storage feature. The average cost of the electricity produced for the base case is estimated to be about 11¢/KW_e-hr.

-ix-

ie. Ł,

I. INTRODUCTION

Some means of high-temperature heat storage for solar power plants is needed as a buffer against short-term interruption of insolation and as a heat source for operation after sundown. Reported here is the development and evaluation of a chemical process, integrated with the central receiver of a solar plant, that absorbs heat during the day by an endothermic chemical reaction, stores the heat as the internal energy of stable chemical compounds at ambient temperature, and releases heat when needed by reversal of the chemical reaction. The chemical reaction employed is the reversible, catalyzed reaction SO₃ $\stackrel{\sim}{\leftarrow}$ SO₂ + $1/2O_2$.

The general idea of the storage process is that the sulfur-oxygen compounds are used as thermodynamic substances in a cyclic process. During the day, SO_3 is dissociated, absorbing heat, into SO_2 and O_2 ; during the night, the SO_2 and O_2 are recombined, releasing heat, to form SO_3 , completing the cycle. One of the favorable characteristics of this chemical system is that SO_2 and SO_3 are storable as liquids at ambient temperature; oxygen, however, must be stored as a gas.

It is required by thermodynamics that heat be absorbed at a higher temperature than it is released in a system of this type. Two of the attributes of the sulfur oxide system are that the required heat-absorption temperature is technically attainable in current central receiver designs and that the heat-release temperature is suitable for the generation of power-plant quality steam. The storage system is therefore operated in parallel with a solar-heated steam power plant during daylight hours and supplies the heat for the power plant at night.

-1-

The objective of this work is the synthesis and evaluation of such a chemical storage system, integrated effectively with the central receiver and steam turbine portions of the plant. This involves the development of designs for the high- and low-temperature chemical reactors, heat recovery trains, and heat integration; evaluation of energy efficiency; and estimation of equipment size and costs. Attention is confined to storage-related portions of the plant; heliostat and central receiver designs, for example, are not a part of this work.

The process reported here has been developed for a single set of specifications and design parameters and may therefore be considered a "base-case" design. In addition, the sensitivity of the system performance to changes in the specifications and design parameters has been investigated and is treated in Chapter VII of this report. Two important specifications were set for the base case to fix its size and ability to function. The first is that the total thermal input to the central solar receiver was fixed at 230 MW_{t} , in accordance with the design by Boeing [5]. Second, the ratio of thermal inputs in the receiver for the daytime power plant and the storage system was set at 1.05, for reasons that are discussed in Chapter VIII. The temperature at which heat is dissipated to the environment is taken to be 60° C to reflect conditions met in a desert environment. In the base case, the storage system is charged during 8 hours of daylight and discharged during 16 hours of nighttime operation. The operations are assumed to be under constant insolation or load. The power output during daytime operation is about 31 MW_{p} . At night it would be about half that value for a constant rate of discharge. For the case where a larger power

-2-

plant is desired the choice will have to be made between scaling up the Boeing receiver and installing multiples of the present design.

II. DAYTIME OPERATION: The Charging System

A. General Description of the Process

A detailed flow sheet for the high-temperature side, or charging side, of the process is shown in Figure 2.1. Properties and flow rates of each of the numbered streams are given for the base case in Table 2.1. To fully fix the conditions of all streams, the following set of five parameters must be specified; the values given here are for the base case:

Minimum discharge temp., T _{min} :	60°C
Maximum reactor wall temp., T _{max} :	880°C
Reactor feed-effluent ΔT , $(T_6 - T_5)$:	140°C
Reactor pressure:	40 atm
Distillation column pressure:	11 atm

The major components of the process are:

1) The receiver/high-temperature reactor (Figure 2.2): Sunlight reflected from the mirror field enters the aperture at the bottom of the receiver and is eventually absorbed by the process gas flowing through the receiver tubes. These tubes are coated internally with Fe_2O_3 , which catalyzes SO_3 dissociation at high temperature. The process gas, at 40 atmospheres, absorbs the incoming heat mostly by reacting but also by rising in temperature.

2) Heat Exchanger 1: This heat exchanger transfers excess heat from the reactor exit gas to the incoming reactants. Thus, the sensible-heat rise experienced by the reaction gas in the reactor is used to preheat the reactor fuel to a temperature at which the catalyzed dissociation of SO_3 occurs quite rapidly.

-4-

XBL 793 - 947

Fig. 2.1. Flowsheet for the daytime (charging) storage process.

-5-

Stream No.	m State	Со (Мо	ncentra <u>le Frac</u> SO ₂	tion tion) ^{SO} 3	Temp. (°K)	Pres. (Bar)	Flow (kmol/s)	Enthalpy (MJ/kmol)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 1 9 9 9 1 9 1 9 1 9 1 1 1 1 1	0.00 0.00 0.00 0.00 0.15 0.15 0.19 0.00 0.56 0.00 0.77 0.00 0.80 0.00	0.07 0.03 0.03 0.03 0.03 0.33 0.32 0.36 0.22 0.30 0.38 0.20 0.57 0.18 0.65 0.36 0.99 0.01	0.93 0.97 0.97 0.97 0.52 0.53 0.45 0.78 0.14 0.62 0.03 0.43 0.02 0.35 0.64 0.01 0.99	362. 375. 443. 443. 1007. 1148. 593. 418. 418. 379. 379. 343. 343. 343. 333. 391. 334. 383.	$ \begin{array}{c} 11.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 40.0\\ 10.8\\ 10.8 \end{array} $	1.03 2.69 2.69 2.69 3.16 3.16 2.47 0.69 0.85 1.62 0.62 0.23 0.59 0.03 2.57 0.91 1.66	$\begin{array}{r} -30.02\\ -28.00\\ -11.13\\ 8.26\\ 49.48\\ 50.28\\ 15.24\\ 5.55\\ -15.00\\ 2.97\\ -20.96\\ 1.47\\ -24.12\\ 1.12\\ -24.12\\ -18.78\\ -17.81\\ -26.63\end{array}$	
Heat	exchanger	loads	(MW _t)						
HE-1 VAP PREHEATER REBOILER STEAM REBOILER BFW TRIM DIST. COND.		110 52 44 45 11 6 57	.8 .7 .9 .2 .3 .6 .5 .0						

Table 2.1. Stream conditions and heat duties for the daytime high-temperature side.

XBL 797-10683

3) The Condensers: The main function of the condensers is to separate noncondensible oxygen from the liquid SO_2 and SO_3 before feeding the process stream to the distillation column. The heat of condensation is used to preheat liquid SO_3 feed and boiler feedwater and also to supply part of the reboiler duty for the distillation column.

4) The Distillation Column: Conversion of SO_3 in the hightemperature reactor is limited by equilibrium to 46.6% at the temperature and pressure proposed. The distillation column, operating at 11 atmospheres, separates SO_2 from the unreacted SO_3 . The SO_2 is stored at near ambient temperature, while SO_3 is recycled to the hightemperature reactor.

5) SO_3 Vaporizer: This is the second largest source of heat input into the storage system (the solar collector is the largest). Steam is taken from the parallel solar power plant to vaporize the liquid SO_3 .

6) The Parallel Power Plant (not shown in Fig. 2.1): While the storage system is charging, steam is also being generated in the receiver to produce power. Steam at intermediate pressure is taken from this plant to vaporize the liquid SO_3 and, if necessary, supply part of the heat required by the distillation column reboiler.

ł.

B. Detailed Design Considerations

Computer programs simulating the reactor, distillation column, and other components were integrated into one overall program for the entire system. Flow charts and a complete program listing are given in Appendix C. This program was used to determine heat duties for the various units, as well as to predict the effects of changing various design parameters. The design presented here evolved from several such calculations.

1. <u>The Receiver</u>. The receiver configuration utilized in this system is that proposed by Boeing (Fig. 2.3) [5] and is used here only to establish that tube wall temperatures and receiver temperatures are technically feasible. The receiver is situated at the top of a supporting tower 300 meters tall. This tower is located about in the middle of a more-or-less elliptically shaped mirror field. The tower is located to the south of the major axis of the ellipse because the sun does not pass directly overhead in non-tropical latitudes.

The mirrors reflect sunlight into the receiver through the aperture at the bottom. Incident energy is absorbed by the refractory brick lining the lower portion of the cavity, and is re-radiated to tubes located in the upper portion. This indirect transfer of heat reduces the possibility of hot spots occurring in the tubes. If the focused sunlight were directly incident upon the tubes, hot spots would be inevitable as a result of improper mirror aim.

In the Boeing design the heat exchanger tubes are arranged in four rows of 70 panels per row. Each panel consists of two offset columns of heat exchanger tubing (Fig. 2.4); there are 20 tubes on a panel, each tube having a total length of 9.5 meters. Each tube makes two passes: one from the inlet down to the bend, and a second pass close to the cavity insulation up to the outlet. The difference in path length is to provide proper tube expansion during thermal cycling.

-9-

Fig. 2.3. Location of tube banks in Boeing solar receiver.

XBL 797-10684

D.

Fig. 2.4. Heat exchanger tube panel (Ref. 5).

The Boeing design is capable of absorbing 230 MW_t and contains 5600 tubes. The present design for the base case calls for using 800 of the receiver tubes for the power plant and 4800 of them for the storage reactor in which SO₃ is dissociated. The power-plant tubes are subdivided to provide for boiling (460), superheating (240), and reheating. The storage-reactor tubes are connected to form 2400 pairs, each pair making a tube with an equivalent length of 19 m. This division of receiver tubes between power-plant duty and storagereactor duty, 1 to 6, results in a ratio of solar heat input to the two systems of 1.05 to 1. The radiative thermal flux to the reactor tubes is much lower than that to the power plant tubes because the former operate at a much higher temperature than the latter.

The tubes are made of Haynes 188 alloy for reasons discussed in Chapter VI. The reactor tubes are coated on the inside with the Fe_2O_3 catalyst, and thus provide both heat-transfer area and catalyst support. Because the reaction occurs on the inner surface of the tube, heattransfer resistance is minimal, mass-transfer resistance is significant. However, the primary factor controlling the fraction of SO₃ that can be dissociated is the maximum allowable tube-wall temperature, which is limited by the physical properties of Haynes 188 alloy.

Many simplifying assumptions were made during the computer modeling of the high-temperature reactor and are stated below. These assumptions may be eliminated as need for greater accuracy in calculations stimulates further work on the reactor design.

a. The model used for the reactor was a simple one-dimensional plugflow model. Radial gradients in bulk temperature and concentration were

-11-

ignored, as was axial diffusion. The high linear gas velocity (3 meters per second) and the high length-to-diameter ratio of the tubes indicates that the assumption is not too far removed from reality.

b. The reaction mixture at the tube wall was assumed to be at equilibrium. The reaction rate is limited by the turbulent convection of SO_2 away from the wall and into the bulk. This is an important assumption that finds some support in the results of experiments described in Chapter V.

2

Ľ:

c. The radiative source (refractory brick) temperature was assumed to be constant throughout the collector, and the heat flux through the tube walls was calculated using the usual fourth-power radiant heattransfer relationship for black bodies. No attempt was made to calculate a shape factor or source temperature distribution.

d. The effect of re-radiation from the reactor tubes to the nearby colder steam boiler and superheater tubes was ignored. The tubes used for steam are identical to the ones that carry the sulfur oxides. The maximum outside wall temperature of the reactor tube wall is 880°C. The maximum outside tube wall temperature for the boiler, superheater and reheater are 380°C, 570°C and 570°C respectively. These temperatures are based upon the heat flux required to heat the steam, and upon the radiant heat-transfer relation mentioned above. The tubes can withstand a maximum operating temperature of 880°C based upon stress-rupture properties of Haynes 188 alloy.

A summary of experimental evidence that Fe_2O_3 catalyzes the dissociation of SO_3 is given in Chapter V. Considerations in the relation of materials of construction and specification of the maximum temperature

-12-

of the receiver tubes are summarized in Chapter VI. The reactor model equations, parameters, and method of calculation are given in Appendix A; the computer program is in Appendix C.

The temperatures of the inside tube surface and of the bulk gas are plotted against reactor length in Figure 2.5 for the base case. Also plotted is the degree of conversion at the tube surface and in the bulk gas. In the base case the inlet bulk temperature and the maximum tube wall temperature were 730° C and 880° C, respectively. The amount of heat absorbed by the sulfur oxide stream was 112 MW_t. It will be noted that the equilibrium SO₃ conversion, at the inner tube surface near the reactor inlet, is significantly greater than the conversion of SO₃ in the bulk gas leaving the reactor. Greater conversion of the bulk gas could be obtained if a higher tube wall temperature were permissible. Alternatively, it could also be obtained by increasing the effective tube length (having more than two tubes in series) if the total radiation flux were decreased to avoid exceeding the maximum tube-wall temperature. The effect of the former approach is discussed in Chapter VIII.

2. <u>Heat Exchanger 1</u>. In this heat exchanger, high-temperature gas exiting from the receiver/reactor gives up heat to the incoming reactor feed gas. The area required for the heat exchanger is determined by the temperature difference (ΔT_{5-6}) between the two streams. In the base case this was set at 140°C. In Chapter VIII of the report, effects of changes in this temperature difference are studied. The temperature of the SO3 entering HE-1 from the vaporizer, T₄, is set by the pressure of the system; it is the boiling point of liquid SO₃ at 40 atmospheres.

-13-

Fig. 2.5. Temperature and conversion profiles along the reactor tubes.

: c?

ج`

-14-

1.7

The stream from the reactor leaves the exchanger at T_7 , set by a heat balance around HE-1.

3. <u>The Condensers: Condenser 1</u>. The inlet temperature of the cool stream (T_2) is known from the SO₃ storage temperature and the temperature of the SO₃ recycle stream. The inlet temperature of the hot stream, T_7 , is known from the HE-1 calculation. Thus the enthalpy, temperature, and the vapor/liquid split of the exit stream from the condenser may be calculated, using conventional condenser calculation techniques.

4. <u>Reboiler</u>. The gas stream from Condenser 1 flows through one side of this condenser. The other side acts as the reboiler for the SO_3-SO_2 distillation column. The exit temperature for the condensing side is set by the temperature approach (10°C) in the reboiler of the distillation column. This in turn sets the exit enthalpy and the vaporliquid split for the condensing side. When the reboiler load exceeds the heat available in the process stream, the deficit is supplied by steam extracted from the turbines and fed to the make-up reboiler.

5. <u>Boiler Feed Water Heater</u>. This condenser supplies some of the heat required to preheat boiler feed water for the daytime power system. The rest of the heat must come from turbine steam extraction. The heat available in this unit, limited by the 10°C temperature approach, determines the ratio of power-to-storage heat input (see Chapter VII).

6. <u>Trimmer</u>. The system rejects some heat to the atmosphere through this cooler-condenser. The separation between oxygen and liquid sulfur oxides is completed here. Gas exiting from this unit goes to oxygen storage.

7. The Distillation Column. Liquids exiting from all four condensers are introduced into the distillation column. The column pressure is set at 10.8 atmospheres to allow condensation of the distillate at 60°C, the heat discharge temperature set for the base case. The liquid feed will partially flash when introduced. SO_3 (99% pure) leaves from the bottom and is recycled back to the high-temperature reactor. The distillate (99% pure SO₂) leaves from the top, going to the liquid-SO₂ storage vessels. The reflux rate was selected empirically because the operating lines are curved. Tray-to-tray calculations accounting for changes in the heat of vaporization confirmed the adequacy of this choice and showed that sufficient reflux was available to yield a normal pinch near the feedtray. The minimum reboiler heat duty was based on this reflux rate. Raoult's Law was used to calculate the vapor-liquid equilibria.

8. <u>Make-up Reboiler</u>. Additional heat for the reboiler is supplied by steam taken from the power system turbines and fed to this unit. It is desirable to minimize the steam extraction from the power system because the steam could be used to generate electricity. Storagesystem designs that minimize the heat load on this unit and on the SO_3 vaporizer are preferable.

9. <u>SO3 Vaporizer</u>. The SO₃ vaporizer uses heat from the parallel power plant, in the form of extraction steam, to convert the liquid SO₃ feed to the gas phase. There is no process stream with enough enthalpy, and at a high enough temperature, to vaporize all of the SO₃. Steam taken from the discharge of the intermediate-pressure turbines condenses at a convenient temperature for this purpose:

184°C, or approximately 12°C higher than the boiling point of the SO_3 stream. Hence SO_3 is vaporized by steam that has already performed work in the high- and intermediate-pressure turbines.

10. <u>The Parallel Power Plant</u>. This plant utilizes steam produced in the solar collector during the eight daylight hours. The turbine and steam cycle used are described in the next chapter, under "Electricity Generating System."

III. NIGHTTIME OPERATION: The Discharging System

A. General Description of Process

A detailed flow sheet for the low-temperature side, or discharging side, of the process is presented in Figures 3.1 and 3.2. Tables 3.1 and 3.2 give the stream conditions for the base case. The major process components are:

1) The Low-Temperature Reactors (LTR's): These five reactors are adiabatic beds packed with a supported V_2O_5 (vanadium pentoxide) catalyst, each followed by an adiabatic bed packed with a platinum catalyst. The reasons for this dual-bed design are detailed below.

2) LTR Heat Exchangers: The LTR heat exchangers are used to boil water and generate superheated steam at 144 atmospheres (2116 psi) and 35 atmospheres (510 psi), both at 538°C (1000°F). They have been arranged to obtain maximum steam generation per unit gas flow (0.354 kg of high-pressure steam per kg of $S0_2-0_2$ mixture processed), with a minimum of heat exchange area.

3) Electricity Generating System: A General Electric turbine design for high-back-pressure turbines has been modified for this system. The most important modification is the replacement of some steam extractions used for boiler feedwater preheat by process heat exchangers. The amount of steam fed to the low pressure turbines is thereby raised, increasing electricity production.

4) Heat Economizers: These units preheat boiler feedwater. They also preheat low-temperature reactor feed to the necessary ignition temperature of 420°C.

-18-

Fig. 3.1. Flowsheet for the nighttime (discharge process).

-19-

Fig. 3.2. Low temperature reactor/heat exchange series.

Strea No.	m State	Cond (mold ⁰ 2	centrat e fract SO ₂	tion tion) SO ₃	Temp. (°K)	Pressure (Bar)	Flow (kmol/s)	Enthalpy (MJ/kmol)	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1 9 9 9 9 9 9 9 9 9 1 9 1 9 9 9 9 9 9 9	0.00 0.00 0.80 0.01 0.32 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.71 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01	0.99 0.99 0.18 0.18 0.99 0.67 0.07 0.07 0.07 0.07 0.03 0.11 0.04 0.11 0.01 0.07 0.07 0.07 0.07 0.07 0.07	0.01 0.02 0.02 0.01 0.01 0.93 0.93 0.93 0.93 0.97 0.87 0.96 0.18 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	333.7 333.0 573.0 333.7 354.7 693.0 777.1 400.8 382.0 382.0 381.3 381.3 333.0 333.0 361.7 777.1 777.1 777.1 400.8 396.2 400.8	11.0 11.0 40.0 40.0 11.0	$\begin{array}{c} 0.46\\ 0.29\\ 0.29\\ 0.46\\ 0.76\\ 0.76\\ 0.52\\ 0.42\\ 0.28\\ 0.24\\ 0.22\\ 0.06\\ 0.01\\ 0.21\\ 0.52\\ 0.10\\ 0.42\\ 0.52\\ 0.10\\ 0.42\\ 0.52\\ 0.29\\ 0.10\\ \end{array}$	-17.81 1.46 1.12 9.30 1.46 2.14 16.37 30.95 5.62 4.48 -26.57 4.41 -26.61 1.22 -34.82 -30.18 30.95 30.95 5.62 3.20 5.62	
Heat	Exchanger	Loads	(MW _t)						
HE-2 HE-3 Vapor	izer	2.41 10.76 8.81		BW Tr QA Ga	F immer AN (hea s Turbi	t availabl ne Work	1.83 8.36 e at night) 40.34 1.80		

Table 3.1. Stream conditions and heat duties for the nighttime operation of the low temperature side.

Table 3.2.	Stream conditions, heat	loads, and	conversion	for	the
	low-temperature reactor	system.			

	Concer (mole f	ntration Traction	n n)					
Stream No.	02	so ₂	so3	Temp. (K)	Pressure (Bar)	Flow (kmol/s)	Reactor System (MJ/kmol)	
50	0.32	0.67	0.01	693.0	11.0	0.76	16.37	
51	0.22	0.48	0.29	1150.3	11.0	0.66	44.83	
52	0.22	0.48	0.29	693.0	11.0	0.66	18.98	
53	0.13	0.31	0.55	1016.3	11.0	0.60	42.06	
54	0.13	0.31	0.55	693.0	11.0	0.60	21.36	
55	0.06	0.17	0.76	912.2	11.0	0.55	38.59	
56	0.06	0.17	0.76	693.0	11.0	0.55	22.32	
57	0.02	0.09	0.90	815.4	11.0	0.53	33.43	
58	0.02	0.09	0.90	752.3	11.0	0.53	28.80	
59	0.01	0.07	0.93	777.1	11.0	0.52	30.95	
					Reacto	or Conversi	ons	
Heat Exchanger Loads (MW _t) <u>moles SO2 Converted</u> moles SO2 fed							ted	
HE-1 HE-2 HE-3 HE-4		17.16 12.34 8.41 2.43			LTR-1 LTR-2 LTR-3 LTR-4 LTR-5	0 0 0 0	.367 .418 .489 .531 .233	
101712					Total	System Con	version = 0.932	

-22-

B. Detailed Design Considerations

1. <u>The Low-Temperature Reactors</u>: Non-adiabatic reactors were considered before the decision to use adiabatic reactors was reached. Computer simulations showed, however, that the reaction was so fast, and heat transfer was so limited, that the system reached equilibrium conversion at a very small bed depth; the reaction occured almost adiabatically anyway. The reaction remained at equilibrium, temperature slowly dropping and conversion slowly increasing as heat was withdrawn. Because of this behavior, it seemed much more economical to use short reactor beds followed by heat exchangers, avoiding the problems associated with packed beds with tubes imbedded in them and decreasing the reactor volume and amount of catalyst required.

Each reactor actually consists of two reactors in series. The reason for this is the need to protect the V_2O_5 catalyst from thermal degradation. The first reactor is a very short bed of the vanadium catalyst, for which the exit temperature is 600°C, and precedes a second bed of the hightemperature platinum catalyst, in which the reaction mixture achieves a 99% approach to equilibrium. Catalyst distributions are shown in Figure 3.3. The need for a platinum catalyst may be obviated, however, if the reactor feed contains appreciable amounts of SO₃, as would be the case were the distillation column not a part of the charging process. This process modification is discussed in Chapter VIII.

Platinum alone is not acceptable as a catalyst. The catalytic mechanism over Pt involves adsorption of the reactants, and this step is strongly temperature dependent [14,27]. Platinum gives an acceptable reaction rate only above 550°C.

-23-

1.2
The vanadium beds were designed to achieve a temperature of 600° C, the maximum temperature for steady-state operation. The catalyst can withstand temperatures as high as 620° C for a short time. Thus there is some margin of safety: if the bed exit temperature exceeds 600° C, the bed inlet temperature may be decreased or the gas flow rate increased to return the exit temperature to the design point.

The platinum beds were designed for an inlet temperature of 550°C. This, too, includes a margin of safety. Fluctuations in flow rates and decline of the vanadium's activity with time may cause the temperature of the gas exiting from the vanadium bed to drop below 600°C. As long as the outlet temperature from the vanadium bed remains above 550°C, the length of the platinum bed is sufficient to achieve the designed level of final conversion. Reactors 4 and 5 never achieve a temperature of 600°C. Each consists, therefore, of only a single V₂O₅ packed bed; the high-temperature platinum beds are not required.

A computer program described in Appendix B has been developed in the course of this work to simulate a reactor bed packed with the vanadium catalyst. The most basic assumption of this program is that the kinetics, rather than heat and mass transfer, limit the reaction rate. The results indicate that such a bed achieves the ceiling temperature of 600°C very rapidly. The vanadium beds of Reactors 1, 2 and 3 are very short as a result. The total volume of V_2O_5 bed was estimated to be 0.84 m³ per kg/sec of SO_2-O_2 mixture fed to the reactor sequence. This volume is based on a catalyst density of 680 kg/m³. The actual volume may vary with catalyst density and approach to equilibrium, but these parameters have insignificant effect on total system cost.

-25-

2. <u>LTR Heat Exchangers</u>: LTR Heat Exchangers 1, 2, 3 and 4 perform the same functions that furnace boiler and superheater tubes serve in a conventional steam plant. The relative loads on the boiler, superheater, and reheater are fixed by the selection of turbine operation conditions.

All of the vapor generated by the boiler goes to the superheater. The amount of heat required to take the saturated vapor to the turbine inlet conditions is supplied in HE 4 and HE 1A.

The power system design calls for steam extractions between the various turbine stages to supply the additional heat required to preheat all of the boiler feedwater. Of the steam exiting from the high pressure turbine, 9.6% is extracted for this purpose. The flow rate within the steam reheater and the intermediate turbine is decreased to 89.8% of the flow through the superheater and the balance, 0.8%, is lost through seal leaks. Likewise, the flow rate through the low pressure turbine is reduced to 79% of the superheater flow. The ratios of the heat duties in the boiler, superheater, and reheater are 1.00/ 0.515/0.230.

The reactor/heat exchanger series may be designed graphically on a conversion-temperature diagram as shown in Figure 3.4. The heat exchanger duty is directly proportional to the length of the horizontal line representing it through the equation $Q=FC_p\Delta T$. Hence the reactor design consists of drawing diagonal lines representing the adiabatic reactors (the slope of these lines corresponds to the particular value of $-Cp/\Delta H_R$ at this reactor) and horizontal lines representing heat exchangers. The outlet temperatures of all the streams exiting the five reactors is determined by the reaction equilibrium. The first three streams are cooled in their respective heat exchangers to

-26-

XBL 793-946

Fig. 3.4. Conversion and temperature changes in the low temperature reactor system.

-27-

420°C. The fourth reactor exit stream, which is the inlet to the fifth reactor, is cooled to 474° C, a temperature selected so that the effluent temperature of Reactor 5 would be 500°C.

3. <u>Electricity Generating System (Steam Turbines)</u>: A General Electric system designed for high back pressure [33] has been modified to meet the requirements of this system. The configuration is shown in Figure 3.5; stream conditions are given in Table 3.3. Stream conditions are essentially those of the G. E. design. Flows were determined from those of the G. E. design by ratio of the electric power produced in this application to that of the G. E. design.

Some of the boiler feedwater preheat necessary at night is provided by condensing SO_3 in the BFW heater (Figure 3.1). The rest is provided by steam extraction from the high and intermediate pressure turbines (Figure 3.5).

Design of the steam turbine system for the power plant is dependent on the rate at which the storage system is to be discharged and the strategy that is adopted for keeping the turbine system in standby condition when the rate of power generation is low. The amount of energy stored in the base case studied here is about 808 MW_t -hr after 8 hours of daytime operation. This is enough to operate the daytime steam turbine system at its rated capacity of 30.9 MW_e for only about 8 hours. Since operation of a steam turbine at a rate of about 50% of design capacity results in a substantial drop in efficiency, the choice of discharge program will affect the equivalent amount of electric storage materially.

୍ଦ୍

Fig. 3.5. Steam power cycle.

-29-

	Flow Rate, 10 ³ lb/hr					
Stream No.	Daytime	Nigh Large Turbine	ttime Small Turbine	Temp., OF	Pressure, psia	Enthalpy Btu/lb
70	335	5.9	108.8	455	494	457
71	335	5.9	108.8	1000	1800	1480
72	297	5.2	96.5	1000	459	1521
73	83	4.6	85.6	736	158	1394
74	84	4.6	86.0	141	3	109
75	32	0.6	10.5	679	510	1344
76	11	0.6	11.9	736	158	1394
77	206	0	0	363	153	335
Seal Le	aks					
L1	0.39	0.01	0.13			
L2	0.1	0.00	0.04			
L3	3.38	0.06	1.10			
L4	1.30	0.02	0.42			
L5	0.47	0.01	0.15			
L6	0.52	0.01	0.17			
Power G	eneration	(MW _e)				
	30.9	0	15.1			

Table 3.3. Flows and stream conditions in steam power cycle.

Another factor of importance is the benefit to be derived by keeping the turbine system hot and turning when it is at standby. If the turbines are not kept hot, a start-up period of about 90 min will be required at the beginning of daytime operation. A flow of steam of about 3.5% of design rate was assumed to be required to keep a turbine in hot standby condition.

The strategy that was chosen here was to design a dual daytime steam turbine system, each having about the same electrical capacity. One would consist of a conventional set of high-, intermediate-, and low-pressure turbines and would operate with about one-third of the total steam flow during the day. The other would consist only of the high- and intermediate-pressure turbines. The steam discharged from this set, about two-thirds of the daytime total, is required for the vaporizer and reboiler in the storage system. This design results in a ratio of solar heat inputs to the power plant and storage receivers of 1.05.

During nighttime operation the conventional turbine system would be operated at its rated capacity for the entire night by steam generated from the storage system. The other turbine system would be kept on hot stand-by. This design strategy would result in the maximum generating efficiency for the base case. However, a different splitting of capacities might be chosen if it were preferable to discharge the storage system at a higher rate for part of the discharge period.

4. <u>Heat Economizers</u> (Vaporizer, HE-2, HE-3). These units make as much use of process heat as possible. They preheat boiler feedwater, preheat reaction feed, and vaporize SO_2 by exchanging heat with the SO_3 stream coming out of LTR 5 at 500°C. The heat exchangers have been

-31-

arranged so that the temperatures that the ${\rm SO}_3$ stream first encounters in each economizer are always decreasing.

IV. STORAGE VESSELS

One problem associated with large-scale energy storage of any type is the enormous mass of storage medium that is required. Chemical storage presents several potential advantages over other systems, but perhaps the most important is the potential for less mass that must be stored [4].

In the sulfur oxide system a nighttime discharge of 15.1 MW_e lasting 16 hours (790 MW_t-hours storage) requires storage of 1704 x 10^3 kg of SO₂ and 636 x 10^3 kg of O₂. (This O₂ also contains 18% SO₂ and 2% SO₃) It requires daytime storage of 2370 x 10^3 kg of SO₃.

Sulfur dioxide and SO_3 are storable as liquids at ambient temperature. The storage volume for the amount of reactants indicated above is 1290 m³ (SO_3 density at 38°C is 1.843 g/cm³; thermal expansion of the liquid is neglected). Liquid SO_2 has a density of 1.356 g/cm³, giving an SO_2 storage volume of 1260 m³.

It has been suggested that joint storage of SO_2 and SO_3 , using the same storage vessels for both, be utilized [5]. The basis for this suggestion is the fact that SO_2 and SO_3 need not be stored simultaneously; the same storage volume may be used for both. A joint storage system would be modular, as shown in Figure 4.1. One tank would be in the process of filling as another was being emptied. One disadvantage to this system would be the necessity of a complex manifold to distribute and collect the SO_x streams. Another apparent disadvantage is that of contamination. Neither stream, however, is expected to be chemically pure. Contamination by liquid adhering to storage tank walls will not be significant when compared to that caused by incomplete separation in the distillation column.

Oxygen must be stored as a gas. The pressure of oxygen storage should be optimized, playing the capital cost of high storage volume against the energy cost of compressing oxygen to a high pressure, plus the energy cost of reheating the oxygen when it expands to system pressure.

In this design the pumping of gases has been totally avoided. All pumping is done on liquids, with great savings in energy consumption. The pressure used for oxygen storage, therefore, will be the daytime operating pressure of 40 atmospheres.

At 40 atmospheres and 60°C, the storage volume for 636 x 10^3 kg of 0_2 is 11,280 m³. This is the volume of accessible oxygen that must be provided. A holdover volume of 11/40 times the total volume must also be provided if no pumping is to be done. Finally, additional storage volume is required because of the SO₂ and SO₃ content. Thus a total gas storage volume of 14,420 m³ is required, and provision must be made for removing SO₂ liquid that may condense during storage.

A possible alternative to steel pressure vessels for storing oxygen is cavern storage. A large underground cavity is excavated and lined with steel to prevent leakage. The cavity is constructed at a depth of approximately 300 m. The depth is chosen so that the surrounding rock takes up all of the pressure in the system. The lining serves only to prevent contact between the gas and the rock.

It is difficult to evaluate the economy of this method of storage in this application. Cost estimates of between 5 and 25 dollars per cubic yard have been reported [30]; others range up to 300 dollars per cubic yard [22]. This last cost is still less than the cost of above-ground steel pressures vessels for the oxygen storage; thus it seems that cavern storage is a definite possibility in this case. More accurate estimates should be obtained in any continued investigation of this system.

Cavern storage becomes economical only for large volumes, and thus will not be economical for storage of the liquid SO_2 and SO_3 . The volumes involved in storing these liquids are relatively small. Above-ground tank storage seems indicated for storage of these reactants.

Table 4.1 summarizes the information presented in this chapter.

Reactant	Mass Stored	Volume Stored	Pressure	Method of Storage
so ₃	2370 x 10 ³ kg	1,290 m ³	11 atm	mild steel vessel
so ₂	1704 x 10 ³ kg	1,260 m ³	11 atm	mild steel vessel
02	636 x 10 ³ kg	14,400 m ³	40 atm	underground cavern, steel lined

V. CATALYST EVALUATION

-36-

In this storage process, SO_3 dissociates at temperatures in excess of 700°C, and SO_2 and O_2 recombine at temperatures between about 400°C and 700°C. In both cases catalysis is required. Hill [14] has studied part of the extensive literature on the latter reaction, which is practiced industrially in the manufacture of sulfuric acid. Vanadium pentoxide is used below 600°C, platinum above. The kinetics of the reaction over both catalysts has been investigated. Hill used the results reported to size his heat-release reactors. The following literature references are cited in this thesis [7,11-13,15,16,18,28,32].

The dissociation of SO_3 is not practiced commercially. However, on thermodynamic grounds one would predict that a catalyst for the recombination reaction would also catalyze the dissociation. The only questionable aspect of this assumption would arise if the catalyst's physical characteristics were adversely affected by the higher temperature. V_2O_5 , for instance, becomes appreciably volatile as the temperature approaches 700°C. Because platinum is expensive, a cheaper alternative would be preferred if it were sufficiently reactive. Iron oxide is a promising candidate because it was used in the now-obsolete Mannheim process. Westinghouse [25] studied the reaction over specular hematite and observed relative low reaction rates. Using pelleted Harshaw catalyst Fe-O30IT, a finely divided Fe₂O₃ supported on alumina, Hill observed a significant reactivity at temperatures above 700°C. Hill's work was exploratory in nature and would need to be extended to obtain design data for a reactor.

VI. MATERIALS OF CONSTRUCTION

Hill [14] searched the literature for promising materials of construction for the reactor tubes within the solar receiver. Useful information was found in Refs. 1-3, 6, 21, 22, 29, 30. He found, as did Boeing [5], that Haynes 188 appears to be the most promising candidate for containing a stream of SO_3 , SO_2 , and O_2 at a pressure of 40 atm and a temperature of 880°C on one side and atmospheric air at a similar temperature on the other. The properties cited by Hill are listed below.

Haynes 188, a "superalloy" made by Union Carbide, contains 38% Co, 22% Cr, 22% Ni, and 3% Fe. In addition to having high-temperature tensile strength and oxygen resistance in common with several other alloys, Haynes 188 is expected to be resistant to attack by sulfur compounds to an extent that gives it a significant advantage over its competitors. It should be emphasized, however, that the project reported here did not involve any experimental work with Haynes 188.

-37-

VII. SYSTEM ENERGY ACCOUNTING, EFFICIENCY, AND COSTS

Information derived from the heat and material balances presented in earlier chapters is summarized here to display the important energy flows into, within, and out of the process. The efficiencies of storage and power production are derived from these energy flows. In addition, storage equipment costs are estimated and compared with the costs of other components of the solar power plant.

The calculations presented in this chapter are for the Base Case described in Chapter III. Many of the operating parameters used in this case were chosen rather arbitrarily. In Chapter VIII several of these parameters are varied individually in order to determine the changes in system efficiency and system costs that result.

A. Energy Accounting

An overall plant energy balance is given in Table 7.1. This energy balance is for the base case outlined in Chapters II and III for the process configuration of Figs. 2.1 and 3.1. The storage process is integrated with the power plant in this flowsheet: extraction steam from one of the power plant turbines is used to heat the reboiler and to vaporize SO3, and low-temperature heat from the storage process is used to preheat boiler feed water during the daytime. The storage system generates steam to run the turbines at night. The relative sizes of the power plant and the storage process are set so that the make-up reboiler and SO3 vaporizer completely consume all steam discharging from one of the intermediate-pressure turbines.

Ŀ.

From Table 7.1 it is seen that the major energy dissipations to the environment are from the distillation column condenser and the

-38-

Table 7.1. Total Plant Energy Balance. Base Case.

		MW (e or t)	MW-hr (e or t)
I. Inp	uts (8 hours Daytime)		
Poi	wer Plant Receiver orage Receiver	$\frac{117.8 (t)}{112.2}$ 230.0 (t)	<u>1840.0</u> (t)
II. <u>Ou</u>	tputs		
Α.	Daytime (8 hours)		
	Generator Terminals Parasitic Power BFW Pump SO3 Pump Cooling System Power Net Power	30.9 (e) (0.4) (0.5) (0.4) 29.6 (e)	236.8 (e)
•	Waste Heat Trimmer Dist. Condenser Turbine Steam Leaks LP Turbine Condenser Misc. Heat Losses Total Waste Heat	6.52 (t) 57.03 0.40 24.43 <u>5.3</u> 93.68 (t)	<u>42.5</u> 749.5 (t)
Β.	Nighttime (16 hours)		
	Generator Turbine (small turbine) Gas Turbine Parasitic Power BFW Pump SO2 Pump Cool. Syst. Power Net Power Prod.	15.11 (e) .81 (0.1) (0.2) (0.1) 15.5 (e)	248.3 (e)
	Waste Heat Trimmer Small Turbine Condenser Large Turbine Bleed Net Night Out	8.36 (t) 24.74 <u>2.10</u> 35.20 (t)	563.2 (t)
	Misc. Heat Losses	2.66 (t)	42.5 (t)
	Total Output		1840.0 (e and t

.

power plant condenser during daytime operation and from the trimmer and the power plant condenser during the night. Of these, only the loss from the distillation column can be appreciably affected by process modifications: that step in the process can be eliminated as described in Chapter VIII at the cost of the additional liquid storage required and the larger throughput during discharge of storage.

As noted above, the power plant and the storage process interchange heat at various temperature levels in order to improve the overall thermal efficiency. The heat balance for this storage system is given in Table 7.2. It is seen that there is a large requirement of steam heat to vaporize the SO3 but that the boiler water preheat supplied by the storage system is small.

B. Efficiency Calculations

Three measures of process efficiency are used in this report to evaluate various aspects of the energy efficiency of the Base Case. These same efficiency indices are used in Chapter VIII to measure the response of the system to variations in several important design parameters. These indices, defined below, represent the overall system efficiency, the efficiency of the daytime power plant, and the efficiency of thermal energy storage. In addition, the ratio of the solar thermal inputs to the daytime power plant and the storage system necessary to minimize energy loss from the total system is an item of interest. The three efficiency indices are E_{OA} , the overall efficiency; Epp, the daytime power plant efficiency; and E_{TS} , the efficiency of thermal storage. The following expressions were used to calculate numerical values for the efficiency indices:

-40-

Inputs	MW-hr
Daytime	
Solar Receiver SO3 Vaporizer Makeup Reboiler Liq. SO3 Pump Total Input	897.6 (t) 421.2 (t) 90.1 (t) <u>4.0</u> (e) 1412.9
Outputs	
Daytime	
Boiler Feed Preheat Distillation Column Trimmer Daytime Total	12.5 (t) 456.2 (t) 52.2 (t) 520.9
Nighttime	
Boiler Feed Preheat Trimmer LT Reactors (QAAN) Gas Turbine Work (isentropic expansion) Nighttime Total	29.3 (t) 133.7 (t) 645.4 (t) <u>14.4</u> (e) 822.8
Total Output	1343.7

Table 7.2. Storage system energy balance. Base Case.

$$E_{OA} = \frac{P_{Day} \cdot \theta_{Day} + P_{Sto} \cdot \theta_{sto}}{(Q_{PR} + Q_{SR}) \theta_{Day}}$$

where

 P_{Day} = Net power produced by daytime power plant (MW_e) P_{Sto} = Net power produced from storage (MW_e) θ_{Day} = Duration of daytime operation (hr) θ_{Sto} = Duration of storage discharge operation (hr) θ_{PR} = Rate of thermal input to power plant receiver (MW_t) θ_{SR} = Rate of thermal input to storage receiver (MW_t)

In this simplified expression the thermal inputs and power outputs are assumed constant for the time periods of operation. If these rates are not constant, appropriate integrals would be used.

Low- and intermediate-temperature heat is exchanged between the power plant and the storage system. In discussing the energy efficiencies of the two separately one must therefore arbitrarily "credit" and "debit" the two operations for the heat that is supplied by the one to the other. The power plant efficiency then becomes

$$E_{PP} = \frac{P_{Day} \cdot \theta_{Day}}{(Q_{PP} + Q_{BFW} - Q_{VAP} - Q_{REB}) \cdot \theta_{Day}}$$

where

 Q_{BFW} = Rate of heat transfer to boiler feed water (MW_t) Q_{VAP} = Rate of heat transfer to SO₃ vaporizer (MW_t) Q_{REB} = Rate of heat transfer to distillation column reboiler, (MW_t)

The thermal storage efficiency is defined as the ratio of usable heat delivered by the storage system to the heat input to the storage system

$$E_{TS} = \frac{\sum Q_{Sto.\thetaSto}}{(Q_{SR} + Q_{VAP} + Q_{REB} - Q_{BFW}) \theta_{Day}}$$

where

 $\sum Q_{Sto}$ = Sum of rates of heat transfer to power plant system from storage discharge (MW_t).

The overall efficiency, E_{OA} , is simply the second-law efficiency for the total operation, the net total electric energy produced divided by the total thermal energy absorbed by the solar receiver tubes. The definition of E_{OA} is uncomplicated; however, because it combines the daytime power production with the production from storage, its use does not reveal where losses in efficiency occur. The other efficiencies, Epp and ETS, have therefore been defined in a way intended to show the behavior of the separate parts of the integrated operation.

The allocation of energy between the daytime power plant and the storage system is of necessity arbitrary, since the two are integrated to achieve near maximum combined performance. Energy is transferred from the power plant to the storage system by the steam used to vaporize SO₃ and to heat the reboiler. That heat is subtracted from the heat input to the daytime power plant in defining Epp and is added to the heat input to the storage system in defining E_{TS} . Conversely, the storage system provides boiler feed water preheat for the power plant both during the day and during the night. Hence the Q_{BFW} term is added to the neat input to the power plant in defining Epp and subtracted from the heat both during the power plant in defining Epp and subtracted from the heat both during the power plant in defining Epp and subtracted from the heat both during the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat both during the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant in defining Epp and subtracted from the heat input to the power plant input to the power plant to the p

the heat input in defining ETS. This method of energy allocation tends to make the values of Epp appear high because the electricity generated by the steam sent to the storage system "costs" the power plant only the enthalpy that is converted into electrical work and not the heat that would normally be discharged to the environment in the power plant condenser.

The thermal storage efficiency, ETS, represents the fraction of the heat input to the storage system that is released when the storage system is discharged. The steam generated when the storage system is discharged is used in part to generate power and in part to keep some of the daytime turbines on hot standby. The arbitrary distribution between these uses makes it difficult to define a useful index of nighttime power efficiency.

Values of these efficiencies may be calculated from data presented in Tables 7.1 and 7.2.

$$E_{0A} = \frac{(29.6)8 + (15.5)16}{(230)8} = 0.26$$

$$E_{PP} = \frac{(29.6)8}{(117.8)8 + (12.5 - 421 - 90)} = 0.53$$

$$E_{TS} = \frac{645 + 29 + 134}{(112.2)8 - (12.5 - 421 - 90)} = 0.58*$$

No credit taken for gas turbine work at night and no debit included for the SO₃ pump during the day. These are small quantities.

The value of ETS is telltale. Only 58% of the net thermal input to the storage system is actually stored as heat of reaction. The rest is dissipated as unuseable low-temperature heat transferred to the environment. From Table 7.2 it is apparent that most of this loss occurs in the condenser of the distillation column. This relatively low storage efficiency is the principal cause of the low overall efficiency ($E_{OA} = 0.26\%$). If the daytime power plant were operated by itself, its efficiency would be about 40%.

C. System Costs

Estimates are made here of the cost of installed, functioning equipment; such costs include the cost of connecting process piping, control systems, electrical connections, etc. No plant site auxiliaries such as roads, fences, rail lines, etc. are included. All costs are adjusted to June 1978 by indices published in Chemical Engineering.

Some fabricated equipment costs were determined from the weight of material used and a price stated in \$/kg. The price for fabricated thick-wall pressure vessels made of carbon steel is \$3.20 per kg [7] and 4.25 times this when made of 316 stainless steel [9], or \$13.50 per kg. In these cases, the cost of installation has been taken to be 140% of the fabricated cost [Peters and Timmerhaus, 34]. That is, the cost of in-place equipment is 2.4 times the fabricated equipment cost.

1. The Tower, Receiver, and Mirror Field

The cost of these items is probably the greatest source of uncertainty in the entire design. Nothing even remotely resembling the equipment used in this design has ever been built on this scale. The cost of these items is not important, however, in choosing between alternative solar storage system designs; almost all proposed designs may be assumed to have the same tower costs per unit of heat absorbed by the storage system. Estimated costs are reported here for the purpose of placing the storage system in perspective.

The Boeing Company [5] has estimated the cost of a heliostat field, tower, and receiver having a 230-MW net thermal output to be about \$40.5 million in mid 1976. In mid 1978, the cost would be

 $40.5\left(\frac{217.9}{192.1}\right) = $46 million$

This figure is probably low because the heliostat cost was taken to be $\frac{2}{500}$ per m², a cost well below that presently obtainable.

2. Turbines

The installed cost of a General Electric 100 MW_e high back-pressure turbine has been estimated to be between \$6 and 6.5 million dollars. This estimate is based upon the recent experience of G. E. in the construction of similar turbines. The cost quoted includes support equipment such as boiler feed pumps, control equipment, etc. For the base case, the turbine system consists of two turbines, each of about 16 MW_e capacity. In the absence of definitive information about scaling turbine costs, we have taken turbine costs to vary as the 0.6 power of rated capacity. Such an approach gives a total turbine cost of \$4 million (2 turbines).

3. Distillation Column

The column has been sized with 16 ideal trays and a reflux ratio of 2.1. Limiting vapor flow rates were estimated to be 0.63 m/sec

using equations presented by Treybal [26]; the design was based on 85% of the limiting velocity. Application of the general rules for design of bubble cap tray columns presented in the same work resulted in the following column dimensions:

Distillation Column

Number of trays: Tray spacing: Downcomer area: Tray area: Tower diameter: Tower height: Shell thickness: 16 Theoretical, 23 actual 0.46 m 1.8 m² 13.1 m² 4.4 m 10.6 m 0.01 m

Fabricated cost (ss): \$0.46 million

Installed cost (including piping, instrumentation, etc): \$0.61 million

Cost estimates were made by the method of Pikulik and Diaz [19]. This tower cost does not include the reboiler or distillate condenser. These will be included with the other heat exchangers in the next section.

4. <u>Heat Exchangers</u>

Detailed calculations involving the estimation of individual heat transfer coefficients, mean temperature driving forces, and pressure drops were carried out in sizing each exchanger. Costs were estimated from Popper [37] according to a general cost equation of the following form.

$$Cost = \begin{pmatrix} Base \\ Cost \end{pmatrix} \begin{bmatrix} Material & Installation \\ + & \\ Factor & Factor \end{bmatrix} \begin{pmatrix} Pressure \\ Factor & \\ Index \end{pmatrix}$$

The base cost pertains to equipment made from carbon steel and is determined from Popper's data according to the heat exchange area

needed. The exchanger material required in this process is stainless steel, for which the material factor is 4.5. The installation factor was taken to be 1.3. Table 7.3 summarizes the sizes and costs of all heat exchangers. These costs represent the cost of equipment in place including interunit piping, electrical connections, and control systems. More detailed information about the heat exchanger designs is available in Hill [14].

5. Storage

The calculations giving the volumes of the SO₂/SO₃ and the oxygen storage are described in Chapter IV. The SO₂ and SO₃ are stored as liquids jointly in a number of spherical tanks. The thickness of each tank is determined by the diameter of the tank and by the 10atmosphere pressure differential across the tank wall. The storage vessel costs were based on the basic \$3.20-per-kg price for equipment fabricated from carbon steel plus about 140% for installation.

The total installation and material cost of 23 spherical (mild steel) vessels 4.94 m in diameter and 1.33 cm thick is \$0.86 million. The total volume of these vessels is 1452 m^3 , which represents storage of 2.4 x 10^6 kg of SO₃.

A precise cost estimate for the oxygen storage is difficult. Cavern storage cost estimates range from $6.5/m^3$ to $390/m^3$ [22]. These rates correspond to a storage price ranging from 0.1 to 5.8 million for a cavern volume of 14,900 m³. The extremes in the price range correspond to extremes in the construction; the low price is for very large reservoirs constructed not too far underground. The high price is associated with small, deep caverns. A cavern cost of

-48-

Heat Duty (^{MW} t)	Heat-Transfer Area (m ²)	Installed Cost (\$K)	
110.8	2,642	1,753	
52.6	619	438	
44.9	743	507	
45.2	1,131	812	
11.3	285	250	
57.0	1,633	813	Charge <u>Mode</u> \$5,483 K
1.56	235	170	
6.5	767	740	
10.8	4,284	2,142	
24	425	340	
8.8	129	135	
1.8	159	145	
8.4	825	453	
10.1	356	241	
7.1	206	176	
12.3	143	137	
8.4	130	132	
2.4	116	118	Discharge
		\$9,502K	\$4,019K
	Heat Duty (MW _t) 110.8 52.6 44.9 45.2 11.3 57.0 1.56 6.5 10.8 24 8.8 1.8 24 8.8 1.8 8.4 10.1 7.1 12.3 8.4 2.4	Heat Duty (MWt)Heat-Transfer Area (m2)110.82,64252.661944.974345.21,13111.328557.01,6331.562356.576710.84,284244258.81291.81598.482510.13567.120612.31438.41302.4116	Heat Duty (MWt)Heat-Transfer Area (m²)Installed Cost (\$K)110.82,6421,75352.661943844.974350745.21,13181211.328525057.01,6338131.562351706.576774010.84,2842,142244253408.81291351.81591458.482545310.13562417.120617612.31431378.41301322.4116118

Table 7.3. Heat Exchanger Sizes and Costs.

 $200/m^3$ will be used in these calculations because the cavern used for oxygen is at neither extreme. It is assumed that the excavated cavern will be lined with mild steel sheets (about 1/4-in. thick) supported by the rock wall and concrete poured between the wall and the lining. A rate of $200/m^3$ corresponds to a cavern cost of 3.0 million. Further experience of the industry with the excavation of caverns for fluid storage may eventually yield better estimates.

6. Reactors and Catalysts

The low-temperature reactors represent a relatively small investment when compared with other major process equipment. They have a total volume of 29.2 m³ divided between five vanadium beds and three platinum beds. If the total pressure drop across all eight beds is limited to one atmosphere, pressure-drop calculations using the Ergun correlation [18] reveal that a minimum cross sectional area of 8.3 m² is required.

Typical sulfur dioxide oxidizing reactors have one or two shells with trays in them that support the catalyst. Partially reacted gas is withdrawn between stages, cooled in heat exchangers, and returned to the reactor. A possible configuration for the low-temperature reactors in this system utilizes two shells: one shell containing LTR 5 (a reactor volume of 18.2 m^3), and the other shell containing all of the other reactor beds. For estimation of the cost of these reactors, the following assumptions were made: for shell 1 (LTR's 1 through 4), the shell thickness is 3.33 cm; the partitions between beds are steel sheets 1.0 cm thick; and spaces of 25 cm on each side of each partition are empty of catalyst and are needed for gas distribution. For shell 2, the shell thickness is 2.6 cm. Hence the total volume

-50-

in shell 1 is 23.7 m^3 , and the total volume in shell 2 is 18.2 m^3 . The cost of shell 1 is \$205,000, and the cost of shell 2 is \$117,000, based upon the weight of metal used. Installed cost is 2.4 times the fabricated cost and thus is \$772,000.

Vanadium pentoxide catalyst costs vary depending upon the quantity purchased, the manufacturer, support used, etc. The total mass of supported V₂O₅ required for the low-temperature reactors is 15,400 kg. Vendor-supplied cost data indicate that this much catalyst would cost approximately \$38 K, not including installation.

Price data for platinum catalysts were more difficult to obtain than for the vanadium. For the purposes of this estimate, the catalyst cost was assumed to be the cost of the platinum metal plus 10% for catalyst processing.

The platinized asbestos catalyst, which has a platinum concentration of 7% by weight, contains a total of 11.32 kg (364.0 troy oz) of platinum. The market price of platinum is currently \$320 per troy ounce. The total cost of the platinum catalyst is calculated to be \$128K.

A credit for platinum recovery may be claimed for this catalyst. Ninety per cent of the platinum will be recovered. If the cost of platinum inflates at the same rate as other costs, this platinum will not decrease in value. The full value of the reclamation credit may be claimed; this credit is \$115 K. The net cost of the platinum catalyst is therefore \$13 K.

The cost of the high-temperature reactor tubes is assumed to be included in the \$42.3 M spent for the receiver and mirror field. This cost is also assumed to include the cost of the Fe₂O₃ catalyst used,

and the cost of applying it to the inner surface of the collector/ reactor tubes. While the cost of this operation is difficult to estimate, it is felt that the added cost will have little effect on the cost of the receiver.

7. Reactants

The most economical form in which to ship the system reactants to the project site is as liquid SO₃. Shipping the SO₃ eliminates the need of transporting large volumes of high-pressure oxygen. A very large mass of SO₃ is required: 2.4×10^6 kg of SO₃ is stored in one day.

Cost data for large quantities of liquid SO₃ were not readily available. The assumption was made that such a large volume of SO₃ could be obtained at about the same cost per kg as for SO₂. This assumption is supported by the observation that, even if such largescale manufacture of SO₃ does not currently occur, a conventional sulfuric acid plant could be made over with relatively minor changes into an SO₃ plant. Furthermore, if this form of energy storage is seen as economical, construction of a grassroots SO₃ plant to supply SO₃ for a number of solar power plants may be feasible.

<u>Chemical Marketing Reporter</u> for June 1978 reports that the average cost for liquid SO₂, when purchased by the tank, is \$148/ton. This corresponds to a total reactant cost, assuming the same cost for SO₃, of \$364 K.

8. Dry Cooling Tower

Design of the dry cooling tower is beyond the scope of this report. The cost of this piece of equipment was estimated very roughly for a "Heller" dry cooling system using 40°F ITD. The updated costs come to \$30,600 per MW of heat load. This corresponds to a cost of \$747 K for a tower for the 31 MW_e power plant (24.4 MW_t) by itself, or \$2,690,000 for the tower for the combined power and storage systems (63.5 MW_t for the trimmer and the condenser of the distillation tower, or approximately 87.9 MW_{t} total).

D. Summary of Costs

1. Entire Power Plant-Storage System

Costs for all equipment by major category are summarized in Table 7.4. The cost of the storage process equipment is seen to be about 24% of the total plant cost. Heat exchangers are responsible for most of the storage equipment costs owing to the large areas required. The cost of the oxygen and sulfur-oxide storage vessels must be viewed with respect to the amount stored; in this base case, the oxygen and sulfur dioxide would supply about 8.3 hours of power at the 31 MW_e nominal load.

2. Incremental Cost of Storage

It is of interest to estimate the amount by which the total plant cost is increased owing to the presence of the storage system. In making this estimate, it is necessary to account for the increased cost of heliostats, tower, receiver, and cooling tower system needed for the storage system heat requirements.

For purposes of this estimate, the incremental costs of heliostats, tower, and receiver are taken to be proportional to the thermal input. A stand-alone 31 MW_e solar power plant operating at 40% efficiency (dry cooling conditions) would need 77.5 MW_t input. Thus, by using

Table 7.4. Plant Cost Summary

Heliostats, Tower, and Receiver	\$46.0 M	
Turbine Generators		4.0
Dry Cooling Tower		2.7
Chemical Storage System (244 MW _e -hr)		52.7
Heat Exchangers	\$9.5 M	
Distillation Column	0.6	
Low Temperature Reactors and Catalyst	0.8	
Reactants	0.4	
Storage Vessels		
0 ₂ (steel-lined caverns)	3.0	
SO _X (mild steel tanks)	0.9	
Total Storage Equipment	\$15.2 M	\$15.2 M
TOTAL Power plant with storage	system	<u>\$67.9</u> M

2

the \$46 million cost for a 230 $\ensuremath{\mathsf{MW}}_t$ heliostat-tower-receiver system, the incremental cost of this equipment is

$$46\left(1 - \frac{77.5}{230}\right) = $30.6 million$$

The dry cooling system incremental cost is also taken in direct proportion to the cooling heat load. Calculations accounting for changes in steam cycle flows upon displacement of the storage system gave an incremental cost of \$1.8 million. There is an additional cost associated with the steam turbine because it has been split into 15 MW_e and 16 MW_e turbines, resulting in an increase of perhaps 20% in cost over a single 31 MW_e turbine.

The incremental cost of storage is thus the sum of the following four items.

Storage system equipment Heliostat-tower-receiver	\$15.2 M 30.6	
Dry cooling system Turbine split	1.8	
Total Incremental Cost	\$48.3 million	

Cost of Power

An estimate of the cost of electric power per kW-hr produced by the solar plant and the sulfur-oxide storage system may be obtained by deciding on a capitalization rate and an on-stream factor. The capitalization rate for the non-storage equipment is taken at 18%, 3% higher than the 15% used by Skinrood, et al. [35]. The higher rate acknowledges increased maintenance costs attributable to the presence of SO_x and O_2 in the receiver tubes. An even higher rate is taken for the storage equipment to account for maintenance costs due to corrosion. Peters and Timmerhaus [34] cite maintenance costs for high corrosion conditions of about 10%/year; we thus take the storage equipment capitalization rate to be 25% per year. The number of full capacity operating days is assumed to be 256 per year.

The cost of power is thus calculated to be

 $cost = \frac{[46.0 + 4.0 + 2.7](0.18) + [15.2](0.25)}{256[8\{30.9 - 0.4 - 0.5 - 0.4\} + 16\{15.1 + 0.8 - 0.1 - 0.2 - 0.1\}]}$

- = \$1.07 x 10⁻⁴/W-hr
- = 107 mils/kW hr

Similarly, the incremental cost of power produced from stored heat is

 $cost = \frac{[48.3 - 15.2](0.18) + [15.2](0.25)}{256[16\{15.1 + 0.8 - 0.1 - 0.2 - 0.1\}]}$

= \$1.53 x 10⁻⁴/W-hr

= 153 mils/kW-hr

CHAPTER VIII. SENSITIVITY ANALYSIS

In the base case presented in Chapters II and III the energy and material balances for the chemical energy storage system were calculated for a specific set of operational parameters. This chapter discusses the response of the system to variations in the most important of these parameters. Their number is too great to permit investigating the effects of varying two or more of them simultaneously. However, the response of the system to the individual parameters may be used to try to select a more nearly optimum set than was chosen for the base case.

A. Parameters Varied

The parameters selected for this study were:

- The maximum tube-wall temperature in the solar reactor--the value of 880°C, chosen for the base case, may prove to be the highest practicable temperature, but it is instructive to be aware of the rewards and penalties associated with higher and lower values.
- 2) The temperature rise through the solar reactor--this is also the temperature difference, ΔT_{5-6} , at the hot end of the heat inter-changer, HE-1. Reducing ΔT_{5-6} from the 140°C used in the base case not only increases the size needed for HE-1 but also influences the heat balance within the reactor.
- 3) The pressure in the solar reactor--pressures both above and below the 40 bar chosen for the base case were studied.
- 4) The temperature level of heat discharge to the environment, T_{min} -the value of 60°C used in the base case as the lowest temperature that could be reached by the system is a conservative estimate suitable for a hot desert location. Lower temperatures would be possible at many times of the year in most sites.

-57-

Two other process modifications were also studied--elimination of the distillation column for separating SO_2 and SO_3 during daytime operation and dissipating low-level heat to the environment instead of using it to heat boiler feedwater. The former step saves the energy input to the reboiler, but the SO_2 produced is diluted with a substantial quantity of SO_3 . The latter step results in some reduction in overall efficiency, but makes sizing of the power plant and the storage systems relatively independent of each other.

B. Restatement of Efficiency Indices

The three efficiencies defined in Chapter VII are used here as measures of the response of the system to variations of the parameters mentioned above. These efficiencies are:

Overall (2nd-law) Plant Efficiency

$$E_{OA} = \frac{P_{DAY} \cdot \theta_{DAY} + P_{STO} \cdot \theta_{STO}}{(Q_{PR} + Q_{SR}) \theta_{DAY}}$$

Daytime Power Plant Efficiency

$$E_{PP} = \frac{P_{DAY} \cdot \theta_{DAY}}{(Q_{PP} + Q_{BFW} - Q_{VAP} - Q_{REB}) \cdot \theta_{DAY}}$$

Thermal Storage Efficiency

$$E_{TS} = \frac{\sum Q_{STO} \cdot \theta_{STO}}{(Q_{SR} + Q_{VAP} + Q_{REB} - Q_{BFW}) \cdot \theta_{DAY}}$$

C. Effect of Tube-wall Temperature

Figure 8.1 shows the response of the system indices to variations in the maximum allowable tube-wall temperature. For reasons that are discussed below, the ratio Qpp/QSR was set at 1.05 for this and the following parameter studies. The surprising result, shown in Fig. 8.1, is that E_{OA} is nearly independent of the value of $T_{w max}$, increasing only about 1.5 percentage points for an increase of 100°. The slightly greater increase in Epp is illusory. With the higher value of $T_{w max}$ there is a greater conversion of SO₃ in the storage reactor. As a result, the quantity of SO_3 fed decreases, since the total thermal input to the reactor is kept constant. A larger fraction of this thermal input is absorbed by the chemical reaction and a smaller fraction is converted to sensible heat of the reactor effluent. The reduced sensible heat flow means that more steam must be taken from the power plant for the vaporizer and reboiler, which increases the value of Epp. ETS increases with T_{w max} because of the increased conversion of thermal input to chemical energy.

D. Effect of Temperature Rise in the Reactor, ΔT_{5-6}

Figure 8.2 shows the response of the system to the temperature rise in the reactor, with $T_{W \ max}$ kept constant. Increasing ΔT_{5-6} thus implies a decrease in the feed temperature at the inlet to the reactor and an increased ΔT throughout the heat interchanger HE-1. The larger heat-transfer driving force reduces the area required for HE-1 correspondingly. Increasing ΔT_{5-6} also means that a larger fraction of the heat absorbed by the gas stream is used to increase the sensible heat of the stream, and a smaller fraction is converted to chemical

-59-

XBL793-939

Fig. 8.1. Efficiencies vs. maximum reactor wall temperature.

Fig. 8.2. Efficiencies vs. temperature increase across reactor.

-61-

energy. As a result, the flow of SO₃ per unit of heat absorbed in the reactor must increase. However, the fractional conversion of SO₃ stays nearly constant. Because less heat is interchanged in HE-1 with increasing ΔT_{5-6} , relatively more heat is available from the reactor effluent for the vaporizer and reboiler. In effect, the heat duty for those operations has been partially shifted from the power-plant receiver tubes to the storage-reactor receiver tubes. The value of Epp drops because of this shift, but EOA and ETS are nearly unaffected. This means that ΔT_{5-6} may be chosen so as to minimize the total costs of the heat exchangers without paying an appreciable penalty in overall efficiency.

E. Effect of Changing Pressure, P, in the Solar Receiver-Reactor

Figure 8.3 shows the effect of pressure on the system indices. Higher pressure reduces the fractional conversion of SO₃ to SO₂ and O₂ because of the mass-action effect. However, this effect is overshadowed by the increase in temperature in the SO₃ vaporizer and in the reboiler, and by the increased range of temperature in which condensation of SO₃ and SO₂ occurs as the reactor effluent is cooled. At low pressure the low temperature of condensation means that only a small fraction of the heat of condensation will be absorbed by the boiler feed water. However, at low P a larger fraction of the heat for the reboiler must be supplied by steam from the power plant. Thus, Epp shows the gain that results from higher steam usage by the storage system. There are slight drops in E_{OA} and E_{TS} at the lowest pressure, but the effects are so small as to be of negligible importance. An effect that is not shown by these indices is that on the required volume for gas storage. Because the gas-storage vessels are considered

-62-

XBL 793-943 Fig. 8.3. Efficiencies vs. pressure (HTS).

-63-

0.70

Efficiency

"empty" when the pressure of the stored gas has dropped to that of the discharge system, reducing the operating pressure of the charge will increase both the volume and the cost of those vessels.

F. Effect of Minimum System Temperature, Tmin

As was mentioned previously, the minimum system temperature for the base case, 60° C, was chosen to simulate the effect of using dry cooling in a desert environment. The minimum temperature at which heat can be transferred to the environment sets the pressure for the condensers for the steam turbines, the temperature of the boiler feedwater, the temperature and pressure in the condenser of the distillation column, and the temperature in the reboiler of the distillation column. It is clear from basic thermodynamic principles that reducing T_{min} will improve the efficiency of the power plant operations. Figure 8.4 shows this as well as other effects.

As T_{min} is reduced from the base case value, the temperature of the boiler feed water is reduced and a given flow of BFW absorbs a larger fraction of the heat of condensation of the SO₂ and SO₃ in the reactor effluent. The result is an improvement in the overall heat economy, as indicated by the rise in E_{OA}. Epp is reduced at lower values of T_{min} , but this again is the reflection of the fact that receiving BFW preheat reduces the efficiency index for the power plant. The slight maximum in the value of E_{TS} has a similar effect, and one can say that that index is effectively independent of T_{min} .

G. Effect of Eliminating the Distillation Column

The reboiler of the distillation column requires a substantial heat input in the form of intermediate-pressure steam from the power

XBL 793 - 941

Fig. 8.4. Efficiencies vs. minimum system temperature.

plant. Elimination of the distillation column would eliminate that heat load and would also eliminate the cost of the column. On the other hand, elimination of the column would require storage of most of the SO₂ in the form of a solution in SO₃, roughly tripling the liquid storage volume required for a given quantity of energy storage. In addition, the sizes of the flow lines, heat exchangers, and reactors would have to be increased to accommodate the flow of the inert component, and the amount of low level heat dissipated to the environment in the nighttime trimmer would be increased. These effects are compared by considering the effect of eliminating the distillation column while keeping other system parameters the same as in the base case. The results are shown in Tables 8.1, 8.2, and 8.3.

Table 8.1 shows the changes in the system indices, power, and reactor feed rates that result from eliminating the distillation column. There is a small gain in overall efficiency and an increase in P_{Day} at the expense of P_{Sto} . The increase in feed rate to the high-temperature reactor is small, but the increased feed to the LT reactor is substantial and would be mirrored by the increased requirement for liquid storage and the sizes of the LT heat exchangers.

The reasons why the change in E_{OA} is so small even though E_{pp} and E_{TS} change substantially are found from an examination of the energy balances shown in Tables 8.2 and 8.3. These can be compared to those in Tables 7.1 and 7.2 for the base case. For the base case (with distillation) intermediate-pressure steam supplies 511.3 MW_t - hr to the SO₃ vaporizer and make-up reboiler. This is reduced to 249.2 MW-hr by eliminating the distillation column, and the net power plant

-66-

	Base Case		
	w Dist.	w/o Dist.	w/o BFW Preheat
Efficiencies			
EOA	0.263	0.276	0.257
Ерр	0.534	0.408	0.542
ETS	0.579	0.818	0.574
Power and Flow Rates	<u>S</u>		
P _{Day} (MW _e)	30.9	39.4	
P _{sto} (MW _e)	15.1	12.2	
LT react. feed rate (Stream 27) (kmol/s)	2.69	2.78	
HT react. feed rate (Stream 5) (kmol/s)	0.76	1.65	

Table 8.1. Effect of eliminating distillation column and BFW preheat.

-67-

	Table 8.2	Total	Plant	Energy	Balance.	Base Case	Without	Distillation.
--	-----------	-------	-------	--------	----------	-----------	---------	---------------

			MW (e or t)	MW-hr (e or t)
I.	Inp	uts (8 Hours Daytime)		
	Pow Sto Tot	er Plant Receiver rage Receiver al Inputs	$\frac{117.8 (t)}{112.2}$ 230.0 (t)	1840 (t) 1840 (t)
II.	Out	puts ,		
	Α.	Daytime (8 Hours)		
		Generator Terminals	39.4 (e)	
		Parasitic Power BFW Pump SO3 Pump Cooling System Power Net Power	(0.4) (0.5) <u>(0.4)</u> 38.1 (e)	304.8 (e)
		Waste Heat Trimmer Turbine Steam Leaks LP Turbine Condenser Misc. Heat Losses Total Waste Heat	22.2 (t) 0.4 53.1 <u>3.4</u> 79.1 (t)	632.9 (t)
	Β.	Nighttime (16 Hours)		
		Generator Terminals Gas Turbine Parasitic Power BFW Pump SO2 Pump	12.4 (e) .8 (.1) (.6)	
		Cooling System Power Net Power	<u>(.2)</u> 12.3 (e)	196.8 (e)
		Waste Heat Trimmer Small Turbine Condenser Large Turbine Bleed Misc. Heat Losses Total Waste Heat	$ \begin{array}{c} 19.3 (t) \\ 20.3 \\ 2.9 \\ \underline{1.6} \\ \overline{44.1} (t) \end{array} $	705.5 (t)
		Total Outputs		1840
		Parasitic Power BFW Pump SO2 Pump Cooling System Power Net Power Waste Heat Trimmer Small Turbine Condenser Large Turbine Bleed Misc. Heat Losses Total Waste Heat Total Outputs	(.1)(.6)(.2)12.3 (e)19.3 (t)20.32.91.644.1 (t)	196.8 (e) 705.5 (t) 1840

Table 8.3 Storage System Energy Balance. Base Case Without Distillation.

	MW-hr	
Inputs		
Daytime		
Solar Receiver SO3 Vaporizer Liquid SO3 Pump Total Inputs	897.6 (t) 249.2 (t) <u>4.0</u> (e) 1152.4	
Outputs		
Daytime		
Boiler Feed Preheat Trimmer Misc. Daytime Total	$\begin{array}{c} 46.9 (t) \\ 177.9 (t) \\ \underline{7.4} (t) \\ 232.2 \end{array}$	
Nighttime		
Boiler Feed Preheat Trimmer LTR Reactors (QAAN) Gas Turbine Work (isentropic expansion) Misc. Nighttime Total	39.4 (t) 308.2 (t) 551.4 (t) 13.9 (e) <u>7.4</u> (t) 920.2	
Total Outputs	1152.4	

output increases from 29.6 MW_e to 38.1 MW_e as a result. However, in the latter case the load to the daytime trimmer increases from 52.1 MW_t-hr to 177.9, and the dissipation in the nighttime trimmer increases from 133.7 to 308.2 MW_t-hr. The added daytime trimmer load results from shifting the heat of condensation of the SO₂ - SO₃ mixture from the reboiler. The added nighttime trimmer load is the result of the large increase in SO₃ flow around the nighttime system.

It appears likely that the optimum process configuration would feature a distillation column without a make-up reboiler. This would utilize the heat of condensation of the $SO_2 - SO_3$ mixture, which is otherwise wasted, to concentrate the SO_2 significantly, but not to the 99% purity that was specified for the base case. Nighttime efficiency, liquid storage volume, and heat exchanger areas would thereby be improved without diverting steam from the daytime power plant. An improvement of 0.01 in E_{OA} might thereby be achieved, together with an increase of nighttime power output of between 1 and 2 MW_e.

It appears unlikely that changing the process flowsheet to the configuration of limited distillation would have a significant effect on the response of the system to the changes in process parameters discussed above.

H. Effect of Eliminating Boiler Feed Water Preheat

In the base case low-level heat is utilized to the extent considered practicable to preheat boiler feed water for the daytime power plant. This energy saving maximizes EOA, but it is of interest to determine just how important the saving is in order to gain perspective. To this end the result of eliminating all BFW preheat during the day from the system operating under base-case conditions was determined. The impact on the efficiency indices is also shown in Table 8.1. The effect is small--a slight decrease in EOA and ETS, and a slight increase in Epp. The effects are so small because the temperature level of the heat being discarded is so low. It is thus clear that the value of this low-level heat should not be overemphasized in conceptualizing modifications for the design of this type of storage system.

I. Effect of Varying QPR/QSR on System Performance

Because of the heat interchange between the daytime power plant and the storage system, there is an optimum ratio of thermal inputs to the two that minimizes dissipation of heat to the environment. However, this ratio is not necessarily the most desirable from the standpoint of nighttime generating capacity relative to daytime capacity. It is therefore of interest to determine the effect of varying the ratio QPR/QSR on the efficiency indices. This variation is shown in Fig. 8.5 for values of the ratio between 1.0 and 2.25. The overall system efficiency increases as the value of the ratio increases. However, as was shown in the previous section, this increase is not due primarily to the more optimal use of low-level heat. Rather, it is the result of the fact that the daytime power plant is inherently more efficient at producing power than is the storage system. (If there were no storage system associated with it, the steam cycle used for the power plant would have an efficiency of about 0.40). Thus, if the ratio of Q_{PR}/Q_{SR} is increased the primary increase in EQA is simply due to weighted averaging. The drop in Epp as the ratio increases is

-72-

primarily the result of having a smaller fraction of the total steam produced being sent to the storage system, and is thus an artifact of the method of energy accounting. The increase in ETS is real, since the storage system is being credited with the increased usage of low-level heat that the larger ratio makes possible. However, the conclusion that one draws from this study is that the ratio of thermal inputs to the two systems should be set by the desired ratio of P_{Day}/P_{Sto} , since there is a negligible penalty associated with varying the relative sizes of the two systems within the ranges studied.

J. <u>Duration of Storage</u>

The base case presented in Chapters II and III is sized to provide 16 hours of storage-generated power at a rate about half that of the daytime power plant. As was noted above, the design of the storage system could readily be modified to allow discharge at a more rapid rate. However, there appears to be a significant advantage to keeping the high-pressure steam turbines hot at all times to avoid the delay of cold start-up. Any modification of the proposed design should probably make provision for generating sufficient high-pressure steam at all times to keep those turbines on hot stand-by when they are not being used for power generation.

Modification of the system to allow for more than 16 hours of operation from storage also appears to be straight-forward. There is only a slight sensitivity of the system to variations in QPR/QSR. It thus appears that there would be little efficiency penalty in making QSR large enough to allow some accumulation of stored SO₂ and O₂ above nighttime usage for periods of a week or longer. The cost of the

-73-

storage tanks themselves would be the primary additional cost involved in providing the capability of generating power from the storage system for periods of several days at a time.

It would appear unlikely, on the other hand, to be economical to provide overnight storage for a solar power plant by a second type of energy-storage system while having a chemical system for longer-term storage. The high capital investment required to install a chemicalenergy storage system would make it desirable to use it for all of the energy-storage requirements of the installation. Although a sensibleheat or latent-heat storage system might prove advantageous as buffer (less than 1-hour) storage for the daytime power plant, longer-term storage should be provided by a single energy storage system.

K. Accuracy of Calculational Methods

The calculations presented in this report are based on a number of assumptions regarding physical properties, reaction kinetics, and heat and mass transfer behavior. In some cases the error in these assumptions can be estimated with reasonable accuracy whereas in others experimental data are needed to improve the certainty. In the following discussion a number of these assumptions will be examined.

1. Physical Properties

The three system components, O₂, SO₂ and SO₃, were assumed to follow ideal gas behavior in the vapor phase. This assumption is quite accurate except at temperatures near the dew point. The uncertainty introduced is that the predicted pressure drops will be somewhat high, and thus conservative. Ideal heat capacities were assumed, with no allowance being made for the effect of pressure. This assumption for SO_3 gives a value that is about 40% too low at the boiling point at 40 bar. The error becomes negligible after the temperature of the SO_3 vapor has risen about 200°. The effect of the error is to underestimate by a few percent the duty of heat exchanger HE-1. The error is less than the uncertainty in the heat-transfer coefficients.

The distillation column design is based on the assumption that SO₂ and SO₃ form ideal solutions. This assumption is based on general chemical principles and should be tested experimentally if it seems economically desirable to have a distillation column. If there is significant interaction between the two molecules then the number of theoretical stages required may be greater than the number calculated. However, it seems likely that the uncertainty in the predicted tray efficiency is greater than that in the equilibrium behavior.

2. Transport Properties

Heat- and mass-transfer coefficients were estimated from the standard correlations. The accuracy of such correlations is typically ±50%. Since the projected cost of the heat exchangers is a major fraction of the cost of the storage system, more accurate cost data for the storage system should be obtained before it is developed further. The very large sizes of the gas-gas heat exchangers makes an accurate estimation of their cost particularly difficult.

The behavior of the storage solar receiver-reactor is based on the assumption that the reactor tubes can be coated on the inside surface with a suitably reactive catalyst. If the reactivity of the

-75-

catalyst is sufficiently high, then heat transfer and mass transfer will control the reaction rate rather than reaction kinetics. The small amount of experimental kinetic data obtained in this work makes this assumption plausible.

It was also assumed that the reactor tubes were heated by a single, uniform radiative source. The reactor design has a maximum permissible wall temperature as one constraint. It would thus be necessary to model the radiative flux in an actual receiver more accurately than was done here to be sure that the temperature limitation was not exceeded.

The calculations indicate that there will be a substantial influence of mass-transfer resistance on the conversion of SO₃ that occurs in the reactor tubes. Since the correlation used here is based on smoothwalled, straight tubes, one would want to obtain experimental data for a catalyst-coated tube of the desired geometry to validate the computational model.

3. Cost Data

The cost data used to estimate the capital requirements and operating expenses were obtained from the references cited in Chapter VII. It should be recognized, however, that much of the equipment proposed for this system is larger and/or made of material that is more exotic than is typical of plant in the chemical industry. In some cases experimental work will be required just to demonstrate that the proposed design is technically feasible. For these reasons the cost estimates have an accuracy that can be no more than +50%.

CHAPTER IX. CONCLUSIONS AND RECOMMENDATIONS

The sensitivity analysis has shown the chemical-energy storage system to be remarkably insensitive to the parameters that were chosen for study. Additional parameters that might have more effect do not come readily to mind. It thus appears that the following conclusions can be drawn:

- There is no particular incentive to increasing the allowable tubewall temperature much above 800°C, although operation at 850°C would be slightly advantageous.
- Heat interchange between the solar reactor feed and the reactor effluent does not have a significant effect on the system efficiency. The entire heat-exchange operation (interchanger, vaporizer, reboiler, BFW preheater, and trimmer) should thus be designed to minimize costs.
- 3) The pressure of operation does not have a large effect on system efficiency, but should be of the order of 40 bar to minimize costs of gas-storage vessels.
- 4) The ratio of solar thermal inputs to the daytime power plant and the storage reactor should be set to give the desired ratio of daytime power and power from storage.
- 5) The reflux ratio and the number of plates in the distillation column should be adjusted to eliminate the need for the make-up reboiler and to minimize the steam requirement in the SO₃ vaporizer.
- 6) A chemical energy storage system should be designed to provide all of the energy storage required for a solar power plant, not just the long-term storage.

-77-

The cost analysis of the process configuration developed in this study shows that the heat exchangers represent a major fraction of the total cost of the storage system. Furthermore, the heat-exchange networks used during charging of the storage system and during discharge are independent and somewhat redundant. Further development of this process should aim at reducing the cost of the system through reducing the size and/or number of heat exchangers employed. A possible method of accomplishing this would be to eliminate the heat interchanger HE-1 and to use the hot reactor effluent to generate steam during the day in the same set of boilers that is used in generating power from storage. Such a process configuration would have the added advantage of avoiding the costly piping necessary to carry high-pressure water and steam to the top of the solar receiver and back. In addition, modification of the process in this manner would facilitate switching the system from charge mode to discharge mode, making its use for short-term storage practical.

Finally, it must be emphasized that the components of the system studied here, SO_3 , SO_2 , and O_2 , pose severe problems of corrosion and toxicity under many of the process conditions that have been proposed. These problems may or may not have solutions that are technically and economically feasible. In the light of these and other matters discussed in this report this chemical process would have to offer a clear advantage over alternative methods of energy storage before further development were undertaken.

-78-

REFERENCES

- 1. Alloy Digest Co62 Jan 1971.
- 2. Alloy Digest SS137 Oct 1962.
- 3. Angerman, C. L., Oxidation of Metals, 5, 149 (1972).
- Bhakta, M., "Chemical Storage of Thermal Energy Using the SO₃-SO₂-O₂ System," U. C. Berkeley MS Thesis, 1976.
- Boeing Engineering and Construction, "Closed Cycle, High-Temperature Central Receiver Concept for Solar Electric Power," EPRI EM-256, Dec. 1976.
- Chattophyay, B., and G. C. Wood, <u>J. Electrochem. Soc.</u>, <u>117</u>, 1170 (1970).
- Clay, D., "Development of a Feasible Process for the Simultaneous Removal of Nitrogen Oxides and Sulfur Oxides from Fossil Fuel Burning Power Plants," U.C. Berkeley Ph.D. Thesis, 1974.
- <u>CRC Handbook of Chemistry and Physics</u>, 51st Ed., 1970 Chemical Rubber Company, Cleveland.
- Davidson, M. and D. Grether, "The Central Receiver Power Plant: An Environmental, Ecological, and Socio-economic Analysis," LBL Report 6329, 1977.
- Dayan, J., A. S. Foss, and S. Lynn, "Evaluation of a Chemical Heat Storage System for a Solar Steam Power Plant." 12th Intersoc. Energy Conv. Engr. Conf. pg 1181, Washington, D.C. Aug. 1977.
- Eklund, R. B., "The Rate of Oxidation of Sulfur Dioxide with a Commercial Vanadium Catalyst," Almquist and Wiksell, Stockholm 1956.

- Fairlie, A. M., "Sulfuric Acid Manufacture," Reinhold Publishing Corporation, New York 1936.
- Herce, J. L., J. B. Gros, and R. Bugarel, <u>Chem. Eng. Sci.</u>, <u>32</u>, 729 (1977).
- Hill, S. A., M. S. Thesis, Univ. of Calif., Dept. of Chem. Engr. (1978).
- 15. Lewis, W. K. and E. P. Ries, Ind. Eng. Chem., 19, 83 (1972).
- 16. Livbjerg, H. and J. Villadsen, <u>Chem. Eng. Sci.</u>, <u>27</u>, 21 (1972).
- Lord, R. C., P. E. Minton, and R. P. Slusser, <u>Chem. Eng</u>., Jan 26, pg. 96 (1970).
- 18. Mars, P. and J. G. H. Maessen, <u>J. Catal.</u>, <u>10</u>, 1 (1968).
- Perry, ed. <u>Chemical Engineer's Handbook</u>, 5th Ed., McGraw-Hill Book Company, New York 1973.
- 20. Pikulik, A. and Diaz, H. E., Chem. Eng., Oct 10, p. 106 (1977).
- 21. Rahmel, A., Oxidation of Metals, 9, 401 (1975).
- Richards, C. W., "Engineering Material Science," Wadsworth Publishing Co., Inc., San Francisco, 1961.
- 23. Ridgeway, S. L. and J. L. Dooley, "Underground Storage of Off-Peak Power," Proceedings 11th Intersociety Energy Conversion Engineering Conference, Nevada, 1976.
- Rohsenow, W. M. and J. P. Hartnett (Ed.), <u>Handbook of Heat Transfer</u>, McGraw-Hill Book Company, New York, 1973.
- 25. Spewock, S., Brecher, L. E., and J. F. Pierre, "An Evaluation of Catalysts for the Thermal-Catalytic Reduction of Sulfur Trioxide," Westinghouse R&D Center, Pittsburgh, 1977.

- 26. Tong, L. S., "Boiling Heat Transfer and Two-Phase Flow," RobertE. Krieger Publishing Company, Huntington, 1975.
- Treybal, R. E., "Mass Transfer Operations," McGraw-Hill Book Company, New York, 1968.
- 28. Uyehara, O. A., and Watson, K. M., Ind. Eng. Chem., 35, 541 (1943).
- Vasantasree, V. and M. G. Hooking, <u>Corrosion Science</u>, <u>16</u>, 261 (1976).
- Whittle, D. P. and G. C. Wood, <u>J. Electrochem. Soc</u>., <u>115</u>, 126 (1968).
- 31. Larinoff, M. W., "Dry Cooling Tower Power Plant Design Specifications and Performance Characteristics," ASME Paper, Detroit, Michigan, November 1974.
- Nickless, G., "Inorganic Sulphur Chemistry," Elsevier Publishing Company, Amsterdam, 1968.
- 33. General Electric Turbine Design Drawing 414 HB 725.
- 34. Peters, M., Timmerhaus, K., Plant Design and Economics for Chemical Engineers, McGraw Hill, 1965.
- Skinrood, A.C. et al., Sandia Laboratory, Report SAND 74-8017, Sept., 1974.

APPENDIX A. EQUATIONS FOR THE HIGH-TEMPERATURE REACTOR MODEL

Notation

Equations are written for an incremental reactor length. The diagram below displays some of the notation.

Other Notation:

 $y_{SO_3}^{o}$, $y_{SO_2}^{o}$, $y_{O_2}^{o}$ - mole fractions in feed gas F_0 - molar flow rate of feed per tube P - pressure

 d_0, d_i - outside and inside tube diameter

L - number of increments

Assumptions

- 1. Chemical reaction reaches equilibrium on catalyst surface. Rate of chemical conversion is limited by the rate of diffusion of SO_2 from catalyst surface to bulk gas.
- Gas is in plug flow; there are no radial gradients outside of boundary layer.
- 3. Uniform source temperature throughout receiver.
- Heat capacity of gas mixture on mass basis is independent of gas concentration.
- 5. Ideal gas laws apply.

Equations

Radiant heat flux from receiver source

$$Q_i = \sigma(T^4 - T_{wi}^4)$$
 (1)

Heat flux balance at exterior surface of tube wall

$$Q_{i} = \frac{k_{w}}{t} (T_{wi} - T_{si})$$
 (2)

Heat flux balance at catalyst surface

$$Q_{i} = h(T_{si} - T_{bi}) + (\Delta H_{R})kgP \left[(y_{S02})_{s} - y_{S02} \right]_{i}$$
(3)

Chemical equilibrium at the surface

$$K_{P}(T_{s}) = \frac{\binom{p_{SO_{2}}s}{s} \binom{p_{O_{2}}s^{1/2}}{s}}{\binom{p_{SO_{3}}s}{s}}$$

By stoichiometry,

$$K_{P}(T_{s}) = \frac{\left(y_{SO_{2}}^{o} + y_{SO_{3}}^{o}x\right)}{y_{SO_{3}}^{o}(1-x)} \left[\frac{P\left(y_{SO_{3}}^{o}x + 2y_{O_{2}}^{o}\right)}{2 + y_{SO_{3}}^{o}x}\right]^{1/2}$$

$$K_p = 10^{(4.765 - 5022/T_s)}$$
 (4a)

where

 $x \equiv$ fraction of SO₂ in feed stream that is converted at conditions of catalyst surface.

and

$$\left(y_{S02}^{0}\right)_{s} = \frac{y_{S02}^{0} + y_{S03}^{0}x}{y_{S03}^{0} (1+x/2)}$$
(5)

Heat balance on gas

$$(F_{0}C_{p0})\left[T_{bi+1} - T_{bi}\right] = h(\pi d_{i}\Delta z)\left[T_{si} - T_{bi}\right]$$
(6)

Material balance on SO_3 in gas

Fi
$$y_{S0_3i} - N_{ia} = (F_i + \frac{N_{ia}}{2}) y_{S0_3i+1}$$
 (7a)

where

$$N_{ia} = kgP(\pi d_{i}\Delta z) \left[\left(y_{S02} \right)_{s} - y_{S02} \right]_{i}$$

Material balance on SO_2 in gas

$$F_{i} y_{SO_{2}i} + N_{i}a = F_{i+1} y_{SO_{2}i+1}$$
 (7b)

Oxygen concentration by difference

$$y_{02i+1} = 1 - \left[y_{S03} + y_{S02} \right]_{i+1}$$
 (7c)

Molar flow rate (from addition of Eqs. (7a) and (7b)

$$F_{i+1} = F_i \left[\frac{y_{SO_3i} + 2}{y_{SO_3i+1} + 2} \right]$$
(8)

Total heat flux per tube

$$Q = (\pi d_0 L \Delta z) \sum_{i=1}^{L} Q_i$$
(9)

Solution Sequence

The method of iterative solution is as follows:

- 1. Radiant source temperature T assumed (uniform for all increments).
- 2. For each increment, Equations (1) (5) are solved iteratively for Q_i , T_{wi} , T_{si} , x, and $(y_{SO_2})_{si}$ by adjusting trial values of T_{wi} until satisfaction of the heat balances is achieved. Δz was taken = 0.2m.
- 3. Equations (6) (8) yield T_{bi+1} , F_{i+1} , and mole fractions at the (i+1)st increment.
- 4. When all increments have been calculated, the total heat flux per tube calculated by Eq. (9) is compared with the specified flux and adjustment made in the source temperature T if mismatch exists. Iteration from Step (1) is made until convergence is achieved.

Parameter values used in the calculations are given in Table A.1.

	Parameter			Value (or represe average v	ntative alue)		<u>Relationship</u>	Reference
k W	tube thermal conductivitiy			35 J/s•m•K				[18, Table 23.5]
kg	convective mass transfer coefficient $(1.14 \times 10^{-6} \text{ mol/s} \cdot \text{m}^2 \cdot \text{N} \cdot \text{m}^{-2})$ Sh = $0.023 \text{Re}^{0.81} \text{Sc}^{0.33}$		Nusselt correlation					
h convective heat transfer coefficient			(350 J/s·m ² ·K)			$Nu = 0.023 Re^{0.81} Pr^{0.33}$	Nusselt correlation	
с _{ро}	C _{Po} Gas molar heat capacity			(75 J/mo]•K)		a (a (a)	[11]
^{∆H} R	ΔH_R Heat of reaction			(86.6 kJ/mol)		98.3 -	$1.09 \times 10^{-2} T + 7.07 \times 10^{-6} T^2 + \frac{628}{T-577}$	[11]
σ	Radiant heat constant	flux		5.67 x 10 ⁻⁸	J/m ² ·s·K ⁴			
S02	diffusivity			0.018 cm ² /s	•			[18, Eq. 3-29]
Gas	as viscosity			4 x 10 ⁻⁵ kg	/m•s			[18, Eq. 3-129]
Gas	thermal conduc	ctivity		0.043 J/s·m	٠K			[18, Eq. 3-102]
Crit	tical constants			SO3	SO2	02		
		т _с	°c	218.3	157.2	-118.8		
		р С	atm	83.6	77.7	49.7		
		^р с	g/cm ³	0.63	0.52	0.43		

Table A.1. Parameter values for the High-Temperature Reactor Model.

* ک

2

*Actual calculations in HTR-routine uses MKhr units (m, kg, hr, Cal, C⁰, atm) rather than SI units as given in this table.

-86

6.24

APPENDIX B. LOW-TEMPERATURE REACTOR COMPUTER MODEL

The temperature and concentration profiles in the low temperature reactor are calculated from incremental heat and material balances.

Fig. B-1. Diagram of spatial increment in LTR.

X = bulk conversion T = bulk temperature $\Delta z = \text{length increment}$ Heat Balance: $(\Delta H_r)(X_{i+1} - X_i) = C_p(T_{i+1} - T_i) \quad (B-1)$ Material Balance:

 $X_{j+1} - X_j = 1/F \quad r \cdot \rho_c \quad A \cdot \Delta z \tag{B-2}$

Reaction rates over both V_2O_5 and platinum catalysts are reported in the literature as overall rates (g-moles converted per sec per kg catalyst). Diffusion resistance and thermal resistance were therefore assumed to be incorporated into these effective reaction rates. The kinetic expressions used are:

V205 Catalyst (Mars + Maessen [17])

$$r = Ae^{-E/RT} \frac{K P_{SO_2}/P_{SO_3}}{[1 + (K P_{SO_2}/P_{SO_3})^{1/2}]^2}$$
(B-3)

(B-4)

 $K = 2.3 \times 10^{-8} \exp(27200/RT); R = 1.98 \text{ cal/mole}^{O}K$

	<u>Temperature Range, ^OC</u>			
	420-454	454-600		
E, cal/mole	70,000	36,000		
A	1.56×10^{17}	9.38 x 106		

Herce et al. [13] give evidence that this relation is valid at pressures up to 10 atmospheres.

Platinum Catalyst (Lewis and Ries [14], Uyehara and Watson [20]).

$$r = \frac{kTe^{(-E/RT)}}{(1 + K_{02}P_{02} + K_{S03}P_{S03})^2} \left[P_{S02}P_{02}^{1/2} - \frac{P_{S02}}{K} \right]$$

$$ln K_{S03} = 21400/RT - 23/R$$

$$ln K_{S02} = 20360/RT - 23/R$$

$$ln K = 22980/RT - 19.5/R$$

$$E = 3690 \text{ cal/mole}$$

$$k = 0.57 \text{ gmole/(sec)(kg \text{ cat.)}(^{0}K)$$

Partial pressures in the above rate expressions were represented in terms of conversion x through the stoichiometry of the reaction and the ideal gas law. The low temperature reactor calculations were carried in two separate parts. First, the temperature and conversion in each of the five adiabatic reactors were determined. This portion was carried out by the LTS (low-temperature side) routine and the LTR (low-temperature reactor) routine as part of the overall material and energy balance program for the entire system. The flow chart for the LTR routine is given in Appendix C. It has been assumed that reaction reaches 99% of equilibrium in each reactor and that reactor effluents are cooled back to 420°C before entering the next reactor.

Second, the size (length) of each reactor was determined by a separate program LTRS (low temperature reactor sizing) which was run after all process balances were completed.

The calculational procedure used to model the low-temperature reactor was quite simple. The reaction-rate equation for the catalyst and temperature of the increment was selected. The rate of reaction per unit volume was calculated, and the length of the increment adjusted to make the temperature rise in the increment equal to a predetermined amount. The new bulk temperature and composition for the reaction mixture was calculated, and the procedure was repeated. When the temperature reached 454°C, the V₂O₅ reaction rate constants changed. When the temperature reached 600°C, the platinum bed started. When the program calculated that equilibrium had been passed, it went back one increment and cut the incremental temperature rise in half. Calculations proceeded in this manner until the incremental temperature rise had been decreased to 0.5°C. This occurred when the gas was within 1.0°C of equilibrium.

-89-

The program then moved on to the next reactor, using the outlet composition of the previous reactor and an input-specified temperature as a starting point.

All of the variables and constants used in the LTR program are in MKS units.

APPENDIX C. FLOW CHARTS AND PROGRAM LISTINGS

TABLE OF CONTENTS

0 to - to -			Page Nu	mber	
		Lontents	FlowChart	Program	
Program	MEBP	Material and Energy Balance Program	93	109	
Suqroutine	HTS	High-tempertaure side energy and material balances (daytime)	94	117	
Subroutine	LTS	Low-temperature side material and energy balances (nighttime)	95	122	
Subroutine	HTR	High-temperature (daytime) SO ₃ - SO ₂ reactor	96	126	
Subroutine	LTR	Low-temperature (nighttime) SO ₂ - SO ₃ reactor	97 `	132	
Subroutine	DIST	Distillation column	98	134	
Subroutine	STC	Steam turbine	99	142	
Subroutine	CLR	Condenser load. Calculates load for given flow and output temperature	100	148	
Subroutine	CTR	Condenser temperature. Calculates temperature of outlet stream of an exchanger whose load is specified.	101	150	
Function	CCL	Condenser load. (Called by both CTR and CLR.)	102	153	
Subroutine	FINDT	Stream temperature for a stream with given enthalpy.	103	156	
Subroutine	RECOPY	Copies data of one record into another	. 104	157	
Function	TRKP	Equilibrium constant in terms of conversion of SO_3 to SO_2 (daytime).	104	158	
Function	ТКР	Equilibrium constant in terms of conversion of SO_2 to SO_3 (nighttime).	104	159	
Function	СР	Specific heat of stream.	105	160	
Function	DHR	Heat of reaction of SO3 - SO2.	105	161	

-91-

		Contents (Continued)	Page Nu Flowchart	mber Program
Subroutine	ENTR1	Enthalpy of liquid mixture.	106	162
Subroutine	ENTR2	Enthalpy of gas mixture.	106	163
Subroutine	LHR	Latent heat.	107	164
Subroutine	VKCR	Volatility K constant.	107	165
Subroutine	BPTR	Bubble point temperature.	108	166

SAMPLE PRINTOUT OF RESULTS.

168

XBL 793-956

ME8P - Material and Energy Batances Program

XBL 785-865

94

LTS --- Low Temperature Side Material and Energy Balances Routine

XBL 785-864

HTR - High Temperature Reactor Routine

96

LTR - Low Temperature Routine

XBL 793-957

Distillation Column Routine Flow Chart

e Z n i r

* * {}

. ```

XBL 793-965.

STC -- Steam Turbine Calculations Routine

CTR -- Cordenser Temperature Routine

XBL793-968

, **`**>

 γ

ۍ و

CP – Specific Heat Function

XBL793-962

107

PROGRAM MEBP(INPUT,OUTPUT,PUNCH) MESP 10 **** ****MERD 20 *MFBP 30 *MEBP UPDATED 2/28/78 40 MEBP - MATERIAL AND ENERGY BALANCES PROGRAM FOR CES *MEBP 50 *MFBP 60 70 *PROGRAM CALCULATES MATERIAL AND ENERGY BALANCES FOR THE CHEMICAL HEAT *MEBP 80 *STORAGE SYSTEM BASED ON J2,S02,SJ3. THE PROCESS IS DESIGNED TO SUPPLY *MEBP 90 *THE NECESSARY HEAT FOR A STEAM POWER PLANT DURING NIGHT TIME. DIRECT *MEBP 100 *STEAM GENERATION PLANT IS INTEGRATED WITH THE STORAGE SYSTEM TO PROVIDEMEBP 110 *MAXIMUM HEAT EFFICIENCY FUR THE IOMBINED PROCESS (SEE DAYAN ET AL + *MEBP 120 *PROCEEDING OF THE 12TH IELEC, P.1181, WASHINGTON DC 1977). *MEBP 130 *THE PROGRAM STARTS WITH READING BASIC DATA (SPECIFICATIONS)TOLERANCES,*MEBP 140 *TOTAL HEAT AVAILABILITY, ETC.) AND FIRST GUESSES FOR KEY STREAMS (THESE*MEBP 150 *ARE LATER UPDATED). THE PROGRAM USES TWO MAIN SUBROUTINES-HTS AND LTS *MEBP 160 *TO CALCULATE THE BALANCES FOR THE DAY AND NIGHT-TIME OPERATIONS RESPE-MEBP 170 *CTIVELY, DIRECT SUBSTITUTION IS USED FOR THE CYCLIC PROCESS UNTIL *MERD 180 *CONVERGENCE ON FLOW, TEMP. AND COMPOSITION IS REACHED. THEN STC ROUTINEMEBP 190 *IS CALLED TO CALCULATE STEAM POWER PLANT GENERATION DATA. OUTPUT IS: *MEBP 200 *SCALED AND PRINTED ACCORDING TO TOA-TOTAL HEAT AVAILABLE AT THE RECEIV-MEBP 210 *ER FOR THE STORAGE PROCESS. *MFBP 220 *MEBP 230 *THE FOLLOWING SUBFOUTINES ARE BEING USED= *MEBP 240 *BPTR(P,X2,T) - B(ILING POINT TEMP.T OF LIQ. MIX. OF S02-S03 AT P,X2 *MEBP 250 *CCL(TJ)-COMMON(TO CTR+CLR)FUNCTION TO CALC. CONDENSER LOAD AT EXIT T-TJMEBP 260 *CLR(NI,NG,NL,CL)-(DNDENSER LOAD CL, FOR INCOMING GAS STREAM NI AND *MEBP 270 * OUTGOING GAS STREAM NG AND LIQ. STREAM NL. *CP(T,X1,X2,X3)-HEAT CAPACITY UF GAS MIX.(X1,X2,X3) AT TEMP. T *MEBP 280 *MEBP 290 *CTR(NI,NG,NL,CL)-C(NDENSER EX:T STREAMS(NG,NL)TEMP. FOR GIVEN LOAD-CL *MEBP 300 *DHR(T)-HEAT OF REACTION AS FUNCTION OF TEMP. T *MEBP 310 *DIST(F,TF,PF,HF,XF,QR,XD,P,PR:32,N,D,TM,PD,HLM,YM,B,TB,PB,HB,XB)-PLATE*MEBP_320 TO PLATE CALC. OF DISTILLATION TOWER FOR BINARY MIX. S02-S03 *MEBP 330 *ENTR1(T,X2,HL)-ENTHALPY CALCS. FOR S02-S03 LIQ.MIX AT TEMP-T, COMPOS-X2*MEBP 340 *ENTR2(T,X2,X3,HG)-ENTHALPY CALCS. FOR 02-S02-S03 GAS MIX.AT T,X2,X3 *MEBP 350 *FINDT(NS,NF)-FIND TE 4P. OF STREAM NF. NS=STREAM STATE=1-LIQ. 2-GAS *MEBP 360 *HTR(FI)TI)PI)X2I)FO)TO)PO)X10)X20)X30)FC)TWM,IFP)-HIGH TEMP. RECEIVER-*MEBP 370 * REACTOR. I-INPUT STREAM, O-OUTPUT STREAM, FINAL CONV., TW-MAX, PRINT*MEBP *HTS - MATERIAL AND ENERGY BALANCES FOR THE HIGH TEMP. SIDE *MEBP 380 *MEBP 390 *LHR(T,X2,LH)-LATENT HEAT OF S02-S03 MIX. AT TEMP.-T.COMPOSITION-X2 *MEBP 400 *LTR(X,Q,N-IN,N-OUT,N-COLD) LOW TEMP. REACTOR ROUTINE. (N=STREAM NO.) *MEBP 410 *LTS - MATERIAL AND ENERGY BALANCES FOR THE LOW TEMP. SIDE *MEBP 420 *RECOPY(IIN, IOUT)-COPY RECORD NO.-IIN INTO RECORD NO.-IOUT *MEBP 430 *STC(GAAN, R)-STEAM TURBINE CALC. DETERMINES STEAM POWER PLANT SIZE - *MEBP 440 * AND OPERATION RATES DURING DAY AND NIGHT (VARIOUSE DISCHARGE RATESMEBP 450 *TRKP(X,P)-CALC. TRIAL VALUE FOR REACTION EQUILIBRIUM CONSTANT-KP *MEBP 460 *VACR(P,T,K2,K3)-VOLATILITY CONSTANTS K2,K3 FOR S02,S03 AT P AND T *ME3P 470 *MEBP 480 *NOMENCLATURE= (SEE PROCESS SCHEMES FOR DETAILS) *ME3P 490 *COMMON BLOCKS NAMES= *MEBP 500 LOW AND HIGH TEMP. VARIABLES *MEBP 510 LAHTV HIGH TEMP. HEAT-EXCHANGERS LOADS *MEBP 520 HTHEL HIGH TEMP. MARIABLES HTV *MEBP 530 LTV LOW TEMP. VARIABLES *ME3P 540

LTHEL *MF3P 551 LOW TEMP. HEAT-TXCHANGERS LOADS MEBD 560 NIGHT WORK ¥ STREAM RECORDS HAME (F.P.T.H.X1.X2.X3) STREAM MEBP 570 ÷¥ *MEBP 580. *MERD 590 *VARIABLES= ADJU: TED TQA (A"QA=TQA*R) *MEBP 600 ACTA BDT56 BASE CASE DELTA T BETWEEN 5 AND 6 (K) *MEBP 610 BOILER FEED WATER CONDENSER TEMP. (K) BEWCT *MEBP 620 BEWHL BOILER FEED WATER HEAT LOAD - HTS - (KJ/S) *ME8P 630 BOILER FEED WATER HEAT LOAD - LTS - (KJ/S) BFWL *://EBP 640 BOILER FEED WATER HEAT LOAD AT NIGHT-TIME NORMAL OUTPUT.** MEBP 650 BFWN1 BEWN2 BEW HEAT LOAD AT NIGHT, SEASONAL STORAGE (100 MW). *MEBP 660 αP BASE CASE HIGH PRESSURE (BAR) *MEBP 670 BTMAX BASE CASE TUBE WALL MAX TEMP (K) *MEBP 680 BASE CASE 11N ACHIEVABLE TEMP (K) BTMIN *MEBP 690 TOTAL CONVERSION FOR THE LTR SYSTEM С *MEBP 700 CIL CONDENSER-1 LOAD (HTS) - (KJ/S) *MEBP 710 DELP INCREMENT FOR STUDIED PARAMETER P *MEBP 720 DTA ARRAY FOR DTD56\$S TO BE STUDIED *MEBP 730 DTD56 OT DESIRED BETWEEN T(6) AND T(5) .(K) *MEBP 740 DTMIN INCREMENT FOR STUDIED PARAMETER THIN *MEBP 750 *MEBP 760 DTWM INCREMENT FOR STUDIED PARAMETER TWMAX INCREMENT FOR STUDIED PARAMETER DTD56 056 *MEBP 770 FIRST LOOP DELTA T 5-6 DT56 *MEBP 780 *MEBP 790 DYPR DAYTIME POWER OUTPUT (MW-E) EDAN ENERGY DISSPATED AT NIGHT (MW) *MEBP 800 FOPAN ENERGY OUTPUT AT NIGHT (MW) *MEBP 810 EPSF5 LIMITS FOR CONVERTION ON F(5) *MEBP 820 LIMITS FOR CONVERTION ON T(5) EPST5 *MEBP 830 OVERALL EFFICIENCY OF PROCESS Ε1 *MEBP 840 Ε2 EFFICIENY OF STEAM CYCLE *MEBP 850 THERMAL EFFICIENCY OF STORAGE 53 *MEBP 860 F FLOW(KMOL/SEC) *MEBP 870 FC FINAL CONVERSION IN REACTOR-RECEIVER (HTR) *MEBP 880 FLOW OF STREAM 5 (KMOL/S) *MEBP 890 F 5 GAS TURBINE WORK (NWORK) - (KJ/S) GTW *MEBP 900 ENTHALPY+(KJ/KMOL) *MEBP 914 H HE1L HEAT EXCHR. 1 LOAD (HTHEL) - (KJ/S) *MESD 920 HEAT EXCHR. 2 LOAD (LTHEL) - (KJ/S) *MEBP 930 HE2L INDICATOR FOR P"INTING (HTR) (0-NO,1-YES) *MEBP 940 TEP I DO-LOOP INDEX FUR TWMAX STUDY AND STREAM CLEAR *MEBP 950 RECCRC INDEX (1++45) *MEBP 960 .1 DO-LOOP INDEX FOR THIN STUDY *MEBP 970 ĸ DO-LOOP INDEX FUR DTD56 STUDY *MEBP 980 L DO-LOOP INDEX FOR CONVERGENCE ON STREAMS M *MEBP 990 NO.OF STREAMS *MEBP1000 N NDP NO. OF VALUES FOR STUDIED PARAMETER P. *MEBP1010 NO. OF RECORDS IN HTS NH *MEBP1020 NOP NO. OF PLATES, DIST. COL. (MAX. ALLOWED) *ME9P1030 NOPL NUMBER OF PARAMETER LOOPS *ME8P1040 NUMBER OF STUDIED PARAMETERS NOSP *MEBP1050 NTMIN NO. OF VALUES FOR STUDIED PARAMETER THIN *ME8P1060 NTWMN NO. OF VALUES FOR STUDIED PARAMETER TWMAX *MEBP1070 NO. OF VALJES FOR STUDIED PARAMETER DTD56 N56 *MEBP1080 PRESSURE(BAR) D *MEBP1090 PRESS. OF THE DIST. COL. PD *MEBP1100 PHA ARRAY FOR HIGH PRESSURE SIDE PARAMETER P *MEBP1110

¥	PRS02	PERCENT RECUVERY OF SO2 IN THE DIST. COL.	*MEBP1120
*	P1	PRESSURE FOR STREAM 1	*MEBP1130
¥	P5	PRESSURE FOR STREAM 5	*MEBP1140
*	P21	PRESSURE FOR STREAM 21	*MEBP1150
*	Q	ARRAY FOR HEAT AVAILABLE AT REACTORS HEAT-EXCHANGERS	*MEBP1160
*	QAAN	Q AVAILABLE AT NIGHT (NWORK) - (KJ/S)	*MEBP1170
*	<u></u> अस	TOTAL & REQUITED IN REBOILER (KJ/S)	*MEBP1180
*	QRES	Q FOR REBOILER COMINE FROM STEAM (HIHEL) - (KJ/S)	*MEBP1190
*	K	100./IGRUSS STEAM TURBINE POWER PRODUCTION)	*MEBP1200
*	RALIO	STEAM GENERALION-STORAGE RALLO (FROM STC)	*MEBP1210
*	RCE	REBUILER-CONDENSER LOAD (HIHEL) - (KJ/S)	*MEBD 12 20
*	RECUPL	RECUPERATOR LUAD (LIHEL) - (KJ/S)	*MEBP1230
×	STOP	STALL TURBINE OPTPUT TEROM STCT (MW)	************
*	50/4	SUM JE BUILER FEED AND IRIMMER HEAT DUTTES	*MEBP1250
ж м.		TOTA CENERATED DOWER DURING THE DAY (MW.E)	*MESP1260
ж ж		ADDAY FOR THINK. TO DE STUDIED	*MEDP1270
×	1 24	EIDER LOND THINDS TO BE STUDIED	*MEBP1280
л м	TNEL	FING LOOP IPIIN MINE ACHIMADIE E ANNUHEDE IN THE SYSTEM	*MEBP1290
ж ж		TOTAL O AVAILADER AT THE DECEIVED (HTD) - (MILC-MA)	*MEBP1300
×		TOTAL & AVAILABLE AT THE RECEIVER (HTR) = (MU/SEMW)	**********
*		TRIMMER LOAD (LTS) - (KJ/S)	*MEBP1320
*	TW	MAY TEMD AT THRE WALLS AS CALC. BY HTP - (V)	*MEDP1330
*	THA	ADDAY SOD TWMAYES TO BE STUDIED	***C0P1340
*	TUMA	EIDST LOOD THMAY	*MEDP1330
×	TWMA	MAY DEDMICEADLE WALL TEMP AT THE ADSORDED	*MEDP 1300
х х	1 1 1	TENDEDATHOE STDEAM 1 (K)	*MEDP1370
*	T24	$\frac{1}{2} \frac{1}{2} \frac{1}$	*MEDD1200
*	124	SPECIFIED TV247 FOR LIS - VK7 SPECIFIED REACTOR IGNITION TEMP. FOR LIS - VKA	*MESP1390
*		VADORIZER LOAD (LITS) - (KL/S)	*MEDP1400
*	VAPII	VAPORIZER LOAD (HTS) - (KU/S)	*MEDP1410
¥	X	ARRAY FOR CONVERSIONS AT THE LIRSS	#MEBP1420
×	XD	SPECIFIED X2 AT THE DIST. COL. CONDENSER	*MEBP1400
*	XI	OXYGEN CONTENT (MC.E FRACTION)	*MEBP1450
¥	X 2	SO2 CONTENT (MOLE R.)	*MEBP1460
×	X 3	SO3 CONTENT (MOLE FR.)	*MF8P1470
¥	X21	MOLE FRAC. SO2 IN STREAM 1 (FIRST APPROX.)	*MEBP1480
¥	X25	MOLE FRAC. 502 IN STREAM 5 (FIRST APPROX.)	*MEBP1490
*	X218	MOLE FRAC. SO2 IN STREAM 18 (FIRST APPROX.)	*MEBP1500
¥			*ME9P1510
****	*****	***	**MEBP1520
*			*MEBP1530
	COMMONIS	TREAM/F(60),P(60),T(60),H(60),X1(60),X2(60),X3(60)	MEBP1540
	COMMON/L	TV/N+T24+T27+Q(5)+X(5)+C	MEBP1550
	COMMON/H	TV/DTD56,EPST5,TWMAX, PD,PRS02,XD,EPSF5,NH,NOP	MEBP1560
	COMMON /	LAHTV/BFWCT+TM?N	MEBP1570
	COMMONIA	THEL/C1U,VAP1L,HE1L,RCL,BFWHL,TRIMMER,GRFS	MEBP1580
	COMMON/L	THEL/RECUPL, VAPL, BFWL, TRIML, HE2L	MEBP1590
	COMMON/N	WORK/QAAN,GTW	MEBP1600
	DIMENSIO	N TWA(10),DTA(10),TMA(10),PHA(10)	MEBP1610
*KEEP	RECORD 4	5 ZELJ FOR VARIOUS PROGRAM USES.	*MEBP1620
	DATA F(4	5),P(45),T(45),H(45),X1(45),X2(45),X3(45)/7*0./	MEBP1630
*ALL (CALC. BAS	LO OF A BUEING TYPE RECEIVER ABSORBING 230. MW-TH.	*MLBP1640
****	JALA TQA.	/2300/ Ditue dage caemin	MEBP1650
PARA	9616KS FO	K THE BASE CASE IN BIMAY BOTES BU1222 -1162 -140 -40 4	*MEBP1660
	JATA DIM	11190171AA90019090P733309113369140694067	MEBP1670
*			*MEBP1680

*SET ALL VARIABLES IN STREAM FOUAL TO ZERO	*MEBP1690
	MEBP1700
8 CALL RECOPT(45)[)	MEBP1710
	*MESP1720
*READ UNCHANGING VARIABLES	*MEBP1730
	MEBP1740
*READ FIRST APROXIMATIONS TO BE CODATED BY THE PROGRAM	*MEBP1750
	MEBP1760
* READ OBJECTIVE DATA AND SPECIFICATIONS	*MEBP1770
	MEBP1780
*READ IDLERANCES AND INCREPENTS DELIASS.	*MEBP1790
REAJ 4992F8F992F8F95	MEBP 1800
AREAD INTEGER SPECIFICATIONSENDING	*MEBP1810
	MEBP1820
READ PARAMETERS TO SE STUDIEUT	*ME8P1830
READ 56 DIWMONTWM D36 ON56 DIMINONIMIN	MEBP1840
READ 56,954 DYNDP	MEBP1850
REAU 40 INDE	MEBP1860
*WRITE ALL INPUTS FOR THE REFORD	*ME3P1870
	MEBP1880
PRINT409P19P29P2191249127	MEBP1890
PRINT 1/9119AZ19FD9AZ297Z218	MEBP1900
PRINT BODISSI WAAIMI, PRS029X9	MEBP1910
PRINT 1995PS159EPS15	MEBP1920
PRINT 499N SNC SNH	MEBP1930
PRIN1579DUWAYUWAYD569N569DTMINYNTMIN	MEBP1940
PRINT 58, DELF, NOP	M58P1950
*PRELIMINARY CALCULATIONS, DATA PREPARATION AND FIRST ESTIMATES	*MEBP1960
*COMPLETE DATA OF F(I)	*MEBP1970
P(1) = P1	MEBP1980
	MEBP1990
x 2 (1) = x 2 1	MEBP 2000
CALL ENTRI(T(1), X2(1), H(1))	MEBP2010
$X = \{1, 1\} = 0$	MEBP 20 20
$x_3(1) = 1 - x_2(1)$	MEBP 2030
*DU LOOPS FOR STUDIED PARAMETERS	*MEBP2040
	MEBP 2050
	MEBP2060
14 $\text{IMA}(K) = \text{IMA}(K-1) + \text{DIM}(N)$	MEBP 2070
$D_{0} = 32 \times 10^{-11}$	MEBP 2080
IWA(K) = BIMAX	MEBP 2090
DTA(K)=BDT56	MEBP 2100
	MESP2110
	MEBP 2120
	MEBP2130
DO 20 K=1,NOSP	MEBP2140
$W \square A = 1 W \square (K)$	MEBP 2150
	MEBP2160
	ME8P2170
	MEBP 2180
(1) = 1	MEBP 2190
	MEBP2200
	MEBP 2210
	MEBP 22 20
	MEBP 2230
*PD ESTIMATED FROM ROWN F(1) 1N)	*MEBP2240
PD=4+54E=4*EXP(+0303*1(IN))	MEBD 2250

*COMPLETE DATA OF F(18)	₩ME	BP 2260
*T(18) UPDATED FROM KNOWN F(TMIN)	*ME	BP2270
$T(18) \neq TMIN + 50 + (TMIN - 273) / 100$	ME	BP2280
P(18)=PD	ME	BP 2290
CALL BPTR(P(18),X2(18),T(18))	ME	BP 2300
CALL ENTR1(T(18),X2(18),H(18))	ME	3P2310
BEWCTETMIN	ME	BP2320
PRINT 44,TWMAX,TMIN,DTD56,P(5)	ME	BP2330
00 7 V=1+6	ME	BDS340
CALL HTS	ME	BP2350
CALL RECOPY(14,23)	ME	BP2360
CALL RECOPY(17,21)	ME	BP2370
F(23)=F(23)/2•	ME	BP2380
F(21)=F(21)/2.	ME	BP2390
P(21)=P21	ME	3P2400
IF(F(21))31,31,29	ME	BP2410
*	*ME	BP2420
29 CALL LTS	ME	BP2430
PRINT 52+F(36)+F(1)+X2(36)+42(1)+T(36)+T(1)	ME	BP2440
IF(ABS(2•*F(36)-F(1))-0•015)3•3•4	ME	BP2450
3 IF(ABS(X2(1)-X2(36))-0.008)2.2.4	ME	BP2460
2 IF(ABS(T(1)-T(36))-1·)1·1·+	ME	BP2470
1 1F(M-2.)4.4.21	ME	BP2480
4 CALL RECOPY(36,1)	ME	BP2490
P(1) = P1	ME	BP2500
$F(1) = 2 \cdot *F(1)$	ME	BP2510
IF(F(21))31,31,12	ME	8P2520
31 PRINT 3U TMIN	ME	BP2530
GO TO 10	ME	BP2540
12 F(5) = F(1) + F(18)	ME	BP2550
P(5) = PHA(K)	ME	BP2560
7 CONTINUE	MF	BP 2570
PRINT 22	мr	BP2580
*FINAL PASS THROUGH HTR	*MF	8P2590
	ME	BP2600
PRINT 44+TWM/X+TMIN+DTD56+P(5)	MF	BP2610
CALL HIRLE(5) + T(5) + P(5) + Y2(5) + F(6) + T(6) + P(6) + X1(6) + X2(6) + X3(6)		BP2620
1TW-TEP)	ME	BP2630
	ME	BD2641
SCAL STEAM TURDING CALC, ROUTING	*ME	9P2650
DENT O	ME	BD2460
	ME	BP2670
CALL STOLONANA PAT (10) + T (40) + R4 + RATIO + STOP + BEWN 3 + BEWN 2 + TGPN	ME	BP2680
*AD UST FOR AN INTEGRATED DOWED PLANT WITH A RECEIVER ABSORBING 230	MW ME	802690
ADJUST FOR AN INTEGRATED FOWER FEANT WITH A RECEIVER ADJURTING 250	MC MC	BD2700
		BD2710
	ME	BD2720
	ME	802730
	ME	802760
	ME	802750
	ME	BP2760
	ME	BP2770
	мс мс	RD 2780
24 UU JU J-71200 26 EL 112EL 1189	MC	BD 2700
	11E M =	802000
	개드	002010
	생는	582819 603636
N LOF LENSLOF LAS	141	2220

VAPL=VAPL*R MF3P2830 BEWL=BEWN1 VERP2941 HE2L=HE2L*R MEBP2850 GTW=GTW*R MEBP2860 ATOA=TQA*R MEBP2870 ME8P2880 QAAN=QAAN*R CALL CTR(30,32,33,BFWL) MEBP 2890 CALL CLR(32,34,35,TRIML) MEBP2900 IF(L.GT.0) G(TO 35 MEBP2910 *FINAL CALL FOR DILT. ROUTINE AND PRINTING ITS RESULTS. *MEBP2920 PRINT 9 ME8P2930 OR=RCL MEBP2940 CALL DIST(F(15),T(16),P('6),H(16),X2(16),QR, XD,PD,PRS02,NOP,F(17)MEBP2950 1,T(17),P(17),H(17),X2(17),F(18),T(18),P(18),H(18),X2(18),IFP) ME3P2960 *MEBP2970 *PRINTOUT MATERIAL AND ENERGY HALANCES - HTS *MEBP2980 PRINT 44, TWMAX, TMIN, DTD56, P(5) ME3P2990 PRINT 40 MFBP3000 PRINT 41 MEBP3010 PRINT 42 MEBP3020 PRINT 54+(J+X1(J)+X2(J)+X3(J)+T(J)+P(J)+F(J)+H(J)+J=1+NH) MERPRORD PRINT 47, C1L, VAP1L, HE1L, RCL, BEWHL, TRIMMER, QRES MEBP3040 *CALCULATE SEVERAL EFFICIENCIES WHICH DESCRIBE THE SYSTEM. *MFBP3050 EOPAN=STOP*.97+GTW*.9/2./1000. MEBP3060 DYPR=.958*TGPD MEBP3070 E1=(DYPR+EOPAN*2.)/((RATIO+1.)*ATQA) MEBP 3080 E2=DYPR/(RATIO*ATQA-VAP1L/1000.+BFWHL/1000.-QRFS/1000.) MEBP3090 EDAN=QAAN+BFWL+TRIML MFBP3100 E3=2.*EDAN/(ATQA*1000.+VAP1L-BFWHL+QRFS) MEBP3110 PRINT 37,E1,E2,E3 MEBP3120 37 FORMAT(/3X+*SUMMARY OF EFFICIENCIES AT THE CHOSEN PARAMETERS*+//3XMEBP3130 1,4HE1= ,F6.4, /3X,4HE2= ,F6.4,/3X,4HE3= ,F6.4) MEBP 3140 ***PRINT RESULTS. LTS** ME8P3150 35 PRINT53 MEBP3160 PRINT 41 MEBP3170 PRINT 42 MEBP3180 PRINT 54, $(J, X_1(J), X_2(J), X_3(J), T(J), P(J), F(J), H(J), J=21, N)$ MEBP 3190 MEBP3200 PRINT50, RECUPL, VAPL, PEWL, TRIML, HE2L PRINT 43,QAAN,GTW MEBP3210 PRINT 55,ATQA MEBP3220 PRINT 5 MEBP 32 30 PRINT 42 MEBP3240 PRINT 54+(J+X1(J)+X2(J)+X3(J)+T(J)+P(J)+F(J)+H(J)+J=50+60) PRINT 13+(J+Q(J)+ J=1+5)+(X(J)+J=1+5)+C ME8P3250 MEBP3260 *REPEAT LTS PRINTOUT FOR 100MW OUTPUT IF L IS GREATER THAN 0. *MEBP3270 IF(L.GT.0) GO TO 33 MEBP 3280 R=R4 ME8P3290 BFWN1=BFWN2 MEBP3300 L=1 MEBP3310 GO TO 34 MEBP3320 33 PRINT 6 MEBP 3330 20 CONTINUE MEBP3340 *RECOVER BASE CASE GUESSES TO AID CONVERGENCE FOR OTHER PARAMETERS *MEBP3350 IF(I-2)23,24,5 MEBP3360 23 TWA(1) = TWMA MEBP 3370 TMA(1)=BTMIN MEBP3380 DO 26 K=2,1) ME3P3390

ME6P3400 TVA(K) = bTVINMEBP 3410 MEBP 3420 NOSPENTRM MEBP3430 GC TO 10 ME3P3440 24 DTA(1)=DT56 MEBP 3450 TWA(1) = 3TMAX00 27 <=2,1) MEBP 3460 MEBP 3470 $TXA(X) = \beta TMAX$ MEBP 3480 27 DTA(K) = DTA(K-1) + D56NOSP=N56 MEBP3490 MEBP3500 SO TO 10 25 IF(1.FQ.4)50 TO 10 MEBP 3510 MEBP 3520 PHA(1) = P5DTA(1)=8DT56 MEBP3530 DO 28 K=2+10 MEBP 3540 MEBP 3550 DTA(K) = 3DT56MFBP3560 28 PHA(K)=PHA(K-1)-DELP NOSP=NOP MEBP 3570 10 CONTINUE MERD 3580 5 FORMAT(1H1,3X, *RESULTS OF THE LOW TEMP. REACTORS SYSTEM*) MEBD 3590 6 FORMAT(3X,*=1) OF MEBP.*1 MEBP 3600 9 FORMAT(1H1) MEBP 3610 13 FORMAT(3X,5(1+Q,12,E10.4),/3X,5(1+X,F12.3),/3X,*LTR CONVERSION. C=MEBP3620 MEBP 3630 1*.F5.2) 16 FORMAT(/15X, HEBP PROGRA' +, /3X, HINPUT DATA*) ME3P3640 17 FORMAT(/3X,*FIRST APPROX=T(1),X2(1),F(5), X2(5),X2(18)*,7F10,3MEBP3650 MEBP 3660 1) 19 FORMAT(/3X,*SPECIFICATION= DT56+TWMAX,TMIN,PRS02,XD,*/3X,5F10.3) MEBP3670 19 FORMAT(/3X,*TOLERANCES= (PSF5,EPST5= *2F10.4) MEBP 3680 22 FORMAT(3X,*MATERIAL BALANCE DIDNT CONVERGE.*) MEBP 3690 30 FORMAT(3X,*F(36)=F(1)=0. NO CONDENSATION AT TMIN=*+F5-1+* GD TO NEMEBP3700 MEBP 3710 1XT TMAX*) 40)FORMAT(/3X,*TAF_E-1.MATERIAL AND ENERGY DATA FOR THE DAYTIME HIGH MEBP3720 1TEMPERATURE SIDE*;/3X;*STORAGE SYSTEM*) MFBP3730 410FOR MAT(/4X,*STREAM COMPOSITION (MOL PR.) TEMP. PRESSURE FLOW ME8P3740 1 ENTHALPY*1 MEBP3750 423F0RMAT(7X,3HNO.,4X,2H02,5X,3HS02,5X,3HS03,5X,3H(K),4X,*(BAR) (KMOLMEBP3760 1/S (KJ/KMOL)*) MERP3770 43 FORMAT(/3X,*ENERGY PRODUCED AT NIGHT= QAAN=*,E11.4,3X,4HGTW=,E11.4MEBP3780 1,4H(KW)) ME903790 44 FORMAT(1H1,2X,*PARAMETERS STUDIED= TWMAX=*,F6.1,2X,5HTMIN=,F5.1,2XMEBP3800 1,6HDTD56=,F5.1,2X,5HPHTS=,F4.1) MEBP3810 45 FORMAT(10X,F10.3) MERDAR20 46 FORMAT(/3X,*NON-CHANGING DATA=P(1),P(5),P(21),T24,T27*,5F10.3) MEBP3830 47 FORMAT(/3X,*HEAT EXCHAMGER LOAD (XW)=*,/3X,4HC1L=,F10.3,3X,6HVAP1LMEBP3840 1=,F1J,3,3X,5HHE1L=,F10,3,3X,4HRCL=,F10,3,/3X,6HBFWHL=,F9,3,3X,8HTRME5P3850 2INMER=+F1-.3+3X+5HQRFS=+F10.3) MEBP 3860 MEBP 3870 48 FORMAT(10X,3110) 49 FORMAT(/3X,*GENERAL= N=*, I3, 3X, 4HNOP=, I3, 3X, 3HNH=, I2) MEBP 3880 50 FORMAT(/3X, *HEAT EXCHANGERS LOAD (KW)=*,3X,6HRECUP=,F10,3,3X,4HVAPMEBP3890 1=, #10.3,/3X,4HBFW=, F10.3,3X,5HTRIM=,F10.3,3X,4HHE2=,F10.3) MEBP 3900 52 FORMAT(/3X,*CALC, ARE REPEATED IF ANY OF THE FOLLOWING CONDS, IS NMEBP3910 1CT SATISFIED=*/3X. *MEBP 3920 F(36)=**F11.5*3X*5HF(1)=*F11.5*/3X**MEBP3930 2IF(ABS(2.-F(36)-F(1))-(.015) 3IF(ABS(X2(1)-X2(36))-0.008) X(36)=*,E11.5,3X,5HX(1)=,E11.5,/3X,*MEBP3940 4IF(ABS(T(1)-T(36))-1.0) T(36)=*,E11.5,3X,5HT(1)=,E11.5) MEBP3950 53 FORMAT(1H1+3X+*TABLE+2+MATERIAL AND ENERGY BALANCES FOR THE NIGHT MEBP3960

ITIME OPERATION OF*,/4X,*THE LOW TEMPERATURE SIDE*)	MEBD3070
54 FORMAT(72X)16,3F8.2,2F8.*;F8.2,F9.1)	MEBP 3980
55 FORMAT(/3X,*RECEIVER LOAD TQA=*,F6.1,*(MW-THRM)*)	MEBP 3990
56 FORMAT(10X,3(510,3,110))	MEBP 4000
57 FURMAT(3X,*INCREMENTS OF STUDIED PARAMS. TWMAX.DTD56.TMIN=*.3(F5.	1MEBP4010
1,13,2X))	MEBP4020
58 FORMAT(3X,*INCREMENTS OF STUDIED PARAMS. DELP. NDP=*,7X,F5,1,I3)	MEBP4030
END	MEBP4040

	SUBROUTI	NE HTS	HTS	10
*****		**************************************	**HIS #UTC	20
*	HTS HIG	4/20/10 H TEMP SIDE MATERIAL AND ENERGY BALANCES	*⊓!5 ¥⊔TS	50
*	110 -110	T TEMP SIDE MATERIAL AND ENERGY DALANCES	*113	4.0
*****	***	****	**µTS	60
*RCUT	INE IS CA	LLED BY MEBP TO CALC. MATERIAL AND ENERGY BALANCES FOR	*HTS	70
*THE 1	HIGH TEMP	• SIDE (DAY-TIME OR CHARGING MODE) OF THE PROCESS.	*HTS	80
*NO P	ARAMETERS	ARE SPECIFIED IN THE CALL (COMMUNICATION BY COMMON BLOC	KIHTS	90
*THE !	FOLLOWING	SUBROUTINES ARE BEING USED=	*HTS	100
*BPTR	(P+X2+T)	- BOILING POINT TEMP.T OF LIQ. MIX. OF S02-S03 AT P.X2	*HTS	110
*CLR(!	NI,NG,NL,	CL)-CONDENSER LOAD CL, FOR INCOMING GAS STREAM NI AND	*HTS	120
¥	OUTGOING	GAS STREAM NG AND LIQ. STREAM NL.	*HTS	130
*CTR(NI,NG,NL,	CL)-CONDENSER EXIT STREAMS(NG+NL)TEMP. FOR GIVEN LOAD-CL	*HTS	140
*DIST	(F+TF+PF+	HF+XF+QR+XD+P+PRS02+N+D+TM+PD+HLM+YM+B+TB+PB+HB+XB)-PLAT	E*HTS	150
*	TO PLATE	CALC. OF DISTILLATION TOWER FOR BINARY MIX. 502-503	*HTS	160
*ENTR	1(T,X2,HL)-ENTHALPY CALCS. FOR SO2-SO3 LIQ.MIX AT TEMP-T, COMPOS-X	2*HTS	170
*ENTR:	2(T•X2•X3	HG)-ENTHALPY CALCS. FOR 02-502-503 GAS MIX.AI T,X2.X3	*HTS	180
*FIND	T (NS • NF) - 1	FIND TEMP• OF STREAM NF• NS=STREAM STATE#1-LIQ• 2-GAS	*HTS	190
*#113(1	F[9][9P[9.	AZISEUSIUSEUSEUSAUUSAZUSABUSEUSIWMSIEPITTIGH TEMPS RECEIVER THINDUT CTREAM OHOUTDUT CTREAM EINAL CONV. THHMAY, BRING	**HIS 1¥⊔⊤c	200
*	REACTORS	TEINFUL STREAMS OFOUPPUL STREAMSFINAL CONVESTWEMARSFRIN	4UTC	210
*KECU		ISTE PROCESS STHEMES FOR DETAILSY	*HTS	220
#COMM	NULATORES	NANES-	*HTC	290
*	JA SLUCKS	I ON AND HIGH TEMP. VARIABLES	*HTS	250
*	HTHEL	HICH TEMP. HEAT-EXCHANGERS LOADS	*HTS	260
¥	HTV	HIGH TEMP. VARIABLES	*HTS	270
¥	STREAM	STREAM RECORDS NAME (F.P.T.H.X1.X2.X3)	*HTS	280
*VARI	ABLESE		*HTS	290
*	A	TERM IN THE J-MATRIX (NEWTON-RAPHSON METHOD)	*HTS	300
¥	ABSDX2	ABS. VALUE OF)IFF. BETWEEN X2(5) AND X2(2)	*HTS	310
×	9	TERM IN THE J-MATRIX (NEWTON-RAPHSON METHOD)	*HTS	320
¥	BEWCT	BOILER FEED WATER CONDENSER TEMP. (K)	*HTS	330
¥	BEWHL	BOILER FEED WATER HEAT LOAD - HTS - (KJ/S)	*HTS	340
¥	c .	TERM IN THE J-MATRIX (NEWTON-RAPHSON METHOD)	*HTS	350
*	CIL	CONDENSER-1 LOAD (HTS) - (KJ/S)	*HTS	360
*	D	TERM IN THE J-MATRIX (NEWTON-RAPHSON METHOD)	*HTS	370
*	DET	DETERMINANT OF THE J-MATRIX (NR)	*HTS	380
¥	DF5	CORRECTION FOR F(5) (NR)	*HTS	390
*	DTD56	DT DESIRED BETWEEN T(6) AND T(5) +(K)	*HTS	400
*	DT5	CORRECTION FOR T(5) (NR)	# HTS	410
*	EPSE5	LIMITS FOR CONVERTION ON F(5)	*HTS	420
*	EPST5	LIMITS FOR CONVERTION ON T(5)	*HTS	430
¥	F	FLOW(KMOL/SEC)	*HTS	440
*	FC	FINAL CONVERSION IN REACTOR-RECEIVER (HTR)	*HTS	450
* .	FF	FLOW VERIABLE IN THE F-VECTOR (NR)	*HTS	460
*	FT	TEMP VERIABLE IN THE F-VECTOR (NR)	*HTS	470
*	F 5	PERTUBED F(5) (F5=F(5)+0.5)	*HTS	480
¥	H	ENTHALPY + (KJ/KMOL)	*HTS	490
*	HEIL	HEAT EXCHR. 1 LOAD (HTHEL) - (KJ/S)	*HTS	500
*	I	RUNNING INDEX IN DO LOOP (NR)	*HTS	510
*	IFP .	INDICATOR FOR PRINTING (HTR) (0-NO,1-YES)	*HTS	520

INDICATOR FOR REPEATTED CALCS. OF FIRST 6 STREAMS *HTS 1 530 NH NO. OF RECORDS IN HTS *HTS 540 NOP NO. OF PLATES, DIST. COL. (MAX. ALLOWED) *HTS 550 OAC OVER-ALL CONDENSER (IMAGINARY COND. FOR MAT.BAL.CALC.) *HTS 560 Р PRESSURE(BAR) *HTS 570 PRESS. OF THE DIST. COL. PD *HTS 580 PRS02 PERCENT RECOVERY OF SO2 IN THE DIST. COL. *HTS 590 QR Q AVAILABLE (OR REQUIRED) FOR DIST. REBOILER *HTS 600 ORES Q FOR REBOILER COMINE FROM STEAM (HTHEL) - (KJ/S) *HTS 612 RCL REBOILER-CONDENSER LOAD (HTHEL) - (KJ/S) *HTS 620 TENP.(K) *HTS T 630 TMIN MIN. ACHIVABLE T ANYWHERE IN THE SYSTEM *HTS ¥ 640 TRIMMER TRIMNER LOAD (HTS) - (KJ/S) *HTS 650 MAX. WALL TEMP. AS CALC. BY HTR тω *HTS 660 TW AS CALC. BY HTR FOR F5 AS INPUT (NR) TWE *HTS 670 MAX. PERMISSABLE WALL TEMP. AT THE ABSORBER TWMAX *HTS 680 TW AS CALC. BY HTR FOR T5 AS INPUT (NR) TWT *HTS 690 T 5 PERTUBED T(5) (T6=T(6)+2.) (NR) *HTS × 700 T(6) AS CALC. BY HTR FOR F5 AS INPUT (NR) T6F *HTS 710 TAT T(6) AS CALC. BY HTR FOR T5 AS INPUT (NR) *HTS 720 VAPORIZER LOAD (HTS) - (KJ/S) VAP1L *HTS 730 SPECIFIED X2 AT THE DIST. COL. CONDENSER *HTS XD 740 OXYGEN CONTENT (MOLE FRACTION) X1 *HTS 750 SO2 CONTENT (MOLE FR.) × Χ2 *HTS 760 SO3 CONTENT (MOLE FR.) X 3 *HTS 770 ** 780 *HTS . ¥ 790 COMMON/HTV/DTD56+EPST5+TWMAX+ PD, PRS02, XD, FPSF5, NH, NOP HTS 800 COMMON /LAHTV/BFWCT+TMIN HTS 810 COMMON/STREAM/F(60), P(60), T(60), H(60), X1(60), X2(60), X3(60) HTS 820 COMMON/HTHEL/C1L,VAP1L,HE1L,RCL,BFWHL,TRIMMER,QRFS HTS 830 DATA L/0/ HTS 840 *HTS 850 PRINT 1 HTS 86.0 *NEWTON-RAPHSON TECH. IS US_D IN SEARCH FOR F(5) AND T(5). *HTS 870 *SUPPRESS TABLE PRINTING BY HTR ROUTINE AND THE DIST. ROUTINE . *****HTS 880 TEP=0 HTS 890 *HTS 900 2 DO 60 I=1,1(HTS 910 F5=F(5)+0.5 HTS 920 T5=T(5)+2. HTS. 930 CALL HTR(F(5),T(5),P(5),X2(5),F(6),T(6),P(6),X1(6),X2(6),X3(6),FC,HTS 940 1TW.IEP) HTS 950 CALL HTR(F5, T(5),P(5),X2(5),F(6),T6F, P(6),X1(6),X2(6),X3(6),FC,HTS 960 1TWF (IFP) HTS 970 CALL HTR(F(5), T5, P(5), X2(5), F(6), T6T, P(6), X1(6), X2(6), X3(6), FC, HTS 980 1TWT, IFP) HTS 990 FF=TW-TWMAX HTS 1000 FT=T(6)-T(5)-DTD56 HTS 1010 $A = (TWF - TW)/C \cdot 5$ HTS 1020 B=(TWT-TW)/2. HTS 1030 C = (T6F - T(6))/(.5)HTS 1040 D=(T6T-T(6))/2.-1. HTS 1050 DET=A*D+B*C HTS 1060 DES=(EE*D-ET*S)/DET HTS 1070 DT5=(FT*A-FF*C)/DET HTS 1080 F(5)=F(5)-DF5 HTS 1090

HTS 1100 T(5)=T(5)-DT5 PRINT 63,0F5,0T5 HTS 1110 IF(A5S(DF5)-EPSF5)61,61,60 HTS 1120 61 IF (ABS(DT5)-EPST5)62+62+60 HTS 1130 HTS 1140 60 CONTINUE *IF LOOP COMPLEETED NO CONVERGENCE ACHIEVED. PRINT MESSAGE. *HTS 1150 PRINT 64 HTS 1160 *UPDATE FOR FINAL F(5) AND T(5) *HTS 1170 62 CALL HTR(F(5))+T(5)+P(5)+X2(5)+F(6)+T(6)+P(6)+X1(6)+X2(6)+X3(6)+FC+HTS 1180 1190 1TW, IFP) HTS $x_3(5) = 1_{-x_2(5)}$ HTS 1200 HTS 1210 $X3(18)=1-X^{(18)}$ CALL ENTR2('(6),X2(6),X3(6),H(6)) HTS 1220 *OVER ALL MAT. BAL. TO CORREC! FOR X2(5). NOTE THAT T(16)=T(14)=TMIN *HTS 1230 *ARE NOT THE FINAL RESULTS FOR THESE STREAMS. *HTS 1240 HTS 1250 T(14)=TMIN CALL CLR(6,14,16,0AC) HTS 1260 HTS 1270 F(17)=F(16)*X2(16)*PRS0?/XD $X_{2}(17) = XD$ HTS 1280 F(18)=F(16)-F(17) HTS 1290 HTS 1300 X2(18)=(F(16)*X2(16)-F(_7)*X2(17))/F(18) F(1) = F(5) - F(18)HTS 1310 HTS 1320 E(2) = E(5)HTS 1330 P(2)=P(5) X1(2)=0.HTS 1340 HTS 1350 $X_2(2) = (F(1) * X_2(1) + F(18) * X_2(18)) / F(2)$ $X_3(2) = 1 \cdot 0 - X_2(2)$ HTS 1360 IF(L.EQ.1)GO TO 7 HTS 1370 ABSDX2=ABS(X2(2)-X2(5)) HTS 1380 IF(ABSDX2-0.1*X2(2))7.7.8 HTS 1390 HTS 1400 8 X2(5)=X2(2) HTS 1410 1 = 1HTS 1420 50 TO 2 7 H(2) = (F(1) + H(1) + F(18) + H(18)) / F(2)HTS 1430 *FIND T(2). FIRST GUESS FOR T(2) IS (T(1)+T(18))/2 **#HTS** 1440 1450 HTS T(2) = (T(1) + T(18))/2. CALL FINDT(1,2) HTS 1460 *PASSING THIS POINT IT IS ASSUMED THAT F(2) IS KNOWN.UPDATE FOR F(3) *HTS 1470 CALL RECOPY(2,3) HTS 1480 *COND-1 HEATS SO3 STREAM TO ITS BOILING PT. T(3)=T(4).FIND IT *HTS 1490 HTS 1500 CALL BPTR(P(3),X2(3),T(3)) *ENTHALPY CHANGE BETWEEN H(2) AND H(3) EQUAL TO COND-1 HEAT LOAD (C1L) *HTS 1510 HTS. 1520 CALL ENTR1(T(3)+X2(3)+H(3)) C1L=(H(3)-H(2))*F(3) HTS 1530 *UPDATE FOR F(4) *HTS 1540 CALLRECOPY(3,4) HTS 1550 *VAPORIZER(VAP-1)LOAD IS CALC. FROM LATENT HEAT OR ENTHALPY CHANGE AT T4HTS 1560 CALL ENTR2(T(4),X2(4),X3(4),H(4)) HTS 1570 VAP1L=(H(4)-H(3))*F(4)HTS 1580 *UPDATE FOR F(5) (ALL IS KNOWN BUT THERE MAY BE SOME SMALL DIFFERENCES*HTS 1590 F(5) = F(4)HTS 1600 P(5)=P(4) HTS 1610 HTS 1620 X1(5) = X1(4)HTS 1630 X2(5) = X2(4)X3(5)=X3(4) HTS 1640 *HEAT LOAD AND TEMPS. OF HE-1 ARE FOUND WITH THE AID OF THE HIGH TEMP. *HTS 1650 *REACTOR (HTR) ROUTINE RESULTS. *HTS 1660

CALL ENTR2(T(5),X2(5),X3(5),H(5)) HTS 1670 HE1L=(H(5)-H(4))*F(5)HTS 1680 CALC. CONDITIONS (T,H) OF F7. F(6) *HTS 169^ *X1(6), X2(6), X3(6), P(6) WILL BE GIVEN BY HTR *HTS 1700 *UPDATE FOR STREAM F7. FIND T7 BY EQUATING HELL TO H7-H6.FIRST GUESS *HTS 1710 *FOR T7 IS T(4)+DTD56. *HTS 1720 CALL RECOPY(6,7) HTS 1730 H(7) = H(6) - HE1L/F(7)HTS 1740 T(7)=T(4)+DTD56 HTS 1751 CALL FINDT(2,7) HTS 1760 *CONTINUE HERE IF 17 CONVERGED OR ASSUME TO CONVERGED. *HTS 1770 *ENTERING CONDENSATION ZONE. START WITH COND-1. KNOWING C1L,CALC. T(8) *HTS 1785 CALL CTR(7,8,9,C1L) HTS 1790 *KNOWING CONDITIONS OF F8 REBOILLER CALCS. ARE MADE.ASSUME T10=T18+10C *HTS 1800 T(10) = T(18) + 10. HTS 1810 CALLCLR(8,10,11,RCL) HTS 1820 *KNOWING CONDITIONS OF F10, BFW HEATE IS CALC. ASS.T12=T(STEAM COND)+10*HTS 1830 T(12)=BFWCT+10. HTS 1840 CALL CLR(10,12,13,BFWHL) HTS 1850 *TRIMMER CALCULATIONS *HTS 1860 CALL CLR(12,14,15,TRIMMER) HTS 1870 P(16) = P(15)HTS 1880 *CALC.DISTILLATION FEED CONDITIONS, I.E. F16=F9+F11+F13+F15 *HTS 1890 F(16) = F(9) + F(11) + F(13) + F(15)HTS 1900 HTS 1910 x1(16)=0. X2(16)=(F(9)*X2(9)+F(11)*X2(11)+F(13)*X2(13)+F(15)*X2(15))/F(16) HTS 1920 X3(16)=1-X2(16)HTS 1930 H(16)=(F(9)*H(9)+F(11)*+(11)+F(13)*H(13)+F(15)*H(15))/F(16) HTS 1940 *FIRST GUESS OF T16 WAS SET=T1IN ... NEWTON RAPHSON TECH. IS USED. *HTS 1950 CALL FINDT(1,16) HTS 1960 *FIND DISTILLATION COL PRESJURE (CORESPONDING TO TMIN AT THE DIST. *HTS 1970 *CONDENSER.)FIRST ASSUME PD AS READ AT THE DATA INPUT. *HTS 1980 00 14 I=1,10 HTS 1990 IF(PD)18,18,19 HTS 2000 18 PD=1. HTS 2010 GO TO 20 HTS 2020 19 IF(PD-50.)20,20,21 HTS 2030 21 PD=50. HTS 2040 20 CALL BPTR(PD,XD,TD1) HTS 2050 CALL BPTR(PD+0.1.X),TD2) HTS 2060 FOP=TD1-TMIN HTS 2070 DFDP=10.*(TD2-TD1) HTS 2080 PD=PD-FOP/DFDP HTS 2090 IF(ABS(FOP/DFDP).LE.0.1)GO TO 16 HTS 2100 14 CONTINUE HTS 2110 PRINT 15,PD,TD1 HTS 2120 15 FORMAT(3X,*NO CONV. ON PD. PD=*,F6.3,3X,*TEMP. AT COND. IS=*,F5.1)HTS 2130 *CALL THE DISTILLATION ROUTINE *HTS 2140 16 QR=RCL HTS 2150 CALL DIST(F(16),T(16),P(16),H(16),X2(16),QR, XD,PD,PRS02,NOP,F(17)HTS 2160 $1,T(17),P(17),H(17),\lambda^2(17),F(18),T(18),P(18),H(18),X^2(18),IFP)$ HTS 2170 *IF EXCESS HEAT IS AVAILABLE AT RCL PUSH IT DOWN TO BFW. *HTS 2180 ORES=OR-RCL HTS 2190 IF(QRFS)3,4,4 HTS 2200 3 BFWHL=BFWHL-QRFS HTS 2210 QRFS=0. HTS 2220 *ADJUST FOR MISSING VARIABLES *HTS 2230

4 X1(17)=0. HTS	2240
x1(18)=0. HTS	2250
X3(17)=1X2(17) HTS	2260
X3(18)=1.+X2(18) HTS	2270
*PASSING THIS PT. IT IS ASSUMED THAT ALL THE PROGRAM IS COMPLETED. *HTS	2282
*CHECK X2(2)+AGAIN+TO SEE IF QUAL TO X2(5)+ PRINT BOTH X2(2)+X2(5) *HTS	2290
F(1) = F(2) - F(18) HTS	2300
$X_2(2) = (F(1) * X_2(1) + F(18) * X_2(18)) / F(2)$ HTS	2310
X3(2)=1•0-X2(2) HTS	2320
PRINT 38, X2(2), X2(5) HTS	2330
*IF THERE IS NO MATCH IN X2(2) AND X2(5) IT SOULD BE RECTIFIED AT 2ND PSHTS	2340
PRINT 39 HTS	2350
1 FORMAT(/3X+*HTS RCJTINE*) HTS	2360
35 FORMAT(/3X,*OVERALL MAT. BAL. RESULTS IN X2(2) OF=*,F6.4,3X, HTS	2370
1*COMPARE TO ASSUMED= *+F6.4+*HTS ROUTINE*) HTS	2380
39 FORMAT(/3X, *END OF HTS RTN. *) HTS	2390
63 FORMAT(/3X,*CONVERGENCE ON F(5) AND T(5)= DF5=*,E11.4,3X,4HDT5=,E1HTS	2400
11.4,*HTS ROUTINE*) HTS	2410
64 FORMAT(/3X,*NO CONVERGENCE ON F(5) AND T(5) AT HTS ROUTINE.*) HTS	2420
RETURN HTS	2430
END HTS	2440

SUBROUTINE LTS I TS 10 *** **** *****LTS 20 UPDATED 2/28/78 *LTS 30 ¥ LTS - LOW TIMP. SIDE, MATERIAL AND ENERGY BALANCES. *LTS 40 *LTS 50 60 *ROUTINE IS CALLED BY MEBP. COMUNICATION IS DONE THROUGH COMMON BLOCKS.*LTS 70 * ROUTINE CALC. MATERIAL AND ENERGY BALANCES FOR THE LOW TEMP. SIDE. *LTS 80 * SCHEME INCLUDES GAS TURBINE FOR THE EX7A55905 6F 62 46033ET TEMP. -*I T S 91 *T24 IS SPECIFIED). *LTS 100 *REACTOR INLET TEMP. T27=IGNI, ION TEMP. IS SPECIFIED. *LTS 110 *REACTOR ROUTINE CALCS. QAAN - Q TO STEAM AT NIGHT AND THE FINAL CONVER-LTS 120 *SION - FC. REX CALCS. THE CONDITIONS OF STREAM 28. *LTS 130 *LTS 140 *THE FOLLOWING SUEROUTINES ARE BEING USED= *LTS 150 *CLR(NI,NG,NL,CL)-CONDENSER LOAD CL, FOR INCOMING GAS STREAM NI AND *LTS 160 OUTGOING GAS STREAM NG AND LIQ. STREAM NL. *LTS ¥-170 *CTR(NI,NG,NL,CL)-CONDENSER EXIT STREAMS(NG,NL)TEMP. FOR GIVEN LOAD-CL *LTS 180 *DHR(T)-HEAT OF REACTION AS FUNCTION OF TEMP. T *LTS 190 *ENTR2(T+X2+X3+HG)-ENTHALPY CALCS. FOR 02-S02-S03 GAS MIX+AT T+X2+X3 *LTS 200 *FINDT(NS,NF)-FIND TEMP. OF STREAM NF. NS=STREAM STATE=1-LIQ. 2-GAS *LTR(X,Q,N-IN,N-OUT,N-COLD) LOW TEMP. REACTOR ROUTINF. (N=STREAM NO.) *LTS 210 *LTS 220 *RECOPY(IIN, IOUT)-COPY RECORD NO.-IIN INTO RECORD NO.-IOUT *LTS 230 *LTS 240 *NOMENCLATURE= (SEE PROCESS SCHEMES FOR DETAILS) *LTS 250 *COMMON BLOCKS NAMES= *LTS 260 LOW AND HIGH TEMP. VARIABLES *LTS LAHTV 270 LTV LOW TEMP. VARIABLES *LTS 280 LOW TEMP. HEAT-EXCHANGERS LOADS 290 LTHEL *LTS NIGHT WORK NWORK *LTS 300 STREAM STREAM RECORDS NAME (F,P,T,H,X1,X2,X3) *LTS 310 *VARTARIES= *I TS 320 BEWCT BOILER FEED WATER CONDENSER TEMP. (K) *LTS 330 POILER FEED WATER HEAT LOAD - LTS - (KJ/S) в BFWL *LTS 340 TOTAL CONVERSION FOR THE LTR SYSTEM *LTS 350 C CMBC COMBINED CONDENSER HE2+RECUP *LTS 360 DHRA DHR AT AVERAGE TEMP. OF REACTOR OPERATION *LTS 370 DT TEMP. DEVIATION OF STREAM J-2 FROM 693K *LTS 380 F FLOW(KMOL/SEC) *LTS 390 GTW GAS TURBINE WORK (NWORK) - (KJ/S) *LTS 400 н FNTHALPY, (KJ/KMOL) *LTS 410 HE2L HEAT EXCHR. 2 LOAD (LTHEL) - (KJ/S) *LTS 420 INDEX IN VARIOUS DO LOOPS *LTS 1 430 DEFINED AS (50+2*1) IN LTR\$S DO LOOP .1 *LTS 440 NO.OF STREAMS Ν *LTS 450 PRESSURE(PAR) Þ *LTS 460 ARPAY FOR HEAT AVAILABLE AT REACTORS HEAT-EXCHANGERS Q *LTS 470 OAAN Q AVAILABLE AT NIGHT (NWORK) - (KJ/S) *LTS 480 QRES Q FOR REBOILER COMINE FROM STEAM (HTHEL) - (KJ/S) *LTS 491 RECUPL RECUPERATOR LOAD (LTHEL) - (KJ/S) *LTS 500 TEMP. (K) т *LTS 510 TMIN MIN. ACHIVEABL: T ANYWHERE IN THE SYSTEM *LTS 520

* TRIML TRIMMER LOAD (LTS) - (KJ/S)	*LTS	530
* T24 SPECIFIED T(24) FOR LTS $-$ (K)	*LTS	540
* 127 SPECIFIED REACTOR IGNITION TEMP. FOR LTS - (K)	¥1 TS	550
	#1 TC	540
		500
* X ARRAT FOR CONVERSIONS AT THE LIRUS	* 4 1 3	270
* X1 OXYGEN CONTENT (MOLE FRACTION)	*LTS	580
* X2 SO2 CONTENT (MOLE FR.)	*LTS	590
* X3 SO3 CONTENT (MOLE FR.)	+LTS	600
***************************************	+**LTS	610
	*L T S	620
CONNON/STREAM/E(40).00/00.01/60.01/60.01/60.01/60.01/2/60.01/2/60.01/2/60.01/2/60.01/2/60.01/2/60.01/2/60.01/2/	1 1 5	620
	170	2.0
		040
COMMON /LAHTV/BFWCT+IMIN	LIS	650
COMMON/LTHEL/RECUPL,VAPL,BFWL,TRIML,HE2L	LTS	660
COMMON/NWORK/QAAN,GTW	LTS	670
×	*LTS	680
PRINT 6	LTS	690
* STREAM 24 = STREAN 23 EXCEPT FOR T AND H	#I TS	700
	1.70	710
	613	710
	115	720
CALL ENTR2 (* (24) • X2(24) • X3(24) • H(24))	LTS	730
*CALC. FROM TURBINE EXPANSION FORMULA THE CONDITIONS FOR STREAM - 40.	*LTS	740
CALL RECOPY(24,40)	LTS	750
P(4C) = P(21)	LTS	760
$T(40) = T(24)^{4} (F(24)^{2} P(40))^{2} + (0 - 4^{2}) = 0$	LTS	770
(A) = ENTR2(1(AO) + X2(AO) + X3(AO) + H(AO))	I TS	780
TALL LINE LINE HER LINE TO THE ASSIMED TICAL AND TIAD	AITC	700
*CALCE HEAT EUROPS OF HEZ		1,20
HE2L=F(24) + (H(24) - H(23))	LIS	800
*CALC. STREAM 22.(EQ. TO 21 ECCEPT FOR H).	*LIS	810
CALL RECOPY(21,22)	LTS	820
CALL ENTR2(T(22),X2(22),X3(22),H(22))	LTS	830
VAPL=(H(22)-H(21))*F(22)	LTS	840
*CALC. STREAM 25. FIRST CLESS FOR T(25) IS T(22)	#I TS	850
	I TS	860
r(2) = r(22) + r(34)		000
P(25) = P(22)	LIS	870
X1(25)=(X1(22)*F(22)+X1(34)*F(34))/F(25)	LTS	880
X2(25)=(X2(22)*F(22)+X2(34)*F(34))/F(25)	LTS	. 890
X3(25)=1X1(25)-X2(25)	LTS	900
H(25)=(H(22)*F(22)+H(34)*F(34))/F(25)	LTS	910
T(25) = T(22)	I TS	920
	1 7 6	020
		300
TCALC. SINCAM 26. FINSI GUESS FUN 1(26) 15(1(25)+1(40))/2.	TL15	940
T(26)=(T(25)+T(40))/2•	LTS	950
F(26)=F(25)+F(40)	LTS	960
P(26)=P(25)	LTS	970
X1(26) = (X1(25)) + F(25) + X1(40) + F(40)) / F(26)	LTS	980
12120, - (122125) + E(25) + X 2(40) + E(40) / E(26)	I TS	000
NG 1 GU 1 TI NG 1 G 2 I TI NG 2 I TI NG 4 4 7 TI 1 4 4 7 1 1 1 1 G 0 1 Va 1 2 C - 1 1 - 2 C - 2	1.70	1000
A3120J-10-A1120J-A2120J		1000
H(26)=(H(25)+H(25)+H(40)+H(40))/F(26)	LTS	1010
CALL FINDT(2,26)	LTS	1020
*CALC. STREAM 27. (EQUAL TO STREAM 26 EXCEPT FOR T).	#LTS	1030
CALL RECOPY(26+27)	LTS	1040
T(27) = T27	1 1 5	1050
CALL ENTDO(T(27), 43(27), 43(27), 4(27))	1 4 6	1040
	1.70	1000
$RECUFL = I(\mathcal{L}) + I$	LIS	1070
*INITIATE(ZERO) REACTORS RECORDS AND HOEOS LOADS (Q).	*LTS	1080
DO 7 I=51+60	LTS	1090

7 CALL RECOPY(45-1)	1 75 1100
*CALL LIR TO CALC, ALL LOW TEMP, REACTORS	¥LTS 1120
CALL RECOVIES 501	-LTS 1150
CALL = LTR(X(T) + O(T) + L-2 + L-1 + L)	
	LTS 1170
$ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$	- LIS 1100
T(1=2)=603.+DT	LTS 1190
CAL = FNTR2(T(J-2))X2(J-2)X3(J-2)X4(J-2)X	LTS 1200
Q(1-1) = F(J-2)*(H(J-3)-H(J-2))	LTS 1210
CALL LTR($X(1) \circ Q(1) \circ J = 2 \circ J = 1 \circ J$)	175 1220
$10 \ O(1) = 0$	1 TS 1240
CALL RECOPY(45.J)	115 1250
CALL RECOPY(J-1,60)	LTS 1260
GO TO 4	LTS 1270
3 IF(I+LT+5)GO TO 1	LTS 1280
T(60)=773.	LTS 1290
CALL ENTR2(773.X2(60),X3(60),H(60))	LTS 1300
Q(I)=F(60)*(H(59)-H(60))	LTS 1310
1 CONTINUE	LTS 1320
*GET STREAM 28 AND QAAN FROM REACTOR ROUTINE.	*LTS 1330
4 QAAN=0.	LTS 1340
DO 11 I=1,5	LTS 1350
11 QAAN=QAAN+Q(I)	LTS 1360
*FINAL CONVERSION CALCULATIONS	*LTS 1370
C=(X2(50)-X2(60))/X2(50)/(1X2(60)/2.)	LTS 1380
*UPDATE REACTOR SYSTEM OUTPUT STREAM NO.28	*L TS 1390
CALL RECOPY(60,28)	LTS 1400
*CALC. STREAMS 37 AND 38. F WILL BE LATER UPDATED.	*LTS 1410
CALL RECOPY(28,37)	LTS 1420
CALL RECOPY'28,38)	LTS 1430
CMBC=HEZL+RI CUPL	LTS 1440
CALL CTR(28,29,43,CMBC)	LTS 1450
F(37)=F(28) ~ HE2L/CMBC	LTS 1460
F(38) = F(28) - F(37)	LTS 1470
*RECALC. HEZ AS A CONDENSER STANDING BY ITSELF.	*LIS 1480
	LIS 1490
*CALC, STREAMS 27 AND 43.	*LIS 1500
CALL CINIDO1279439KECUPJ HCALC STDEAM 30 STDEST SUPERS FOR T/201 IS (T/201)T/(111)	LIS 1510
*CALC STREAM 39 FIRST GUESS FUR 1139 IS (1129)+1(41))/2.	*LIS 1520
P(39) = P(41) + P(29)	LIS 1530
P(39)=P(29) V1(30)=(V1)20(*E(20),V1((1)*E((1)))(E(20))	LIS 1540
$\lambda_{1}(3) = (\lambda_{1}(2)) * F(2) * \lambda_{1}(41) * F(41) / F(39)$	LIS 1550
X2(37)-(X2(27)*F(29)+X2(41)*F(41))/F(39) X2(30)-1V1(30)	LIS 1560
$A_{2}(37) = (1 - 71 - 37) = A_{2}(37)$	LIS 1570
11227-11127771 1277111417714177142771397	LIS 1580
(1) = (1) + (2) + (1) + (2)	LIS 1990
CALL FINDICEDED A	LIS 1600
	*LIS 1010
CALE CINIDJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	LIS 1020
T(2)-FEWCT+10.	TE 1030
CA(t) = CIR(20, 32, 33, 8FW)	LIS 1040
CALC CLART 2072272701 HC/	LIS 1050
ことうせん くうちにつける シオオンショー	UC10 T000

T(34)=TMIN	LTS	1670
CALL CLR(32,34,35,TRI.L)	LTS	1680
*CALC. STREAM 36. FIRST GUESS FOR T(36) IS (T(31)+T(33))/2.	¥⊾TS	1690
D(36) = P(35)	LTS	1700
F(36)=F(31)+F(33)+F(35)+F(42)+F(43)	LTS	1710
X1(36)=C•	LTS	1720
X2(36)=(F(3*)*X2(31)+F(33)*X2(33)+F(35)*X2(35)+F(42)*X2(42)+F	(43)*LTS	1730
1x2(43))/F(3t)	LTS	1740
$X_3(36) = 1 - X_2(36)$	LTS	1750
H(36)=(F(31**h(31)+F(33)*H(33)+F(35)*H(45)+F(42)*H(42)+F(43)*	H(43)LTS	1760
1)/F(36)	LTS	1770
T(36)=(T(31)+T(33))/2•	LŢS	1780
CALL FINDT(1,36)	LTS	1790
*CALC• GAS TURBINE WORK•	*LTS	1800
GTW=(H(24)-H(40))*F(24)	LTS	1810
PRINT 5	LTS	1820
5 FORMAT(/3X;*END OF LTS RTN.*)	LTS	1830
6 FORMAT(/3X,*LTS ROUTINE*)	LTS	1840
RETURN	LTS	1850
END	LTS	1860

SUBROUTINE HTR (F5 + T5 + P5 + X25 + F6 + T6 + P6 + X16 + X26 + X36 + FC + TWM + IFP) HTR 10 **HTR 20 *HTR ¥ 30 HTR - CENTRAL RECEIVER (HEATER-REACTOR) ROUTINE *HTR 40 × *HTQ 50 60 *HIGH TEMP . RECEIVER-REACTOR ROUTINE IS CALLED BY *HTR(F5,T5,P5,X25,F6,*HTR 70 *T6,P6,X16,X26,X36,FC,TWM,TFP) FR04 HTS, (5-FOR IP STREAM,6-FOR OUTPUT *HTR 80 *STREAM.FC-FINAL CONVERSION, TWM-MAX.WALL TEMP..IFP-INDICATOR FOR PRINT)HTR 90 *THE DESIGN IS BASED ON THE BOEING RECEIVER FOR HELLUM (*CLOSED CYCLE *HTR 100 *HIGH TEMP. CENTRAL RECEIVER CONCEPT FOR SOLAR ELECTRIC POWER* EPRI -*HTR 110 *SY 32 INTERIM REPORT+FEB-1976-PREPABED BY BOEING ENG++CONSTRUCTION CO.*HTR 120 *PROG.MANAGER J.R.GINTZ) *HTΩ 130 *THE BASIC DESIGN INCLUDES 5600 TUBES 19. METER LONG MADE OF HAYNES 188*HTR 140 *THE PROGRAM ASSUMES ONE SINCLE SOURCE TEMP. SEEN BY ALL TUBES AND IDE-*HTR 151 *NTICAL TEMP.-CONVERSION PROFILE IN ALL TUBES. TUBES ARE ASSUMED TO BE *HTR 160 *COATED BY FE203 CATALYST FOR THE DISSOCIATION REACTION OF S03. MASS TR*HTR 170 *ANSFER COEFF. KG AND HEAT TRANSFER COEFF. H ARE ASSUMED FUNCTIONS OF T.HTR 180 *MASS VELOCITY, AND PRESSURE. CP, DHR (DELTA HEAT OF REACTION), *AND KP ARE CONSIDERED TO BE FUNCTION OF TEMP.(KP(T) IS TAKEN FROM G. *HTR 190 ***HTR** 200 *NICKLESS *INORGANIC SULPHUR CHEMISTRY* ELSEVIER,1968 P.546 CP(T) AND *HTR 210 *DHR(T) ARE EXTERN/L FUNCTION) *HTR 220 *IT IS ASSUMED THAT THE RECEIVER ABSORBED 230 MWT. T-SOURCE AND THE *HTR 230 *TEMP. PROFILE IN / NO OUTSIDE "HE TUBE AS WELL AS THE CONVERSION OF SO3*HTR 240 *ARE DETERMINED BY NEWTON-RAPHSON ITERATION TECHNIQUE TO PROVIDE FOR *HTR 250 *THE ABOVE MENTIONED 230MWT ABSORBED.(SEE PROGRAM FLOWSHEET FOR DETAILS)HTR 260 *HTP 271 *EXTERNAL SUBROUTINES USED=CP, DHR, TRKP ***HTR** 280 жите 290 *NOMENCLATURE= *****HTR 301 *HTR 310 Δ PARTIAL VALUE OF EXPONENT USED IN DERIVING TB *HTR 320 CALCULATED BULK CONVERSION C *HTR 330 D NO.OF MOLES DIFFUSED TO REACTION ZONE ***HTR** 340 DENGMINATOR FOR MOLE FRC CALCSC DEN ***HTR** 350 DIFF. BETWEEN F2 AND F1 - PARTIAL VALUE IN EQUATING HEAT*HTR DF 360 -14 DIFF DIFFERENCE BETWEEN HEAT DELIVERED AND CALC. HEAT ABSORPD*HTR 370 × DN n *HTR 381 DT INCREMENT IN SEARCH FOR SOURCE TEMP. T *HTR 390 DELTA TW (NR CONVERGING ON TW) ¥ DTW ***HTR** 400 (NR CONVERGING ON X) DX DELTA X *HTR 410 DZ DELTA Z *HTR 420 FXPA EXPONENT OF A ***HTR** 430 ۶C FINAL CONVERSION *HTR 440 FTW FUNCTION FOR TW (DIFF.IN HEAT GIVEN AND HEAT ABSORBED) *HTR 450 FUNCTION IN NR SCHEME TO CONVERGE ON TOA FUNCTION IN NR SCHEME TO CONVERGE ON TOA F1 *HTR 460 F 2 × ***HTR** 470 F5 STREAM INPUT (KMOL/S) ¥ ***HTR** 480 F6 STREAM OUTPUT (KMOL/S) *HTR 490 × G MASS FLOW PFR UNIT CROSS-SEC.OF TUBE. *HTR 500 ¥ н HEAT TR. COLFF. *HTR 510 ¥ RUNING INDEX POINTING AT A PARTICULAR SECTION IN TUBE 1 *HTR 520 IFP INDICATOR FOR PRINTING (1-PRINT,0-DONT) ¥ *HTP 537 RUNING INDEX IN DO LOOPS 7,27 *HTR 540

¥	J1	INDEK USED IN NO SCHEME TO INDICATE FIRST OR SECOND CALC	*HTR	550
*	ĸ	TUBE METAL CONDUCTIVITY	*HTR	560
*	KG	MASS IR. COEFF.	*HIR	570
*	L	LENGTH OF TUBE (METER)	* HIK	580
*	LON	NO. OF ITERATION IN DO LOOP 5	*HIR	590
*	-74 - 14	RUNING INDEX IN DO LOOP 20	*HIK	600
ж *	MO N	PUNTAG INDEX IN DO LOOD -6		610
× ×	NO	NOSTI INDEX IN DO LOOP 75 NOSTI INDEX HEED TO DREPARE OUTDUT STDEAM (LAST SECTION)	7011N 24117D	620
×.	NOC	NO. OF CECTIONS IN THRE		640
*	NOT	NUMBER OF TURES IN THE REACTOR		640
*	p	TOTAL PRESSURE IN RECEIVER TURES	¥UTP	660
 * '	PΔT	3.14	*HTR	670
*	09	CAS BUILK DRESSURE ARRAY	*UTP	680
*	PS	PARTIAL PRESSURE OF SO2 CONVERTED	*HTP	690
*	P5	INPUT STREAM PRESSURE	*HTR	700
¥	PA	OUTPUT STREAM PRESSURE	*HTR	710
×	0 0	HEAT DELIVERED FROM RADIATING SOURCE	*HTR	720
×	0R	HEAT ABSORBED BY REACTION	*HTR	730
×	QS	SENSIBLE HEAT ABSO (BED BY GAS	*HTR	740
¥	REF	REYNOLDS NUMBER FALTOR (DIMENSIONLESS)	HTR	750
¥	REY	CONST. USED IN CALSS. OF YSS (RATIO FOR Y).	*HTR	760
¥	RKP	REACTION KP AS FUNCTION OF TS.	*HTR	770
¥	SIGMA	STEFAN BOLTZMANN CONST.	*HTR	780
¥	STHABG	SUM OF TOTAL HEAT ABSORBED BY GAS	*HTR	790
*	SUA	SURFACE UNIT AREA (PAI*TID*DZ) CONST. USED IN CALC. Q\$S	*HTR	800
×	T	SOURCE TEMP. (RADIATING SOURCE)	*HTR	810
¥	TB	BULK GAS TEMP.	*HTR	820
*	THABG	TOTAL HEAT ABSORBED BY GAS	*HTR	830
¥	TID	TUBE INSIDE DIAMETER (METER)	*HTR	. 940
*	TQA	TOTAL Q AVAIL/BLE (MWT)-HEAT ABSORBED BY CENTRAL RECEIVE	RHTR	850
¥	TRKPX	KP OF REACTION FOR A PARTICULAR VALUE OF X.	*HTR	860
*	TS	SURFACE TEMP. (INSIDE TUBE WALL TEMP.)	*HTR	870
*	ΤW	EXTERNAL TUBE WALL TEMP.	*HTR	880
*	TWM	MAX. TUBE WALL TEMP.	*HTR	890
*	TWT	TUBE WALL THICKNESS	*HTR	900
*	Τ4		*HTP	010
*	15	TEMP, OF INPUT STREAM	*HIR	920
*	16	TEME. DE OUTPUT STREAM	*HIK	930
₹ 	W	TOTAL MASS FLOW (MOLE/SEC)	*HIR	940
*	^ V 1	TEMPLEADY VALUE OF Y IN NR SCHEME TO SIND IT.	*HIK ¥UTD	950
л ж	A-1 V 1 4	MOLE ER. 02 TH EK		90U 070
*	X 10 X 25	MOLE FR. CO2 IN F5		910
*	X 26	MOLE ER. SOZ IN EG	*UT2	900
*	X36	40LE FR. 502 IN F6	*HTP	1000
*	Y02	MOLE FR. 02 IN BULK	*HTR	1010
*	Y 50.2	MOLE FR. SO2 IN BULK	*HTR	1020
¥	YS03	MOLE FR. SO3 IN BULK	*HTR	1030
¥	Z	LENGTH OF TUSE AT SECTION BEING CALC.	*HTR	1040
*****	****	****	*HTR	1050
*			*HTR	1060
	DIMENSION	I TW(100),TS(100),TB(100),X(100),YSO3(100),YSO2(100)	HŤR	1070
	DIMENSION	Y02(100),PB(100),PS(100),Q(100),QR(100),QS(100),Z(100)	HTR	1080
	DIMENSION	C(102),F(11)	HŤR	1090
	REAL K.KO	5.L.TRKP.MU	HTR	1100
*			* HTR	1110

*PHYSICAL DATA AND CONSTANTS.	*HTR	1120
20DATA K, L,NOS,TID,TWT,X(1),TW(1),TQA,LON/33., 19.,9	5 HIR	1130
10,037,00,008,00,1,9885,9280,91007		1160
	אודי מוטיא	1160
*CONSTANTS AND INTITAL CONDITIONS	лн. Ц т о	1170
DATA SIGMAPAINTUZII/A 4000E 009301413929307	*HTD	1180
*CONSTANTS AND CONVERSION FACTORS	HTR	1190
$\int J + L + N O S$	HTR	1200
		1210
	HTR	1220
	нтэ	1230
	HTR	1240
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	HTR	1250
	HTR	1260
	HTR	1270
	HTR	1280
$T_{-12}(0)$	HTR	1290
	μTR	1200
	ытр	1210
$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}$	HTP	1320
	HTR	1220
	HTR	1340
	HTR	1350
	нтр	1360
JI-I SCALLATE PADIATED HEAT PER UNIT AREA O	*HTR	1370
<pre>continetation text (in text on text of te</pre>	HTR	1380
CULIT-SIGMACIA TWILLARD	*HTR	1390
*CALCOLATE INSIDE ISSE WALL TEMPERATORE IS TOTAL TWITE AND TAKEN	HTR	1400
HISE FIRST ESTIMATE OF VITA FROM KNOWN APPROXIMATE FUNCTION OF IS(1).	HTR	1410
TELESTICATE OF ALL OF ALL SULL TABOAL OF TO 79	HTR	1420
IF(I_NF_1) 60 TO 79	HTR	1430
$Y(T) = 6_{0} R_{0} F = -23 \times T S(T) \times 7_{0} 152$	HTR	1440
*CALCULATE HEAT ABSORBED BY REACTION PER UNIT AREA GREDHR*KG*(PS-PB)	*HTR	1450
ACCORTENT A BOSTS DEPENDENCY, X IS FOUND BY TRIAL'AND FROM.	*HTR	1460
APEND FOR A VOID STATE OF A TO FOUND BE FOUND AND LONG AN	*HTR	1470
70 PKD=10-0/4*(4-765-502/-/TS(1))	HTR	1480
	HTR	1490
	HTR	1500
$T_{RKPX=TRKP(X1,P,Y02(1),YS02(1),YS03(1))}$	HTR	1510
$y_1 = y_1 + y_2$	HTR	1520
$h_{1} = h_{1} + h_{2} + h_{3} + h_{4} + h_{4$	HTR	1530
x(t) = x(1) - Dx	HTR	1540
$IF(X(I),GT_{-1}), X(I)=,999$	HTR	1550
1 + (ABS(DX) - 0.001) + 8.8.7	HTR	1560
7 CONTINUE	HTR	1570
* FOULLIBRIUM CONVERSION FOR THIS SECTION IS FOUND	*HTR	1580
*CALCULATE PS OF SC2	*HTR	1590
$8 PS(I)=2 \cdot *P*(, SO2(1)+YSO3(1)*X(I))/(2 \cdot +YSO3(1)*X(I))$	HTR	1600
*CALCULATE HEAT ANE MASS TRANSFER COEFFICIENTS FOR THIS SECTION.	HTR	1610
MU=2•46E-3+3•2E-5*TB(I)	HTR	1620
REF=(•822*G/NJ)**•91	HTR	1630
H=REF*MU*●782	HTR	1640
KG=1•50E-6*REF*TB(I)**•81/P5	HTR	1650
CALCULATE DN PER UNIT AREA. DN=KG(PS-PB)	·*HTR	1660
D = KG*(PS(I) - PB(I))	HTR	1670
*CALCULATE QR	*HTR	1680

HTR 1690 *HTR 1700 QR(I)=DHR(TS(I))*D *CALCULATE SENSIBLE HEAT PER UNIT AREA QS=H*(TS-TB) QS(I)=H*(TS(I)-TB(I)) HTR 1710 X(I+1) = X(I)HTR 1720 IF(J1.GE.2) GO TO 11-HTR 1730 HTR 1740 J1=2 HTR 1750 I = I + 1HTR 1760 DN=DT W (I) = T W (I - 1) + 1. HTR 1770 HTR 1780 TB(I) = TB(I-1)PB(I)=P3(I-1) HTR 1790 YO2(I) = YO2(I-1)HTR 1800 HTR 1810 YSO2(I) = YSO2(I-1)YSO3(I) = YSO3(I-1)HTR 1820 HTR 1830 60 TO 6 11 I=I-1 HTR 1840 HTR 1850 =TW=Q(I)-QR(I)-QS(I)HTR 1860 DTW = FTW/(Q(I+1) - QR(I+1) - QS(I+1) - FTW)TW(I) = TW(I) + DTWHTR 1870 IF(ABS(DTW)-0.01)9,9,5 HTR 1880 5 CONTINUE HTR 1890 *IF LOOP COMPLETTEL NO CONVERGENCE ON TW IN LON STEPS. *HTR 1900 PRINT 2,1,T,1,(I),TS(I) HTR 1910 PRINT 3,Q(I), QR(I), QS(I) HTR 1920 PRINT 4 HTR 1930 2 FCRMAT(/* DIDNT CONVERGE ON TW. I=*, I4, 2X, *T, TW, TS=*, 3(F6, 1, 2X), *HTR 1940 1RESPECTIVELY ..) HTR 1950 3 FORMAT(/2X,*Q,QR,QS,THABG=*,4(E11.4,2X),*RESPECTIVELY*) HTR 1960 4 FORMAT(/2X, *HOWEVER ASSUMED TW IS OK PROGRAM CONTINUE*) HTR 1970 *HTR 1980 *CALCULATE TOTAL HEAT ABSORBED BY GAS - THABG , 9 THABG=QR(I)+QS(I) HTR 1990 *HTR 2000 *ACCUMULATE HEAT ABSORBED BY GAS - STHABG HTR 2010 STHABG=STHABG+THABG*SUA * EVALUATE TB-H*(TS-TB)*PAI*TID*DZ=G*PAI*TID**2/4*CP*DTB *HTR 2020 * AFTER INTEGRATION THE ABOVE EQ. RESULTSS IN THE FOLLOWING *HTR 2030 A=4.*H*DZ/(G*TID)HTR 2040 HTR 2050 EXPA=EXP(-A/CP(TB(I),YO2(I),YSO2(I),YSO3(I)))TB(I+1)=TS(I)-(TS(I)-TB(I))*EXPAHTR 2060 *CALCULATE GAS BULK COMPOSITION *HTR 2070 HTR 2080 DEN=1.+DN*RFY/2. YSO3(I+1)=(YSO3(I)-DN*RFY)/DEN HTR 2090 YSO2(I+1)=(YSO2(I)+DN*RFY)/DEN HTR 2100 HTR 2110 $YO_2(I+1)=1 - YSO_2(I+1) - YSO_3(I+1)$ *UPDATE Z .TW.PB *HTR 2120 Z(I) = I * DZHTR 2130 HTR 2140 PB(I+1)=YSO2(I+1)*P * CALCULATE BULK CONVERSION - C *HTR 2150 $C(I) = (1 - YSO_3(I) / YSO_3(I)) / (1 + YSO_3(I) / 2 \cdot)$ HTR 2160 *UPDATE FOR NEXT SECTION AFTER CHECKING FOR COMPLETION. IF DONE-PRINT *HTR 2170 IF(NOS-1)26,26,25 HTR 2180 25 [=[+1 HTR 2190 GO TO 1 HTR 2200 *ALL CALCULATIONS ARE COMPLETED. PRINT RESULTS. *HTR 2210 *CHANGE Q INTO ACCUMULATIVE FOWER ABSORBED *HTR 2220 26 Q(1)=Q(1)*SUAHTR 2230 QR(1)=QR(1)*SUA HTR 2240 QS(1)=QS(1)*SUA HTR 2250

	비가	225
Q(J) = Q(J) + S(A + 0(J - 1))	HIR	2270
QR(J) = QR(J) * SUA + QR(J-1)	HIR	2280
QS(J) = QS(J) + SJA + QS(J - 1)	HTR	2290
27 CONTINUE	HTR	2300
STHABG=NOT*1•1€3E-6*STHABG	HTR	2310
DIFF=NOT*1•163E-6*Q(NOS)-STHABG	HTR	2320
*CHECK FOR DIFFERANCE BETWEEN AVAILABLE Q (TQA) AND CALC. Q.	*HTR	2330
*CHANGE SOURCE TEMP (T) ACCORDINGLY.	*HTR	2340
IF(F1)12,13,12	HTR	2350
13 F1=STHABG-TQA	HTR	2360
T = T + 2	HTS	2370
60 10 24	HTR	2380
		2200
		2 3 7 9
	21 P	2400
	HIR	2410
TTT OT	HIR	2420
	HIY	2430
FI = FZ	HTR	2440
IF(ABS(F2)-1.01)10,10,20	HTR	2450
20 CONTINUE	HTR	2460
PRINT 80	HTR	2470
80 FORMAT(/3X,*NO CONVEPGENCE ON TQA*)	HTR	2480
*ZERO IRRELEVANT VARIABLES AT THE TUBE END	*HTR	2490
10 PS(I+1)=0.	ЧTR	2500
TS(I+1)=0.	HTR	2510
TW(I+1)=0.	HTR	2520
Z(I+1) = Z(I)	HTR	2530
Q(I+1)=0.	• HTR	2540
QR(I+1)=0	HTR	2550
QS(I+1)=0.	HTR	2560
X(I+1) = X(I)	HTR	2570
C(I+1)=C(I)	HTR	2580
NO=NOS+1	HTR	2590
*SUPPRESS TABLE PRINTING IF IFF=0.	*HTR	2600
IF(IFP-EQ.0) 3C TO 18	HTR	2610
PRINT 30	HTR	2620
30 FORMAT(/10X+*HIGH TEMP REACTOR DESIGN-COMPUTATION RESULT	5*/) HTR	2630
PRINT 31	HTR	2640
31 FORMAT(/8X+3HNOS+8X+1HI+9X+2HTW+9X+2HTS+9X+2HTB+8X+1HO+	9X.2HOR. HTR	2650
1 - 93 + 2405 + 123 + 146 + 83 + 547 + 503 + 63 + 547 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 647 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502 + 73 + 502		2660
$OPRINT 32 \cdot (J \cdot ($	1.YSO3(1) HTR	2670
$1 \times 502(J) \times 102(J) \times J=1 \times 100$	HTR	2680
PRINT 33.STHARG.T.DIFF	HTR	2690
2 COVAT (/11) - E11 - 2 - 2 E11 - 1 - 2 E11 - 6 - 6 E11 - 2)		2700
32 FORMAT(/11) 1102/31 11019 2110494111097 320FORMAT(/10) ** THERMAL POWER ABSORED BY GAS-**F11*4********************************		2710
SOURCE TEMPS = **E6.1.3H(K): 2X.5HDIFE=*E10.4.2HMW)		2720
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	HTR	2720
	HTS	2740
*SET OUTPUT VARIABLES FOR CALLING PROGRAM	0111 91118	2750
		2760
FC=C(NOS)	HTR	2770
$F6=F5*(1_{+}+(1_{+}-X25))*FC/2_{+})$	u t ⊃	2780
T6=TB(NO)		2700
X16=Y02(NOS)	нто	28.00
$x_{26} = y_{502}(N_{05})$	цтр	2810
¥36-Y502(NOS)		2010
A 70 - F 50 7 (NU 5 7	m K	1541

 TWM=TW(NOS) IF(IFP.EQ.U)GO TO 14
 HTR 2830 HTR 2840

 PRINT 22,F6,T6,P6,X16,X26,X36,FC,TWM
 HTR 2850

 22 FORMAT(/3X,*HTR RETURNS WITH=
 F(6)
 T(6)
 HTR 2860

 1 X1(6)
 X2(6)
 X3(6)
 FC
 TWM*,/20X,8F11.3)
 HTR 2880

 14 RETURN
 HTR
 2880
 HTR 2890
 HTR 2890

SUBROUTINE LTR(FC+QAAN+TN+J+K)	LTR	10	
*****	********LTR	20	
* JUNE 1,1978	*LTR	30	
* LTR - LOW TEMP. REACTOR	*LTR	40	
*	*LTR	50	
***************************************	********LTR	60	
*CALCULATIONS ARE FOR ADIABATIC OXIDATION OF SO2 TO SO3 IN A REA	CTOR *LTR	70	
*WICH REACHES EQUILIBRIUM CONVERSION.I.E. RESULTS OF FC AND TEQ	ARE *LTR	80	
*GIVEN FOR DATA FULFILING THE REACTION CONSTANT, KP, EQUATION (REF	. − *LTR	90	
*NICLESS)	*LTR	100	
***********	********LTR	110	
COMMON/STREAM/F(60)+P(60)+T(60)+H(60)+X1(60)+X2(60)+X3(60)	LTR	120	
DIMENSION $X(5)$, $DX(5)$, $TEQ(5)$, $HR(5)$, $HL(5)$	LTR	130	
DATA EPSDT, DDX/1.01,0.001/	LTR	140	
DATA RIGT/693./	LTR	150	
JII=IN	LTR	160	
IF(x1(1N)-x2(1N)/2)I3,I3,I4		170	
$13 \ XM = 2 + XI(IN) / X2(IN) = 0 + 011$		180	
		190	
14 XM=U+909		200	
		210	
		220	
		230	
		240	
		250	
$\hat{\mathbf{P}}(\hat{\mathbf{J}}) = \mathbf{P}(\mathbf{IN})$		270	
P(K) = P(TN)	LTR	280	
IF(X1(.111))19+19+20		200	
20 IF(X2(JI))19.19.21	I TR	300	
19 PRINT 22-X1(JT1)-X2(JT1)-X3(JT1)-JT1	1 TR	310	
22 FORMAT(3X,*NO MORE REACTANTS, X1=*, F5, 3, 3X, 3HX2=, F5, 3, 3X, 3	HX3=+F5+LTR	320	
13•3X•2HJ=• I2•*LTR*)	LTR	330	
X(1)=0	LTR	340	
CALL RECOPY(JI1+J)	LTR	350	
GO TO 4	LTR	360	
21 CONTINUE	LTR	370	
DO 26 I=1.5	I TR	380	
DO 7 N=1,20	LTR	390	
L=1	LTR	400	
16 RKP=10•**(5022•/TEQ(I)-+•765)	LTR	410	
$DO 8 M = 1 \cdot 10$	LTR	420	
XT=X(I)	LTR	430	
TRKPX=TKP(XT,P(J),X1(JI1),X2(JI1),X3(JI1))	LTR	440	
XT=X(I)+•01	LTR	450	
TRKPY=TKP(XT,P(J),X1(JI1),X2(JI1),X3(JI1))	LTR	460	
DEN=TRKPY-TRKF X	LTR	470	
IF(DEN+EQ+0+) GO TO 26	LTR	480	
DXT=0.01*(TRKPX-RKP)/DEN	LTR	490	
X(I)=X(I)-DXT	LTR	500	
IF(ABS(DXT)-DDX)9,9,5	LTR	510	
9 IFPNCM=0	LTR	520	
		1.40	530
-----	--	-------	-------------
	5 LF (X (1) ∈ L ⁺ ⊕ ⊕ ⊕) = X (1) = (1 ⊕ L [#] X) T _T (Y (1) = (1 ⊕ U + 0) ⊕ L [#] X)		540
	1 F (X (1) T X Y) 0 + 0 + 0		550
	$5 \times 11 = 1 \times 1 = 3 \times 1 \times 11 \times 12 \times 12 \times 12 \times 12 \times 12 \times 1$	LTR	570
*NO	CONFRGENCE MASSEGE	*LTR	580
	TERNOME1	LTR	590
	11 (F(X)) = (F(X))	LTR	600
	IF(I+1,T+5) GO TO 26	LTR	610
	x(I)=0.	LTR	620
	GQ TQ 2	LΤマ	630
	3 IF(X(I)-XM) - + - + - + - + - + - + - + - + - + -	LTR	640
	1 IF(I+LT+5)60 TO 26	LTR	650
	X(I)=XM	LTR	660
	PRINT 10		670
	I) FORMAT(3X,*?OC P.C. CONVERSION IN LTR*)		680
	2 DX(1) = X(1)		590
	$HR(1) = (DHR420+DHR(1EQ(1)))/2 \bullet$		700
)=1+-72(1))*/ [/]=[/]N)*/		720
	(0) = (1) + (2) (1) + 2 (1)	I TR	730
	$x_2(J) = x_2(IN) + (1 - x_1(I)) / D$	LTR	740
	$(X_{3}(J) = 1 + X_{3}(J) - X_{2}(J)$	LTR	750
	H(J)=(4+2*DX(I)*X2(JI1)*HR(I)+H(JI1))*F(JI1)/F(J)	LTR	760
	T(J) = TEQ(I)	LTR	770
	CALL FINDT(2+J)	LTR	780
	IF(L+EQ+2) GO TO 15	LTR	790
	FDT1=T(J)-TEQ(I)	LTR	800
		LTR	810
	TEQ(I)=TEQ(I)+1.	LTR	820
	GO TO 16		830
	15 FDT2=T(J)-TEQ(I)		840
	D = F D = 2 / (F D = 2 - F D = 1)		850
	1 F(ADS(D))-EPSD()4,447		870
			890
	29 FORMAT(33, #DIDNT CONVERGE ON TEO. TEO. #AF6.1.334.3HDT=AF6.1.334.4HR	KITR	900
	$19=F12-4$, $3X_{2}$, $4HTRK=F12-4$, $3X_{2}$, X_{1} , T_{1} , T_{2} , T_{1} , T_{2} , T_{1} , T_{2} ,	LTR	910
	26 CONTINUE	LTR	920
	PRINT 29 + J + F(J) + F(J) + T(J) + H(J) + X1(J) + X2(J) + X3(J)	LTR	930
	29 FORMAT(3X,*STREAM 1=*+12,7E12,4,*COPY IN INTO J*)	LTR	940
	CALL RECOPY(IN,J)	LTR	950
	4 CALL RECOPY(J.K)	LTR	96 0
	T(K)≠RIGT	LTR	970
	CALL ENTR2(T(K),X2(K),X3(K),H(K))	LTR	980
	ЧL(I)=F(J)*(H(J)-H(К))	LTR	990
	QAAN=HL(I)	LTR	1000
	FC=X(I)	LTR	1010
	IF(IFPNCM.EQ.0) GO TO 12	LTR	1020
	PRINT 17,X(*), DXT,TEQ(T),T(J),IN	LTR	1030
	17 FORMAT(/3X,*NO CONVERGE ICE ON X=*,E10.4,3X,*DXT=*,E10.4,3X,*TEQ=*	+LTR	1040
	1E10.4,*T(J):*,F6.1,3X,*:NPUT STREAM TO LTR IS *,I2)	LTR	1050
	PRINT 30+I+N+TEQ(I)+RKP+X(I)+TRKPX+TRKPY+DEN+DXT	LTR	1060
	30 FORMATI3X** N TEW ROP X TRKPX TRKPY DEN DXT*./3X.215.7E1	OLTR	1070
			1080
	TS KEIDKN	L I K	1030
	END .	LTR	1100

SUBROUTINE DIST(F+TF+PF+HF+Xr+QR+XD+P+PRSO2+N+D+TM+ PD+HLM+ YM+ DIST 10 20 1 B.TB.PB.HB.XB.IFP) DIST ##DIST 30 **#DIST** 40 UPDATED 8/15/78 PDIST 50 DISTILLATION COLUMN ROUTINE **#DIST** 60 ADIST 45 70 80 #DIST 90 **#INPUTS TO THE PROGRAM ARE #DIST 100** FEED= FLOW-F. SO2 MOLE FRAC.-XF. ENTHALPY-HF. PRESSURE-PF. TEMP-TFDIST 110 TOP= S02 MOLE FRAC.-XD. PECENT RECOVERY OF S02-PRS02 **#DIST 120** BOTTOM# REBOILER DUTY-QR *DIST 130 GENERAL TOTAL PRESSURE-P. MAX.NO.OF PLATES PERMITTED-N *DIST 140 *DIST 150 *DIST 160 *OUTPUT= THE PROGRAM CALC. OVERALL MATERIAL AND ENERGY BALANCES FOR A BINARY DISTILLATION COLUMN SERARATING SO2 FROM SO3 **#DIST 170** #DIST 180 * INPUT DATA= FEED= F.TF.PF.HF.XF. BOTTOM= QR. TOP= XD. GENERAL=P.PRS02*DIST 190 *DIST 200 * • N *FOREACH PLATE=L=LIQUID.V=VAPOR.X=S02 MOLE FRAC.IN LIQ.Y=S02 MOLE FRAC.*DIST 210 *IN VAP.,T=PLATE TEMP.,HL=LIQ.ENTHALPY.HV=VAP.ENTHALPY. #DIST 220 *ALL UNITS CONSIDERED TO BE IN METRIC, I.E. F-MOLE/HR, T-K, P-BAR, H-KJ/KMOLDIST 230 *Q-MW(CONVERTED INTO KJ/HR IN THE TEXT) **#DIST 240** *ROUTINE ACCEPT FLOWS IN KMOLE/STC AND RETURNS THEM IN THE SAME UNITS #DIST 250 *BUT CALC. ARE MADE IN KMOLE/HR. NECESSARY CONVERTIONS ARE MADE BEFORE #DIST 260 **#AND AFTER THE CALCS.** *DIST 270 *DIST 280 4 NOMENCLATURE* *DIST 290 JACOBIAN MATRIX COMPONENT IN NR FOR X AND L *DIST 300 A INVERSED JACOBIAN COMPONENT IN NR FOR X AND L *DIST 310 A11 INVERSED JACOBIAN COMPONENT IN NR FOR X AND L *DIST 320 A12 INVERSEL JACOBIAN COMPONENT IN NR FOR X AND L *DIST 330 A21 INVERSED . ACOBIAN COMPONENT IN NR FOR X AND L *DIST 340 A 2 2 #DIST 350 BOTTOM LIQUID OUTPU" FLOW (KMOL/HR) 8 JACOBIAN MATRIX COMPONENT IN NR FOR X AND L *DIST 360 C DISTILLA F FLOW (KM)L/SEC) -OUTPUT *DIST 370 D DENOMINATOR FOR FR2 -NR FLASH CALCS. DENOMINATOR FOR FR3 -NR FLASH CALCS. DENFR2 #DIST 380 DENFR3 **#DIST 390** DETERMINANT OF JACOBIAN MATRIX IN NR FOR X AND L #DIST 400 DET DFR DIFF. IN NR FLASH CALCS. *DIST 410 DIFF. BETWEEN GIVEN AND CALC. FEED ENTHALPIES (ARRAY) *DIST 420 DH DHDX DERIVATIVE OF H W.R.T. X - NR CALCS. FOR X AND L #DIST 430 TOLERANCE VALUE FOR DH -ACCEPTABLE CALC. H OF FLASH DHF *DIST 440 INCREMENT OF L IN NR FOR X AND L 00151 650 DL DR INCREMENT OF F IN NR FLASH CALCS. OIST 460 DSOY DIFF. BETWEEN 1. AND SUM OF Y\$S AT B FOR ADJUSTMENT CALC#DIST 470 DEVIATION OF V AT TOP FROM OVERALL MATERIAL BAL. CALCS. #DIST 480 nv DX DELTA X FOR CALC. DH/DX **#DIST 490** DXJ INCREMENT OF X IN NR FOR X AND L *DIST 500 DIFF. BETWEEN CALC. COMPOSITION AND GIVEN COMP. AT D CDIST 510 DY F JACOBIAN MATRIX COMPONENT IN NR FOR X AND L #DIST 520 EDR MAX. TOLERANCE FOR DR IN NR FLASH CALCS. OIST 930 PDIST 540 FEED FLOW (KMOLE/SEC) F

E I	LIGHTD IN ELASHED EEED	#DIST 55	0
~ D		ADICT 50	š
	NR FUNCTION IN FLISH CALC.	*0131 200	U.
FRZ	PARTIAL NR FUNCTION IN FLASH CALCS.	*DIST 570	0
FR3	PARTIAL NR FUNCTION IN FLASH CALCS.	*DIST 580	0
		ADICT CO	~
FV	VAPOR IN FLASHED FEED	*UI31 39	J
F1	NR FUNCTION IN L AND X CALCS.	*DIST 600	0
F 2.	NR FUNCTION IN LAND X CALCS.	*DIST 610	a
~	AN FUNCTION IN CONSOLS IN NO FOR Y AND I	NOICT ()	š
G	JACOBIAN MAIRIX COMPONENT IN NR FOR X AND L	*0151 62	J
HB	ENTHALP'N OF BOTTOM STREAM (KJ/KMOL) - OUTPUT	*DIST 630	0
HU	ENTHALPY OF TOP STREAM (X.L/KMOL)	*DIST 640	Δ
110		NOICT (F	Š
HF	FEED ENTHALPY (ROTRIOL) - GIVEN	*DI21 020	J
HFC	CALCULATED FEED ENTHALPY	*DIST 660	0
HEE	HEAT IN TEED (HE*E((1/HR))	*DIST 670	^
	THE ALL OF A DIVISION AND A DIVISIONA AND AND A DIVISIONA AND AND AND A DIVISIONA AND A DIVISIONA AND AND AND AND AND AND AND AND AND A	NDIGT (0)	š
HFL	ENTHALPY OF LIGUID PORTION IN FLASHED FEED	*DI21 080	0
HFV	ENTHALPY OF VAPOR PORTION IN FLASHED FEED	*DIST 690	0
ні	LIGHTD ENTHALPY ARRAY FOR COLD LIG. STREAMS	*DIST 700	0
		*DIGT 700	ž
HLM	SISTILLATE (CONDENSATE) ENTHALPT(KJ/KMOL) - OUTPUT	*0151 /10	J
HM1P	ENTHALPY CORRESPONDS TO XMIP (NR)	*DIST 720	0
HP1P	ENTHALPY CORRESPONDS TO XPIP (NR)	*DIST 730	۵
1111	VADOD ENTLAN DY ADDAY FOD COL VADOD STDEANS	*DICT 7/	Ä
HV	VAPOR ENTHALPT ARRAT FOR COL. VAPOR STREAMS	*0151 740	J
I	INDEX OF DO LOOP USING NR TO FIND L AND X2	*DIST 750	0
IFP	INDICATOR FOR PRINTING	*DIST 760	0
	THE CORE OF THE STATE OF CALCENDE LOOP (O TABEY-DIATES	*DICT 77	^
J	DO LOOP SU INDEX -FLASH CALC++DO LOOP SU INDEX-PLATES	TUISI IN	J
JR	DO LOOP 51 INDEX - NR IN FLASH CALC.	*DIST 780	0
KB2	VOLATILITY CONST. FOR SO2 IN B	*DIST 790	0
KB3	VOLATILITY CONST. FOR SO3 IN B	#DIST 800	Ô.
KDJ	VOLATILITY CONST. FOR SOS IN B		2
KS02	VOLATILITY CONST. FOR SO2 - FLASH AND PLATE TO PLAT CALC	*DISI 810	0
K SO 3	VOLATILITY CONST. FOR SO3 - FLASH AND PLATE TO PLAT CALC	*DIST 820	0
1	I TOULD FLOW ARRAY FOR COL. PLATES (KMOL/HR)	*DIST 830	ò
	LIGHT FOR ARA TOR COL FLATES (RACE/IR)		~
ГНВ	LATENT HEAT OF B	*DISI 840	0
м	1+1	*DIST 850	0
N	NO. OF PLATES	*DIST 860	n.
NEO	NOT OF TENED	NOICT 07	š
NFP	FEED PLATE NO INDICATOR IN SEARCH FOR FEED PLATE	*DT21 01	J
Ρ	DISTILATION COLUMN PRESSURE (BAR) -PRESCRIBED	*DIST 883	С
PB	BOTTOM STREAM PRESSURE (BAR) -OUTPUT	*DIST 890	n i
	DITTLEATE CTREAM DOCCURE (DAD) OUTDUT	*DICT 000	ś
PU	DISTILLATE STREAM PRESSURE (BAR) -OUTPUT	*0131 900	5
PF	FEED PRESSURE (IP) (BAR) - BEFORE FLASH	*DIST 910	0
PRS02	PERCENT RECOVERY OF 502	*DIST 920	0
00	CONDENSED HEAT LOSD (KL/SEC)	HOICT 020	ň
	CONDENSER HEAT LOAD (KJ7SEC)	*0131 930	2
QR	REBOILER HEAT LOAD (KJ/SEC)	*DIST 940	0
QRM	MIN. REQUIRED REB)ILER DUTY	*DIST 950	Э
P	THE PATIO EV/E IN ELASH CALCS.	*DIST 960	ň
0.0		*DIST 200	~
RS	(L/V)MIN FOR STRIPPING SECTION	*DI21 870	0
SL	INTERMEDIATE VALUE OF LIQUID FLOW AT FEED PLATE	*DIST 980	0
SV	INTERMENTATE VALUE OF VAROR FLOW AT FEED DLATE	ADIST 00	0
ČV mu t	THERE ALL VALUE OF VAFOR FLOW AT FLED FLATE	*DIST 990	š
5XF 241	SOM OF S MINUS I	*DIST1000	9
SYEM1	SUM OF YSS MINUS 1	*DIST1010	0
T	TEMP. ALRAY FOR PLACES STREAMS(K)	*DIST1020	0
TO	TENE AND OF POTTOM STREAM(K) - OUTPUT	*DICT102	~
	TEMP OF FOTION STR AN(N) - OUTPUT	101011030	5
T D	TEMP • OF TOP D STRIAM(K) - OUTPUT	*DIST104(0
TF	FEED TEMP. (K) -GIVEN AS IP	*DIST1050	0
TEE	FLASH TE 10. OF FEFD(K)	#DISTIN4	ñ
	TEACHTIG AF OF FLEDIN/	-DIGITOO	0
181	VALUE OF TEMP. OF FLASH (INTERMEDIATE RESULT NR METHOD)	*DIST107	0
TF2	VALUE OF TEMP. OF F'ASH (INTERMEDIATE RESULT NR METHOD)	*DIST1080	0
тм	DISTULATE TEMP. (K) - OUTPUT	*DIST109	n
TMID		No. CT1070	š
1 11 1 11	TEMP (CONRESPONDS TO AMIP (NK X)L)	*DIST1100	J
TPIP	TEMP. CURRESPONDS TO XP1P (NR X,L)	*DIST1110	0

¥	V	VAPOR FLOW ARRAY FOR COL. PLATES (KMOL/HR)	*DIST1120
*	VB	VAPOR FLOW FROM REBOILER	*DIST1130
¥	VMIN	REQUIRED MIN. VAPOR FLOW FROM REBOILER	*DIST1140
¥	X	LIQUID SO2 COMPOSITION ARRAY FOR COL. PLATES (MOL.FR.)	*DIST1150
¥	XB	COMPOSITION (SO2 MOL.FR.) OF BOTTOM STREAM	*DIST1160
¥	XD	COMPOSITION (SO7 MOL.FR.) OF TOP STREAM -PRESCRIBED.	*DIST1170
*	XF	SO2 COMPOSITION IN FEED - GIVEN IP. (MOL.FR.)	*DIST1180
¥	XF2	MOLE FR. OF SO2 IN LIQUID PORTION OF FLASHED FEED	*DIST1190
¥	XF3	MOLE FR. OF SO3 IN LIQUID PORTION OF FLASHED FEED	*DIST1200
¥	XM1P	X(M)-0.01 PERTUJED VALUE IN NR FOR X AND L	*DIST1210
¥	XP1P	X(M)+0.01 PERTUBED VALUE IN NR FOR X AND L	*DIST1220
¥	Y	VAPOR COMPOSITION (SO2 MOL.FR.) ARRAY FOR COL. PLATES	*DIST1230
¥	YB2	VAPOR COMPOSITION (SO2 MOL, FR.) IN B	*DIST1240
¥	YB3	VAPOR COMPOSITION (SO3 MOL.FR.) IN B	*DIST1250
*	YM	DISTILLATE COMPOSITION (SO2 MOL.FR.) -OUTPUT	*DIST1260
¥	Y 2	MOLE FR. OF SO2 IN VAPOR PORTION OF FLASHED FEED	*DIST1270
¥	Y3	MOLE FR. OF SO3 IN VAPOR PORTION OF FLASHED FEED	*CIST1280
*****	****	****	**DIST1290
¥			*DIST1300
	DIMENSIO	N DH(21)	DIST1310
	REAL L(50) • V(5() • X(50) • Y(50) • T(50) • H(50) • HV(50)	DIST1320
	REAL KB2	•KB3•KS02•KS03•LHB	DIST1330
	DATA EDR	• DHF/0.001.100./	DIST1340
*PRIN1	T INPUT FO	OR RECORDING AND CHECKING	*DIST1350
	PRINT 69		DIST1360
69	FORMAT(/	4X,*DISTILLATION COLUMN*)	DIST1370
	IF(IFP.FC	0.0)GO TO 5	DIST1380
	PRINT 82	•F•TF•PF•HF•XF•QR•XD•P•PRS02•N	DIST1390
820	FORMAT(1)	X•* INPUT DATA*/1X•*STRFAM *•4X•1HF•9X•1HT•9X•1HP•9X•1	HDIST1400
	H•9X•1HC	•9X•1HQ/•* FFFD	
-	STILATE*	•40X•F10•3/•2X•2HP=•F5•2•3X•6HPRS02=•F5•3•3X•2HN=•I3/)	DIST1420
-	PRINT 14		DIST1430
14	FORMAT(/	3X•*RESULTS OF THE DISTILLATION COLUMN*)	DIST1440
*FIRS1	Г э	CONVERT Q TO KJ/HR	*DIST1450
5	0R=0R*3.	6F3	DIST1460
*CONVE	RT FLOW	INTO MOLEZHR	*DIST1470
Contra	F=F#3600		DIST1480
*SECON		ATE OVERALL MATERIAL AND ENERGY BALANCES ON ALL 2-STREAMS	01011400 S*DIST1490
	D=F*XF*P	RSO2/XD	DIST1500
	B≂E÷D		DIST1510
	XB=(F*XF	-D*XD)/B	DIST1520
*CALC.	T\$S AND I	HIS OF B AND D	*DIST1530
	CALL BPT	R(P+XD+TD)	DISTISAO
	CALL BPT	R(P+XB+TB)	DIST1550
	CALL ENTE	R1 (TD•XD•HD)	DIST1560
	CALL ENT	R1 (TB•XB•HB)	DIST1570
*FLASH	I CALCS.	FOR THE FEED STREAM (TEE= FLASH FEED TEMP)	*DIST1580
*IF PF	- SMALLER	OR EQ. TO THE DIST. COL. PRESSURE THERE IS NO FLASH	*DIST1590
*SEPAF	RATION ANI	D FEED IS ASSUMED TO BE AT COL. PRESS. AND AT LIG. STATE	*DIST1600
	IF(PF-P-	LF.0.) GO TO 13	DISTINIO
*FIRS	I GUESSES	OF TFF-ASSUME TFF=T(BP)+1.	*DIST1620
	CALL BPT	R(P,XF,TFF)	DIST1630
	TFF=TFF+	1.	DIST1640
	HFF=HF*F		DIST1650
*FLASH	I CALC. AF	RE ACCORDING TO C.D.HOLLAND - FUND.AND MODELING OF SEPARA	TDIST1660
*PROCE	ESSES 197	5,PP. 59-67	*DIST1670
1	DO 50 J=	1,20	DIST1680

	R=0.5	DIST1690
*FIND	KS02 AND KS03 BY THE VOLATILITY K CONST. ROUTINE - VKCR	*DIST1700
	CALL VKCR(P,TFF,KS02,KS03)	DIST1710
*CHECI	K IF B.P. TFFTD.P. FOTE THAT IF TFF IS NOT WITHIN THESE BOUNDARIES	5*DIST1720
*CORRI	ECTION IS MADE AND LOOP STARTS FROM FRESH	*DIST1730
	SXFM1=KS02*XF+KS03*(1•−XF)−1•	DIST1740
	SYFM1=XF/KS02+(1XF)/KS03-1.	DIST1750
	IF(SXFM1.GT.0.0) GO_TO 2	DIST1760
8	TFF=TFF+1.	DIST1770
	GO TO 1	DIST1780
2	IF(SYFM1.GT.0.0) GO TO 3	DIST1790
7	TFF=TFF-1.	DIST1800
	GO TO 1	DIST1810
*SEAR(CH FOR R=FV/F START HERE USING PEWTON RAPHSON METHOD.	*DIST1820
3	DO 51 JR=1+10	DIST1830
	$DENFR2=1 \bullet -R*(1 \bullet -KSO2)$	DIST1840
	DENFR3=1R*(1KS03)	DIST1850
	FR2=XF/DFNFR2	DIST1860
	$FR_3 = (1 - XF)/DENFR_3$	DIST1870
	FR=FR2+FR3-1.	DIST1880
•	DFR = FR2*(1 - KSO2)/DENFR2 + FR3*(1 - KSO3)/DENFR3	DIST1890
	DR=FR/DFR	DIST1900
	R=R-DR	DIST1910
	IF(R+LE+0+) GO TO 8	DIST1920
	IE(B=1,0,0)EE(0,0) = 0, TO = 7	DIST1930
	$F(ABS(DR) - FDR)4 \cdot 4 \cdot 51$	DIST1940
51	CONTINUE	DIST1950
~ *	PRINT 76 B DR	DIST1960
76	FORMAT(3X,*NO CONVERGENCE ON R=FV/F DIST. COL. R.DR=*,2E10.4)	DIST1970
*ASSU	ME CONVERTION ON R. CALC. AND CHECK ENERGY BAL. FOR THE FLASH CALC	DIST1980
4	FV=R*F	DIST1990
	FL=F-FV	DIST2000
	XF2=XF/(R*(KS02-1)+1)	DIST2010
	XF3=1XF2	DIST2020
*CALC	Y2 AND Y3	*DIST2030
	Y2=K502*XF2	DIST2040
	Y3=1Y2	DIST2050
	CALL ENTR1(TFF,XF2,HFL)	DIST2060
	CALL ENTR2(TFF,Y2,Y3,HFV)	DIST2070
	HFC=HFL*FL+HFV*FV	DIST2080
	DH(J)=HFC-HFF	DIST2090
	IF(ABS(DH(J))-DHF)56,56,52	DIST2100
52	IF(J•GT•1) GO TO 5?	DIST2110
	TF1=TFF	DIST2120
	IF(DH(J))54,56,55	DIST2130
54	TFF=TFF+1.	DIST2140
	GO TO 50	DIST2150
55	TFF=TFF-1.	DIST2160
	GO TO 50	DIST2170
53	TF2=TFF	DIST2180
	TFF=(TF2*DH(J-1)-TF1*DH(J))/(DH(J-1)-DH(J))	DIST2190
	TF1=TF2	DIST2200
50	CONTINUE	DIST2210
	PRINT 500	DIST2220
	PRINT 510,TFF,HF,HFC,FL,FV,XF2,XF3,Y2,Y3	DIST2230
500	FORMAT(/3X,*FLASH CALCS. DIDNT CONVERGE IN 100 STEPS*)	DIST2240
5100	DFORMAT(/3X,4HTFF=,F5.1,2Y,3HHF=,E11.4,2X,4HHFC=,E11.4,2X,3HFL=,2)	•DIST2250

1E11.4,2X,3HFV=,E11.4,2X,4HXF2=,F5.3,2X,4HXF3=,F5.3,2X,3HY2=,F5.3,2DIST2260 2X+3HY3=+F5+3) DIST2270 GO TO 1000 DIST2280 *CONTINUE HERE IF NO FLASH CALC. ARE NEEDED. *DIST2290 13 TFF=TF DIST2300 FL=F DIST2310 XF2=XFDIST2320 XF3=1.-XF DIST2330 HFL=HF DIST2340 FV=0. DIST2350 Y2=0. DIST2360 Y3=0. DIST2370 HEV=0. DIST2380 56 IF(IFP.EQ.0)GO TO 6 DIST2390 PRINT 12, TFF, FL, XF2, FV, Y2 DIST2400 12 FORMAT(/3X,*FLASH FESULTS= TFF=*,F7.2,3X,3HFL=,E11.4,3X,4HFX2=, DIST2410 1F6.4.3X.3HFV=.E11.4.3X.4HFY2=.F6.4) DIST2420 *REBOILER CALCS. FIRST, FIND BOILER VAPOR COMPOSITION *DIST2430 6 CALL VKCR(P,TB,KB2,KB3) DIST2440 YB2=KB2*XB DIST2450 YB3=KB3*(1.-XB) DIST2460 *ADJUST TO GET YB2+YB3=1. *DIST2470 DSOY=1.-Y82-Y83 DIST2480 YB2=YB2+0.01*DSOY DIST2490 YB3=YB3+0.99*DSOY DIST2500 *CALL LATENT HEAT ROUTINE - LHR. 2-F(R S02,3 FOR S03 *DIST2510 CALL LHR(TB,XB,LHB) DIST2520 VB=QR/LHB DIST2530 *CHECK IF REBOILER HEAT IS SUFFICIENT. IF NOT CALC. FOR MIN QR. *DIST2540 *RS=(L/V)MIN FOR THE STRIPPIG SECTION. THIS SLOP IS THE SLOP OF THE LINEDIST2550 CONNECTING (XB+XB) AND (XF2+Y2). (V)MIN IS THEN FOUND AND COMPARED*DIST2560 *WITH VB. IF VB (V)MIN, QR IS NOT ENOUGH. (QR)MIN=(V)MIN*LHB. *DIST2570 $RS=(Y_2-X_B)/(XF_2-X_B)$ DIST2580 VMIN=B/(RS-1.) DIST2590 IF(VB-VMIN)30,31,9 DIST2600 30 QRM=VMIN*LHB/3.6E6 DIST2610 IF(IFP.EQ.0)GO TO 9 DIST2620 PRINT 32, QRM DIST2630 32 FORMAT(/3X.*HEAT INPUT TO REBOILER IS NOT ENOUGH. QR-MIN SHOULD DIST2640 1BE OVER*+2X+E11+4+2X+2HMW/3X+*DIST+ COL+ IS CALCUL+ FOR QR-MIN*) DIST2650 9 QR=VMIN*LHB DIST2660 VB=VMIN DIST2670 *MAKE REBOILER TO BE PLATE NO. 1 *DIST2680 31 L(1)=B DIST2690 V(1) = VBDIST2700 T(1)=TB DIST2710 Y(1) = YB2DIST2720 X(1) = XBDIST2730 HL(1) = HBDIST2740 HV(1) = HL(1) + LHBDIST2750 *CALC. DATA FOR PLATE NO.2 *DIST2760 L(2)=VB+BDIST2770 $X(2) = (B \times XB + VB \times YB2)/L(2)$ DIST2780 CALL BPTR(P,X(2),T(2)) DIST2790 CALL VKCR(P,T(2),KS02,KS03) DIST2800 Y(2) = KSO2 * X(2)DIST2810 $Y_3 = 1 - Y(2)$ DIST2820

、

1

_₹

L

	CALL ENTR1($T(2)$, $X(2)$, $HL(2)$) CALL ENTR2($T(2)$, $Y(2)$, $Y(3)$, $HV(2)$)	DIST2830
*PI ATE	C TO PLATE CALCS. ASSUME V(1)=V(1-1) CALCAL(1+1) X(1+1) T(1+1).	#DIST2850
/	V(2) = V(1)	DIST2860
* 1 1 1 1	ALTZE FOR FEED PLATE SEARCH	*DIST2870
		DIST2880
×	41 F = 0	#DI312000
^	DO 60 1=2-N	n1s12070
		DIST2900
* T I ND	M-JTI - EROM OVERALL MATERIAL DALANCE	DIST2910
AF IND	L(J+I) FROM OVERALL MATERIAL BALANCE	*DIST2920
	L(J+1) = L(J) + V(J) - V(J-1)	DIST2930
*FIND	X(J+1) FROM SUZ BALANCE	*01512940
	X(J+1) = (L(J) + X(J) + V(J) + V(J) - V(J-1) + V(J-1)) / L(J+1)	01512950
	$1 + (\chi(J+1) + G_1 + 1 + 0) \chi(J+1) = 1 + 0$	DIS12960
*FIND	BUBBLE PI. OF PLATE (J+I)	*DIST2970
		DIS12980
	CALL BPTR $(P, X(J+1), T(J+1))$	DIS12990
	CALL ENTRI(T(J+1), X(J+1), HL(J+1))	DIST3000
*NEWTC	N RAPHSON METOD IS USED TO CALC. L(J+1) AND X(J+1) .	*DIST3010
	XP1P = X(J+1) + 0.01	DIST3020
	XM1P = X(J+1) = 0.01	DIST3030
	IF(XP1P-1.)20,20,?1	DIST3040
21	XP1P=1.	DIST3050
	DX=1XM1P	DIST3060
	GO TO 22	DIST3070
20	DX=0.02	DIST3080
22	CALL BPTR(P,XP1P,TP1P)	DIST3090
	CALL BPTR(P,XM1P,TT1P)	DIST3100
	CALL ENTRI(TP1P,XP1P,HP1P)	DIST3110
	CALL FNTR1(TM1P+XM1P+HM1F)	DIST3120
	DHDX=(HP1P-HM1P)/DX	DIST3130
	A=X(J+1)-Y(J)	DIST3140
	E=L(J+1)	DIST3150
	C=HL(J+1)-HV(J)	DIST3160
	G=E*DHDX	DIST3170
	DET=A*G-E*C	DIST3180
	All=G/DET	DIST3190
	A12=-E/DET	DIST3200
	A21=-C/DET	DIST3210
	A22=A/DET	DIST3220
	F1=A*E+(Y(J-1)-Y(J))*V(J-1)+(Y(J)-X(J))*L(J)	DIST3230
	F2=E*C+V(J-1)*(HV(J-1)-H'(J))+L(J)*(HV(J)-HL(J))	DIST3240
	DL=A11*F1+A12*F2	DIST3250
	DXJ=A21*F1+A22*F2	DIST3260
	L(J+1)=L(J+1)-DL	DIST3270
	X(J+1)=X(J+1)-DXJ	DIST3280
	$IF(X(J+1) \bullet GT \bullet 1 \bullet 0)X(J+1) = 1 \bullet 0$	DIST3290
	IF(ABS(DL)-10.000)23.23.24	DIST3300
23	IF(ABS(DXJ)-0.005)25,25,24	DIST3310
24	CONTINUE	DIST3320
	PRINT 19,M	DIST3330
19	FORMAT(3X,*DIDNT CONVERGED ON X AND L AT PLATE NO.*,13)	DIST3340
25	V(J) = L(J+1) + V(J-1) - L(J)	DIST3350
*FEED	PLATE CHECK AND CALCULATIONS	*DIST3360
	IF(T(J+1)-TFF)65,66,66	DIST3370
65	NFP=NFP+1	DIST3380
	IF(NFP-1)67,67,66	DIST3390

67	PRINT 16,J,M	DIST3400
16	FORMAT(/3X,*FEED ENTERS BETWEEN PLATES=*,I3,* AND *,I2)	DIST3410
	SL=L(J+1)	DIST3420
	SV=V(J)	DIST3430
	(J+1) = (J+1) - F	DIST3440
	V(J) = V(J) + FV	DIST3450
	X(1)+1)=(S +X(1)+1)-F +XF(2)/1(1+1)	DIST3460
	F(X(1+1), G(1-1, 0)X(1+1) = 1, 0)	DIST3470
	Y(1) = (SV + Y(1) + EV + Y(2)) / V(1)	DIST3480
	$F(Y(1), G(T_1), O(Y(1)) = 1, 0$	DIST3490
		DIST3600
	CALL = CALL (A, A, A	DIGT2510
66	$CALL = VVCP[D_T([]]) + (VCP_2) + (CP_2)$	DIST2520
00		DIST3520
		01313530
		01313540
	$(2^{-1})^{-1}$	01313550
ETDC		DIST3560
FIRS	GUESS FOR V(3+1) = NEXT 3.	*DISI3570
		DIS13580
ICHECI	C FOR TOP PLATE	*DIST3590
	IF(Y(J)-XD)10,68,68	DIST3600
10	F(X(J+1)-X(J)-0.001)11,11,60	DIST3610
60	CONTINUE	DIST3620
F IF (DO LOOP COMPLETED THERE ARE TOO MANY STAGES	*DIST3630
	PRINT 73+M	DIST3640
73	FORMAT(/3X,*TOO MANY STAGES.CALCULATIONS STOPPED AT M=*,13)	DIST3650
	GO TO 68	DIST3660
11	PRINT 17	DIST3670
17	FORMAT(/3X,*NO MORE ENRICHME IT. CALC. STOPPED AT THIS POINT.*)	DIST3680
FNAL	PLATE CALCULATIOI.S	*DIST3690
+CHECI	(AND CALC. MISMATCH AT THE TOP	*DI'ST3700
68	DX=X(7)-XD	DIST3710
	DV = V(J) - (L(J + 1) + D)	DIST3720
+CALC	• COOLING LOAD QC•	*DIST3730
	QC=QR+F*HF-D*HD-8*HB	DIST3740
	QR=QR/3.6E3	DIST3750
	QC=QC/3.6E3	DIST3760
	M ≠ M − 1	DIST3770
	PD=P /	DIST3780
	PB=P	DIST3790
	TM=T(M)	DIST3800
	HLM≖HL(M)	DIST3810
	YM≖Y(M)	DIST3820
	F=F/3600.	DIST3830
	B=B/3600.	DIST3840
	D=D/3600.	DIST3850
	IF(IFP-FQ-0)GO TO 1000	DIST3860
	PRINT 71+B+XB+TB+QR+F+XF+TF+D+XD+TD+QC	DIST3870
71	DFORMAT(3X)*OUTPUT=	1/DIST3880
•	13X • * REBOILER= B=* • E11 • 4 • 3X • 3HXE=• E5. 3 • 3X • 3HTB=• E5.1 • 3X • 3HOR=• E11	4DIST3890
	2•/* FFED= F=*•F11.4•3X•3FXF=•F5.3•3X•3HTF=•F5.1•/3X•*CONDF	NSDIST3900
	3FR=D=*, E11.4.3X.3HXD=.F5.3.3.X.3HTD=.F5.1.3X.3HDC=.F11.	4)DIST3910
	PRINT 72	DIST3920
	PRINT74. (J.) + (J.) + X (J.) + H (J.) + V (J.) + V (J.) + H (J.) + J = 1 + M)	DIST3930
720	DFORMAT(3X) *PLATES CONDITIONS	*/DIST3940
	I* J T L X HL V	DIST3950
	2 Y HV*)	DIST3960

740F0RMAT(/3X,I2,3X,F5.1,3X,E11.4,3X,F5.3,3X,E11.4,3X,E11.4,3X,F5.3,3DIST3970 1X,E11.4) PRINT 75,M,DY,DV 75CFORMAT(3X,*NO.OF PLATES M=*,12,3X,*DEVIATION FROM XD=*,F6.4,3X,*DEDIST4000 1VIATION FROM V=*,E11.4/) 1JJO RETURN DIST4010 DIST4020 DIST4030 END

SUBROUTINE STC (QAAN, R2, T10, T30, R4, RATIO, ATGP2, BEWA1, BEWA2, TGP2) STC 10 **** **STC 20 *stc 30 UPDATED 4/15,78 *STC ж 40 STEAM TUREINE CALC. *STC 50 *STC 6 ? **我兴兴我我我我我我我我我我我我,这头我这些孩子我我我的'你这么这么这么这么这么么?"** *STC 70 *CALCULATIONS ARE MADE FOR ACONVENTIONAL CROSS-COMPOUND TYPE TURBINE *STC 80 *WITH HIGH BACK-PRESSURE. REF= GE DOCUMENTATION ON THE BLACK-HILLS PROJ*STC 90 *THE BLACK-HILLS DESIGN (250MW,1800PSI,1000F/1000F) IS TAKEN AS THE *STC 100 *BASE DESIGN. ACCORDING TO BEWIL THE NEW DESIGN IS DERIVED BY DIRECT *STC 110 *PROPORTION TO THE BASE DESIGN. IT ALSO PROVIDE FOR ABSORBING THE LOW- *STC 120 *TEMP. HEAT AVAILABLE FROM THE STORAGE (BEWHL) AND TO PROVIDE THE NECE-*STC 130 *SSARY EXTRACTIONS OF STEAM FOR REBOILER (ORES) AND VAPORIZER (VAP1L) *STC 140 *AT THE HTS-STORAGE. *STC 150 *AFTER THE NEW DESIGN IS ESTABLISHED THE DAY TIME GENERATION IS DETERM-*STC 160 *IND AND BECOMES THE*TURBINE RATING* *STC 170 *THE NIGHT OPERATION IS DETERMINED ACCORDING TO QAAN BY DIRECT PROPORTN*STC 180 *TO THE DAY TIME OPERATION. THE TURBINE IS SPLIT INTO TWO SEPARATE TUR*STC 190 *-BINES, A SMALL ONE TO RUN AT FULL LOAD DURING 16 HRS AND A LARGE ONE, *STC 200 *WHICH RUNS AT 3.5 PERCENT OF DAYTIME FLOW TO KEEP IT HOT AND TURNING *STC 210 *BUT PRODUCING NO ELECTRICITY. THIS INCREASES EFFICIENCY BY AVOIDING *STC 220 *FLOWS FAR BELOW DESIGN. IN ADDITION TO REGULAR DISCHARGE, A SEASONAL *STC 230 *STORAGE CASE IS STUDIED WHERE DISCHARGE IS AT THE REGULAR DAYTIME RATE*STC 240 ***OF POWER OUTPUT** *STC 250 *NOTE-STREAM NUMBERS (EXCEPT THOS! IN CALL) ARE FOR THE STEAM CYCLE AND*STC 260 *SHOULD NOT BE CONFUSED WITH PROCESS STREAMS. *STC 270 *STC *NOTE-DATA ARE GIVEN AND CALCULATIONS ARE MADE IN BRITISH UNITS. ALL 280 *PARAMETERS SPECIFIED BY CALLING ROUTINE OR BY COMMON BLOCKS ARE *STC 290 *CONVERTED TO BRITISH UNITS (FLOW-(LB/HR),ENTHALPIES-(BTU/LB),HEAT LOAD*STC 300 *-(BTU/HR), PRESSURE-(PSI), TEMP-(F), ETC.) *STC 310 *NOMENCLATURE= *STC 320 TOTAL WATER FLOW INTO BOILER -NEW DESIGN *STC A 330 TOTAL WATER FLOW INTO BOILER -DAY TIME AD *STC 340 TOTAL WATER FLOW INTO BOILER -NIGH TIME *STC ΔN 350 Á0 BLACK-HILLS (IH) TOTAL WATER FLOW TO BOILER *STC ¥ 360 ARRAY FOR TOTAL GENERATED POWER ATGP *STC 370 ATGP2 TGP OF SMALL TURBINE (16 HOUR OPERATION) *STC 380 BH LOW PRESSURE EXTRACTION AT 86.7PSI *STC 390 9 BEW BOILER FEED WATER FLOW *STC 400 ARRAY FOR BOILER FEED WATER AT NIGHT BFWA *STC 410 TOT/L BEW FLOW FOR NORMAL 16 HR OUTPUT **BFWA1** *STC 420 BFW FOR SEASONAL STORAGE, (100 MW OUTPUT AT NIGHT BEWA2 *STC 430 BEWE BOILER FEED WATER FLOW FACTOR *STC 440 BFWHL BOILER FEED WATER HEAT LOAD (IN COMMON HTHEL) *STC 450 BH LOW PRESSURE EXTRACTION AT 28.5PSI *STC 450 CIL CONDENSER 1 HEAT LOAD (IN COMMON HTHEL) *STC 470 BH LOW PRESSURE EXTRACTION AT 14-3PSI *STC 480 D EC HEAT RATE (BTU/HR) FOR STEAM THROUGH LP TURBINE *STC 490 FACTOR FACTOR FOR CONVERTING FLOW INTO ENTHALPY IN KJ/S. *STC 500

STEAM EXTRACT FROM HIGH PRESSURE TURBINE

STEAM EXTRACT FROM ITER.PRESSURE TURBINE

STEAM EXTRACT FROM HIGH PRESSURE TURBINE FACTOR

STEAM EXTRACT FROM ITER.PRESSURE TURBINE FACTOR

*STC

*STC

*STC

*STC

510

520

530

540

1.1

\$3

FH

FHF

FΙ

FIF

×

¥	FIF1	STEAM EXTRACT FROM ITER.PRESSURE TURBINE FACTOR IN EQ-1	*STC	550
*	FIF2	STEAM EXTRACT FROM ITER.PRESSURE TURBINE FACTOR IN EQ-2	*STC	560
*	FIP	STEAM FLOW THROUGH ITER.PRESSURE TURBINE	*STC	570
¥	FIPF	STEAM FLOW THROUGH ITER.PRESSURE TURBINE FACTOR	*STC	580
¥	FIPV	STEAM FLOW THROUGH ITER.PRESSURE TURBINE VALVE	*STC	590
*	FLP	FLOW THROUGH LP TURBINE	*STC	600
×	FLPF	FLOW THROUGH LP TURBINE FACTOR	*STC	610
¥	GPHP	GROSS PRODUCTION (MWE) OF HIGH PRESSURE TURBINE (NEW)	*STC	620
¥	GPHPO	GROSS PRODUCTION(MWE) OF HIGH PRESSURE TURBINE (BH)	*STC	630
¥	GPLP	GROSS PRODUCTION OF LOW PRESSURE TURBINE (NEW DESIGN)	*STC	640
*	GPLPO	GROSS PRODUCTION OF LOW PRESSURE TURBINE (BH)	*STC	650
¥	Н	ENTHALPY OF OFIGINAL BH SL6 (AT 162.4PSI)	*stc	660
¥	нв	ENTHALPY OF B	*STC	670
¥	нс	ENTHALPY OF C	*STC	680
¥	HD	ENTHALPY OF D	*STC	6 90
*	HEIL	HEAT EXCHANGER 1 LOAD (IN COMMON HTHEL)	*STC	700
*	H1-H16	ENTHALPIES AT VARIOUS LOCATIONS (SEE SCHEME)	*stc	710
¥	I	DO-LOOP INDEX FOR DISCHARGE RATE	*STC	720
*	L	INDEX TO RATIO DOWER TO 100MW	*stc	730
*	OEC	BH CVERALL HEAT (BTU/HR) CARRIED BY LP TURBINE STEAM.	*stc	740
*	OFL	BH LOW PRESSURE STEAM FLOW INTO CONDENSER	*stc	750
¥	P12	PRESSURE STREAM 12 IN STEAM CYCLE (PSIA)	*STC	760
*	Q	HEAT ABSORBED BY STEAM (DAY-RECEIVER,NIGHT-REACTORS)	*STC	770
*	QAN	QAAN SCALED BY R2	*STC	780
*	QAAN	Q AVAILABLE AT NIGHT -CALL STR PARAMETER	*STC	790
*	QBIGAN	Q IN LARGE TURBINE AT NIGHT (KJ/S)	*stc	800
*	QSMLAN	Q IN SMALL TURBINE AT NIGHT (KJ/S)	*STC	810
¥	QFST	Q FROM STORAGE TOWER	*STC	820
¥	QRFS	Q REBOILER FROM STEAM (IN COMMON HTHEL)	*STC	830
¥	ৎ	RATIO OF NEW DESIGN A TO BH DESIGN AO (R=A/AO)	*stc	840
*	RATIO	RATIO OF HEAT ABSORBED IN STEAM RECEIVER TO STORAGE (TQA	A) STC	850
¥	RCL	REBGILER-CONDENSER LOAD (IN COMMON HTHEL)	*STC	860
*	RHTR	REHEATER ELOW	*STC	870
*	RHTRF	REHEATER FLOW FACTOR	*stc	880
¥	R1	RATIO OF FLOW AT NIGHT TO FLOW AT DAY (R1=AN/AD)	*STC	890
*	82	RATIO FOR POWER AT 100MW	*STC	900
*	R4	RATIO FOR NIGHT-TIME POWER OF 100MW	*STC	910
*	SL10-SL6	C STEAM LEAKS BH-DESIGN (SEE SCHEME)	*STC	920
*	SL1-SL6	STEAM LEAKS NEW DESIGN (SEE SCHEME)	*STC	930
*	SPLIT	SPLIT BETWEEN LARGE AND SMALL TURBINES	*STC	940
*	TE	TOTAL ENERGY (BIU) AVAILABLE AT NIGHT	*STC	950
*	TGP	TOTAL GROSS ELECTRIC PRODUCTION (MWE) NEW DESIGN	*STC	960
* .	TGPD	TOTAL GENERATED POVER DURING THE DAY	*STC	970
*	TIME	PERIOD OF TIME QAAN CAN SUPPLY 100.MW-E	SIC	980
*		MIN I ACHIEVABLE IN THE SYSTEM (K)	*SIC	990
*	TPNF	THREE AND A HALF PERCENT OF NOMINAL FLOW (0. GENERATION)	*5.IC	1000
*		TOTAL Q AVA'LABLE-STORAGE RECEIVER CAPACITY(MWT)	*510	1010
ж м	K ⊡M⊨K TIN	INTRODEN HEAT LUAD VIN CUMMON HIHEL)	*510	1020
*	113.	TEMP STREAM IJ IN STUKAGE CYCLE (K) Temp stream id in steam system (F)	*510	1030
* *	1 I Z T 1 G	TEMP SINEAR 12 IN STEAM CHOLE (F)	*510	1040
ж ж	110	TEMP DINEAM IS IN STEAM CICLE (F)	*510	1050
ж ж		TEMPO STREAM JUIN STUKAGE (TULE (K) VADDZ-1 HEAT LOAD /IN COMMON HIDELY	*510	1050
3		VARAGET HEAT LUAD VIN COMMUN RINEL) Steam Elow to vadorized and dist 2010 at hitchstopage	×510	1000
安安农农区	V L D O	◇コロカ☆、モロシダー・シーマなてして14.14.14、ANU じ151●(しし● AI 田15−510(КА35)。	*510	1000
	DIMENSIO	N ATCO/31.RFWA/31		1100
	DIMENSIO	M RECEIDEN MARDE	SIC	1110
	0100100	・ ハウトキュアナメノナラン サイルフナー	SIC	1110

	COMMON/HTHEL/C1L,VAP1L,HE1L,RCL,BFWHL COMMON/LAHTV/BFWCT,TMIN	,TRIMMER,QRFS	STC STC	1120
*BASIC	TQA=23U.MW HOWEVER, DIRECT STEAM TOWER IS	SCALED FOR 2	339MW-F *STC	1140
	DATA TQA/23J./		STC	1150
	DATA H1+H2+ H4+H5+H5+H5+H7+H8+H9+H10/1480+1	.1344.4.	1521.6.139510	1160
1	4.3.334.9.332.1.341350.2.436.7/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	STC	1170
-	DATA OFL +3+C+D+HB+HC+HD+H/1729723++115729+	.7043610750	1. 1333.3. STC	1180
1	1233-1180-8-1398-8/	J104J0010100	STC STC	1190
*BASTC	DATA OF THE BLACK HILL TURBINE (1800PSIA)	1000EZ1000E1	4STC	1200
	DATA 140.51 1.4.51 20.51 30.51 40.51 50.51 60.60HP	0.GPI P0/23733	08. • 2701. • STC	1210
1	811 - 23984 - 9226 - 3323 - 3667 - 167 - 4 - 164 - 5/		STC	1220
*STEAN	CYCLE I AND H CALCULATED USING HIS SPECIE	TCATIONS		1220
	$T_{15=1.8*(T_{10+10-1-460})}$	ICATIONO		1200
	$H_{15=1}^{-1} = 0.11 \times T_{15-34}^{-21}$		STC	1240
	T12=1.8*TMIN=460.		57C	12.00
	$H13 = *9975 \pm 112 - 31 - 78$		510	1270
	P12=+0490*FXP(+0291*(T12))		STC	1280
	$\mu_{12=1038,\pm/0,\pm/100}$		510	1200
	H14=H13+1 4		510	1200
	DDINT 12.TMIN.U12.D12		510	1210
1.2	$\frac{1}{2} = \frac{1}{2} = \frac{1}$. *	SIC	1310
1.2	FURMAT(2X)*IMIN(K)# *9F4.090X9*H12(3)07L5) *-F4.0)	= *9F5.U95X9*	PI2(PSIA) = SIC	1320
			SIC *576	1330
* UAI			*SIC	1250
			510	1320
	GACTOR=3400 (1 0551//415414)		51C	1270
			SIC	1370
	DEMADEMALTER LICK		SI,C	1380
			SIC	1390
	SL4F=SL4U/AU		SIC	1400
	FHF=(H10-H8)/(H2-H9)		SIC	1410
	FIF 1=(H/-SL4F*H2+FHF*H9)/H5		SIC	1420
-			SIC	1430
(SIC	1440
			SIC	1450
			SIC	1450
			SIC	1470
			SIC	1480
			51C	1600
			510	1500
			SIC	1510
			510	1520
			510	1540
			510	1540
	DUTD=A_CI1_CI2_CIA_CI5_CU_CI2		510	1520
			510	1500
			510	1520
	FIF=FIFVT3L3 FID=FTP-SIA=FT-VPDS		510	1500
¥нг∆т	ARS. BY STEAM.		51C	1600
	$Q = (\Delta * (H) - H_1 O) + RHTR* (HA - H2) + * 1055 - 1/2 450$		51C	1610
	$\mathbf{R} \mathbf{A} = \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$		010	1620
	1F(1.6T.0)60 TO 5		31C CTC	1620
	RATIA(K)=RATIO		31C	1640
	$IF(K \bullet GI \bullet 1) = GO = IO = 22$		orc ct/	1650
	BEALKIEBEW		01C	1660
	BFW=BFW+40000.		отс стс	1670
	BFA(K+1)=BFW		51C CTC	1680
	1		510	1000

GO TO 17	STC	1690
22 ĎČH=(RÁTIA(K)-RATIA(K-1))/(3FA(K)-BFA(K-1))	STC	1700
DRFM=(RATIA(k)-1.05)/DCH	STC	1710
PFA(K+1) = PFA(K) - DBFW	STC	1720
BFW=BFA(<+1)	STC	1730
IF(DBFW+LT+1(JC)+)GO TO 5	STC	1740
17 CONTINUE	STC	1750
PRINT 24, DBFW	STC	1760
24 FORMAT(/3X,*N(CONVERGENCE ON BEW, LAST DELTA BEW= *,F10.3)	STC	1770
5 OEC=OFL*(H-H12)+B*(H-HB)+C*(H-HC)+D*(H-HD)	STC	17.80
EC=FLP*(H5-H12)	STC	1790
GPHP=GPHPO*R	STC	1800
GPLP=GPLPO*EC/OEC	SIC	1810
T GP = GPHP + GPLP	SIC	1820
	SIC	1830
$1F(L \circ G(-1)) = 0 = 23$	SIC	1840
$\langle 2 = 1 \circ / (1 \circ + RA 10)$	SIC	1040
	SIC	1000
	SIC	1090
	510	1000
	STC	1000
	STC	1010
	STC	1920
	STC	1930
	STC	1940
2 EORMATIZAX ** DAY-TIME OPERATION. *)	STC	1950
PRINT 1 44 SI 1 SI 2 SI 2 SI 4 S' 5 FH BHTR FIPV FIP SI 6 FI VPDS FI	P.BEWSTC	1960
1 FORMAT(STC	1970
1/3X,*WATER TO BOILER *,F1).1,	STC	1980
2/3X +* SEAL LEAK - 1 *, F10.1,	STC	1990
3/3X,*SEAL LEAK - 2 *,F10.1,	STC	2000
4/3X • * SEAL LEAK - 3 * • F1) • 1 •	STC	2010
5/3X + SEAL LEAK - 4 * + F10 - 1 +	STC	2020
6/3X +* SEAL LEAK - 5 * + F10 - 1 +	STC	2030
7/3X,*HP - FXTRACTION *,F10.1,	STC	2040
8/3X + REHEATER FLOW * • F10 • 1 •	STC	2050
9/3X,*IP-FLOW AT VALVE *,F10.1,	STC	2060
A/3X,*IP TOTAL FLOW *,F1C.1,	STC	2070
B/3X,*SEAL LEAK - 6 *,F10.1,	STC	2080
C/3X,*IP EXTRACTION *,F10.1,	STC	2090
D/3X, *VAP.+DIST. STEAM *.F10.1,	STC	2100
5/3X,*LP TOTAL FLOW *,FI0.1,	STC	2110
F/3X+*TOTAL CCNDENSATE *+F10+1)	SIC	2120
PRINT 9 RATIC	SIC	2130
9 FORMATIV SX STATIRECT STEAM GEN. TO STORAGE RATIO= STO.47	510	2140
PRINITAGENE SCHEFTIGE	STC	2150
IA FURNALL 1/20. #Domed Cenedated at up tuddine=#.e4 2.	510	2170
1/3A; "POWER GENERATED AT THE TORDINE-";FC-2;	STC	2180
2/3X ** TOTAL DOWER CENERATED AT THE TORBINE -** TO*2/	STC	2190
*NIIGHT OPERATION	*STC	2200
PRINT 2	STC	2210
3 FORMAT(/3X **NICHT-TIME OPERATION*)	STC	2220
RHTRF=1(SL10+SL20+SL30+SL40+SL50)/AO-FHF	STC	2230
FIPF=RHTRF+(SL10+SL30)/AO	STC	2240
$T_{15} = 1 + 8 * (T_{30} - 10 +) - 450 + 10 = 10 = 10 = 10 = 10 = 10 = 10 = 1$	STC	2250

	H15=1.011*T15-34.21	SIC	2260
	FIF=((H7-H15)-SL40/A(*(H2-H15)-FHF*(H9-H15))/(H5-H15)	STC	2270
	FLPF=FIPF-SL607AO-FIF	STC	2280
	BFWF=FLPF+(SL20+SL50+SL60)/AO	STC	2290
*TOTAL	ENERGY AT NIGHT = GAAN*16(HRS)	*STC	2300
	TE=QAN*3630•*16•/1•J551/	STC	2310
*ASSUN	AE 3.5 P.C.FLOW IS OBTAINED BY SUPPLYING 5 P.C. OF HEAT.	*STC	2320
	Q=QFST*RATIO*1000.	STC	2330
*TURB1	INF IS SPLIT INTO SMALL AND LARGE TUPPINES	*STC	2340
	SPLIT== 26* (BATIO-1-)++5	SIC	2350
	$QBIGAN = (Q - QAN) * 3600 \cdot / 1 \cdot 0551 / 0 \cdot 965 * 0 \cdot 050 * SPI I T$	STC	2360
	OSMLAN=TE-DBIGAN*16.	STC	2370
	TPNF = OB IGAN / (BHTRF*(H4-H2)+(H1-H10))	STC	2380
	A=TPNF	STC	2390
		CTC	2400
		570	2400
	EROMAT/2018LADCE TUDDING AT 2 ED C. DE DAVETIME ELOURS	510	2410
0	PORMATING ADDREETORETING AT 305FCC. OF DATTING FLOWA)	SIC	2420
		510	2430
10		SIC	2440
19	PRINT TO	SIC	2450
10	FORMATIVE STALL TORBINE DURING 16 HRS AT NIGHT.*)	510	2460
	Q=QSMLAN/16•	STC	2470
	GO TO 11	STC	2480
20	PRINT 21	STC	2490
21	FORMAT(/3X+*100 MW-E TURBINE AT SEASONAL STORAGE OP. CONDITIONS*)	STC	2500
	Q=TGPD*Q/TGP	STC	2510
	TIME=TE/Q	STC	2520
	R4=16./TIME	STC	2530
	PRINT 15.TIME.R4	STC	2540
15	FORMAT(/3X, *DISCHARGE AT FULL LOAD*, F6.3, *HRS. NEEDS*, F6.3, * DAYS	S STC	2550
1	LOF STORAGE TO*+/3X+*RUN 16 HRS AT FULL LOAD*)	STC	2360
11	A=Q/(RHTRF*(H4-H2)+(H1-H10))	STC	2570
8	AN=A	STC	2580
¥ALL F	FLOWS RATIOD TO FLOW INTO BOILER	*STC	2590
	RHTR=RHTRF*A	STC	2600
	FIP=FIPF*A	STC	2610
	FLP=FLPF*A	STC	2620
	BFW=BFWF*A	STC	2630
	FI=FIF*A	STC	2640
	FH=FHF*A	STC	2650
	VPDS=0.	STC	2660
	R=A/AO	STC	2670
	R1=AN/AD	STC	2630
	PRINT 12+R+R1	STC	2690
12	FORMAT(/3X, 2HR=, E10, 4, 3X, 3HR1=, F10, 4)	STC	2700
	SL1=SL10*R	STC	2710
	SL 2 = SL 20 * R	STC	2720
	SI 3 = SI 30 * R	STC	2730
	SI 4 = SI 40 * R	STC	2740
	SL5=SL50*R	STC	2750
	SL6=SL60*R	STC	2760
	FIPV=RHTR+SL1	STC	2770
	PRINT 1,A,SL1,SL2,SL3,SL4,SL5,FH,RHTR,FIPV,FIP,SL6,FI,VPDS,FIP,BF	wste	2780
	EC=FLP*(H5-H12)	STC	2790
	GPHP=GPHPO*R	STC	2800
	GPLP=GPLPO*EC/OEC	STC	2810
	TGP=GPHP+GPLF	STC	2820
		5.0	

	PRINT14,GPHP,GPLP,TGP ATGP(I)=TGP		STC	2830 2840
	BFWA(I)=BFW		STC	2850
4	CONTINUE		STC	2860
*ONLY	THE SMALL TURBINE POWER IS SENT BACK TO MEB	3P	*STC	2870
	ATGP2=ATGP(2)		STC	2880
	BEWA1=BEWA(1)+BEWA(2)		STC	2890
	BFWA2=BFWA(3)		STC	2900
	FACTOR=3600•/1•0551/(H15-H14)		STC	2910
	BFWA1=BFWA1/FACTOR		STC	2920
	BFWA2=BFWA2/FACTOR		STC	2930
	RETURN		STC	2940
	END	•	STC	2950

SUBROUTINE CLR(I, J,K,CL) CLR 10 ***** 20 *CLR 30 *CLR UPDATED 4/15/78 40 CLR - CONDENSER LOAD ROUTINE *CLR 50 #CT R 60 70 *ROUTINE IS USED TO CALC. CONDENSER LOAD FOR GIVEN INPUT GAS STREAM AND*CLR 80 *GIVEN OUTPUT TEMP. IT ALSO SET THE RECORD FOR BOTH LIQUID AND GAS *CLR 90 *LEAVING STREAMS. *CLR 100 ROUTINE IS CALLED BY *CALL CCR(NI, NG, NL, CL)* * WHERE NI IS NO. *CLR 110 OF INPUT STREAM, NG IS NO. OF GAS EXITING STREAM, NL IS LIQUID OUT*CLR 120 - PUT STREAM, CL-CONDENSER LOAD . *CLR 130 ROUTINE HAS ACCESS TO THE MAIN PROGRAM ARRAYS=F,P,T,H,X1,X2,X3 *CLR 140 *ROUTINE USES CCL FUNCTION TO DETERMINE THE LOAD *CLR 150 ROUTINE ASSUMES CONDENSATION AT CONSTANT PRESSURE AND SET = *CLR 160 P(NL) = P(NG) = P(NI). ***CLR** 170 *CLR ROUTINE ASSUMES THAT BOTH T(NI) AND T(NG) ARE GIVEN. 180 ***CLR** 190 *NOMENCLATURE= *CLR 200 *CLR CONDENSER LOAD (KJ/S) × CL 210 F FLOW(KMOL/SEC) *CLR 220 ENTHALPY (KJ/KMOL) ***CLR** н 230 I INPUT GAS STREAM INDEX *CLR 240 OUTPUT GAS STREAM INDEX *CLR 250 J OUTPUT LIQ. STREAM INDEX ***CLR** 260 ĸ OUTPUT GAS STREAM INDEX (USED FOR PRINTIG ONLY) INPUT GAS STREAM INDEX O(USED FOR PRINTIG ONLY) NG *CLR 270 *CLR 280 NI OUTPUT LIQ. STREAM INDEX (USED FOR PRINTIG ONLY) NL *CLR 290 Ρ PRESSURE(BAR) *CLR 300 *CLR Ť TELP.(K) 310 EX'T TEMP. AS SPECIFIED TO CCL ***CLR** ТJ 320 OX'GEN CONTENT (MOLE FRACTION) *CLR X 1 330 SO2 CONTENT (MOLE FR.) *CLR Χ2 340 * SO" CONTENT (MOLE FR.) *CLR 350 X3 ***** **** **cLR 360 *CLR 370 COMMON/STREAM/F(60),P(6),T(60),H(60),X1(60),X2(60),X3(60) CLR 380 *CLR 390 CLR PRINT 50+I+J+K+T(J) 400 50 FORMAT(/3X+*CLR ROUTINE*+/3X+*INPUTS= NI=*+12+3X+3HNG=12+3X+3HNL=+CLR 410 CLR 112,3X, $7HT(OUT) = F7 \cdot 2$ 420 * CONDÈNSER LOAD CALCS. *CLR 430 CLR 440 TJ=T(J)CLR CL=CCL(I,J,K,,TJ) 450 END OF ROUTINE.RETURN AFTER SUCCESSFUL CALCULATIONS *CLR 460 CLR 470 T(K) = T(J)PRINT 44 CLR 480 PRINT 55+I+F(I)+X1(I)+X2(I)+X3(I)+T(I)+H(I) CLR 490 PRINT 55, J, F(J), X1(J), X2(J), X3(J), T(J), H(J) CLR 500 PRINT 55,K,F(K),X1(K),X2(K),X3(K),T(K),H(K) CLR 510 PRINT 5.CL CLR 520

44 FORMAT(/3X+*RESULTS OF CLR ROUTINE*/+5X+2HSN+1CX+1HF+8X+2HX1+	CLR	530
18X,2HX2,8X,2HX3,9X,1HT,9X,1HH)	CLR	540
55 FORMAT(/6X,12,5X,6F10,4)	CLR	550
5 FORMAT(/3X,*CONDENSER LOAD= CL=*,E11.4)	CLR	560
RETURN	CLR	570
END	CLR	580

ί_

SUBROUTINE CTR(I,J,K,CL) CTR 10 *CTR 20 *CTR 30 UPDATED 4/15/78 *CTR 40 CTR - CONDENSER TEMP. ROUTIE. *CTR 50 *CTR 60 **** **CTR 70 *ROUTINE IS CALLED BY *CTR(NI,NG,NL,CL)* *CTR 80 *ROUTINE CALCS. EXIT TEMP. FOR A CONDENSER WHOSE LOAD IS GIVEN. `*****⊂†R 91 *IN ADDITION THE ROUTINE CALCS. AND UPDATE THE STREAM FILE (EXIT STREAM*CTR * ROUTINE IS CALLED BY *CALL CCR(NI.NG.NL.CL)* * WHERE NI IS NO. *CTR 100 *ctr 110 OF INPUT STREAM, NG IJ NO. OF GAS EXITING STREAM, NL IS LIQUID OUT*CTR 120 - PUT STREAM, CL-CONDENSER LOAD . *CTR 130 ROUTINE ASSUMES CONDENSATION AT CONSTANT PRESSURE AND SET = ***CTR** 140 P(NL) = P(NG) = P(NI). *CTR 150 ROUTINE ASSUMES THAT BOTH T(NI) AND T(NG) ARE GIVEN. HOWEVER, *CTR 160 *T(NG) IS CONSIDETED AS FIRST APPROXIMATION ONLY AND IS UPDATED. *CTR 170 ROUTINE HAS ACCESS TO THE MAIN PROGRAM ARRAYS=F,P,T,H,X1,X2,X3 *****CTR 180 *ROUTINE USES THE FOLLOWING SUBROUTINES= VKCR.BPTR.CCL.RECOPY.FNTR2 *CTR 190 *CTR 200 *NOMENCLATURE= ***CTR** 210 BUBBLE POINT TEMP. PPT ***CTR** 220 MAX. CL FOR T(J)=273. ALSO USED IN NR TO FIND T CCL1 *CTR 230 CCL2 USED IN NR (=F*DH) TO FIND T *CTR 240 CONDENSER LOAD (KJ/S) ***CTR** CL. 250 CLADP CONDENSER LOAD AT DEW POINT *****CTR 260 DP DEW POINT (=DPT) IN CALL FOR VKCR *CTR 270 DPF1 NR FUNCTION VALUE (FOR DPT) IN DO LOOP 15 *CTR 280 DPF2 NR FUNCTION VALUE (FOR DPT-1) IN DO LOOP 15 ***CTR** 290 DEV POINT TEMP. DPT *CTR 300 INCREMENT FOR DPT AS CALC. BY NR (DO LOOP 15) DT *CTR 310 *****CTR FPST TOLERANCE FOR ACCEPTABLE DT 320 FLOW (KMOL/HR) *CTR F 330 ENTHALPY (KJ/KMOL) *CTR н 340 INPUT GAS STREAM INDEX ***CTR** I 350 OUTPUT GAS STREAM INDEX *CTR Л 360 OUTPUT LIQ. STREAM INDEX *CTR κ 370 VOLATILITY CONST. FOR SO2 K 2 *CTR-380 VOLATILITY CONST. FOR SO3 *CTR К3 390 NO.OF ITERATIONS IN DPT DO LOOP AND T DO LOOPS *CTR М 400 DO LOOP INDEX IN DPT CALCS.(15) AND IN T CALCS.(12.23) N *CTR 410 OUUPUT GAS SOREAM INDEX (USED IN PRINTING ONLY) NG *CTR 420 INPUT GAS STREAM INDEX (USED FOR PRINTIG ONLY) N-T ***CTR** 430 OUTPUT LIQ. STREAM INDEX (USED FOR PRINTIG ONLY) NL *CTR 440 PRESSURE (BAR) D *CTR 450 ΤJ GAS EXIT TEMP. *CTR 460 MOLE FRACTION 02 X 1 *****CTR 470 X 2 MOLE FRACTION SO2 *CTR 480 MOLE FRACTION SO3 ***CTR** 490 Χ3 ******* ***** +**CTR 500 DIMENSION TJ(10) CTR 510 COMM4ON/STREAM/F(60),P(60),T(60),H(60),X1(60),X2(60),X3(60) CTR 520

1

REAL K2+K3 CTR 530 DATA EPST, M/1., 10/ CTR 540 PRINT 50, I, J, K, CL CIR 550 50 FORMAT(/3X,*CTR ROUTINE*,/3X,*INPUTS= NI=*,I2,3X,3HNG=I2,3X,3HNL=,CTR 560 112+3X+3HCL=+E11+4+) CTR 570 *CHECK WHETHER CL IS NOT NEGATIVE . IF NEG. PRINT ERROR MASSEGE, IF Ú*CTR 580 *SET STREAM NG EQ. 10 NI ANDSTREAMNL EQ. ZERO. ***CTR** 590 IF(CL)1,2,3 CTR 600 * 1- ERROR. CL CANT BE NEGATIVE *CTR 610 1 PRINT 4, I, CL CTR 620 40FORMAT(/3X,*ERROR IN CONDENSER LOAD DATA. CL IS NEGATIVE. NI=*, CTR 630 112,3X,3HCL=,E11.4) CTR 640 CTR GO TO 100 650 2 CALL RECOPY(I,J) CTR 660 CALL RECOPY(45.K) CTR 670 GO TO 24 CTR 680 *CALC. CL MAX. AT T(J)=273. CTR 690 3 CCL1=CCL(I,J,K,273.) CTR 700 *CHECK IF SPECIFIED LOAD IS NOT TOO HIGH. *CTR 710 IF(CCL1.GT.CL)GO TO 37 CTR 720 *MAX. LOAD CALCS. *CTR 730 T(J)=273. CTR 740 PRINT 38 CTR 750 38 FORMAT(/3X)*CONDENSER CANT ACCOMODATE SUCH LOAD DEMAND WITH THE SPCTR 760 1ECIFIED FLOW.*./3X,*RESULTS ARE GIVEN FOR MAX. POSSIBLE LOAD-CCL*)CTR 770 GO TO 24 CTR 780 *FIND BUBBLE POINT. (IT IS NOT A TRUE BP. IT IS USED ONLY AS A FIRST **#CTR** 790 ***APPROXIMATION FOR THE DEW POINT.)** *CTR 800 37 CALL BPTR(P(I),X2(I),JPT) CTR 810 *FIND DPT-DEW POINT TEMP. (FIRST APPROX. FOR DPT IS BPT.) *CTR 820 DPT=BPT CTR 830 DO 15 N=1,M CTR 840 DP=DPT CTR 850 CALL VKCR(PII), DP, K2, K3) CTR 860 DPF1=X2(I)/12+X3(I)/K3-.. CTR 870 DP=DP-1. CTR 880 CALL VKCR(PfI),DP,K2,K3) CTR 890 DPF2=X2(I)/k2+X3(I)/K3-1. CTR 900 DT=DPF1/(DPF1-DPF2) CTR 910 IF(ABS(DT)-50.)6.6.7 CTR 920 7 DT=50.0*DT/ABS(DT) CTR 930 6 DPT=DPT-DT CTR 940 IF(ABS(DT)-EPST)16+16+15 CTR 950 15 CONTINUE CTR 960 *GET CLADP - CL AT DEW POINT. ***CTR** 970 16 CALL RECOPY(I,J) CTR 980 CALL RECOPY(45+K) CTR 990 T(J)=DPT CTR 1000 CALL ENTR2(DPT+X2(J)+X3(J)+H(J)) CTR 1010 CLADP=F(I)*(H(I)-H(J))CTR 1020 CCL1=CLADP CTR 1030 *SELECT CONDENSER OR COOLER ROUTINE CTR 1040 IF(CLADP-CL)18,24,19 CTR 1050 ¥ *CTR 1060 × *CTR 1070 * EXIT TEMP. CALC. FOR COOLER. *CTR 1080 19 CALL RECOPY(I,J) CTR 1090

		CTD	1100
		CIR	1100
			1110
	00 12 N=110 15/11 N=001/25-29-28	CIA	1120
25		CIA	11.60
20		CTR	1140
20	$- \alpha (1) + 1 (3)$	CIR	1150
			1100
		CTR	1170
	0 (N) = 1 0 (N) = (● C A = ENTDO (T 1 N) - X 2 (1) - 2 (1100
	CO[2=F(T) + (H(T) + H(T))	CTR	1200
	$\Delta T = (c_1 + c_2) + 1 \times (c_1 + c_2)$	CTR	1210
	IF(ABS(DT)=50, 132, 32, 33	CTR	1220
33		CTR	1220
32		CTR	1240
	IF(ABS(DT)=FPST)26+26+12	CTR	1250
12	CONTINUE	CTR	1260
• •		CTR	1270
* -E)	XIT TEMPS, CALCULATIONS, (CONDENSER).	+CTR	1280
*FIRS	$T_{GUESS} = T(J) = (DPT + BPT)/2$	CTR	1290
18	T(J) = (DPT+BPT)/2	CTR	1300
21	DO 23 N=1.M	CTR	1310
	IF(T(J)-DPT)10,10,11	CTR	1320
11	T(J)=DPT	CTR	1330
10	TJ(N) = T(J)	CTR	1340
	CCL1 = CCL(I,J+K,TJ(N))	CTR	1350
	TJ(N) = TJ(N) - 1	ĊTR	1360
	CCL2=CCL(I,J,K,TJ(N))	CTR	1370
	DT=(CL-CCL1)/(CCL1-CCL2)	ĊTR	1380
	IF(ABS()T)-50.)34.34.35	CTR	1390
35	DT=50.0*DT/ABS(DT)	CTR	1400
34	T(J)T=(L)T=(L)T=	CTR	1410
	IF(ABS(DT)-EPST)26,26,23	CTR	1420
23	CONTINUE	CTR	1430
*NO CO	DNVERGENCE ON T.	* CTR	1440
8	PRINT 27	CTR	1450
27	FORMAT(/3X)*NO CONVERGENCE ON T(J) AND T(K) AT CTR*)	CTR	1460
×		*CTR	1470
*LAST	PASS THROUGH CCL	*CTR	1480
. 26	CCL1=CCL(I,J,K,T(J))	CTR	1490
* 24-	IS THE END OF ROUTINE.RETURN AFTER SUCCESSFUL CALCULATIONS	*CTR	1500
24	T(K)=T(J)	CTR	1510
	PRINT 44	CTR	1520
	PRINT 55,I,F(I),X1(I),X2(I),X3(I),T(I),H(I)	CTR	1530
	PRINT 55+J+F(J)+X1(J)+X2(J)+X3(J)+F(J)+H(J)	CTR	1540
	PRINT 55+K+*(K)+X1(K)+X?(K)+X3(K)+T(K)+H(K)	CTR	1550
44	FORMAT(/3X, * RESULTS OF :TR ROUTINE*/, 5X, 2HSN, 10X, 1HF, 8X, 2HX1.	CTR	1560
	18X,2HX2,8X,2HX3,9X,1HT,9X,1HH)	ČTR	1570
55	FORMAT(/6X, 2, 5X, 6E10.4)	CTR	1580
	PRINT 9,CL,(CL1	CTR	1590
9	FORMAT(/3X,*CONVERGENCE ACCURACY= CL=*,E11.4,3X,*COMPARE TO CCL=*	+CTR	1600
	1E11.4)	CTR	1610
100	RETURN	CTR	1620
_	END	CTR	1630

i

	FUNCTION	CCL(I,J,K,TJ)	CCL	10
**	****	* } & } } * * * * * * * * * * * * * * *	**CCL	20
¥			*CCL	30
¥	UPDATED -	- 5/17/78	*CCL	30
¥	CCL - CON	APUTATIONS OF CONDENSER LOAD FUNCTION	*ccl	50
*			*cci	60
***	***	******	**001	70
*0	CL IS A FUNCT	TION CALLED BY BOTH CLR AND CTR TO DETERMINE CONDENSER	*001	80
- 34.1	OAD. FUNCTION	I IS CALLED BY SCHITTLY WHERE IT IS THE OUTDUT TEMP.	***	90
L 	UNCTION HAS A	ACCESS TO ALL STREAM RECORDS. NR SCHEME IS USED TO FIND	****	111
- 14-1	TOUTO FLOW AN	ID COMPOSITION OF THE EVIT STREAM. FIRST GUESSES ARRAYS	*(()	110
- L - M	DE BASED ON 1	AD COMPOSITION OF THE EXTERNATE FINGE CONSISTS ANALY	***	120
40	HNCTION HEES	THE FOLLOWING POUTINES+ VKCR.ENTRI.ENTRI.RECOPY	***	120
<u> </u>	NONENCLAT	THE FOLLOWING ROOTINESS VRERVENTRIJENTRZYRECOT	***	140
*	NUMERCLAI	ADDAY FOR DOCCTREE FIRST GUESSES OF L	*001	140
×		ARRAT FOR POSSIBLE FIRST CHESSES OF Y2	*CCI	142
. 7	A.	ARRAT FOR FUSSIBLE FIRST GUESSES OF A2		142
*	AIL	NR JAUUDIAN NATRIX VARIADES	*CCL	140
*	AIZ	NK JACUDIAN MATKIX VAKIADLE ND JACODIAN MATDIY VADIADLE	*(()	100
*	A21	NR JACUDIAN MAIRIX VARIADLE	*CCL	180
*	AZZ	NK JACUBIAN JAIRIX VARIADLE	****	100
*		CALCULATED CONDENSER LOAD (FUNCTION)		190
*	CL	CONDENSER LOAD (KJ/SEC)		200
*	D	DETERMINANT OF THE NR JACOBIAN MATRIX	*CCL	210
¥	DL	INCREMENT FOR L IN NR SCHEME	*CCL	220
¥	DX2	INCREMENT FOR XX2 IN NR SCHEME	*CCL	230
*	EPSL	TO'ERANCE FOR ACCEPTABLE DL	*CCL	240
*	EPSX2	TOLERANCE FOR ACCEPTABLE DX2	*CCL	250
*	F	FLOW (KMOL/SEC)	*CGL	260
¥	F1	FUTCTION IN NR FOR XX2 AND L	*CCL	270
¥	F2	FUNCTION IN NR FOR XX2 AND L	*CCL	280
¥	н	ENTHALPY (KJ/KMOL)	*CCL	290
#	I	INPUT GAS STREAM INDEX	*CCF	300
×	I 1	INDEX FOR DO LOOP PREPARING INITIAL GUESSES	*CCL	310
×	J	OUTPUT GAS STREAM INDEX	*CCL	320
¥	κ	OUTPUT LIQUID STREAM INDEX	*CCL	330
*	K2	VOLATILITY CONST. FOR SO2	*CCL	340
¥	К3	VOLATILITY CONST. FOR SO3	*CCL	350
¥	L	LIQUID FLOW -ARRAY IN NR SCHEME	*CCL	360
*	M	NO. OF ITERATIONS -NR SCHEME	*CCL	370
¥	N	INDEX IN DO LOOP 34 -NR SCHEME	*001	380
¥	ND1	N+1 IN DC LOOP 34	*001	200
×	D	DRECCURE / RARA	***	A00
ж У	г Т	TEMD. (K)	*CCL	400
ਸ	TEC		***	410
ж У	175 TI (AC EVIT TEMD	* ~ ~ ~ ~	420
×		UAD CALL LEND		4.50
*		LINUIU LAIT TEMMO No tali Adday ta ad coneme		440
*	XXZ	XZ IN L TARKAY IN NK SCHEME	*001	450
¥	X 1	MOL. FR. OZ	*CCL	460
¥	X 2	MOL. FR. SO2	*CCL	470
¥	X 3	MOL. FR. SO3	"*CCF	480
**	********	***************************************	**CCL	220
¥			*CCL	*230

COMMON/STREAM/F(60)+P(60)+T(60)+H(60)+X1(60)+X2(60)+X3(60) CCL 240 DIMENSION AX(5), AL(5) CCL 250 REAL K2+K3 ÇCL 260 REAL L(20) +XX2(20) CCL 270 DATA M/20/ CCL 280 DATA EPSX2, EPSL/0,005,100.0/ CCL 290 SET EQUAL PRESSURE THROJGHOUT THE CONDENSER. ¥ CCL 300 P(J) = P(I)CCL 310 P(K) = P(I)CCL 320 TK≠TJ CCL 330 CALLVKCR(P(K),TK, K2,K3) CCL 340 *CHECK IF MIXTURE IS CONDENSIBLE AT THIS TEMP. TFC=TEST FOR CONDENSATIONCCL 350 TFC=X2(I)/K2+X3(I)/K3 CCL 360 IF(TFC+LE+1+00) GO TO 11 CCL 370 * CALC, INITIAL GUESSES FOR XX2(N=1),L(N=1) *CCL 380 DO 3 I1=1.5 CCL 390 AX(I1) = 0.1*11CCL 400 3 AL(I1)=0.15*I1*F(I) CCL 410 00 1 I1=1+5 CCL 420 XX2(1) = AX(11)CCL 430 L(1) = AL(I1)CCL 440 *ENTERING NEWTON RAPHSON ITERATION ROUTINE FOR XX2 AND L *CCL 450 4 DO 34 N=1,M CCL 460 NP1=N+1CCL 470 F1=(F(I)-L(N))*(1-K3-XX2(N)*(K2-K3))-F(I)*X1(I)CCL 480 F2=(F(I)-L(N))*K2*XX2(N)+L(N)*XX2(N)-F(I)*X2(I) CCL 490 A11=XX2(N)*(K2-K3)+K3-1. CCL 500 A12=(F(I)-L(N))*(K3-K2)CCL 510 A21=XX2(N)*(1-K2)CCL 520 A22=(F(I)-L(N))*K2+L(N)CCL 530 D=A11*A22-A12*A21 CCL 540 DL=(A12*F2-A22*F1)/D CCL 550 DX2=(A21*F1-A11*F2)/D CCL 560 L(N+1)=L(N)+DLCCL 570 XX2(N+1) = XX2(N) + DX2CCL 580 IF(ABS(DX2)-EPSX2)41,41,34 CCL 590 41 IF(ABS(DL)-EPSL)42,42,34 CCL 600 34 CONTINUE CCL 610 PRINT 43.M CCL 620 43 FORMAT(/3X,*COMMON ROUTINE DIDN\$T CONVERGED AFTER M=*,12,*ITERATIOCCL 630 INS*) CCL 640 42 X2(K)=XX2(N[1) CCL 650 X3(K) = 1 - X2'K660 CCL X1(K)=0. CCL 670 CCL X2(.1) = K2 + X2(K)680 X3(J)=K3*X3'K) CCL 690 x1(J)=1,-x2(J)-x3(J)CCL 700 F(K) = L(NP1)CCL 710 F(J) = F(I) - F(K)CCL 720 * CALC. CONDENSER LOAD FOR THE PARTICULAR T(J) GIVEN TO THE COMMON ROUTNEEL 730 CALL ENTR1(TK, X2(K)+H(K)) CALL ENTR2(TJ, X2(J)+X3(J)+H(J)) CCL 740 CCL 750 CCL=F(I)*H(I)-F(J)*H(J)-F(K)*H(K) CCL 760 *CHECK IF ANY IMPOSSIBLE NEGATIVE FLOWS EXIST. *CCL 770 IF(F(J))8,2,2 CCL 780 8 IF(F(J)+0.02*F(I))1.7.7 CCL 790 7 F(J)=0. CCL 800

154

. 1

_ ¥

$r(\chi) = r(\chi)$	CCL	917
2 IF(F(K))9,100,100 ·	CCL	820
9 $IF(F(K)+0.01*F(I))1.0.10$	COL	830
10 F(代)=0.	CCL	840
F(J)=F(I)	CCL	350
GO TO 100	CCL	860
*TRY DIFF. INITIAL CONDITIONS. IF DOESNT HELP STOP PROG.	*CCL	870
1 CONTINUE	CCL	880
PRINT 6+F(I)+F(J)+F(K)	CCL	800
6 FORMAT(/3X,*FLOWS !,J,K, ARE=*,3(3X,F11.4))	CCL	900
PRINT 5	CCL	010
5 FORMAT(3X,*IGNORE CONDENSER. SET F(J)=F(I) AS IF NON-COND.**)	CCL	920
*CALCS. FOR NON-CONDENSIBLE FEED.	*CCL	930
$11 \times 1(J) = \times 1(I)$	CCL	940
X2(J)=X2(I)	CCL	950
X3(J)=X3(I)	CCL	960
F(J) = F(I)	CCL	970
CALL FNTR?(TJ,X2(J),X3(J),H(J))	CCL	980
CALL RECOPY'45.K)	CCL	990
CL = (H(I) - H(J)) *F(I)	CCL	1000
CCL=CL	CCL	1010
PRINT 12,T(J),CL	CCL	1300
12 FORMAT(/3X)*CCL WAS CALLED TO CALC. FOR NONCONDENSIBLE MIXTURE. L	JOCCL	1310
1AD CALC. ON BASIS OF GA; ENTHALPY CHANGE ONLY. T(J)=*,F7.2,3X,3HC	LCCL	1320
2=,E11.4)	CCL	1330
100 RETURN	CCL	1020
1000 CONTINUE	CCL	1030
END	CCL	1040

	CURPOUT 1	NE EINDTING I	EINT	10
*****	308/0011	***************************************		10
**				20
*		4/15/70	****	.30
*	UPDATED	4/10/10 DOUTINE TO EIND T TE H IS CIVEN		40
*	FINDI -	ROUTINE TO FIND I IF H IS GIVEN.		50
*				60
	**********	HARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	STREENT	70
****	INC IS CA	ALLED DI TEINDIANSINET WHERE NO IS STATE INDICATOR AL FOR	AFINE AFINE	80
*LIQ:	AN DECODE	NO AND NE 13 THE SEREAM RECORD NUM IT HAS ACCESS TO ALL		100
	CUENE TO	ETNO THE EVACT VALUE OF THIS TEND	****	100
- ≭NIN 3 - ×D∩111	THE HEES	THE EALLANTNE CHOPOLITINES, ENTRY ENTRY		110
****	INE USES	THE FOLLOWING SUDROUTINES- ENTRIFEMERZ		120
*	NUMENCER	TNORGHENT OF THIS CALC BY NO SCHEME		150
*	5	ELOW/YMOL/SEC)		160
*	Г Ц		SCINT.	160
*		ENTHALFTY CODDECDOND TO TI IN	#EINT	170
*		ENTHALPT CORRESPOND TO TTO	4 CTNT	190
ж ж	1	TNDEV TN DO LOOP 1	REINT	100
*	4	NO. OF STREAM RECORD FOR WHICH I IS CALC.	#FINT	200
*		STATUS OF STREAM RECORD FOR WHICH FIS CALCO	ACTNE	200
*	n 3 D	DDCCUDE/BADA	* C 1 N T	220
*	T .	TEND (V)	AFTNT	2.50
. N	1 •••	1 G (F & KN) T / 1111		240
* *	V 1	OVYGEN CONTENT (MOLE EPACTION)	*FINT	250
	× 2	SOM CONTENT (MOLE FRACTION)	# CTNT	270
÷.	×2	SON CONTENT (M) E ER.)	ACTNT.	200
- 	~ 3	SOS CONTENT (MITE FRO)		200
*	*********	**********	*****	290
*****				310
Ħ	COMMONIA	TPEAM/E/601.0/611.01/601.01/601.01/601.02/601.02/601	EINT	310
		TREAM/F(00/)#F(0/)#F(0/)#F(00/#A1/00/#A2/00/#A5/00/)	ETMT	320
			ETNT	340
	15/NS-11	· 4 •	EINT	340
	1 CALL ENT	(4949) (Dolti 1. Yoli1. Yoli1. UU)	CINI	350
2	CALL EN	109/11. Y9/ N. Y9/ N. HIN	E 1 N 1	270
	CALL EN	R21119 A21079A31079H17	EINT	200
		(01/T/ 11. V\$/ 11. DBA	E TALE	300
4	CALL ENT	R1(()J)9A2(J)9A7) (D)/T), V)/(),41)	ETNI	590
	- CAGG ENI		ETNE	400
2	T/ 11=T/	N-DT	EINT	410
	101-10	//=//i \T\i	- " 1N1 - E 1N+	420
•		······································	E 1 N 1	430
- M - M - M - M - M - M - M - M - M - M	CONTINUE	ICE ON TH DOINT MESSAGE	F LINE ACT MT	440
* 110	DOTNT 4	UT VN (* FRINT MEDDAUE)	~ P 1 N 1	420
	PRINI 01	(11,37,900,901,37,37,37,37,37,47,97,97,97,97,97,97,97,97,97,97,97,97,97		400
6	FURMATE	'3X9*NU_CUNV&_UN_I#_IIJ}#*9F6•Z93X93HHH#9E1U+493X93HHI#9E] NULLE_F30_/_OM_OULE_T0_#IN_FINOT#\	LOFINT	4/0
_	1+493895	1H(J)=9E1U+493X92HJ#91Z9#IN_FIND1#}	FINT	480
2	RETURN		FINT	490
	END		FINT	500

<u>_</u>4

	SUBROUTI	NE RECOPY(I,J)			· · · · ·	COPY	10
****	****	*************************	*****	********	****	*******COPY	20
¥						*COPY	30
¥	UPDATED	4/15/78				*COPY	40
*	RECOPY -	RECORD COPYER.				*COPY	50
¥						*COPY	60
***	*****	***********	*****	*******	******	*******CODA	70
*ROU	TINE CALLE	D BY CALL RECOP!(IIN, IOUT)	WHERE	IIN=RECORD	TO COPY	FROM *COPY	80
*AND	IOUT=RECO	RD TO UPDATE.				*COPY	90
¥						*COPY	100
*VAR	IABLES=					*COPY	110
¥	F	FLOW(KMOL/SEC)		· · · · ·		*COPY	120
×	н	ENTHALPY (KJ/KMOL)				*COPY	130
¥	I	INPUT STREAM INDICATOR				*COPY	140
*	J	OUTPUT STREAM INDICATOR				*COPY	170
*	P Cal	PRESSURE(BAR)				*COPY	180
¥	T	TEMP.(K)				*COPY	190
¥	X1	OXYGEN CONTENT (MOLE FRAC	TION)			*COPY	200
¥	×2	SO2 CONTENT (MOLE FR.)				*COPY	210
¥	X 3	SO3 CONTENT (MOLE FR.)				*COPY	220
****	*******	***********	*****	*****	******	+*****COPY	230
*						*COPY	240
¥						*COPY	250
	COMMON/S	TREAM/F(60),P(60),T(60),H(60)•X1((60)•X2(60)·	X3(60)	COPY	260
	F(J)=F(I)				COPY	270
	T(J)=T(I)				COPY	280,
	P(J)=P(I)				COPY	290
	H(J)=H(I)				COPY	300
	X1(J)=X1	(I)		•		COPY	310
	X2(J)=X2	(T)				COPY	320
	X3(J)=X3	(1)				COPY	330
	RETURN					COPY	340
	END					COPY	350

FUNCTION TRKP(X,P,X1,X2,X3) TRKP 10 ***** **TRKP 20 *TRKP 30 UPDATED 4/15/78 TRKP - KP CONSTANT ROUTINE *TRKP 40 ***T**RKP 50 *TRKP 60 ******* **TRKP ****** ** ******** 70 *ROUTINE IS CALLED BY HTR *ROUTINE CALCS. KP FOR GIVEN X AND P. *TRKP 80 *TRKP 90 NOMENCLATURE= *TRKP 100 ¥ *TRKP 105 С CONVERTED FRACTION X*X3 P TOTAL PRESSURE *TRKP 110 *TRKP 120 TRKP FUNCTION-TEMP. DEPENDED REACTION KP CONSTANT 07 MOL. FR. -*TRKP 130 X 1 SO2 MOL. FR. SO3 MOL. FR. ******* ΧŻ -*TRKP 131 -*TRKP 132 × X 3 **** ***TRKP 140 ** *TRKP 150 C=X*X3 TRKP=(X2+C)/(X3-C)*SQRT(P*(2•*X1+C)/(2•+C)) TRKP 160 **TRKP 170** TRKP 187 RETURN END **TRKP 190**

L

EUNCTION TKP(X,P,X1,X2,(3) TKP 10 20 ***** **TXP *TKP 30 ¥ TRKTKP - CONSTANT ROUTINE *TKP 40 *TKP 50 ¥ ************************* 60 70 **TKP *ROUTINE IS CALLED BY LTR *TKP *ROUTINE CALCS. KP FOR GIVEN X AND. P. OXIDATION REACTION. *TKP 80 ¥ NOMENCLATURE= *****TKP 90 CONVERTED FRACTION X*X3 С *TKP 100 ¥ ¥ ρ TOTAL PRESSURE *TKP 110 ¥ TKP FUNCTION-TEMP. DEPENDED 95133965 27 365STANT *TKP 120 02 MOL. FR. *TKP × X1 130 ¥ X 2 SO2 MOL. FR. *TKP 140 ¥ *TKP 150 *********** ** 150 × *TKP 170 TKP 180 C = X * X 2TKP=(X3+C)/(X2-C)/SGRT(P*(2.*X1-C)/(2.-C)) ткр 190 RETURN ТКР 200 TKP END 210

FUNCTION $CP(T,Y),Y2,Y3)$	СР	10
******	*********CP	20
*	*CP	ຈັງ
* UPDATED 4/15/78	*CP	40
* CP - SPACIFIC HTAT ROUTINE	*CP	50
*	*CP	60
******	*********CP	70
*ROUTINE CALCS. CP AT ANY GIVIN T AND COMPOSITION.	*ČP	80
*CP AS FUNCTION OF TEMP. IS TAKEN ACCORDING TO EKLUND.	*CP	90
*(FOR EXACT REFERENCE SEE ENTS ROUTINE)	*CP	102
* NOMENCLATURE=	*CP	110
* CP FUNCTIO-OVERAL' SPECIFIC HEAT	*CP	120
* CP1 SPECIFIC HEAT)F 02	*CP	130
* CP2 SPECIFIC HEAT OF SO2	*СР	140
* CP3 SPECIFIC HEAT OF SO3	*CP	150
* T SYSTEM TEMP•	*CP	160
* Y1 MOL• FR• OF 02	*CP	170
* Y2 MOL• FR• OF SOŽ	*CP	180
* Y3 MOL. FR. OF 503	*CP	190
***************************************	*********CP	200
CP1=7,16+0,001*T-4,0E4/T**2	¢P	210
CP2=10+38+2+54E-3*T-1+42E5/T**2	CP	220
CP3=13+7+6+42E-3*T-3+12E5/T**2	CP	230
CP=CP1*Y1+CP2*Y2+CP3*Y3	CÞ	240
RETURN	CP	250
END	CP	260

	FUNCTION DHR(T)	DHR	10
****	******	**************************	20
*		*DHR	30
¥	UPDATED 4/15/78	*DHR	40
¥	DHR - HEAT OF REACTION ROUTINE	*DHR	50
*		*DHR	60
****	******	*********************************DHR	70
*ROU	UTINE CALCS. HEAT OF REACTION AT ANY T ACCORDIN	IG TO S *DHR	80
*	DHR(T)=DHR(298K)+(H=PRODH-REAC.) AT T	*DHR	90
*	GIVEN= DHR(298K)=23523. CAL/MOLE (REF.	EKLUND). *DHR	100
*		*DHR	110
*NOV	MENCLATURE=	*DHR	120
*	DHR FUNCTION-DELTA HEAT OF REACTION	*DHR	130
*	T REACTION TEMP.	*DHR	140
****	***********	**************************************	150
	DHR=23523?.6*T+1.69E-3*T**2+1.5E5/T-577.5	DHR	160
	RETURN	DHR	170
	END	DHR	180

SUBROUTINE ENTRI(T,X2,HL) ENTL 10 ***** ****ENTL 20 *ENTL 30 UPDATED 4/15/78 *ENTL 40 ENTRI - ENTHALPY OF LIQUID MIXTURE ROUTINE *ENTL 50 *ENTL 60 * ******************* 70 ROUTINE IS CALLED BY *CALL ENTR1(T,X2,HL)* WHERE T IS TEMP.(K), *ENTL X2+SO2 MOLE FR. (BOTH T AND X2 ARE SPECIFIED BY THE CALLING PROG)*ENTL 80 90 HL-LIQUID MIXTURE ENTHALPY(KJ/KMOLE) TO BE CALCULATED. *ENTL 100 IT IS ASSUMED THAT LIQ. MIXTURES CONTAIN ONLY SO2+SO3 AND BEHAVE *ENTL 110 AS AN IDEAL MIXTURE. *ENTL 120 ROUTINE CALL ENTR2 TO OBTAIN H(GAS MIXTURE) AND THEN IT CALL LHR *ENTL 130 TO OBTAIN HEAT OF VAPORIZATION AT THE SAME TEMP. *ENTL 140 H(LIQUIDE MIXTURE)=+(GAS)-LH(MIXTURE) *ENTL 150 NOMENCLATURE= *ENTL 160 ENTHALPY OF GAS AT T AND COMPOSITION X2+X3 ENTHALPY OF LIQ AT T AND COMPOSITION X2+X3 *ENTL 170 HG *ENTL 180 HL ¥ LATENT HEAT OF STREAM AT T AND X2.X3 COMPOSITION -LH *ENTL 190 TEMP. OF STREAM *ENTL 200 T *ENTL 210 X2 MOLE FR. SO2 ¥ × Х3 MOLE FR. SO3 *ENTL 220 ***************** **ENTL 230 ** REAL LH ENTL 240 ENTL 250 X3=1.-X2 CALL ENTR2(T+X2+X3+HG) ENTL 260 CALL LHR (T+X2+LH) ENTL 270 HL=HG-LH ENTL 280 RETURN ENTL 290 ENTL 300 END

,,₹

	CURPOUTINE (NTR2(T.X2.X3.H)	ENTO	10
****	· · · · · · · · · · · · · · · · · · ·	*ENTC	20
¥		*ENTC	20
*	UPDATED 4/15/78	*ENTG	40
*	FOR TO 471776	*ENTG	50
*		*ENTG	60
****	*****	*ENTG	70
¥	ROUTINE IS CALLED BY *C. IL ENTR2(T.Y2.X3.H)* WHERE T IS TEMP. (K).	#ENTG	80
*	X2-SO2 MOLE ER. X2-SO3 MOLE ER. H-ENTHAL V TO BE CALC. BY THE	*ENTG	90
*	ROUTINE (KUKMOLE).	*ENTG	100
*	ROUTINE CALCULATES ENTHALPIES FOR 02-X1.502-X2.503-X3 GAS MIXTURE	SENTG	110
*	(X2 AND X3 (BE GIVEN X1 MAKES THE BALANCE).	*ENTG	120
*	ENTHALPIES ARE CALC. FROM TEMP. DEPENDENT SPECIFIC HEATS AS GIVEN	*ENTG	130
*	BY KAKAKELIEY, HIGH TEMP, HEAT-CONTENT HEAT-CAPACITY AND ENTROPY	*ENTG	140
*	DATA FOR INCREANIC COMPOUNDS, BUREAU OF MINES, BULL, 476 (1949)	*ENTG	150
¥	AND AS INTEGRATED BY R.B. FLUIND. THE RATE OF OXIDATION OF SO2 WITH	*ENTG	160
*	COMERCIAL VANADIUM CATALYST. PH.D. DISSERTATION. THE RCYAL INST.	*ENTG	170
*	OF TECH. STOCKHOLM (1956).	*ENTG	180
*	MIXTURES ASSUME TO BE IDEAL, I.F. H=X1*H1+X2*H2+X3*H3	*ENTG	190
*	H IS CALC. IN (KJOULS/KMOLE). BASIS IS HO(298.16K)	*ENTG	200
*NOME	NCLATURE=	*ENTG	210
*	H OVERALL ENTHALPY OF THE GAS STREAM	*ENTG	220
¥	HI ENTHALPY OF OZ AT T	*ENTG	230
¥	H2 ENTHALPY OF SO2 AT T	*ENTG	240
¥	H3 ENTHALPY OF SO3 AT T	*ENTG	250
*	T TEMP. OF STREAM	*ENTG	260
*	X1 MOLE FRACTION OF 02 IN STREAM	*ENTG	270
*	X2 MOLE FRACTION OF SO2 IN STREAM	*ENTG	280
*	X3 MOLE FRACTION OF SO3 IN STREAM	*ENTG	290
*****	***************************************	*ENTG	300
*	CALC. OXYGEN CONTENT X1 AND ADJUST IF ZERO	*ENTG	310
	X1=1 • - X2-X3	ENTG	320
	IF(X1)1,2,2	ENTG	330
1	X2=X2+X2*X1	ENTG	340
	X 3=1 • - X 2	ENTG	350
	x1=0•	ENTG	360
*.	CALCULATE INDIVIDUAL ENTHALPIES AND WEIGHTED MIXTURE ENTHALPY	*ENTG	370
2	H1=7.16*T+0.0005*T**2+4.E4/T-2313.	ENTG	380
	H2=10•38*T+1•27E-3*T**2+1•42E5/T-3683•	ENTG	390
	H3=13•70*T+ ³ •21E+3*T**2+3•12E5/T-5417•	ENTG	400
	H=4•1868*(H**X1+H2*X2+H)*X3)	ENTG	410
	RETURN	ENTG	420
	END	ENTG	430

LHR SUBROUTINE LHR(T+X2+LH) 10 ***[4? ********************* 20 *LHR 30 ¥ *LHR * UPDATED 4/15/78 40 LHR - LATENT HEAT ROUTINE *LHR ¥ 50 *LHR 60 * *****LHR ** 70 ROUTINE IS CALLED BY *LHR(T+X2+LH)* WHERE T-TEMP+(K)+ X2-MOLE FR+*LHR 80 OF \$02 (T AND X2 ARE SPECIFIED BY THE CALLING PROG.), LH-LATENT *LHR ¥ 90 HEAT (KJ/KMOLE) TO BE CALCULATED. *LHR 100 ¥ BASIC DATA WHERE TAKEN FROM NICKLESS. LATENT HEATS AS FUNCTION OF*LHR 110 TEMP. ARE CALCULATED ACCORDING TO PERRYSS CHEM. ENG. H.B., 5TH. ED*LHR 120 (1973), PG. 3-239, EQ. 3-53. THE EXPONENT WAS TAKEN AS 0.545 (RATHER *LHR 130 THEN 0.38) . HICH RESULT D FROM CALCS.FOR BOTH SO2 AND SO3 FROM *LHR 140 ACTUAL REPORTED DATA OF LH(T) GIVEN BY EITHER NICKLESS OR BY ***LHR** 150 LANGE\$S H.B. OF CHEMISTRY ED.J.A.DEAN.MGH 1973. *LHR 160 THE LH FOR THE MIXTURE (S CALCULATED ACCORDING TO PERRY\$S EQ.3-57*LHR 170 (PG.3-239), LH=LH2*X2+L'13*X3. FINAL RESULTS CONVERTED INTO KJ/MOL*LHR 180 DATA USED -*LHR 190 *LHR SO2 TC=430K, TB=26JK, LH(263)=6.00KCAL/MOLE 200 TC=491K, TB=319K, LH(318)=9.75KCAL/MOLE *I HR SO3 210 *LHR 220 ***NOMENCLATURE=** OVERALL LATENT HEAT (KJ/KMOL) *LHR 230 LH *LHR LH₂ LATENT HEAT OF SO2 AT GIVEN T 240 LATENT HEAT OF SO3 AT GIVEN T ***LHR** 250 # LH3 TEMP. OF STREAM FOR WHICH LH IS CALC. *LHR T 260 *LHR MOLE FRACTION OF SO2 IN STREAM 270 -X 2 MOLE FRACTION OF SO3 IN STREAM *LHR 280 X 3 ************ *LHŔ 290 REAL LH.LH2.LH3 LHR 300 X3=1.-X2 I HR 310 LHR IF(T-430.)1,2,2 320 2 IF(T-491.)5.6.6 LHR 330 LHR 5 LH2=0. 340 I HR 350 GO TO 7 1 LH2=6.0*((430.-T)/167.)**0.545 LHR 360 7 LH3=9.75*((491.-T)/173.)**0.545 LHR 370 LH=4186.8*(LH2*X2+LH3*X3) LHR 380 LHR 390 GO TO 4 6 LH=0. LHR 400 PRINT 3+T I HR 410 3 FORMAT(/3X+*LHR ROUTINE HAS BEEN CALLED TO CALC. LH FOR MIX. ABOVELHR 420 1 THE CRITICAL PT. SET LH=0. T=*,F7.2) LHR 430 LHR 4 RETURN 440 END LHR 450

	SUBROUTINE MACR(P+T+K2+K3)	VKCR	10
****	法法法不法 法法法定 "你,我说是你不说这些,你就要不要我不能是我不能是我们要不是不是不是不是不是不是不是不是不是不是不是不是	**\<<	20
*		*VKCR	30
*	JPDATED 4/15/78	*VKCR	40
*	VKCR - VOLATILITY K CONSTANT ROUTINE	*VKC9	50
*		*VKCR	60
*****	***************************************	**VKCR	70
*	ROUTINE IS CALLED BY *CALL VKCR(P)1,K2,K3)* WHERE P IS TOTAL	*VKCR	30
*	PRESSURE AND I IS TEMPERATURE. BUTH I AND P ARE SPECIFIED BY THE	*VKCR	90
. ж	CALLING PROBLEM. K2 AND K3 ART THE VOLATILITY K CONSTANTS OF SUZ	* V.<(R	100
*	THE ASSUMED THAT SOO AND SOO EORM IDEAL SYSTEM.LETHE COMPONEN	1*VXCR	120
*	OF THE MIXTURE OBEY RADIULTSS AND DALIDANSS LAWS=	*VKCR	130
*		*VKCR	147
*	KI=YI/XI=PSI/P	*VKCR	150
×	MHERE-	*VKCR	160
*	I ONE OF THE MIXTURE COMPONENTS (I=2 FOR SO2, I=3 FOR SO3)	*VKCR	170
*	KI VOLATILITY CONSTANT OF I	* VKCR	180
¥	P TOTAL SYSTEM PRESSURE	*VKCR	190
*	PI PARTIAL PRESSURE JE COMPONENT I IN GAS	*VKCR	200
*	PSI VAPOR PRESSURE OF PURE LIQUID I	*VKCR	210
¥	T TEMPERATURE	*VKCR	220
*	XI MOLE FRACTION OF I IN LIQUID	*VKCR	230
*	YE MOLE FRACTION OF E IN GAS	*VKCY	240
*	PROGRAM USES E2 AND E3 AS INTERMEDIATE VARIABLES FOR THE EXPONENT	SVKCR	250
*****	本本ななは淡水なられたななななななななななななななななななななななななななななななななななな	*VK CD	270
**			270
*	P2 EVPONENT DOWER FOR ESTIMATING DS2	*VKCP	290
*	E3 EXPONENT POWER FOR ESTIMATING PS3	*VKCR	300
*	K2 VOLATILITY CONSTANT OF S02	*VKCR	310
*	K3 VOLATILITY CUNSTANT OF S03	*VKCR	320
*	P TOTAL SYSTEM PRESSURE	*VKCR	330
*	PS2 VAPOR PRESSURE OF PURE LIQ. SO2	* VKCR	340
¥	PS3 VAPOP PRESSURE OF PURE LIO. 503	*VKCP	350
¥	T STREAM TEMP.	*VKCR	360
****	***************************************	+*VKCR	370
¥	DATA REFERENCE=	*VKCR	380
*	G.NICKLESS, INORGANIC SJLFUR CHEMISTRY, ELSEVIER - 1968	*VKCR	390
¥	PG•373 FOR 502, P3•392 FOR 503	*VKCR	400
¥	PROGRAM ASSUMES THAT I (S IN (K) AND P IN (BAR).	*VKCB	410
*	SEE BPTR SUBROUTINE FOR DETAILES.	*VKCR	420
****	***************************************	+*VKCR	430
	REAL K21K3 Frank 12 Area 1847 Frank A Alfonewith A August Stranger	VKCR	440
	<pre></pre>		420
	V2=D52/D		400
	F3=/		410
	DS3=10_XX#=3x1_0133	VKCD	400
	<pre></pre>	VKCP	500
	RETURN	VKCP	510
	FND	VKCR	520
			2 - <u>-</u>

SUBROUTINE BPTR(P,X2,TT) RPTR 10 **** 20 *BPTR 30 UPDATED 4/15/78 *BPTR 40 BPTR - BUBBLE POINT TEMPERATURE ROUTINE *BPTR 50 * A D T D 60 ********* ******* 70 *RPTR 80 ROUTINE IS CALLED BY*CALL BPTR(P+X2+T)* WHERE P IS THE TOTAL *BPTR 90 PRESSURE, X2 COMPOSITION OF THE S02-S03 LIQUIDE MIXTURE (X2=MOL *BPTR 100 FR. OF SO2) AND T IS THE BOILLING PT. OF THE MIXTURE (BUBBLE PT.)*BPTR 110 VAPOR PRESSURE CORRELATIONS WHERE TAKEN FROM G.NICKLESS.INORGANIC*BPTR 120 SULFUR CHEMISTRY.ELSEVIER-1968, P-373 FOR SO2.P-392 FOR SO3. *BPTR 130 THE ACTUAL NUMERICAL VALUES OF THE ROUTINE PARAMETERS ARE MODIFIEDBPTR 140 TO ACCEPT TEMP. IN (K) AND P IN (BAR). 150 *RDTP ROUTINE ASSUMES IDEAL SYSTEM= TOTAL VAPOR P = PS02+PS03 WHERE *BPTR 160 PSOI=PS(T,I)*XI WHERE I=SO2,SO3. PS(T,I)=SATURATION VAP. PRESSURE*BPTR 170 *BPTR 180 OF COMPONENT I AT TEMP' T. **** **BPTR 190 *BPTR 200 LOGIC FLOW -FIRST GUESS FOR T IS DONE BY SELECTING THE PROPER RANGE ACCORDING*BPTR 210 TO THE PRESSURE P(BAR), I.E. I=1 FOR P BETWEEN O AND 10 (0,10) ***BPTR 220** *BPTR 230 I=2 FOR P=(10,20),I=3 F)R P=(20,30),I=4 FOR P=(30,40),I=5 FOR P * OVER 40BAR. PROGRAM IS ISSENTIALLY LIMITTED TO P=50BAR. *FIRST GUESS FOR BUBBLE POINT (BP) IS TAKEN TO BE EQ. TO TI OF THE *BPTR 240 *BPTR 250 *PARTICULAR RANGE: NEWTON RAPHSON SCHEME IS USED FOR CONVERGENCE. *BPTR 260 **BPTR 270 *** *BPTR 280 NOTATIONS -CONST. PARAMETIR IN VAP. PRESS. POLINOMINAL EQ. *BPTR 290 Α CONST. PARAMETER IN VAP. PRESS. POLINOMINAL EQ. *BPTR 300 в CONST. PARAMET R IN VAP. PRESS. POLINOMINAL EQ. FACTOR TO CONVERT VAPOR PRESSURE INTO BARS *BPTR 310 C *BPTR 320 C2 C3 FACTOR TO CONVERT VAPOR PRESSURE INTO BARS *BPTR 330 CONST.PARAMETER IN VAP.PRESSURE POLINOMINAL EQ. *BPTR 340 D DPT DENON INATOR IN LAST EQ. FOR DT *BPTR 350 DP2 CONTRIBUTION OF SO2 TO THE CALCULATED DPT *8PTR 360 DP3 CONTRIBUTION OF SO2 TO THE CALCULATED DPT *BPTR 370 *BPTR 380 DIFFERENTIAL TEMP. CHANGE IN T SEARCHING LOOP DT *BPTR 390 CONST.PARAMETER IN VAP.PRESSURE POLINOMINAL EQ. EX2 EXPONENT OF 10 IN SO2 VAP. PRESSURE EQUATION *BPTR 400 *BPTR 410 EX3 EXPONENT OF 10 IN SO3 VAP. PRESSURE EQUATION CONST.PARAMETER IN VAP.PRESSURE POLINOMINAL EQ. CONST.PARAMETER IN VAP.PRESSURE POLINOMINAL EQ. *BPTR 420 G *BPTR 430 н DO LOOP INDEX I=1.M *BPTR 440 T NO. OF THE PRESSURE RANGE WITHIN T IS SEARCHED FOR ***BPTR 450** . 1 MAX. PERMISSABLE ITERATIONS IN DO LOOP *BPTR 460 TOTAL PRESSURE GIVEN BY THE CALLING PROGRAM ***BPTR 470** PP2 SATURATED VAPOR PRESSURE OF SO2 AT TEMP T (EQUILIBRIUM) ***BPTR 480** SATURATED VAPOR PRESSURE OF SO3 AT TEMP T (EQUIL.) PP3 *BPTR 490 TOTAL PRESSURE CALC. BY THE ROUTINE *BPTR 500 PT CALC. TEMP (K) *BPTR 510 NATURAL LOG OF 10. *BPTR 520 TENIN

*	TI TEMP. AT THE LIWER LIMIT OF A PARTICULAR RANGE *BP	ΤR	530
*	TT EXIT BP TEMP. *BP	TR	540
*	X2 MOLE FRACTION OF SO? IN THE LIQUID MIXTURE *BP	TR	550
¥	X3 MOLE FRACTION OF SON IN THE LIQUID MIXTURE *BP	TR	560
¥	*BP	T٩	570
*****	**************************************	TR	580
	DIMENSION T(31), TI(5) BP	TR	590
	DATA 11/333.,3/5.,393.,413.,433./	TR	600
	DATA A+B+C+D/12+0754+18+7+52+0+015865+0+000015574/ BP	TR	610
	DATA F,G,H/4.2719,945.78,93./ BP	TR	620
	DATA (2)(3)(0)(3)(3)(0)(3)/	IR TR	630
	DATA TENEN, M/2 • 302585 • 30/	IR IR	640
	[F(X2)]0,11,11 BP	TR TO	650
11	1F(X2-1+)15+15+12 BP		660
10	PRINT 16,5X2 BP	1 K	670
16	FORMATI73X,*WRONG X2=*,EII.4,* ASSUME X2=0. , CONTINUE.*)		680
	X2=0• 8P	TR	690
1.2		T.K.	700
12	$\begin{array}{c} PRINI 1/9X2 \\ \hline \\ SOPATT(29) SOPA$	TK TD	710
17	PORMAT(73X)*WRONG X2=*,EII.44)* ASSUME X2=I. ; CONTINCE.*)	1K TD	721)
15	X2=1• 3P	1 K	1 2')
4 E I ND	ADELOTAZ DELOTAL IS THE DANGE NO DEL	TD TD	750
*T IND	ANGLE INANCATED F/1011 IS THE RANGE NO. ADD	TR.	760
		TP	770
		TR	780
	FX = A - B/T (T) - C + T (T) + O + T (T) + * 2	TR	791
	FX3=E=G/(T(1)=H) BP	TR	800
	PP2=C2*10•**FX2 BP	TR	810
	PP3=C3*10•**FX3 BP	TR	820
	PT=P-X2*PP2-X3*PP3 BP	TR	830
	DP2=TENLN*PP2*(B/T(I)**2-C+2.*D*T(I)) BP	TR	840
	DP3=TFNLN*PP3*G/((T(I)-H)**2) BP	ΤR	850
	90T=-902-903 BD	T R	860
	DT=PT/DPT BP	TR	870
	T(I+1)=T(I)-DT BP	T-R	880
	TT=T(I+1) BP	TR	890
	IF(ABS(DT)-0.05)2.2.1 BP	TR	900
1	CONTINUE BP	TR	910
#. ASSI	UME_CONVERGE*ICE *BP	TR	920
- 2	RETURN	٦d	930
		TR	۹40

APPENDIX C. (Continued)

SAMPLE PRINTOUT OF RESULTS

The following is a sample printout of the calculations at the base case conditions. To simplify the presentation, some parts were rearranged and repetitive printings of iterated calculations were omitted. The order of the printed results is preserved, however. Brief notes of explanation are also attached.

The program first prints the input data.

	MEBP PRO	GRAM							
INPUT DATA									
NON-CHANGING	DATA?P(1),P(5),P	(21), 124, 12	7 11.000	40.000	11.000	573.00	693.0	
FIRST APPRO	(?T(1),XZ	(1),F(5),	X2(5).	X2(18) 364	.000	.047 5.	300		<u>.610</u>
SPECIFICATIO	JN? DT56.	TWMAX, THI	N, PRSO2, XD,						
140.000	1153.000	333.00	ໍ • 98ບ	。 99ù					
TOLERANCES?	EPSF5,EP	ST57	.050C	.5000	 				
GENERAL? N=	45 NOP	= 3. NH	=18						
INCREMENTS C	F STUDIE	D PARAMS.	TWMAX, DTD5	6.TMIN? 20.0	1 24.0) 1 10.Q	1		
INCREMENTS C	F STUDIE	U PARAMS.	DELP, NOP?	5.0	1				

C
The program next enters the HTS - LTS loop. The printout is rather lengthy; only the last iteration is attached.

HTS ROUTIN	E			<u>_</u>		
CONVERGENC	E ON F(5)	AND T(5)?	DF5= .336	6E-01 DT	5= .6220E+	CINTS ROUTI
CONVERGENC	E ON F(5)	AND T(5)?	DF5=305	5E-02 DT	5= .2339E-	- 3HTS ROUTI
CLR ROUTIN INPUTS? NI	E = 6 NG=1	4 NL=16	T(OUT)=	333.00		
RESULTS OF	CLR RO	UTINE				
SN	F	X1	X2	X3	T	н
6	.6484E+01	•1499E+00	• 3247E+00	• 5254E+00	₀1147E+04	• 5028E+05
14	•1124E+01	•8649E+00	.1010E+00	.3412E-01	•3339E+03	.1101E+04
16	•5360E+01	0.	.3717E+00	•6283E+00	• 3330 E+0 3-	-2967E+25
CONDENSER	LOAD? CL=	₀4838E+06	·····	 		·
CTR ROUTIN INPUTS? NI	E = 7 NG=	8 NL= 9	CL= 。91	98E +05	· · · · · · · · · · · · · · · · · · ·	
RESULTS OF	CTR RO	UTINE				
SN	F	X1	X2	X3	T	н
7	•6484E+01	.1499E+00	.3247E+00	•5254E+00	• 5928E+03	₀1524E+05
8	•5066E+01	.1919E+00	•3552E+00	•4529E+00	•4176E+03	• 5548E+04
9	.1418E+01	0.	•2157E+00	•7843E+00	•4176E+03-	•150 E+05
CONVERGENC	E ACCURACY	? CL= .91	98E+05 C	OMPARE TO	CCL= .9200	DE+05
CLR ROUTIN INPUTS? NI	E = 8 NG=1	0 NL=11	T(OUT)=	393.37		·
RESULTS OF	CLR RO	UTINE				
SN	F	Xl	X2	X3	T	Н
	<u> </u>					

8	•50668+01 •19198+00	. 3552EFuc	•4529⊭+00	• 41/65+03	■ シリ4 8 に ナ 3 4
10	•2338E+1 •4166E+	• 3639E+	•2194E+	•3934E+03	• 3859E+-4
11	•2728E+010•	₀3477E+00	.6523E+00	• 3934E+03-	1848E+05
CUNDENSER	LOAD? CL= .6960E+05				
CLR ROUTIN	E			· · · · · · · · · · · · · · · · · · ·	
INPUIS? NI	=10 NG=12 NL=13	1(001)=	343.00		
<u>RESULTS OF</u> SN	<u>CLR ROUTINE</u> F X1	X2	X3	T	Н
• 55		2/205-00	010/5-00	202/5/22	20:05:01
10	•2338E+01 •4166E+U	• 3039E+00	•2194E+00	• 3934E+03	• 3809E+04
12	•1267E+01 •7691E+00	•1966E+00	.3422E-01	•3430E+03	•147_E+04
13	.1072E+010.	•5617E+00	•4383E+00	• 3430E+03-	• 2424E+05
CONDENSER	LOAD? CL= .3302E+05				
CLR ROUTIN	E -12 NC-14 NH-15	T (0) UT) - (<u>,, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
INPUTS INI	=12 NG=14 NL=15	110011= .	333.UU		
RESULTS OF	CLR ROUTINE	¥2	¥3	<u>Т.</u>	н
		~L		•	
12	•1267E+01 •7691E+00	•1966E+00	•3422E-01	•3430E+03	•1470E+04
14	•1210E+01 •8052E+00	•1755E+00	•1922E-01	• 3330E+03	•1118E+04
15	•5678E-010•	•6461E+00	•3539E+00	• 3330E+03-	2425E+05
CONDENSER	LOAD? CL= .1886E+04		. <u></u>		
DISTILLAT	ION COLUMN	,		•	
FEED ENTER	S BETWEEN PLATES? 10	AND 11			· · · · · · · · · · · · · · · · · · ·
CTR ROUTIN	E	antara a kuçuk sant kar ta <mark>r Ak</mark> tu T			······································
INPUTS? NI	<u>= 8 NG=10 NL=11</u>	<u>CL= 92</u>	69E +0 5	<u></u>	
RESULTS OF	CTR ROUTINE				
SN	F X1	X2	ХЗ	Ť	н
8	.5066E+01 .1919E+0℃	.3552E+00	•4529E+0∂	•4176E+03	•5548E+04
10	•1738E+01 •5594E+00	•2988E+00	.1418E+00	• 3785E+03	.2974E+04
11	•3328E+010•	•3847E+00	•6153E+00	• 3785E+03-	2096E+05
CONVERGENC	E ACCURACY? CL= .92	69E+05 C	OMPARE TO	CCL= •9269	9E+05
CLR ROUTIN INPUTS? NI	E =10 NG=12 NL=13	T(DUT)=	343.03		
RESULTS OF	CLR ROUTINE				
SN	F X1	X2	X3	T	Н
10	₀1738E+01 ₀5594E+00	。2988E+00	•1418E+00	• 3785E+03	•2974E+04

. }

				· · ·			
12	•1267	'E+01 •	7675E+00	•1988E+0	.3375E-01	.3430E+03	•1470E+04
13	· 4713	E+		• 5677E+0	3 .4323E+00	-3430E+03	2412E+05
CONDENSER	LOAD?	CL= 。	1469E+05				
CLR RUUTI INPUTS? N	NE I=12	NG=14	NL=15	T (OUT) =	333.	······································	· · · · · · · · · · · · · · · · · · ·
RESULTS O	FCLR	ROUT	INE				
SN	F		X1	X2	X3	{ 	н
12	•1267	'E+01 •	7675E+0€	•1988E+0	3375E-01	。3430E+03	•1470E+04
14	.1209	E+01 。	8039E+00	•1773E+0	3 .1887E-01	•3330E+03	•1118E+04
15	.5732	2E-016.		•6525E+6	.3475E+@∋	.333.E+.3	-•2412E+05
CONDENSER	LOAD?	CL= 。	1893E+04				
OVERALL M	AT. BAL	. RESU	ILTS IN X	2(2) OF?	0321 COM	PARE TO AS	SUMED? .0327
END OF HT	S RTN.		· · ·				
LTS ROUTI	NE	an a	<u></u>		gener somer i stal digit för att singer av sjudger men militare		
CTR RDUTI INPUTS? N	NE I =28	NG=29	NL=43	CL= 02	701E+05		
CCL WAS C OF GAS EN	ALLED T THALPY	O CALC	• FOR NO Only•	NCONDENSI T(J)= 400	BLE MIXTURE 85 CL=	<u>. LOAD CAL</u> .2701E+05	C. ON BASIS
RESULTS O	F CTR	ROUT	INE				
<u>SN</u>	F	<u> </u>	X1	X2	<u>X3</u>	T	Н
28	.1066	E+01 .	7629E-02	<u>•6606E-0</u>	1 .9263E+00	<u>.7771E+03</u>	•3095E+05
29	• 1066	5E+01 .	7629E-02	<u>•6606E−0</u>	<u>9263E+00</u>	.4008E+03	<u>•5618E+04</u>
43	0.	0.		0.	0.	•4008E+03	0.
CONVERGEN	<u>CE ΑÇÇι</u>	JR A CY ?	<u>CL= .27</u>	01E+(5	COMPARE TO	CCL= .270	1E+#5
CTR ROUTI	NE						
INPUTS? N	I =37	NG=41	NL=42	CL= .4	95\ E+¢4		
CCL WAS C OF GAS EN	ALLED T THALPY	O CALC	• FOR NO ONLY.	NCONDENS I T(J) = 400	BLE MIXTURE 85 CL=	• LOAD CAL •4950E+94	C. ON BASIS
RESULTS O	F CTR F	ROUT	INE X1	X2	X3	т	Н
27	105/	F+00	7629F-02	-6606E-0	1 92635100	.7771F+02	30055+05
۲ ا	1054	C100 0	74205 50		1 02625-00		
4L	°1724	ICTUU 0	10298-02	• 0000E-0	T * ACO3F#00	• 4098E+03	• > 0 18 5 + 0 4
42	0.	¢.		0.	Ç a	₀4088E+93	© •
CONVERGEN	CE ACCU	JRACY?	CL= 049	50E+04	COMPARE TO	CCL= .495	0E+04
CTR ROUTI INPUTS? N	NE I =38	NG=29	NL=43	CL= 02	 206E+05		

ť.

CCL WAS OF GAS E	CALLED T ENTHALPY	<mark>O CALC. FO</mark> Change unl	R <u>NÚNCONDE</u> Y• T(J)=	NSIBLE MIX 400.85 CI	TURE. LOAD CAL L= .22065+.5	C. ON BASIS
RESULTS SN	CF CTR F	ROUTINE X1	X2	ХЗ	Ţ	н
38	.8709	E+60 .7629	E-02 .6606	E-01 .9263	E+0 <u>G .7771E+03</u>	<u>₀3095E+05</u>
29	.87)E+00 .7629	E-02 .6606	E-01 .9263	E+00 . 4008E+03	•5618E+:)4
43	0.			<u></u>	.4.3 8E+.3	
CONVERG	ENCE ACCU	JRACY? CL=	.2206E+05	COMPARE	TO CCL= .220	6E+05
CTR ROUT	TINE					
INPUTS?	NI =39	NG=30 NL	=31 CL=	°1805E+05		
RESULTS SN	OF CTR F	ROUTINE X1	X2	<u>X3</u>	Ţ	н
39	.1066	6E+01 .7629	E-02 .6606	E-01 . 9263	E+00 . 4008E+03	•5618E+04
30	. 578	LE+00 .1492	E-01 .9468	E-01 .8964	E+0L .3820E+03	•4475E+04
31	. 4882	2E+000.	. 3120	E-01 .9688	E+00 .3820E+03	- <u>。2657E+05</u>
CONVERG	ENCE ACCI	JRACY? CL=	.1805E+05	COMPARE	TO CCL= .163	8E+05
CLR ROU	TINE					
INPUTS?	N I = 30	NG=32 NL	=33 T(OU	JT)= 343.00	<u> </u>	
RESULTS SN	OF CLR F	ROUTINE X1	X2	ХЗ	T	н
30	• 578	<u>1E+00 .1492</u>	E-01 .9468	IE-01 .8904	E+00 . 3820E+03	.4475E+04
32	<u>.102</u>	7E-01 .6219	E+00 .1213	E+00 .2568	E+00 .3430E+03	<u>.1665E+04</u>
33	.567	3E+000.	. 9529	DE-01 .9047	E+00 .3430E+03	-• 3327E+05
CONDENS	ER LOAD?	CL= .2146	E+05			, 1997-900-0002-1-1999-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
CLR ROU	TINE					
INPUTS?	NI =32	NG=34 NL	.=35 T(OL	JT)= 333.00		
RESULTS SN	OF CLR F	ROUTINE X1	X2	Х3	Τ	н
32	.102	7E-01 .6219	E+00 .1213	8E+00 .2568	E+00 .3430 E+03	•1665E+84
34	• 905	0E-02 .7056	E+00 .1211	E+00 .1733	E+00 .3330E+03	.1220E+04
35	.121	9E-020.	.1220	6E+00 .8774	E+00 .3339E+03	3460E+05
CONDENS	ER LOAD?	CL= .4822	E+02		·	
END OF	LTS RTN	9	······································			a const for Million and a constant of
CALC. A	RE REPEA	TED IF ANY	OF THE FOL	LOWING CON	DS. IS NOT SAT	ISFIED?
IF(ABS(IF(ABS(2°0F(36) X2(1)-X2	-F(1))-0.01 (36))-0.008	.5) F(36)= 3) X(36)=	= .10572E+0 = .65726E-0	$\begin{array}{ccc} 1 & F(1) = & 211 \\ 1 & X(1) = & 659 \end{array}$	18E+01 186 E- 01
IF (ABS (T(1)-T(3	6))-1.0)	T[36]=	= . 36169E+0	3 T(1)= .361	.54E+03

-1

_____1

Program then prints the High Temperature Reactor results. The terms used in the heading are defined below.

number of the section NOS -L - length down the reactor (m) - outside wall temperature of tube ($^{\rm O}\!K$) ΤW - inside wall temperature of tube (^OK) TS bulk temperature of stream (⁰K) ΤB - total heat absorbed up to this section Q QR - heat absorbed due to reaction up to this section QS sensible heat absorbed up to this section ---C - actual conversion of SO₃ up to this section YSO_3 - mole fraction SO_3 YSO_2 - mole fraction SO_2 YO_2 - mole fraction O_2

The routine then prints the equilibrium conversion at the conditions of the catalyzed wall of each section.

173

PARAMETERS STUDIED? TWMAX=1153.0 TMIN=333.0 DTD56=140.0 PHTS=40.0

NOS	L	TW	<u>TS</u>	<u></u> <u>T8</u>	Q	QR	QS	<u>ر</u>	Y-\$03	Y-S02	<u>Y-02</u>
L	• 20	1061.7	1053.3	1006.8	.7314E+03	.4620E+03	•2693E+03	8.046	<u>,</u> 967	.633	
2	• 41	1963.9	1055 . 7	1610.5	•1450E+€4	•9190E+03	•5313E+03	a 06	. 959	, 38	• * *
3	。 60	1066,2	1058.1	1014.1	°2122E+04	•1371E+04	•7862E+03	• 12	• 95	• 44	• 6
4	. 80	1068.3	1060.4	1017.7	•2852E+04	•1818E+04	•1034E+04	.018	。942	0 50	. 033
5	1.00	1070.5	1062.6	1021.1	•3535E+C4	•2260E+34	.1275E+04	° 24	• 933	• 55	• 11
6	1.20	1072.5	1064.8	1024.5	•4206E+04	•2697E+04	•151 E+04	. 3	.925	. 61	• 14
7	1.40	1074.6	1067.0	1027.7	•4867E+04	₀ 3129E+04	.1738E+04	. 036	。917	- 966	, 317
8	1.60	1.76.5	1069.1	1030.9	•5516E+04	.3556E+04	.1960E+04	.: 41	.909	• - 71	.62
9	1.80	1078.5	1071.1	1034.0	•6154E+44	•3978E+::4	•2176E+ 4	. 47	•91	• 76	. 22
10	2.00	1680.3	1073.1	1037.1	.6781E+04	•4395E+04	o2386E+04	053	. 893	,082	. 025
11	2.20	1082-2	1075.1	1949.0	•7397E+04	•4807E+94	.2590E+04	. 058	.886	• (' R 7	• (* 2 7
12	2.40	1084.0	1077.0	1042.9	•8004E+04	•5215E+04	•2789E+94	. 64	.878	° 92	5
13	2.60	1085.7	1078.9	1045.7	.8600E+04	。5618E+04	°56855+04	. 069	.871	, 097	.037
14	2.80	1087.5	1086.7	1048.5	•9186E+04	.6016E+04	.3170E+04	• 1175	• 864	.151	•(35
15	3.00	1089.1	1:82.5	1051.2	•9762E+04	•6409E+44	• 3354E+- 4	° 8	• 856	•1 ¹ 6	· 27
16	3.20	1090.8	1084.3	1053.8	°1033E+05	.6797E+04	₀3532E+04	, 986	° 849	•111	.041
17	3.40	1092.4	1086.0	1056.3	.1089E+05	•7181E+04	•3705E+04	.091	• 842	.116	.042
18	3.6	1094.	1087.7	1058-8	•1143E+5	₀756 E+94	•3874E+.4	• 96	. 835	o 1.2 ?	o.44
19	3.80	1095.5	1089.3	1061.2	°1197E+05	。7935E+04	。4038E+04	.101	•829	.125	. 47
20	4.00	1097.0	1090.9	1063.6	•1250E+05	.8304E+04	•4198E+04	.107	.822	• 129	1.40°
21	4.24	1:98.5	1092.5	1065.9	•13∂2E+∂5	• 867 E+04	•4353E+ 4	. 112	.815	.133	• 5
22	4.40	1099.9	1094.0	1068.2	₀1354E+05	。9030E+04	•4505E+04	.117	. 809	•138	. 57
23	4.60	1161.3	1095.5	1070.3	•1404E+05	•9387E+04	•4652E+04	•122	s 802	, 142	. (55
24	4.80	11:2.7	1097.0	1072.5	•1453E+€5	•9738E+04	•4796E+04	• ? 27	.796	.146	• 6.0
25	5.00	1104.0	1098.4	1074.6	.1502E+05	.1009E+05	•4936E+04	.132	• 79	.15	• 5
26	5.20	1105.3	1099.9	1076.6	•1550E+05	·1043E+05	•5072E+04	. 136	° 784	.154	õe2
27	5.43	11:6.6	1101.2	1.178.6	.1597E+05	.1077E+05	•5205E+04	.141	•778	.158	.:61

, a

174

28	5.60	1107.9	1102.6	1080.6	.1644E+05	•1110E+05	•5334E+04	. 146	.772	.162	.066
29	5.80	1109.1	1103.9	1082.5	.1689E+05	。1143E+05	。5460E+04	151 ء	٥766	° 166	.068
20	6. (4)	1110.3	1105.2	1084.3	.1734E+05	.1176E+05	•5582E+04	.155	.760	• 170	• 0.7.
31	6 . 20	1111.5	11.6.5	1086.1	.1778E+05	•12:8E+(:5	•57-2E+-4	.16	.754	₀174	° C 7 2
32	6°40	1112.7	1107.7	1087.9	.1821E+05	°1240E+02	。5818E+04	c164	•749	.178	• 074
33	5 <u>.</u> 60	1113.8	1108.9	1089.6	•1864E+05	•1271E+05	•5931E+04	•169	• 743	.181	J (176
34	6.8	1114.9	1110.1	1091.3	•19⊌6E+∂5	•13∂2E+∂5	•6_42E+_4	.175	.738	.185	• 077
35	7.66	1116.0	1111.3	1092.9	•1947E+05	.1332E+05	₀6149E+04	.178	•732	.188	• 79
36	7.20	1117.1	1112.4	1094.5	•1988E+05	₀1363E+05	.6254E+04	.182	.727	.192	.1.81
37	7.40	1118.1	1113.5	1096.1	• 2028E+05	•1392E+05	.6357E+04	o 186	۰722°	°192	L 0 8 3
38	7.6)	1119.1	1114.6	1097.6	• 2067E+05	.1422E+05	₀6457E+04	.191	• 73.7	•199	.084
39	7.80	1120.1	1115,7	1099.1	.2106E+05	.1451E+05	•6554E+04	•195	.712	• 2 : 2	. 86
40	8.00	1121-1	1116.7	1100.6	•2144E+05	.1479E+05	₀6649E+04	° 199	707	° 205	J038
41	8.20	1122.1	1117.8	1102.0	.2182E+05	•1507E+05	•6741E+04	° 203	.702	. 209	.089
42	8.40	1123.0	1118.8	1103.4	•2218E+05	•1535E+35	•6832E+04	•27	.697	•212	. 91
43	8.60	1123.9	1119.7	1104.8	•2255E+05	₀1563E+05	。6920E+04	° 211	°692	°212	093
44	8.8	1124.5	1120.7	1106.1	.2290E+05	.1590E+05	•7℃06E+04	• 215	.688	• 218	.094
45	9.00	1125.7	1121.7	1107.4	•2325E+05	•1616E+€5	•7⊚9⊴E+∋4	.219	•683	• 221	. 96
46	9.20	1126.6	1122.6	1108.7	• 2360E+05	01643E+05	。7172E+04	223 ي	° 679	٥224	_د 097
47	9.40	1127.4	1123.5	1109.9	•2394E+05	•1669E+05	•7252E+04	• 227	.674	• 227	.099
48	9.60	1128.2	1124.4	1111.2	•2427E+05	•1694E+¢5	•733_E+34	• 23	.67	•23	.10
49	9.80	1129.1	1125.3	1112.4	• 2460E+05	°14505+02	。7406E+04	د 234	° 665	٥233	• 102
ن 5	10.00	1129.9	1126.1	1113.5	•2493E+05	.1745E+05	.7480E+04	• 238	.661	•236	.103
51	10,2,	1130.6	1127	1114.7	•2525E+, 5	•1769E+.5	•7553E+4	. 241	۰ 65 7	. 238	•135
52	16.40	1131.4	1127.8	1115.8	•2556E+05	。1794E+05	。7624E+04	245 ،	•653	•241	.106
53	19.63	1132.2	1128.6	1116.9	• 2587E+05	•1817E+05	•7693E+04	•249	• 649	• 244	• 107
54	10.80	1132.9	1129.4	1117.9	•2617E+: 5	₀1841E+05	.7761E+J4	.252	. 645	.246	•1/19
55	11.00	1133.6	1130.2	1119.0	.2647E+05	.1864E+05	。7827E+04	.256	.641	•249	.11
56	11.20	1134.3	1131.1	1120.0	•2677E+05	•1887E+05	•7891E+04	• 259	• 637	₀ 252	
57	11.40	1135.	1131.7	ن 1121.	•27€5E+∂5	.1910E+05	•7955E+û4	• 262	.633	• 254	. 113
58	11.60	1135.7	1132.4	1122.0	°545+02	₀1932E+05	•8016E+04	• 266	• 62 9	.257	•114

59	11.80	1136.4	1133.2	1122.9	■ 2762E+05	₀1954E+05	. 8077E+04	٥269	<u>.</u> 626	۵259	115 ء
66	12.0	1137.	1133.9	1123.9	•2790E+C5	-1976E+05	•8136E+04	.272	. 622	• 262	• 116
61	12.20	1137.7	1134.6	1124.8	•2817E+,5	-1998E+05	•8193E+04	• 276	.618	•264	.118
62	12.40	1138.3	1135.3	1125.7	°5844E+02	°2019E+02	。8250E+04	: 279	°615	° 266	۰119
63	12.53	1138.9	1135.9	1126.6	.287úE+05	.2040E+05	•83∪5E+04	• 282	.611	.269	•12
64	12.80	1139.6	1136.6	1127.5	•2896E+95	•2060E+05	•8359E+04	° 285	•6 8	•271	•121
65	13.00	1140.2	1137.2	1128.3	•2922E+05	°5080E+05	。8411E+04	J 288	。605	.273	•122
66	13.20	1145.7	1137.9	1129.1	•2947E+05	-2100E+05	•8463E+04	• 291	• 601	• 275	. 123
67	13.45	1141.3	1138.5	1129.9	•2972E+05	•2120E+05	•8514E+04	.294	• 598	°278	.124
68	13.60	1141.9	1139.1	1130.7	₀2996E+05	°2140E+05	。8563E+04	•297	• 595	•280	•126
69	13.80	1142.4	1139.7	1131.5	• 3020E+05	•2159E+05	•8611E+04	• 300	.591	. 282	. 127
7.5	14.00	1143.	114: 3	1132.3	•3044E+05	•2178E+05	.8659E+04	• 303	• 588	•284	.128
71	14,20	1143.5	1140° 9	1133.0	•3067E+05	°2196E+05	•8705E+04	. 306	.585	.286	•129
72	14.40	1144.1	1141.4	1133.8	.3090E+05	•2215E+05	•8750E+04	, 308	• 582	٥288	. 130
73	14.60	1144.6	1142.(1134.5	.3112E+05	•2233E+05	₀8795E+04	.311	. 579	•290	.131
74	14.80	1145.1	1142.5	1135.2	• 3135E+05	•2251E+05	•8838E+04	• 314	.576	.292	• 132
75	15.00	1145.6	1143.1	1135.9	•3156E+05	•2268E+05	°8881E+04	» 317	•573	•294	° 133
76	15.2L	1146.1	1143.6	1136.6	•3178E+05	• 2286E+05	•8922E+04	.319	• 57Ů	.296	• 134
77	15.40	1146.6	1144.1	1137.2	.3199E+05	•2303E+05	•8963E+04	• 322	• 568	.298	.135
78	15.60	1147 . û	1144.6	1137.9	• 3220E+05	°505+02	。9003E+04	J 324	₀565	.299	136 د
79	15.80	1147.5	1145.1	1138.5	•3241E+05	•2336E+05	.9042E+04	• 327	• 562	.301	•137
80	16.00	1148.0	1145.6	1139.1	•3261E+₽5	•2353E+05	•9581E+34	.329	• 559	• 3.3	.137
81	16.20	1148.4	1146.1	1139.8	•3281E+65	°5045	。9118E+04	J 332	۰ 5 57	°302	° 139
82	16.40	1148.8	1146.6	1140.4	.3300E+05	•2385E+05	•9155E+04	.334	• 554	• 30 7	• 139
83	16.60	1149.3	1147.1	1141.0	•332.) E+(5	•2401E+05	•9191E+_4	. 337	• 552	.3.8	• 1 4
84	16.80	1149.7	1147.5	1141.5	•3339E+05	°2416E+05	₀9227E+04	, 339	• 549	.310	• 141
65	17.00	1150.1	1148.0	1142.1	• 3358E+05	•2432E+05	•9261E+04	• 342	• 547	• 312	• 142
86	17.20	1155	1148.4	1142.7	•3376E+05	•2447E+.5	•92955+_4	₀ 344	•544	• 31.3	c 143
87	17.40	1150.9	1148.8	1143.2	。3394E+05	₀2461E+05	•9329E+04	, 346	• 542	.315	•143
88	17.64)	1151.3	1149.3	1143.8	•3412E+05	•2476E+05	•9362E+Ú4	• 349	• 539	• 316	• 144
89	17.80	1151.7	1149.7	1144.3	•3430E+05	•2491E+95	•9394E+::4	•35:	.537	• 31.8	.145

T 2

* c> _

		USOBSED PM		0.00.00.000					75 2044		
96	19044	Ů.Ú	0.0	1147.7	0.	0.	0.	- 364	- 521	- 328	. 150
95	19.00	1153.9	1152.1	1147.3	•3530E+05	.2573E+05	•9573E+04	• 364	• 524	• 327	•153
94	18.8Ū	1153.6	1151.7	1146.8	•3514E+05	°52200E+02	。9545E+04	. 362	. 526	• 325 [·]	<u>،</u> 149
93	18.60	1153.2	1151.3	1146.3	•3498E+05	•2546E+05	•9516E+04	. 359	.528	• 324	•148
92	18.40	1152.9	1150.9	1145.8	•3481E+05	•2533E+05	•9486E+1)4	ه 357	• 53ť	• 323	•147
91	18.20	1152.5	1150.5	1145.3	•3464E+05	•2519E+05	₀9456E+04	J 355	。532	° 321	, 147
90	18.00	1152.1	1150.1	1144.8	•3447E+05	•2505E+05	•9425E+∂4	.353	•535	• 32.	•146

÷

	178	L	EC
	.	4.80	•365J
Equilibrium conver	rsion at	5.00	•3676
wall conditions in each	n section	5.20	.3702
of the High Temperature	- e Reactor	5.40	.3727
L - length down the re	eactor, m	5.60	•3752
EC - equilibrium conver	rsion	5.80	.3777
	-	6.00	• 3800
L EC	-	٤.20	•3824
•20 •237	0	6 .4 4	• 3846
.40 .291	2	5.60	• 3869
.66 .295	3	6.80	•3891
<mark>، 80 ، 29</mark> 9	3	7.00	.3912
1.00 .303	2	7.20	• 3933
1.23.7	1	7.40	•3954
1.40 .310	9	7.60	.3974
1.60 .314	6	7.80	.3994
1.80 .318	3	8.00	.4013
2.00 .321	8	8 .2 ů	· 4U32
2.20 .325	3	8.40	°4051
2.40 .328	8	8.60	• 4069
2.60 .332	1	8.80	• 4087
2.80 .335	4	9.00	•4105
3.00 .338	7	9.20	.4122
3.20 .341	8	9.40	o 4139
3.40 .345	0	9.60	•4155
3.60 .348	υ	9.80	•4172
3.80 .351	<u>ــــــ</u>	10.00	•4188
4.00 .353	9	10.20	• 42: 3
4.20 .356	8	10.40	.4219
4•4i, •359	6	10.60	. 4234
4060 0362	3	189	.4248

)

L	EC	L	EC	
11.00	° 4253	15.20	•4511	
11.20	o 4277	15.40	• 4520	
11.40	• 4291	15.60	۰4530	
11.60	<mark>₀</mark> 4304	15.80	•4539	an an a tradi gha ta ga wa ka wa ma
11.80	•4318	16.00	•4548	
12.00	• 4331	16.20	•4557	<u> </u>
12.20	o 4344	16.40	•4566	nevolo ecentro secono e alterdad
12.40	• 4 3 5 6	16.60	e4574	
12.60	°4369	16.80	• 4583	· .
12.80	• 4381	17.00	° 4591	n na hanna an hanna an han bar
13.00	• 4393	17.20	• 4599	
13.20	°4405	17.40	.4607	
13.40	• 4416	17.60	o4615	
13.60	• 4427	17.80	.4623	
13.80	°4439	18.00	• 4630	
14.00	• 4449	18.20	• 4638	
14.20	.4460	18.40	o 4645	an a
14.40	o 4471	18.60	• 4652	
14.60	.4481	18,80	•4660	
14.80	• 449 1	19.00	• 4667	an a
15.00	o4501	19.00	•4667	•••

 HTR RETURNS	WITH?	F(6) 6,482	T(6) 1147,729	P(6) 40.000
X1(6) .150	X2(6) <u>327</u>	X3(6) <u>524</u>	FC 	TWM 1153 <u>0929</u>

The program then prints the steam turbine results. All flows in the scheme of Fig. 3.5. are shown for four modes of operation: normal daytime; normal night (large turbine, no actual power generation); normal night (small turbine); and seasonal storage (nighttime at normal daytime output).

 $IMI_{h}(h) = 333$ H12(BTU/1B) = 1089 P12(PSIA) = 2.831

DAY-TIME OPERATION.

WATER TO BOILER	334805.9			 	 	_
SEAL LEAK -1	393.7					
SEALLEFAK -2	114.4			 	 	_
SEAL LEAK - 3	3383.3				•	
SEAL LEAK -4	1301.5	· ·		 		_
SEAL LEAK - 5	468.8					
HP - EXTRACTION	32227.9			 		
KEHEATER FLOW	296916.4					
TP-FLOW AT VALVE	297310.1			 	 	
IP TOTAL FLOW	- 3 ⊜⊜693₊5					
SFAL LEAK - 6	517.3			 		_
IP EXTRACTION	10524.7					
VAP. +DIST. STEAM	205833.4		÷			_
IP TOTAL FLOW	83818.0			•		-
TOTAL CONDENSATE	1558.2					

DIRECT STEAM GEN. TO STORAGE RATIO=1.0500

POWER GENERATED AT HP TURBINE=23.61POWER GENERATED AT LP TURBINE=7.28TOTAL POWER GENERATED=30.89

NIGHT-TIME OPERATION

TOTAL POWER GENERATED

LARGE TURBINE AT 3.5P.C. OF DAY-TIME FLOW

R= . 2466E-02 R1= . 1748E-01

WATER TO BOILER	5852.0			
SEAL LEAK - 1	6.9			
SEAL LEAK - 2	2.0	·	•	
SEAL LEAK - 3	59.1			•
SEAL LEAK - 4	22.07	· · ·	·	
SEAL LEAK - 5	8.2			
HP - EXTRACTION	563.3			
REHEATER FLOW	5189.7			
IP-FLOW AT VALVE	5196.6	-		
IP TOTAL FLOW	5255.8			
SEAL LEAK - 6	9.0			
IP EXTRACTION	641.2			
VAP.+DIST. STEAM	0.0		·	 -
LP TOTAL FLOW	4605.5			
TOTAL CONDENSATE	4624.7			
· · · · ·				
POWER GENERATED AT	HP TURBINE=	• 41		
POWER GENERATED AT	LP TURBINE=	.40	-	

.81

180

POWER RATE AT SMALL TURBINE DURING 16 HRS AT NIGHT.	
R= .4584E-01 R1= .3249E+00	
WATER TO BOILER 108791.2	
SEAL LEAK - 1 127.9	
SEAL LEAK - 2 37.2	
SEAL LEAK -3 1099.4	
<u>SEAL LEAK - 4 422.09</u>	
SEAL LEAK - 5 152.3	
$\frac{HP - EXTRACTION}{10472.1}$	
$\frac{1}{10} \frac{1}{10} \frac$	
$\frac{1PTFLUWAIVALVE}{10TOTALELOW} = 077077$	
$\frac{1000}{10}$	
$\frac{11}{200}$	
1P TOTAL FLOW 85518-5	
TATAL CANDENSATE 85976.1	
101A2 00N02H0A12 0077051	
POWER GENERATED AT HP TURBINE= 7,67	
POWER GENERATED AT LP TURBINE= 7.43	
TOTAL POWER GENERATED = 15.11	
TURBINE AT SEASONAL STORAGE OP, CONDITIONS	
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF	<u>- STORAGE TO</u>
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD	E STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00	E STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OFRUN 16 HRS AT FULL LOADR= .9374E-01R1= .6645E+00WATER TO BOILER222476.9SEAL LEAK - 1261.6	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OFRUN 16 HRS AT FULL LOADR= .9374E-01R1= .6645E+00WATER TO BOILER222476.9SEAL LEAK - 1261.6SEAL LEAK - 276.0SEAL LEAK - 32248.2SEAL LEAK - 4864.8SEAL LEAK - 5311.5	E STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OFRUN 16 HRS AT FULL LOADR= .9374E-01R1= .6645E+00WATER TO BOILER222476.9SEAL LEAK - 1261.6SEAL LEAK - 276.0SEAL LEAK - 32248.2SEAL LEAK - 4864.8SEAL LEAK - 5311.5HP - EXTRACTION21415.2DEVECATER ELEME	STORAGE TO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OFRUN 16 HRS AT FULL LOADR= .9374E-01R1= .6645E+00WATER TO BOILER222476.9SEAL LEAK - 1261.6SEAL LEAK - 276.0SEAL LEAK - 32248.2SEAL LEAK - 4864.8SEAL LEAK - 5311.5HP - EXTRACTION21415.2REHEATER FLOW197299.5	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 ID 10000.2	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197501.1 IP TOTAL FLOW 159809.3	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD $R = .9374E-01$ $R1 = .6645E+00$ WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 JD EXTRACTION 24274.6	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197501.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6	E_STORAGE_IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 IP TOTAL FLOW 175.00	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 199809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 LP TOTAL FLOW 175089.0 LOTAL FLOW 175089.0	E STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 LP TOTAL FLOW 175089.0 TOTAL CONDENSATE 175820.2	STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 LP TOTAL FLOW 175089.0 TOTAL CONDENSATE 175820.2	E STORAGE IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-G1 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 LP TOTAL FLOW 175089.0 TOTAL FLOW 175089.0 TOTAL FLOW 175089.0 POWER GENERATED AT HP TURBINE= 15.69 POWER GENERATED AT HP TURBINE= 15.20	E_STORAGE_IO
DISCHARGE AT FULL LOAD 8.245HRS. NEEDS 1.941 DAYS OF RUN 16 HRS AT FULL LOAD R= .9374E-01 R1= .6645E+00 WATER TO BOILER 222476.9 SEAL LEAK - 1 261.6 SEAL LEAK - 2 76.0 SEAL LEAK - 3 2248.2 SEAL LEAK - 4 864.8 SEAL LEAK - 5 311.5 HP - EXTRACTION 21415.2 REHEATER FLOW 197299.5 IP-FLOW AT VALVE 197561.1 IP TOTAL FLOW 159809.3 SEAL LEAK - 6 343.7 IP EXTRACTION 24376.6 VAP.+DIST. STEAM 0.0 LP TOTAL FLOW 175089.0 TOTAL CONDENSATE 175820.2 POWER GENERATED AT HP TURBINE= 15.69 POWER GENERATED AT HP TURBINE= 15.20 TOTAL POWER GENERATED AT LP TURBINE= 15.20	E_STORAGE_IO

The results of the distillation column are then printed.

R E A M E G	۲ ۲	T 201 0	р из (э.э.	H	C Q		
<u>en</u> Lica	2	<u>4073 391.0</u>	<u> 65 40 0</u>	00-18/16.293	<u></u>	440	
STL	4 F E				. 990		
=10 ₀	78 PRSÚ	12= 5980 N=	30				
		·····				······	
<u>resu</u>	LTS OF TH	E DISTILLATI	ON COLUMN				
C 1 A 2	LI	9 FEE- 269 4	o El-	70005107 6	V2- 2022 EV-	22/05/	04 EX1- E0
F C A S	H VC 201 13	r ICF- 303.0	<u> </u>	10220104 P	<u> X2= • 2833 FV=</u>	• 224061	<u>104 FIZ= 0.29</u>
HEAT	INPUT TO	REBOILER IS	NOT ENGUG	H. QR-MIN S	HOULD BE OVER	.4521	E+02 MW
DIST	• COL• IS	CALCUL. FOR	QR-MIN				
FEED	ENTERS B	ETWEEN PLATE	S? 1 AND	11			
OUTP	UT3						
8680 6660	DILER? 8=	a1659E+01	XB= .011	TB=383.4	QR= +4521E+05		
<u>e c c u</u> C und	DENSER 2D=	.9141E+00	XD = .990	TD=333.0	QC= _5703E+05		· · · · · · · · · · · · · · · · · · ·
PLAT	ES CONDIT	TUNS					
J	т	L	Х	HL	V	Y	HV
1	383.4	• 5972E+04	•011	2663E+05	•5199E+04	.036	•4680E+04
			••				·····
2	382.4	•1117E+05	₀C22	-,2664E+05	。5220E+04	070 ،	。4557E+04
3	381.5	•1119E+05	.039	2664E+05	• 5243E+04	.118	•4429E+ù4
4	379.2	•1121E+05	•C61	2663E+05	•5285E+04	•178	•426JE+04
5	376.9	01126E+05	<u>ە</u> ن90	2660E+05	• 5362E+04	°250	.4060E+04
	ar a that the fact of the state					0	
6	37405	•1133E+05	o124	2648E+05	• 5447E+04	•339	•3848E+04
7	371.7	•1142E+4/5	•163	2636E+05	•5551E+04	. 4. 8	• 3625E+04
8	30900	°11255+02	o 202	-a2619E+05	o 5653E+04	o 4 / 1	₀ 3422E+04
9	366.6	.1163E+05	.238	2600E+05	• 5765E+04	•534	•3254E+04
		117/5/06	2/0	25025425	0.025.007	507	21 22 5 1 24
1.1	26411	+11/46+42	÷2.00	20006+00	• 0 = 92 6 70 4	900C	• 31 23 6 40 4
11	362.6	.4801E+04	°302	2561E+05	₀ 8225E+04	.620	.2986E+04
12	269 5	AC34ELCA	272	- 25045+05	95415+04	600	2728 5+07
12	20000	• 49246704	• 57 5	25002+05	● 9001 E+04	•099	• 2120E+04
13	351.1	.5276E+04	• 517	2368E+05	• 925vE+04	.816	•2306E+04
14	242 2	50505104	.720	- 2126F±05	1000E±05	920	18585+04
74	JTCOD	0 3 7 3 7 5 5 7 0 4	0120	021202405	010076703	• 720	• 10 206 + 04
15	336.3	.6803E+04	.886	1899E+05	•1065E+05	.974	•1578E+04

5

. J

Finally, the program prints in Tables 1 and 2 following values of the process stream flows, compositions, temperatures, pressures, and enthalpies. The details of the low temperature (nighttime) reactors are then printed. The last two tables are then repeated for flows corresponding to the daytime rate of power generation, in this case $30.89 \ MW_{e}$.

TALLE-1 STURAGE	, MATERIAL SYSTEM	AND ENER	5Y DA	TA FOR TH	E DAYTIME	нісн	TEMPERATURE	SIDi
STREAM	COMPOSIT	ICN (MOL	PR.)	TEMP	PRESSURE	FLOW	ENTHALPY	
ND.	02	SC2	Sü3	(K) ·	(BAR) (I	KMOL/S	S) (KJ/KMOL)	
1	10 m	• 7	•93	361.5	11.0	1.03	-31199.5	
2	0.00	° 03	. 97	375.2	40.0	2.69	-28003.2	
3	0.00	•03	• \$7	443.2	4000	2.69	-11317.7	
4	0.00	• 3	•97	443.2	4400	2.69	8262.8	
5	0.00	• 03	.97	1005.8	40.0	2.69	49476.3	
6	°15	• 33	• 52	1147.7	40.0	3.16	50278.0	
7	.15	• 32	•53	592.8	40.0	3.16	15241.8	
8	.19	• 36	• 45	417.6	40.0	2.47	5547.8	
9	0.00	•22	<mark>،</mark> 78	417.6	46.0	69 ه	-15004.1	
10	• 56	• 30	•14	378.5	40.0	. 85	2973.7	
11	0.00	• 38	• 62	378.5	4 . .0	1.62	-20957.	
12	•77	° 20	٥٥3	343.0	40.0	.62	1470.1	
13	0.00	. 57	•43	343.0	40.0	• 23	-24124.9	
14	• 8ê	a 18	• 2	333.0	40.0	<mark>ه</mark> 59	1118.3	
15	0.00	٥65	•35	333.0	40.0	.03	-24124.5	
16	0.00	• 36	•64	391.1	40.0	2.57	-18776.3	
17	G.00	. 99	•01	333.7	16.8	.91	-17809.2	
18	0.00	o 01	•99	383.4	10.8	1.66	-26626.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HEAT EX C1L= 44 BFWHL=	CHANGER L 865.855 1558.230	OAD (KW)? VAP1L= 5 TRIMMER	<u>2650.</u> = 65	271 HE1 23.535	L=110819. QRFS= 112	3 <u>8</u> 59 . 464	RCL= 45212.	440
SUMMARY	OF EFFIC	IENCIES A	T THE	CHUSEN P	ARAMETERS		gygarnet ble f Mella dan van er de Melangerge in Lands 704 gan og av er 400 Meren	

£2= . 5331 E3= ₀5789 ъļ

्रे

<u>. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u>	<u>IENCENA</u>	LIUKE SIDE					}	
STREAM	COMPOSIT	<u>10N (MGL</u> SO2	<u>PR.)</u> S(13	TEMP。 (K)	PRESSURE (BAR)	FLOW	ENTHALPY	,
				222 7	1.1 .		170:0 2	
21	LoUU	• 77	• 5 I	33301	110L	° 40	-118:902	
22	0.00	° 99	.01	333.7	11.0	a 46	1460.1	
23	.80	.18	.02	333.0	40.0	• 29	1118.3	
24	. 8ú	.18	<u>،</u> ن2	573.6	40.0	•29	9303.6	
25	° 01	°99	° 01	333.7	11.0	• 46	1457.8	
26	۰32	.67	•01	354.7	11.0	•76	2138.8	
27	。 32	67	•01	693.0	11.0	. 76	16365.5	
28	o 01	.07	.93	777.1	11.0	•52	3.949.1	
29	.01	.07	•93	400.8	11.0	۰42	5618.3	
30	.91	.09	.89	382.0	11.0	•28	4475.2	ويعتنص فتصلوهم
31	0.00	• 03	. 97	382.0	11.0	• 24	-26570.8	
32	.02	.11	<u>。</u> 87	381.3	11.0	° 22	4409 . 5	
33	0.00	.04	•96	381.3	11.0	.06	-26609.4	
34	.71	.11	.18	333.0	11.0	.01	1217.2	
35	0.00	o 1 1	۰89	333.0	11.0	• 21	-34816.7	
36	0.00	.07	.93	361.7	11.0	<u>•</u> 52	-30175.2	
37	.01	.07	• 93	777.1	11.0.	.10	30949.0	
38	.01	<u>。07</u>	•93	777.1	11.0	۰42	30949.0	
39	• 01	.07	.93	400.8	11.0	۰ 52	5618.3	<u></u>
40	• 80 l	.18	.02	396.2	11.0	۵ 29	3204.0	
41	。01	o 07	•93	400.8	11.0	• 10	5618.3	
42	60.0	0.00	0.00	400.8	0.0	0.00	0.0	an an sing an an an Ann
43	v.00	0.00	6.00	400.8	0.0	0.00	0.0	
44	0.00	0.00	0.00	0.0	0.0	0.00	0.0	
45	0.00	0.00	0.00	0.0	0.0	0.00	0.0	transmered ^a
EAT EXC	HANGERS	LOAD (KW) TRIM=	2 RE	CUP= 10	761.049	VAP=	8896.663	
NERGY I	PRODUCED	AT NIGHT	QAAN=	• 4034	E+05 G1	W= 17	'99E+04(KW)	

ΔΙ ΔΝΟ ΕΝΕΛΟΥ ΒΔΙΔΝΟΕΣ ΕΟΚ ΤΗΕ ΝΙΟΗΤ Τ

RESULT	S OF THE	LOW TEMP.	REAL	TURS SYSTEM	4		
NŬ.	02	<u>SU2</u>	_S03_	(K)	(BAR)	(KMOL/S	J(KJ/KMCL)
_						_	- · ·
<u> </u>	.32	.67	0	693.0	11.0	. 76	16365.5
51	. 22	• 48	.29	1150.3	11	•66	44834.6
52	.22	- 48		693.0	1120	.65	18975-0
		<u> </u>					*
53	.13	• 31	.55	1016.3	11.0	• 60	42057.5
54	• 13	.31	• 55	693.	11.0	<u>• 60</u>	21362.6
55	٥ 06	.17	<u>。76</u>	912.2	11.0	•55	38590.5
56	。06	o17	。 76	693.0	11.0	.55	23324.3
57	0 2	80	00	015 /	11 0	E D	22/26 /
	• \(Z	• • • •	• 90	01204		* 23	<u> </u>
58	• • 2	• . 9	<u> </u>	752.3	11.6	. 53	28798.2
59	٥ 01	<u> </u>	.93	777.1	11.0	•52	30949.
60	.01	.07	• 93	777.1	11.0	. 52	30949.0
Q 1 .17	16E+05Q	2 •1234E+0	5Q 3	•8407E+04Q	4 • 243	31E+04Q	50.
X CON	<u>.367X</u>	<u> </u>	<u>8 X</u>	<u>•489X</u>		.531X	, 233
LIK CON	VEKSIUNo	U = -932					

<u>STREAM</u> NG.	<u>СОМРОЗІТ</u> 02	SU2	<u>BL PR.)</u> SD3	<u>ТЕМР.</u> (К)	PRESSURE (BAR)	FLOW (KMOL/S	ENTHALPY)(KJ/KMGL)
21	0.00	.99	•01	333.7	11.0	• 89 [°]	-17809.2
22	0,00	.99	.01	333.7	11.0	.89	1460.1
23	<u>。80</u>	• 18	•Ü2	333.0	40.0	۰ 57 o	1118.3
24	.80	.18	.02	573.0	40.0	• 57	9303.6
25	° 01	•99	.01	333.7	11.0	.90	1457.8
26	• 32	.67	۰01	354.7	11.0	1.47	2138.8
27	₀ 32	۰67	.01	693.0	11.0	1.47	16365.5
28	• 01	.07	. 93	777.1	11.0	1.01	38949.0
29	.01	.07	o 93	400.8	11.0	.82	5618.3
30	.01	.09	<u>。89</u>	382.0	11.0	• 55	4475.2
31	0.00	₀ ₿3	. 97	382.0	11.0	• 46	-26578
32	.02	.11	87 ^م	381.3	11.0	۰42	4409.5
33	0.00	.04	۰96	381.3	11.0	÷12	-26609.4
34	. 71	•11	.18	333.0	11.0	.01	1217.2
35	0.00	.11	<u>• 89</u>	333.0	11.0	o 41	-34816.7
36	0.00	.07	.93	361.7	11.0	1.00	-30175.2
37	.01	.07	° 93	777.1	11.0	.18	30949.0
38	.01	7	.93	777.1	11.0	.82	30949.0
39	°01	07ء	°93	400.8	11.0	1.01	5618.3
40	.80	•18	.02	396.2	11.0	۰57 ۵57	3204.0
41	•01	.67	.93	400.8	11.0	.18	5618.3
42 ·	0.00	0.00	0.00	400.8	0.0	0.00	0.0
43	0.00	0.00	0.00	400.8	0.0	0.00	0.0
44	0.00	0.00.	6.00	6.0	0.0	0.00	0.0
45	0.00	0.00	0.00	0.0	0.0	0.00	0.0
EAT EXC FW= 35	HANGERS	LOAD (KI TRIM=	w)? RE 16217.55	CUP= 20 1 HE2	882。928 = 4685。6	VAP= 1	7090.240
NERGY P	RODUCED	AT NIGH	T? QAAN=	~ 7828	E+05 GI	W= •34	92E+04(Kw)
ECEIVER	LOAD TO	A= 4460	3 (MW-THR	M)			

TABLE-2, MATERIAL AND ENERGY BALANCES FOR THE NIGHT TIME OPERATION OF THE LOW TEMPERATURE SIDE

, Ġ

e K

ť_

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

S. Jones

4 .

ł