Design for a high field combined function superferric magnet

PDF Version Also Available for Download.

Description

A combined function superferric magnet option has been investigated for the Relativistic Heavy Ion Collider (RHIC). The option requires the maximum value of the field in the magnet to be much higher than that achieved in any existing combined function accelerator magnet. A model is presented here in which a good field quality can be maintained up to 2T. It is done by carefully designing the yoke structure and positioning the coils in such a way that the iron poles tend to saturate evenly across the gap. A cold iron model might be necessary for this magnet. 4 refs., 2 ... continued below

Physical Description

Pages: 2

Creation Information

Gupta, R.C. & Morgan, G.H. January 1, 1985.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A combined function superferric magnet option has been investigated for the Relativistic Heavy Ion Collider (RHIC). The option requires the maximum value of the field in the magnet to be much higher than that achieved in any existing combined function accelerator magnet. A model is presented here in which a good field quality can be maintained up to 2T. It is done by carefully designing the yoke structure and positioning the coils in such a way that the iron poles tend to saturate evenly across the gap. A cold iron model might be necessary for this magnet. 4 refs., 2 figs., 1 tab.

Physical Description

Pages: 2

Notes

NTIS, PC A02/MF A01; 1.

Source

  • Particle accelerator conference, Vancouver, Canada, 13 May 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85014827
  • Report No.: BNL-36626
  • Report No.: CONF-850504-215
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 5573339
  • Archival Resource Key: ark:/67531/metadc1087906

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1985

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • April 24, 2018, 11:50 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gupta, R.C. & Morgan, G.H. Design for a high field combined function superferric magnet, article, January 1, 1985; Upton, New York. (https://digital.library.unt.edu/ark:/67531/metadc1087906/: accessed March 21, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.