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INTRODUCTION

The behavior of cemericed granular material is complex and difficult to
characterize, Physical tests on laboratory-size specimens are time consum-
ing and often inconclusive, due tc the variable nature of the bulk material.
Samples of weakly--cemented material are difficult to prepare and the results
of testing are not always reproducible. Nevertheless, constitutive models
have been formulated, generally relying on plasticity theory, so that large
Scale calcuiations of boundary value problems may be performed. These
phenomenclogical material models neglect the underlying physical processes
that cause the observed behavior and concentrate on curve-fitting or 'knob-
twiddling" techniques to provide riasonable macroscoplic response.

As an alterrate approach, we have used the distinct element method to
construct numerical samples of cemented granular material. The model allows
us to verify which are the important microphysical processes determining
material behavior. We can do parameter studles, continuously varying the
material properties of the bonding material and the topology of the bonds
themselves, to see how the macroscoplic properties depend upon the micro-
scopic structure. The first step in thir process has been to verify that
the numerical model accurately reproduces the qualitative behavior of real
granular materials. Our longer term goal is to develop an analytic model
based on the 1limited set of processes in the distinct element computer
program that captures the most {important [features of real granular
materials.

We {llustrute our program with two types of calculations. The first
series consists of measuring the macroscopic p-wave and the s-wave speeds of
the numerical sample, and using them to infer elastic properties of the bulk
material. A simple dimensional analysis shows that the macroscopic elastic

modull must be directly proportlional to the moduli of the bonding material.



This relation 1is verified. We also investigate how the number and size of
the bonds influenr~ bulk response.

In the second series, we look at crack growth in granular materijals.
The Griffith theory of crack growth assumes an ideally flat crack. In
granular materials and in our simulations, the crack is formed when many
consecutive bonds in the material are broken. Such a crack is not flat.
Nevertheless, we show that the classic relation between crack size and the

critical stress for the onset of growth remains valid.
INFLUENCE OF BOND CHARACTERISTICS ON MACROSCOPIC WAVE SPEEDS

The distinct element model assumes a system of spherical rigid par-
ticles that are constrained to move in only two dimensions. Elastic bonds
are placed between certain pairs of particles. Uithin each bond is a
Griffith crack, oriented perpendicular to the i1ine joining the particle cen-
ters. The geometry is described by the three dimensionless parameters, i.e.
a, B, and §, that are illustrated in Fig. 1. a {s the total width of the
bond, B is the width of the Griffith crack, and 6§ is the length of the bond.
Each of the parameters 1is nondimensionalized by the particle radius, R.
Under load, the particles are displaced relative to each other. Restoring
forces and torques are applied to each bonded particle pair by analytic
equations developed for the three independent modes of defcrmation: simple
tension/compression (i.e., the bonded particles moving toward or away from
each other); rolling torsion (i.e., one particle rotating clockwise and the
other counterclockwise); and shearing torsion (both particles rotating in
the same angular direction). The details of this formulation are given by
Trent (1987,1988,1989). For example, the form of the restoring forces in
simple tension is:

(1) EéAH z =W o+ —a arccos( E—EQELE%TﬁTl] wzarcsin(a) y  (az1s8).
7al -1 a - cos wzarcsin(8)

Here F is the restoring force, du is the incremental stretching, and E s
the elastic mod'lus of the bondirg material.
The sample i{s shown in Fig. 2 There are 270 particles, each with a

radius of 1 mm, and 397 bonds. The material is formed oy allowing particles



to settle under gravity and then bonding all particles whose centers are
closer han 0.25 mm. None of the particles are touching so there are no
direct particle-particle contacts, unlike most distinct element simulations.
In the wave propagation analyses presented in this section, no ecrack growth
is allowed so that the parameter B remains constant during the simulation.
The value of B in case U4 differs from the other cases. In all the simula-
tions, the bond width (2aR) is 1 mm so that a=0.5.

Boundary conditions are prescribed by specifying the velocities of the
lower twenty particles. For generating the tensile waves, these particles
are given a constant downward velocity of 10 m/s for a short time. Their
velocity is then 3et to zero and the resulting ringing of the sample re-
corded. Average vertical velocities for particies in each of the six shaded
regions in Fig. 2 were calculated and plotted as functions of time. Figure
3 shows the p-wave response for the baseline case. Note that the amplitude
does not decrease from cycle to cycle so the response ls undamped.

' Twelve numerical etperiments were performed, representing six different
materials. A shear wave was generated by applying a horizontal boundary
condition to the twenty lower fixed particles. Similarly, the horizontal
velocities for the particles in the shaded regions were averaged and plotted
and functions of time. Figure 4 shows this response for the baseline case.
The p-wave and s-wave velocities were measured by calculating the average
time required for wares to travel through the sample. For example, Fig. 3
shows seven complete cycles in 3u3 usec. Since the length of the sample 1is
32 mm, a complete cycle must travel 64 mm, so cp= (7 x bde-3 m) / (303e-6 s)

or 1480 n/s. This value 1is typical of alluvium, a cemented granular
material,

Returning to Eq. 1, we note that the stiffest bonds are those with
small bond lengths, with small initial ciacks and with large bond widths.
In general, the individual forces between bonded particles depend on the
geometric parameters (a, B8, 6) and on the elastic properties of the bond
(E). However, E i3 the only parameter in the problem with the dimensions of
a modulus, and so based on dimensional analysis, we would predict that the
effective modulus of the granular material must scale directly with the
elastic modulus of the bond. The results in Table 1 verify this conclusion.
The wave speed in a homogeneous, {sotroplic solld depends on the square 1oot
of the modulus. Thus {n comparing tests 1 and 2, where E drops by a factor



of 2, we would expect the p-wave speed to drop by the square root of 2. The
numerical ratio is actually 1.41. Similarly, the s-wave speed drops by the
factor 1.36.

When the maximum distance used to determine which particles are bonded
i3 increased from 0.25 mm to 0.5 mm in tests 3 and 4, the nunber of bonds
in the problem increases from 397 to 480. These additional bonds are much
less stiff than bonds with smaller separation. Nevertheless, adding only
213 more of these bonds has the same effect as doubling the elastic modulus
- compare tests ! and 2 and 3. Clearly, the topology of tne bonds plays a
major role in macroscopic response. We are currently building an analytie
model to quantify these numerical results, which will lead to a constitutive
law for use in a continuum code.

In test 4 the initial crack size was increased ¢(for every bond) from
2.5% to 20% of the oond width. This has the expected effect of decreasing
the wave speeds. In a real granular materlal, each bond may have a dif-
ferént thickness and therefore a different stiffness. This complexity 1s
not included in the present analyses, but the effect could be modeled by al-
lowing the 1initial c¢rack within each bkond to be selected from some
distribution.

The effect of loisson's ratio in the bonding material was also ex-
amined. Cases 1 to 4 assumed a value of 0.18 but case 5 uses 0.05 and case
6 uses 0.45. Very little difference in the macroscopic response is observed
even though the shear modulus of the bond material varies by 38%. We con-
clude that the macroscopic Po'sson's ratio depends most strongly on the bond
topology. This is not too surprising since the shear modulus of the bonds
only affects the restoring force in the shearing torsion mode.

The results of these 12 numerical experiments may be coanblned by cal-
culating a macroscopic modulus and Poisson's ratio, expressed in terms of
the wave speeds:

(2) vz 1/2( (ef-2 c;) / (eq- c;)]

(3) E/p = c; (2« (c;- 2 c;) / c;- c;)]



where Vv 1is Poisson's ratio, E 1is the elastic modulus and p is the bulk
material density. Table 1 shows these macroscopic quantities for each of
the six different cases.

Table 1. Macroscopic Poisson's Ratio and Modulus for Cases 1 to 6

cy cs E/p

Test (m/s) (m/s) v (m/s)? Description

1 1480 830 0.277 1.75e6 Baseline

2 1050 610 0.2u45 0.93eb 1/2 E

3 1430 830 0.2u6 1.72e6 1/2 E, 83 more bonds

y 1160 650 0.271 1.07e6 1/2 E, 83 more bonds, 20% damaged
5 1490 850 0.259 1.82e6 Baseline, but v of bonds=0.05

6 1440 810 0.269 1.66e6 Baseline, but v of bonds=0.45

This table shows that a reduction in the elastic modulus of the bonds has
roughly the effect of reducing the macroscopic r~dulus by the same factor.
It .is of interest to note that the macroscopic Poisson's ratic only varied
from 0.245 to 0.271, or ten percent, for all six cases. Nearly all the mass
of the system is contained in the particles, since the cross-section of the
bonds 13 relatively small. A density of 2650 kg/m’ was used, representing
t"e density of quartz. The porosity of the sample in Fig. 2 is 36.9%, so
the bulk density 1s roughly 1670 kg/m’. Using this value, the macroscopic
elastic modulus 1s 2920 MPa for the baseline case, or only 14.,6% of the
value of the individual bonds. This percentage would be mucn higher if the

sample were more closely packed and more completely bonded.
THE EFFECT OF INITIAL FLAW SIZE ON MACROSCOPIC TENSILE FAILURE

The Griffith theory (Griffith, 1920) predicts the onset of growth of an
ideal crack in an elastic continuum (Margolin, 1984a). An impcrtant predic-
tion of this theory 1Is that the threshold stress for crack growth is
proportional to the reciprocal of the square root of crack length. Several
researchers have built constitutive models for geologic materials in which
fracture {s described in terms of the growth cf a distribution of preexist-
ing cracks whose number and =size are assumed to be known as a material
property (Seaman et al 1976, Margolin 198u4b). However the assumptions of

the Griffith theory are not weli-realized in granular materials, which are



inhomogeneous on a length scale comparable to the c¢rack size. In par-
ticular, cracks in granular materials are not necessarily flat.

The purpose of the calculations in this section is to investigate the
validity of Griffith theory in granular materials. Recall that each bond
has within it a small ideal Griffith crack. The idea in this section is to
embed a macroscopie crack into the numerical sample by severing the bonds
between several sets of adjacent particles. Then we subject the material to
a tensile stress at the boundaries that strains the crack. As in the
Griffith theory, stress concentrations appear at the first set of unbroken
bonds at the ends of the crack, which will cause the microscopic crack
within those bonds to grow. When this microscopic crack grows to be the
width of the bond, the bond is broken and the macroscopic crack is said to
have grown. In the numerical experiments, we build yp the boundary stress
slowly to mimic a quasistatic test, and we record the stress level when the
first new bond breaks. It is important to wuse enough particles in the
sinulation to assure that the boundaries have negligible effect.

All the simulations in this section are done with the regular array of
particles shown in Fig. 5. 1In the first, benchmark set, the initial macro-
Scopic crack is formed by severing bonds all in the same plane. From these
calculations, we conclude that is necessary for the initial crack to be made
of at least 5 or 6 bonds for the Griffith theory to apply. Physically, a
lesser number corresponds to the breakdown of the continuum approximation.
Furthermore, in a numerical sense, it is not clear how to measure the crack
length f§tself when it 1s on the same order as the bond. The results are
shown in Fig. 6. As the initial crack length increases, the slope of the
curve approaches -0.5, the theoretical value derived by Griffith, shown by
the dashed line.

In the second set of calculations, we made the initial macroscopic
crack irregular by severing the bonds i{n several different though parallel
planes. The initial conditions are sketched in Fig. 7. Although the cracks
span the same total length as the corresponding cracks in the first set, the
bonds betweer, the particles at the ends of the individual planes are not
broken. The results of these calculations show a higher threshold for frac-
ture, which we Interpret as modeling the growth of several smaller, but
unconnected initial cracks. Note in Fig. & that very 1little decrease in

strength is realized as the (total) initjal crack length increases.



In the third set of calculations we modified the preceding set by also
severing the bonds between the end particles of the individual planes. The
crack is more continuous than in the second set of calculations. There are
also more broken bonds per unit length than in either tne first or second
set. The interesting result is that when the initial crack is long enough
(again, 5 or 6 bonds) the results lie almost on top of the results of the
first set. The conclusion is that we can use the Griffith theory to
describe the onset of growth of an irregular (as opposed to flat) crack so

long as the initial crack encompasses at least 9 bonds.
SUMMARY

The distinct element method has been used to. perform a number of
numerical experiments, analogous to physical tests routinely carried out for
real geologic materials. The ability to prescribe exactly the material
proberties and the boundary conditions allow us to study in detail the in-
fluence of microscopic structure on macroscopic response. These macroscopic
quantities are wusually the only data obtained in physical experiments. We
are now in a position to formulate a general constitutive model, based on

physical mechanisms and appropriate for use in a continuum code.
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Fig. 1 Elastic bonding material defined by three dimensionless
coefficients.

?ﬂ)!ﬂdléi()OONTWCﬁi:!ﬂ'BONDS SKR

‘o 1 § A | v L M Y v T o T v | | v T -|
1
6
D 5
; 4
%% 3
B SRERASD WL 4
B SN SO
A e L e 2
? E B KR o Rt
( AR VN, e e Sy
;’.;',,,-/.:-_-7 r_"IA’rr- ) ':.’-7".' ".' . =%
o R A R R RN 1
0 8 10 1B 20 2 30 38 4
X-Position ¢mm)

Fig. 2 Sample of 270 particles and 397 bonds (represented by the
Straight lines). The shaded areas are regions where particle
velocities are averaged. The velocities are prescribed for the
lower 20 particles and the top surface is free.
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Fig. 3 Time histories of vertical velocities in the shaded regions
shown in Fig. 2 due to vertical loading of the lower boundary
{test 1). The p-wave velocity is 1480 m/s.
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Fig. 4 Time histories of horizontal velocities in the shaded regions
shown in Fig. 2 due to horizontal loading of tne lower boundary
(test 1). The s-wave wvelocity is 830 m/s.
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Fig. 5 Particle distribution for the quasistatic tensile tests. There
are 8 x 59 or 472 particles and 877 bords. The lower layer of
particles is fixed and the upper layer moves slowly upward until
one bond breaks, leading to rupture of sample.
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bonds is nearly 1/2, the value derived by Griffith theory.
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Fig. 7 Schematic diagram of the initial crack distribution for each of
the three cases.



