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KINETIC SOLUTION OF THE SHEATH REGION IN A FUSION REACTOR

Jeffrey N. Brooks

Fusion Power Program
Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

The sheath region in a fusion reactor is studied with

a one-dimensional kinetic code. The sheath potential, heat

transmission, and sputtering of the boundary are all quite

sensitive to electron re-emission. The expected heat and

particle fluxes in future fusion reactors leads to a pre-

diction of keV-edge temperatures.



INTRODUCTION

An important concern for future tokamak fusion reactors is the behavior

of the plasma near the boundary. The presence of a sheath potential and phe-

nomena such as electron reemmission can affect the flux of particles and energy

to the boundary and the sputtering of impurities from the boundary. This sub-

ject has been studied, for the case of flow to the boundary along magnetic

field lines, by numerically solving a system of time-independent, Vlasov

kinetic equations, for the hydrogen and impurity ions, and the electrons, in

which the distribution functions depend on the velocity vector and a single

spatial coordinate (the distance from the boundary). Figure 1 shows the

problem geometry. The boundary is referred to as a limiter but could also be

a divertor plate. The point x = a represents the start of the sheath region.

Boundary conditions are postulated at the start of the sheath region and at

the limiter. Particles are assumed to flow towards the limiter along magnetic

field lines and so the magnetic field can be neglected. The electric field,

which lies in the x-direction, is given self-consistently by Poisson's equa-

tion. The equations are then solved in the sheath region. In contrast to

fluid model solutions, a kinetic solution shows the fine details of the sheath

region and permits a better description of the boundary conditions. However,

an important aspect needing further analysis is to connect the boundary condi-

tions with conditions in the plasma proper—this is beyond the scope of the

present analysis.

MODEL

The equations solved are as follows:
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Fig. 1. Problem geometry.
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where /, = /, (x,V) is the distribution function of the k-th species, Mfc is the

mass, e is the proton charge, Z is the impurity ion charge where Z is the

atomic number of the impurity, E is the electric field, V is the (three-

dimensional) velocity vector; and where the subscripts denote OT = deuterium/ .

tritium fuel ions, z = sputtered impurity ions and e = electrons. Beryllium

has been used as the impurity species because of its proposed use as a coating

material^ ' for future fusion devices. (The effect of helium and iron impuri-

ties have also been examined.) The densities in Eq. (4) are given by the

zeroth moment of the distribution functions:

N.(x) = / /. d^V . (5)

Other variables of interest are the potential 4>, particle flow r , heat

flow qk, and the average sputtering coefficient of the ions impinging on the

limiter Sfe. These are given by:
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where S.nJ,) is the monoenergetic sputtering coefficient for a particle of

species k having an energy U. = 1/2 M-P/2 + V2 + V2 j . The form of Sfc isV

taken as Eq. (7) of Ref. 2. An additional computed quantity ,s a factor Y

which describes the heat transmission capability of the sheath and is defined

by:

(10)

The boundary conditions used are as follows: In the plane perpendicular

to the X-direction, the distribution functions are Maxwellian everywhere. The

form of the distribution functions in the X-direction are specified at X = a,

and for V <_ 0 by half-Maxwellian distributions characterized by a temperature

T*, a drift velocity Vk, and a density Nf as follows:

/k(/k(a,V) - N^
z(Vy,Vz)ij(vJ , (11)



where

and

The value of a, i.e. the length of the sheath region, is solved for by

the code as part of the overall solution. The impurity density at x = a has

been set equal to 5% of the DT density, i.e. N* = 0.05 N ^ . Note that the

distribution functions in the x-direction are only specified for particles

moving towards the limiter. No ions come back from the limiter (they come

back, if at all, as neutrals and there is no appreciable ionization in the

sheath region) and so i?(x,V ) = 0 for V > 0 and for all x, for k = DT.Z.
1£ X X

This is not the case for electrons for two reasons: (1) electrons are

deccelerated by the sheath potential and some, therefore, turn around and

come back; and (2) because of electron re-emission at the limiter. For elec-

trons the form of / (a,V ) for V >_ 0 is determined by the code. Likewise,
6 X X "™"*

the full electron temperature T and density Ng at x = a are determined by

integrating over the forward and backward-going particles. Additional bound-

ary conditions at x = a are that the plasma is electrically neutral so that
NDT(a) + 4Nz(a) = Ne(a) , (14)

and that the net flow of charge to the limiter is zero:

rDT(a) + 4rz(a) = re(a) . (15)



At the limiter, electrons can be re-emitted with a probability "R " such that

the flow of electrons from the limiter is equal to R times the flow to the

limiter:

where

/ dVydVz /
-co "La> J()(-

(16)

It has been assumed for this work that the re-emitted electrons are all at near-

zero velocity (a few eV).

Several normalized parameters are used in the analysis; distance is nor-

malized to an electron debye length at x = a:

x = / - 2 - S - . (17)
Ne(a)e

2

Two parameters are used in specifying the boundary conditions:

a = - 2- ^ , 3 = -f- , (18)

where a is approximately the ratio of the average energy of an ion to the average

energy of an electron at the start of the sheath region, B is the ratio of ion

to electron temperature at this point, and a value of V^ = 0 has been employed.
z iOther conditions used are that T = L.™, and V.. = V_..

Z DT D U



This system of equations has been solved numerically using a midpoint-

valued finite difference scheme, and using an iterative process to solve for

the self-consistent electric field and the value of a.

RESULTS

Figure 2 shows the numerical solution for a ca^e with R = 0, i.e. with

no electron reflux, and for typical parameters a. = 1, 3 = 0.25. The quantities

shown are all normalized to their maximum values. The positive charge density

is defined as N = N__ + 4 N7. The plasma is positively charged with respect

to the wall, with the potential reaching a maximum of e<j> ̂  3 KTa at the limiter.

This is similar to classical results. The width of the sheath region is about

8 debye lengths but most of the charge separation occurs over about the first

4 debye lengths from the limiter. All densities fall off monotonically towards

the limiter. The electron temperature (not shown) falls off from about T 1 at
e

x = a to about 80% of this value at the limiter.

Figure 3 shows a solution for the same case except that R = 0.535, a

value equal to the so-called space-charge limit. Because of the high re-emission

of electrons, N near the limiter is actually higher than at x = a v As a

result, the electric field reverses itself in the sheath region and falls to

zero at the limiter. If R were greater than this value, the electric field

could go negative which would, in theory, serve to repel any additional elec-

trons; the condition of E(0) = 0 defines the space-charge limit. The potential

for this case is only about 1/2 KT^.

The electron distribution function for the space-charge limited case is

shown in Fig. 4 for the points x = 0 and x = a. Electrons traveling to the

right (V < 0) and at x = a are specified as per Eq. (11). At x = 0 they are
A

displaced in velocity due to the sheath potenti*'. The spike in Fig. 4
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represents the low-energy re-emitted electrons at the limiter. These are accel-

erated through the sheath and hence have the form shown at x = 0.

Figure 5 shows the variation of sheath potential, heat transmission factor,

and the average sputtering coefficients as a function of R and for a = 1 and

6 = 0.25. A specific value of T a = 400 eV was used for the computation of the

sputtering coefficients, the other variables are normalized to any T* as shown.

Over the range of R from zero to the space-charge limit, ipmax varies by about

6 to 1 and y varies by about 4 to 1. The behavior of y with R follows a sim-
6

pie, nearly straight-line dependence. The explanation for this is that for

large R , the heat flow is dominated by electron conduction whereby the flux

of cold electrons from the limiter permit more hot electrons from the plasma

to hit the limiter while still maintaining charge flow balance from the plasma.

This also explains the reduction in <bmax with increasing R£.

The form of the sputtering curves is explained as follows: As R increases

and <|> decreases, ions from the plasma are accelerated less as they go through

the sheath and therefore hit the limiter with less energy. (The DT ions gain

an energy of e<t>max and the impurities gain 4 e$max in the sheath.) Because

the sputtering of B peaks at lower energies, this has the effect of increasing

the sputtering coefficients. However, for other choices of T a and/or other

coating materials, the trends could be different.

Figure 6 shows the effect of varying a on the sheath potential and heat

flow parameter (a value of 6 = 0.25 has been used; there is little variation

found with e). The minimum value of a for which a time-independent solution

exists was found to be a = 0.65 and only for R£ < 0.2. Below this so-called

Bohm limit, the ions travel too slowly as they enter the sheath and the ion

density falls off rapidly and the electric field oscillates.

The value of a at the edge of a tokamak reactor is uncertain; however,

it will probably be greater than the Bohm limit and lower than the upper limit

12
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of a = 8, shown in Fig. 5. For a > 1 there is only a small variation in the

space-charge limit (where the curves terminate), and the potential. While the

slope of y versus Rg differs with a, the value of y has a spread of only about

20%, at the space charge limit. Alpha is a measure of a type of flow in the

boundary region, e.g. supersonic versus subsonic. Therefore, the basic con-

clusions from these results should not be particularly sensitive to the flow

type as long as the Bohm limit is satisfied. It was also found that using

helium and iron in the computer code, instead of beryllium, did not appreciably

alter the results as long as the ratio of electron-to-ion density was kept

fixed.

REACTOR IMPLICATIONS

In a fusion plasma at ignition, the alpha-heating power to the plasma will

be balanced by radiation and transport losses. Transport throughout the bulk

plasmas can be by conduction and convection but heat can only flow to the

limiter (or divertor plate) by convection. If the transport power, particle

flux, and the heat flow parameter y, is specified, the edge temperature T a

can be determined as per Eq. (10).

As an example, for a 3000-MWth fusion reactor, the alpha heating power

would be 600 MW, of which 500 MW could typically be radiated (possibly by injecting

high-Z impurities) leaving 100 MW to be transported. The heat flow of Eq. (10)

is therefore

(a) = 100 MW .

The DT particle flow to the limiter is given by:

N V
= DIP

DT

15



where N D T is the average DT density in the bulk plasma, V is the plasma

volume, and T is the average particle containment time. Using the following

typical parameters: N = 1.0 x 10 2 0 m~3, V = 750 m3, and x = 5 s; and using

the assumption that r =1.2 r and r = 0.05 r , the total particle flow is:

J]r,(a) = 3.4 x io22 s-1 .

Assuming that R is at the space-charge limit, then a value of y = 11 would be

typical. The edge temperature using Eq. (10) is therefore:

T = " » * 1Q6 " . 1500 eV.
e 1.6021 x io-19 J/eV x n x 3.4 x 10 2 2 s"1

Thus the edge temperature would be about 20% of the average temperature (typi-

cally ^8 keV) and about 10% of the central temperature. A DT ion would gain an

energy of about 750 eV in the sheath. DT ions would therefore hit the limiter

with an average energy of about 3000 eV. For a = 1, beryllium ions would gain

3000 eV in the sheath and could hit the limiter at 5000 eV or greater average

energy, depending on their initial energy. Helium ions would likewise be

expected to hit at somewhere in this range of 3000-5000 eV. For low-Z coatings

(be, B40, B4C, etc.) this range of energies would result in significantly less

sputtering than "worst case" calculations* ' which used the peak values to be

conservative. On the other hand, high-sheath potentials of the keV magnitude

would seem to make operation with bare-wall structural materials, e.g., iron,

exceptionally difficult, because of the huge self-sputtering coefficient,

slO sputtered atoms per incident ion,v ' predicted for keV energies. The

sheath potential, and hence the bare-wall self-sputtering, could be even worse

if (1) not as much of the alpha energy could be radiated; and (2) there were

less electron re-emission.
16
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