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Shock Waves, Increase of Entropy and Loss of Information 

By Peter D. Lax1 

1. Introduction 

We present an informal review of the topics in the title as 

they pertain to solutions of hyperbolic systems of conservation laws. 

These are systems of the form 

(1.1) u[ + f* = 0, i = 1 n; 

the subscripts t and x denote partial derivatives. Each u1 is a 

density, f1 the corresponding flux. Each f! is a function of all uJ's, so 

f* can be expressed as a linear combination of u^. In matrix 

notation (I.D can be written as 

(1.21 uT * Aux = 0 

wnere u denotes the column vector with components u , and A the 

matrix whose i"' row is the u-gradient of f1: 

df 1 

r- 3> aU = — 

The matrix A is a function of u, unless f1 are linear functions of u; in 

this talk we deal with systems that are genuinely nonlinear, in a sense 

to be made precise 

JResearch supported under contract DE-AC02-76ER03077 of the 
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The system (1.2) is called strictly hyperbolic if the matrix A 

has real and distinct eigenvalues a.., a , a for all values of 

u. 

We are interested in solving the initial value problem: 

(1.4) u(x,0) = u0(x), 

in particular, we want to study the nature of the dependence of 

solutions on their initial data. We denote by S(t) the operator 

relating solutions at time t to their initial values: 

S{t):u(x,0) -• u(x,t). 

The main facts of life : 

(i) The initial value problem has no proper, i.e., differentiable 

solution for ail time t, no matter how smooth the initial data are. 

(ii) The initial value problem can be solved for all time if we admit 

solutions of (1.1) in the integral sense, i.e., in the sense of 

distributions. 

Solutions in the distribution sense that are piecewise continuous 

satisfy the Rankine-Hugoniot relation 

(1.5) sCu1] = [ f 1 ] , i = 1 n, 

where [ ] denotes the difference between the value on the left side 

and the right side of the discontinuity; s is the velocity with which 

the discontinuity propagates. 

(iii) Solutions in the distributions sense are not determined uniquely 

by their initial data. 

In these notes we shall describe various criteria that are used 

to accept or reject distribution solutions. The criteria are suggested 

by physical facts, and are analyzed mathematically. The analysis 

shows, or at least leads one to expect, 
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(iv) The various criteria all pick out the same class of distribution 

solutions; we shall call these relevant solutions. 

(v) Each member of the class of relevant solutions is uniquely 

determined by its initial data. The initial data can be prescribed 

arbitrarily within the class of L°° functions. 

We denote by S(t) the operator linking relevant solutions to 

their initial data. 

The main theme of this talk is the following remarkable 

property of relevant solutions: 

(vi) The set of relevant solution is compact; in particular, the 

operators S(t), t>0, are compact in appropriate pairs of topologies. 

Note that (vi) is a nonlinear property; for linear hyperbolic 

equations S(t) is invertible, in most cases unitary. In the rest of 

these notes we shall explore how noniinearity brings about 

compactness. 

Very little is known about the compactness of S(t) in more than 

one space dimension. 

The organization of these notes is as follows: 

In Section 2 we discuss, for the simplified model of a single 

conservation law, the concepts of genuine noniinearity, breakdown of 

classical solutions, solutions in the distribution sense and their 

nonuniqueness, the viscosity method, finite difference methods, and the 

shock condition. 

In Section 3 we discuss, for the scalar model, the compactness 

of solutions constructed by the viscosity and difference methods, and 

derive the entropy inequality for such solutions. 

In Section 4 we derive Glimm's estimate for the total variation 

of solutions of scalar equations that satisfy the shock condition, we 

show that a discontinuous solution that satisfies the shock condition 

also satisfies the entropy condition. 

In Section 5 we indicate how to extend the notions developed 

in Sections 2, 3, and 4 for systems. 
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Section 6 contains scattered remarks about the equations of 

compressible flow: the increase of entropy, some consequences of 

Carnot's theorem, and the equipartition of energy in the wake of 

strong shocks. 

Compactness of the family of all solutions places a limit on the 

amount of information contained in that family. It is natural to ask 

what this implies about the amount of computing needed to solve an 

initial value problem to meet a specified degree of resolution; see [14] 

for some crude notions. 

[13] contains a bird's eye view of conservation laws; [16] is 

a thorough treatise. 

2. Single Conservation Laws 

We study (1.1) for n = 1: 

(2.1) u t + fx = 0, 

f some function of u; we denote 

df 
(2.2) — = a(u). 

du 

As in (1.2), Equation (2.1) can be rewritten as 

(2.3) Oj. + a i^ = 0; 

this equation asserts that u is constant along trajectories x = x(t) 

satisfying 

dx 
(2.4) — = a. 

d t 

In view of this interpretation, a is called the signal velocity: the 

trajectories defined by (2.4) are called characteristics. Since 

according to (2.3), u is constant along characteristics, and since a is a 

function of u, it follows from (2.4) that the characteristics are 

straight lines. 



When the initial value UQ of u is specified, we can construct 

through each point (y,0) on the initial line a characteristic line: 

(2.5) x = y + a(u0(y))t. 

Suppose y.. and y? are two points, y-fY?' an<^ *-he inequality 

(2.6) afuj^afug), 

holds, where 

(2.6)' Uj = ^ (y j ) , u2 = u0(y2). 

(2.5) shows that the two characteristics issuing from (y-.,0), 

respectively, intersect at the time 

* 1 
T = 

a ( u . ) - a ( u 2 ) 

As we saw before, u has the value u-, along the whole characteristic 

issuing from (y-.O). and the value u? along the characteristics issuing 

from (y^.O). So at the point of intersection u has to be equal to both 

u. and u~: since (2.6) shows that u, * u2, this is impossible and 

shows that no differentiabie solution u(x,t) exists beyond the time T. 

Note that the crucial inequality (2.6) can hold only if a(u) is a 

genuine function of u, which makes f(u) a genuinely nonlinear function 
d 

of u. It is convenient to assume that — a * 0 for all u; in view 
d u 

of (2.2) this implies that 

d 2 f 
(2.7) x 0. 

d u " 

i.e., that f is strictly convex or concave. 
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As noted in the introduction, solutions that cannot be continued 

beyond some critical time T can, nevertheless, be contrived as 

solutions of (2.1) in the sense of distributions: 

(2.8) f f (u w t + f wx) dxdt + fu0 wQdx = 0 
' t£0 

for every test function w in CQ. This is consistent with the point of 

view of physics that conservation laws are integral relations: 

(2.8)' — f udx + f f-ndS = 0 
d t J ° 9 J G 

for every domain G. Relations (2.8) can be deduced from relations 

(2.8) by a simple process of approximation. 

As remarked in Section 1, a piecewise continuous solution is a 

solution in the distribution sense if the Rankine-Hugoniot relation (1.5) 

is satisfied across the discontinuity; 

(2.9) s [ u ] = [ f ] , 

where [ ] denotes the difference across the discontinuity, and s is 

the velocity with which the discontinuity propagates. 

A simple example of such a discontinuous solution of Equation 

(2.1), with 

(2.10) f(u) = u2 /2 

is 

2 { 1 f o r x < t / ! 

0 f o r t / 2 < x 

The discontinuity is across the line 

(2.12) x = t /2 
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which propagates with velocity s = 1/2; across the discontinuity [u] 

= 1 [ f ] = 1/2, so relation (2.9) is satisfied. 

The function 

(2 
f 0 f o r x < t / 2 

13) u?(x,t) = \ 
c I 1 f o r t / 2 < x 

also is discontinuous across the line (2.12), and [u] = - 1 . 

[ f ] = -1/2, so that relation (2.9) is satisfied. Note, however, that 

the function 

(2.14) u3(x,t) = 

0 f o r x ^ 0 

x / t f o r 0 $ x $ t 

1 f o r t $ x 

satisfies Equation (2.1) with f given by (2.10), so that 

(2.15) u t + uux = 0, 

in each of the three regions, and is continuous across the boundaries 

x = 0 and x = t separating the regions. Since u2(x,0) = Ug(x.O), 

solutions in the distribution sense are not uniquely determined by. their 

initial data. This shows that an additional criterion is needed, based 

on physical principles and buttressed by mathematical ones, which 

rejects certain distribution solutions. The remaining acceptable ones 

must have the property that every initial value problem has exactly 

one acceptable solution. 

There are several ways of formulating such a criterion of 

rejection or acceptance; happily, they turn out to be equivalent. We 

list the most important ones: 

(a) The acceptable solutions u of (2.1) are the limits of solutions 

o of a family of equations obtained by augmenting the flux f by 

small viscous term, and letting the viscosity tend to 0: 

(2.16) u = l i n u(€>. 
€ - 0 



The viscous term in the flux is -^U-. *>0, s o that u' e ' satisfies 

the equation 

(2.17) u ( *> + f ^ > = cu<J>, f*£> = f(u<€>), 

and has the same initial value as u: 

(2.18) u(c)(x,0) = UQ(X). 

(b) The acceptable solutions are limits of solutions v of a 

difference approximation as At, Ax tend to zero. Denoting the value 

of v at x = kAx, t = nAt by v£, the difference equation is of the 

form 

here we use the abbreviation 

1! • ' ( " " ) • 

The initial values are 

vk = u0(kAx). 

The rationale for using limits of (2.19) is the close relation 

between (2.191 and (2.17); this can be seen by using the Taylor 

approximations 

v n J ' = u + At u t + - (At)2 u t t + 0(A3) 

7 ( » k " l + u k - l ] = u * i (Ax)2 u ^ + 0<A3) 

7 ( f k " l - f - . - l ] = Axfx + 0(A3). 

8 



Setting these into (2.19) and using (2.1) to calculate the higher 

derivatives of u we get that v approximates solutions of (2.17), with 

At f fAx12 , 
,22W £ • r IU "a. 
Since e has to be positive, we must have 

Ax 
(2.21) — £ l a l ; 

At 

this is the celebrated Courant-Friedricks-Lewy convergence criterion. 

We remark that (2.19) is merely one of a variety of difference 

approximations we may use. Another class of approximations, 

combining viscosity in space and discretization in time, is Avron 

Douglis' layering method; it is more flexible than either method (a) or 

(b), see [ 3 ] . 

An entirely different criterion for accepting or rejecting 

distribution solutions can be based on the analysis of the mechanism 

that causes the breakdown of smooth solutions: the intersection of 

characteristics. Thus, the characteristics issuing from the initial line 

for the initial data of u-,, given by (2.11), cross in a wedge-shaped 

region 

Fig. 1 

The role of the discontinuity in (2.11) along x = t /2 is to keep the 

characteristics from crossing. This is in contrast to the behavior of 
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the characteristics issuing from the initial line for the data of u2 . 

given by (2.13); these diverge and don't cross at all: 

Fig. 2 

This leads to the concept of a shock: 

A discontinuity of a piecewise continuous distribution solution is 

called a shock if the characteristics on either side impinge in the 

forward t direction on the discontinuity. Denoting by u, and Uo the 

value of u on the left and right sides of the discontinuity, and by ai 

and an the corresponding signal velocities: 

(2.22) a^ = alu^), a^ = a(u^), 

we can express this condition by the inequality 

(2.23) aL > s > aR . 

where s is the velocity of propagation of the discontinuity. We recall 

from (2.9) that 

(2.24) s = 

where 

U R " U L 

1 0 



(2.25) fL = f(uL), fR = f(uR). 

(c) A distribution solution of (2.1) is acceptable if all its 

discontinuities are shocks, i.e., satisfy condition (2.23). 

3. Viscosity Methods 

As a start, let 's assume that for arbitrary bounded measurable 

initial data un of compact support, the solutions u' (x,t) of (2.17), 

(2.18) exist and converge in the L (dxdt) norm over R x (0,T), T any 

value > 0. What can we deduce about the limit u? 
2 

Multiplying equation (2.17) by any CQ tes 

integrating by parts over all x and t ^ 0; we get 

2 
Multiplying equation (2.17) by any CQ test function w(x,t) and 

(3.1) - f f fu ( e )w t + f ( u e ) w l dxdt - f u0w0dx = € J J u w n dxdt. 

As c tends to zero, u' tends to u and f(u'€ ') tends to f(u) in the 

L norm. Therefore, (3.1) tends to relation (2.8), characterizing 

distribution solutions; this shows that the L limit of solutions u' ' 

of (2.17) is a solution of (2.1) in the distribution sense. 

Let u ' be a solution of (2.17); since the initial data UQ(X) has 

compact support, u '(x,t) tends to 0 rapidly as lxl-»«>. So the 

function 

(3.2) UU,(x,t) = f u(€)(y,t)dy 
J -oc 

is well defined and bounded. Clearly, 

(3.2)' U ( J > = u < € ) . 

Integrating (2.17) with respect to x gives 

(3.3) U ( c ) + f ( u ( £ ) | = eU ( c ) 
X X ' 

11 



provided that the flux is normalized so that 

(3.4) f(0) = 0. 

Let v ' e ' be another solution of (2.17), V*e' its x-integral, 

satisfying an analogue of (3.3). Subtracting the two equations from 

each other, and applying the mean value theorem, we deduce that the 

difference 

(3.5) D = U ( e ) - V(€> 

satisfies 

(3.6) D t + aDx = c D ^ , 

where 

f ( u £ ) - f ( v € ) 
a = — — _ — — — 

u e - v € 

We apply now the maximum principle to the parabolic equation (3.6) 

and deduce that 

(3.7) iDl ( t ) = Max |D(x,t)l 
max x 

is a decreasing function of t. 

Clearly, 

SO 

T T 
(3.8) f l U ( € , l ( t ) d t $ f f lu ( € )(x. t ) ldxdt . 

«>0 max J 0 J ( R 

12 



By assumption, u converges to u in the L norm; it follows, 

therefore, from (3.8) that IT € ' converges to U in the L (Max) norm on 

the left of (3.8). Similarly, V ' converges to V; by the triangle 

inequality, for each t 

| i u (e )_ v (€ ) u _ v I ^ | U ( € ) - U l m +lV< e )-Vl a v 

I max max I max max 

It follows from this that I l^c) - V€ I ( t ) tends to 
max 

lU - V l ( t ) in the L1(dt) norm. Since by (3.5) and (3.7) the former 
max 

is a decreasing function of t, and since the L limits of decreasing 

functions are decreasing, it follows that 

(3.9) lU - Vi ( t ) 
max 

is a decreasing function of t. 

The quantity 1111 is called the W~ norm u; so 

property (3.9) can be expressed in terms of the solution operator S(t) 

relating initial data to data at time t: 

Theorem 3.1: The operators S(t) are contractions in the W~ ' 

norm. 

Since equation (2.17) is parabolic, another application of the 

maximum principle shows that 

Max lu<€)(x,t)l = l u ( € ) l ( t ) 
x max 

is a decreasing function of t. We conclude, as before, that 

I u e i ( t ) tends to l u l ( t ) in the L norm, and, therefore, that the 
max max 

latter also is a decreasing function of time. This property can be 
expressed so: 

1 3 



Theorem 3.2: The operators S(t) map into itself any ball in L°° 

centered at 0. 

Theorems 3.1 and 3.2 derived in [ 8 ] ; it was observed there 

that they have the following surprising consequence: 

Theorem 3.3: Suppose equation (2.1) is genuinely nonlinear, i.e., the 

function f is strictly convex or concave. Then the operators S(t), t>0, 

map any bounded subset of L supported on a given interval into a 

compact subset of L . 

Proof: Let u Q be a uniformly bounded sequence of functions 

supported on a common interval of the x-axis. Such a set belongs to 

a compact subset of W~ ' , i.e., a subsequence of u Q converges to 
— 1 00 

a limit UQ in the W ' norm. This limit is also bounded and has 

compact support. According to Theorem 3.1, for each t,u'n'(x,t) 

converges in the W~ '°° norm to u(x,t), where u 'n ' and u are the 
solutions of (2.1) constructed by the viscosity method with initial 

values u Q and UQ, respectively. Both u ' and u satisfy Equation 

(2.1) in the distribution sense (2.8): for any CQ test function w, 

(3.10) J J |u ( n !w t + f(u (n ,)wx] dxdt + f u ( £ } wQdx = 0, 

anc 

(3.10)' ff (u wt + f(u)wx) dxdt + f u0wQdx = 0 

Since u' tends to u in the W-"1' norm, it follows that the first 

and the third term in (3.10) tends to the first and third term in 

(3.10)'. Therefore, it follows that so does the second term: 

(3.11) J J IWn)> - f(u)j wx dxdt -, 0 

Next we make use of the fact that not only for genuine solutions but 

also for distribution solutions, signals propagate with finite speed. 

1 4 



Since u g = u« = 0 outside some finite x-intervai, it follows that 

u and u are zero outside a bounded act in x,t space for 

0 $ t $ T. We choose w so that w = 1 on this bounded set; since 

f(un) = f(u) outside this set, we can rewrite (3.11) as 

(3.11)' f f [f(u<n)) _ f ( u )] dxdt "" °-

We have assumed that f is strictly, convex, say f(u) £ R > 0. Then 

(3.12) f(u,n)) - f(u) ? f*(u)(u<n) - u) + - (u(n) - u)2 

2 

Integrating this we get 

(3.12)' jj Ff(ufn)) - f(u)l dxdt £ J J" [f'(u) (u<n) - u)l dxdt 

~ 1 [J [u<n>-u]2dxdt 

Since u - u tends to zero in the W~ '°° norm, and since u'n - u 

is uniformly bounded, it follows readily, by approximating f'(u) in the 

L1 sense by smooth functions, that the first term on the right in 

(3.12! tends to zero. Since by (3.11)' the left side tends to zero, we 

deduce from (3.12)' that 

T 

(3.13) f f (u(n) - u)2 dxdt - 0. 

Since u - u is supported on a bounded set, it follows that 

•T, 
(3 .13! J J lu ( n ) - ul dxdt - 0. 

This proves L (dxdt) convergence of u 

To prove LI(dx) convergence, we appeal to the following 

theorem of Barbara Keyfitz [ 7 ] : 

If u and v are two distribution solutions of (2.1) that are limits 

of solutions of (2.17), then 

1 5 



f lv(x,t) - u(x,t)l dx 

is a decreasing function of time. This result applies in particular to 

v = u' ; from this and (3.13)' we conclude that 

J lu<n)(x,t) - u(x,t)l dx ^ 0 

for each t>0. This completes the proof of Theorem 3.3. 

It was already observed in [8] that Theorems 3.1, 3.2 and 3.3 

hold also for solutions constructed by the difference scheme (2.19); the 

same is true when solutions are constructed by more general 

difference schemes, as long as they are of monotone type. 

A basic hypothesis of Theorems 3.1-3.3 is that the solutions 

u ' c ' of the parabolic equation (2.17) converge to a limit u in the L 

norm for all bounded initial data UQ. HOW does one prove such a 

result? In the case (2.10) of a quadratically nonlinear f, E. Hopf, 

used the fact that in this case Equation (3.3) is changed by the 

transformation 

U(c> = -2€log V<€> 

into 

v ( € ) _ c v ^ } . V(x.O) = exp CU ( Q } /2e3 

A solution of the heat equation can be expressed as an integral of its 

initial values. Using this formula, Hopf was able to show that as 

e -» 0. u ' € ' tends to a limit u; he even obtained a fairly explicit 

formula for this limit. It was remarked in [9] that a version of 

Theorem 3.3 can be derived from this formula. 

The convergence of solutions of the difference scheme (2.19) 

can be proved in a similar fashion for the special choice f(u) = log (a 

+ be~u), and of other monotonic schemes for other special choices. 

i 6 



Needless to say, these methods are very special. Recently, see [15] , 

[17] a new method, capable of dealing with more general cases, has 

been introduced by L. Tartar and F. Murat; we give a brief 

description of their ideas. 

The first idea, going back to L. C. Young, is a precise 

description of weak convergence. Let u ( y ) be a uniformly bounded 

sequence of functions; then it has a subsequence with the property 

that for every continuous function g the weak limits in the sense of 

L exist: 

(3.14) g(u(e)) - ug. 

Clearly, the weak limits u depend linearly and positively on g. It is 

not hard to show that u can be represented as an integral of g with 

respect to a family of probability measures v(y): 

(3.15) ug(y) = J g(v) dv(v.y) = < g,v(y) >. 

Secondly, it is not hard to show, see (3.12)', that (3.14) is convergence 

in the L1 sense if the measure v{y) is concentrated at a single point 

for almost all values of y. In this case 

(3.16) ug = g(u) 

for every g. u being the limit of u '. 

Tartar takes for u ' the solutions of (2.17) with prescribed 

initial values. By Theorem 3.2 this sequence is uniformly bounded; 

therefore, it has a subsequence for which (3.14), (3.15) holds. Tartar 

shows that in this case v is concentrated at a single point by using 

the notion of 

Compensated Compactness (Tartar): 

Let h and k be two sequences of vector functions defined 

in some domain of y-space. satisfying the following conditions: 

1 7 



(i) h ' € ' and k , € ' are uniformly bounded in L , and converge weakly 

in L2: 

(3.17) h ( € ) - h, k ( c ) - k. 

(ii) -div h*€' and curl k ' € ' belong to compact subsets of H j o c . 

Conclusion: The scalar product of h ' e ' and k ' € ' tend in the 

distribution sense to 

(3.18) h ( € , -k < € ) - h-k. 

Take y to be t, x, the domain to be (0,T) x [x->,x2] and the 

vector function h' to be 

(3.19) h ( € ) = (u ( ° , f€). 

(e) e 
where f = f(u ). Using Equation (2.17) we see that 

(3.20) div h ( € ) = « ( [ ) + f ( x ) = £ 4 

Clearly, the H ^ c norm of div h , c ' is bounded by e llu^ll. where 

II II denotes L norm. This quantity can be estimated by multiplying 

(2.17) by u ' € ' and integrating over 8? x (0,T). Since ufx = uf'(u)ux is 

a perfect x derivative, and u tends to zero as lxl-*°°, we get, 

after integrating byparts that 

(3.21) - f lu < € ) l 2 dx I = - e f l u ( £ ) i 2 d x d t 
2 J ' o J o 

It follows that 

(3.21)' e ilu<: f > II2 = c 
X J Q 

f f I u ( J ) I 2dxdt S const = - J UQdx-

i 8 



ws Clearly, ellu II $ e const tends to zero as c-»0; this sho 

that div h ' belongs to a compact set in H j o c . 

To construct k' we take any C function tf(v), and define 

?(v) by 

VM = fV n'(u)f'(u)Xu. 
** v -

Then 

(3.22) V' = n ' f 

Multiply (2.17) by /?'; using (3.22) we can write the resulting equation 

as 

(3.23) » ( £ ) + 9UJ = €*'*H> = ei,<S> - e , f u ( £ ) 2 

x 

We take now the vector function k ' to be 

(3.24) kl [*,eU,e>] 

Using (3.23) we see tha t 

(3.25) c u r i k < £ > = „ < J > - * < £ > = c „ < J > - o f u < « > 2 . 
x 

We claim that the right side lies in a compact set in H j o c . Clearly, 

the H ^ o c norm of the first term en^* is bounded by 

e l l ^ ( £ ) l l = e Il7?'u ( £ ) l l 

It follows, as before, from (3.21)' that this tends to zero. It follows 
2 

from (3.21)' that the second term in (3,23), €/f"u , is bounded 

in L . This does not imply H7 1 compactness; io get that we note 

that since by Theorem 3.2, u is uniformly bounded in L , it 
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follows that so are 7Te ' and y>*€'. It follows that curl 

k(c) _ ^ ( e ) + ^ ( e ) b e I o n g t 0 a bounded set in W"1,0*. Now 

Tartar appeals to 

Murat's Lemma: 

Suppose the set of functions Cc3 satisfies these conditions: 

1 CO 

(a) Cc> belongs to a bounded set in W~ ' . 

(b) Each c can be decomposed as 

c = C, + C2 

where CC-.3 belongs to a compact set in H ^ o c , and Cco3 to a 

bounded set in L . 

Assertion: The set Cc3 belongs to a compact subset of H j o c . 

Having verified the hypotheses of compensated compactness, we 

can conclude as in (3.18) that 

(3.26) u ( € V ( e ) - f ( G V c ) - u<P(u) - f(u)/?(u) 

We use now formula (3.15) describing the weak limits of functions of 

u '; taking g(v) = vp(v) - f(v)/j(v) we see that the weak limit of the 

left side of (3.26} is 

<W> - in,v> 

The various terms on the right of (3.26) can be similarly described; 

since the two sides of (3.26) are equal, we conclude that 

(3.27) <v<fi - in,v> = <v,v>«P,v> - <i,v><n.v>. 

20 



where v = v(x,t); (3.27) holds for a.a.(x.t). 

We introduce the abbreviations 

(3.28) u = <v,v>, f = <f(v),v>; 

then (3.27) can be rewritten as 

(3.29) <(v-\i)<P,v> = <{f-f)ji,v>. 

In the derivation of (3.27) we used second derivatives of 7}, 

but (3.27) itself depends continuously on J) in the C topology; 

therefore, (3.37) remains true for n piecewise C' . We choose 

(3.30) /?(v) = Iv-u l ; 

then from (3.22) 

f f ( v ) - f ( u ) f o r u>v 
(3.30)' <p(v) = < 

[ f ( u ) - f ( v ) f o r u<v 

Setting these choices for n and V into (3.29) gives 

<lv-ul(f-f(u)),v> = <(f-fjlv-u,y>; 

we deduce from this that 

(3.31) (f(u)-fi <lv-ul ,y> = 0. 

For f strictly convex, it follows from (3.28) and Jensen's inequality 

that the first factor (f(u)-f) in (3.31) is positive unless v is 

concentrated at the single point u; the same, of course, is true for 

the second factor <lv-ul .v>. Thus, it follows from (3.31) that v is 

concentrated at the single point u, and so u tends to u in the L 
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sense. It follows then, as shown at the beginning of this section, that 

u = lim u satisfies (2.1) in the sense of distributions. 

The argument outlined above shows that for every sequence of 

€-*0 we can select a subsequence such that the solutions u ' e ' of 

(2.17) with prescribed initial value UQ tend in the L sense to a 

distribution solution u of (2.1) with initial value UQ. TO prove that 

l i m u ' exist, we have to show that any two subsequences have the 
€ - • 0 

same limit. For this we need the following characterization of such 

limits, see [11] : 

Theorem 3.4: Let u be the L limit of a subsequence u' ' of 

solutions of (2.27). Let J? be any convex function, and V related to 7? 

by (3.22). Then 

(3.32) /?<u)t + y(u5x $ 0 

in the sense of distribution. 

The proof follows from (3.23); for when n is convex, 

/?" £ 0, and so (3.23) implies 

' t r x ^ ' xx 

(3.32) is the limit in the distribution sense of this relation as e-»0. 

Condition (3.32) is called an entropy condition: this notion will 

be elaborated in Sections 5 and 6. 

It can be shown that distribution solutions of (2.1) that satisfy 

the entropy conditions (3.32) are uniquely determined by their initial 

data. This proves that the L' limits of two different subsequences of 

u' are the same: this completes the proof of convergence. 

Tartar observed that the argument above for the L 

convergence of u also proves the compact dependence of solutions u 

on their initial data. For let u^ be a uniformly bounded sequence 
s 

of data with common support, converging in the weak topology of 

L°° to UQ: denote by u( the corresponding solutions of (2.1) 
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constructed by the viscosity method. A subsequence can be selected 

so that for every continuous g, g(u' ) converges in the weak topology 

of L . Again, we look at the two vector valued functions 

h(n) = (u(n) f(n)j ^ k<n) = ^ ( n ^ d O , 

By (2.1), 

grad h (n ) = 0, 

and by taking the limit of (3.5) 

curl k<n) 

are measures, uniformly bounded. Using compensated compactness we 

conclude as before that u ' n ' converges in the L norm to a limit u, a 

solution of (2.1) with initial value UQ. Since each u ' satisfies the 

entropy inequality (3.32). taking the distribution limit of (3.32) shows 

that so does the limit u. Then by the uniqueness theorem quoted 

above we conclude that u is the solution of (2.1) with initial value UQ 

obtained by the viscosity method. Thus, the L limits of two different 

subsequences of u ' are the same; this completes the proof of the 

compactness of the mapping UQ->U from L to L . 

We close this section by remarking that compactness is a 

property one usually associates with the dependence of solutions of 

parabolic equations such as (2.17) on their initial data; unlike in the 

linear case, this property is preserved as c tends to zero. It is 

instructive to see in some detail how this happens. From (3.21) we 

get that 

d f ' u ( € ) ' 2 f (€) 2 
(3.33) — dx = -€ l u , e ' r d x , 

dt J 2 J 
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i.e., that e I u dx is the rate of energy dissipation. We saw earlier 

that the limit u of u' ' has discontinuities; it can be shown that, for e 

small, u ' € ' bridges this discontinuity in a layer i (e ) of width c; in 

this layer it has the shape of a traveling wave: 

(3.34) u<c)(x,t) * w 
- x - s t 

[VH 
where w(£) is a solution of 

-sw + f'w = w, 
d 

Differentiating (3.34) we see that 

2 J X - S t • 

e 

i(e) 

J i u ^ V d x * _ Jwf | 2 d x = J w m 2 d e 

This shows that the rate of energy dissipation does not tend to zero 

as e tends to zero. This is in sharp contrast to the linear case: 

U < € ) = € U ( € ) 

when u< € ' tends to a discontinuous limit. Here the transition layer 

has width e , and the shape of the wave is 

u(€)(x,t) ^ w 
l e l / 2 

-, t 

So the rate of energy dissipation 

J.- .̂Wf-^f*-'1*/*2" 

tends to zero as c tends to zero. 
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4. Consequences of the Shock Condition 

In this section we study those distribution solutions of (2.1) all 

of whose discontinuities are shocks, i.e., satisfy condition (2.23). We 

present a result of James Glimm that shows that such solutions form a 

compact set. 

The shock condition relates the signal velocities a, and a™ to 

the left and right of the discontinuity with the velocity s with which 

the discontinuity propagates: 

(4.1) a, > s > an. 

(4.1) expresses the fact that characteristics, i.e., curves propagating 

with signal speed drawn in the forward direction, intersect the shock. 

It follows from this that characteristics drawn in the backward 

direction cannot intersect any shock. It follows from this that in a 

solution ail whose discontinuities are shocks, every point (x,t) can be 

connected by a characteristic to a point on the initial line. 

For simplicity we shall study solutions u(x,t) whose initial 

data—and, therefore, themselves—are periodic functions of x with 

period L: 

u(x + L,t) = u(x.t). 

We shall estimate the total variations of u(x,t) with respect to x per 

period. We start by estimating the total variation of a = a(u(x,t)); the 

total variation is the sum of the increasing variation A and the 

decreasing variation A"; for a period function the two are the same: 

(4.2) Total variation of a per period at time t = 2A (t) 

To estimate the increasing variation of a we note that according to 

the shock condition (4.1), the discontinuities of a contribute only to 

the decreasing variation of a. Therefore, we can calculate A (t) by 

dividing an interval of length L at t into subintervals by points 
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xQ(t) < x2(t) < - < xN(t) = xQ(t) + L 

so that a is al ternately increasing and decreasing along each interval. 

Then 

(4.3) A'ft) = Z a 2 n + 1 - a 2 n . 

where 

(4.4) 8j = a(u(Xj,t)). 

We connect now the points Xj,t to points y. on the initial line by 

character is t ics: 

By (2.5) 

(4.5) x-ft) = v, + a,-t 

Since x». = XQ + L, 

* 4nll ' x2n(t) * L 

Using formula (4.5) for x. we get 

Z y 2 n + l - y2v. " t E a 2n+l " a 2n * L 
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Since the first sum is positive, we conclude, using formula (4.3), that 

A+(t) «: _. 
t 

So by (4.2) we conclude that 

2L 
(4.6) Total variation of a(u(x,t)) per period < — 

t 

We use now the fact that (2.1) is genuinely nonlinear, i.e., that a is 

nonconstant function of u. Denote R a lower bound for I a'(u) I ; 

then Total Var a(u) £ R Total Var u, so we conclude from (4.6): 

Theorem 4.1 (Glimm): Suppose equation (2.1) is genuinely nonlinear in 

the sense that 

(4.7) l f (u) l > R. 

Let u be a distribution solution of (2.1) all whose discontinuities are 

shocks, and which is periodic in x with period L. Then the total 

variation of u(x,t) in x per period is 

2L 
(4.8! $ . 

Rt 

It follows from (4.8) that for any t>0, the measures u (x,tj are 

uniformly bounded and, therefore, weakly compact; it is remarkable 

that nothing need be assumed about the initial data. 

We can obtain a compactness result about the u themselves if 

we can get bound for their integral. This is easy because of the 

conservation form of the equation: if we integrate (2.1) with respect 

to x, we deduce that 

(4.9) f u(x.tk:x 
J 0 

is independent of t. 
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There is an analogue of (4.8) for solutions that are not periodic 

in x but of compact support. The total variation of u(x,t) in x is less 

than 

(4.8)' 
R t I / 2 

where the constant depends on the length of the support of the initial 

data but on nothing else, see [12] . 

We conclude this section by showing that solutions which 

satisfy the shock condition (4.1) satisfy the entropy condition (3.32) as 

well, and conversely. Suppose that f is convex, so that a is an 

increasing function of u; then (4.1) is equivalent with 

(4.10) uL > uR . 

For a piecewise continuous solution, the left side of (3.32) is zero 

except along a discontinuity x = y(t), where it has the value 

(4.11) (T?L - r?R)s - (<fiL - <PR) 

times 8(x-y(t)); here s denotes the shock velocity 

dy 

d t ' 

Since by (4.10), u™ < u, , we can write (4.11) as 

(4.11)' f L(/?'s - ¥>')dw. 
J u R 

Using relation (3.22) this can be written as 

(4.11)" f"1- 7?'(s - f)du 
J u R 
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We recall now the Rankine-Hugoniot condition (2.9): 

s(uL-uR) = fL-fR; 

this can be expressed by saying that 

f(u) - su 

has the same value at UT and uR; denoting this common value by g we 

can integrate (4.11)" by parts to obtain 

(4.11)*" f"1- n" (f - su - g)dn 
V 11 UR 

Since J\ is assumed convex, 7?" > 0; since f is assumed convex, it lies 

below any secant, i.e. 

f < su + g 

for u between uR and UT . This shows that (4.11)'" is < 0; thus, so is 

(4.11), and the entropy condition (3.32) is fulfilled. The proof of the 

converse is the same. 

5. Systems of Conservation Laws 

In this section we note very briefly the extension of the ideas 

in Sections 2, 3 and 4 to systems discussed in Section 1. First of 

all, we have to assume that the matrix A given by (1.3) and appearing 

in Equation (1.2), 

(5.1) u,. + Av^ = 0, 

has real and distinct eigenvalues a-.<a.2<...<o.- this makes 

equation (5.1) hyperbolic. The eigenvalues a are functions of u, and 

so are the eigenvectors r: 
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(5.2) Ar = ar. 

Genuine noniinearity, see [ 8 ] , is defined to be 

(5 3) a'. • r- * 0 

for j = 1, 2 n; here ' denotes the gradient with respect to u. 

The curves that satisfy 

dx 
(5.4) — = a-

d t } 

are still called characteristics, but they are no longer straight lines in 

general. 

A function w of u is caled a Riemann invariant for the j 

field if i for any solution u of (5.1), w(u) is constant along 

characteristics of the j field. It follows easily that this is the case 

if w', the gradient of w, is a left eigenvector of A: 

(5.5) w'A = aw ' . 

For then multiplying (5.1) by w' gives 

(5.5)' wt + a,w = 0. 

Since eigenvectors can be rescaled, system (5.5) can always be solved 

when n = 2; for n>2 solutions exist only in exceptional cases. 

As in the scalar case, solutions in the classical sense cannot be 

continued beyond a finite time, see [10] and [ 6 ] , so again we have 

to turn to distribution solutions. As before, a piecewise continuous 

solution is a distribution solution if the Rankine-Hugoniot condition 

(2.9) is satisfied for all n components. Again, the class of distribution 

solutions is too broad, and has to be narrowed by imposing some 

criterion of acceptance and rejection. The ones that make physical 

and mathematical sense are the same ones that_ were employed for 

scalar equations: 
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(a) The acceptable solutions are limits of solutions of a family of 

equations obtained by augmenting the flux by a small viscous term, 

and letting the viscosity tend to zero. The simplest way of 

augmenting the flux leads to the parabolic systems 

<5 6» «t + fx = € uxx' 

or more generally 

(5.6)' ufc + fx = cDU x x , 

D some symmetric, positive matrix. We remark that physical viscosity 

and heat conductivity lead to a matrix D that is merely nonnegative, 

and is a function of u. For this reason equation (5.6) is said to 

contain artificial viscosity. 

In [11] , an entropy condition is formulated for limits of 

solutions of (5.6). Two functions T?(U) and V(u) are needed, with 

these properties: 

(i) T? and V satisfy the differential equation 

(5.7) 7?'A = <P\ 

where 7?' and V' denoted gradients with respect to u. 

(ii) 7?(u) is strictly convex 

It follows from (i) that if u ( c ) satisfies (5.6), 7?,£> 

= 7?(ue) and V>'€* = V(u'e') satisfy the vector analogue of (3.23). 

From this relation and (ii) we deduce that the L limit u of u' ' 

satisfies the entropy inequality (3.32). 

For n = 2, equation (5.7) has many convex solutions. For 

n > 2, (5.7) is an overdetermined system which oniy exceptionally has 

a solution; these exceptional cases happily include most of physical 

interest, see Section 6. 
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Theorem 3.1 has no analogy for systems; nor does E. Hopf's 

trick of linearizing (5.6) work for n > 1. Happily Tartar's approach is 

not tied to n = 1, and in fact Ron Di Perna succeeded in extending it 

to significant cases for n = 2, see [1] and [ 2 ] . 

(b) The finite difference approach analogous to (2.19) can be set 

up, as well as other more general ones. These work very well in 

practice—some better than others—but it is very hard to prove 

anything rigorously about their convergence. In [5] Glimm succeeded 

in proving the a.e. convergence of a scheme that is the mixture of a 

discrete scheme due to Godunov and a Monte Carlo-type scheme. 

(c) The notion of a shock can be extended to piecewise continuous 

solutions of hyperbolic systems of conservation laws, as follows. In 

place of condition (4.1) we require that there be an index k such that 

ak <uL> > s > ak_. (uL), 

(5.8) 

a k + 1 <uR) > s > a k (uR) 

Thus, there are n distinct families of shocks, corresponding to k = 1, 

..., n. 

In a k-shock, n - k •<- 1 characteristics impinge from the left 

on the line of discontinuity, and k from the right, altogether n + 1. 

The information carried by these characteristics combined with the 

Rankine-Hugoniot relations (2.9) serve to determine uniquely the 

solution on either side of the curve of discontinuity, and determine the 

curve itself. 

Glimm's method for estimating the total variation of solutions 

sadisfying the shock condition, described in Section 4, has been 

extended in [5] to solutions with small oscillation of pairs of 

conservation laws. 

It was shown in [11] that a piecewise continuous solution that 

satisfies the shock condition also satisfies the entropy condition, at 

least for sufficiently weak shocks. 
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6. Thermodynamics and Gas Dynamics 

There are many thermodynamicai variables; some of them, like 

Density, p 

Temperature, T 

Pressure, p 

Soundspeed, c 

are quantities palpable in everyday experience. Others, such as 

Internal Energy, e 

Entropy, S 

Enthalpy, i 

per unit mass, are theoretical constructs. In a single-phase system at 

thermodynamic equilibrium any three are functionally related, i.e., are 

linked by an equation called equation of state. Any of the variables 

car, be expressed as function of any other two. 

The equations governing the flow of compressible gas are the 

laws of conservation of mass momentum and energy. Let p, m and E 

denote mass, momentum and total energy per unit volume, u the 

velocity of the flow; set 

1 2 
(6.1) m = pu, E = pe + — pu . 

2 

The conservation laws for flows depending on a single space variable 

x are: 

p. + m = 0 *t x 
(6.2) n^ + (um + p)x = 0 

E t + (u(E + p))x = 0. 

It is not hard to show that this system is hyperbolic; the three signal 

velocities are 
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f 3 p - , l / 2 
(6.3) a^ = u - c, a , = u, cu = u + c, c = I — I 

a^ and a~ are genuinely nonlinear in the sense of (5.3). The signal 

velocity a , = u is linearly degenerate; the corresponding character is t ic 

curves are particle paths. 

I t follows that if equations (6.2) are satisfied at every point, 

then 

(6.4) S t + u S x = 0. 

In words: in a smooth flow entropy per unit mass is constant along 

particle paths. 

Combining equation (6.4) with (6.2)j we deduce the conservation 

law 

(6.5) (pS)t + (upS)x = 0 

for entropy per unit volume. It is not hard to show that pS is a 

concave function of p. m and E; since (6.5) is a consequence of (6.1), 

the pair 

n = pS and <P - upS 

must satisfy relation (5.7). Thus, it follows that distribution solutions 

of (6.1) which are the limits of artificially viscous flows (5.6) satisfy 

the entropy inequality (3.32): 

(6.6) ipS)t + (upS)x 2 0. 

We have seen in equation (4.11) that for a piecewise continuous 

solution relation (6.6) means that across each discontinuity 

[(/>S)L - (/>S)R] s - (u/)S)L + (upS)R £ 0 
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Rearranging turns this into 

(6.7) (s - uL)/>LSL - (s - u R )p R S R £ 0. 

According to the Rankine-Hugoniot relation applied to the conservation 

of mass equation (6. IK, 

s(fiL - />R) = (u/>)L - (u/>)R, 

which can be rearranged as below: 

(6.8) (s - UJJPL = ^s ~ UR^R" 

We turn now to the shock relations (5.8); for k = 1 we get 

from (5.8), using (6.3), that 

(6.9^ uL > s, uR > s 

while for k = 3 we get that 

(6.9)g Ur < s. u R < s 

Thus in case k = 1, (6.8) is negative, in case k = 3, (6.8) is positive. 

Setting this into (6.7) we conclude that for k = 1 

(6 10)j S L < SR, 

while for k = 3. 

(6.10)3
 SL > SR' 

It follows from (6.9), that in case k = 1, particles cross the shock 

from left to right, while (6.9U says that in case k = 3 particles cross 

the shock from right to left. So both (6.10)-,. and (6.10)g can be 

summarized in the single statement 

35 



Theorem 6.1: When gas crosses a shock, its entropy increases. 

We shall now derive an integral form of the increase of 

entropy. We assume that the gas is in the same s t a t e and that it 

t ravels at the same velocity at x = « as at x = -<*>. We normalize 

entropy so that its value = 0 at x = * » . Then integrating (6.6) 

with respect to x gives 

(6.11) — \ pS dx £ 0; 
d t J 

in words. 

Theorem 6.2: The total amount of entropy in the flow field is an 

increasing function of time. 

We compare now this result with Glimm's result in Section 4, 

according to which the total variation of a solution tends to decrease 

with time. This decrease of total variation can be thought of as a 

loss of detail, or loss of information. Ever since Maxwell's demon, 

Boltzmann's H theorem, Smoluchowsky's study of fluctuations, Szilard's 

thesis and Shannon's work on information and its transmission there 

have been many a t tempts to link increase of entropy to decrease of 

information about the gas. We have shown here that shock waves do 

both: increase entropy and decrease information, although not on the 

molecular ievei but pertaining to organized motion in the whole 

flow-field. 

We turn now to another manifestation of the second law of 

thermodynamics. 

Carnot 's Theorem: Consider an engine that ext rac ts heat energy in 

the amount Q- from a hot reservoir whose temperature is T. , and 

dumps Q amount of heat energy into a cold reservoir whose 

temperature is T ; the difference is turned into mechanical energy 

W = Qh - Q c . 
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The engine operates cyclically, i.e., everything is in the same state at 

the end of the cycle as at the beginning. 

Assertion: The efficiency of such an engine in converting heat energy 

into mechanical energy cannot exceed 

T . - T h c 

T h 

Proof: During the absorption of heat energy in the amount of Q. 

from a reserve 

by the amount 

from a reservoir at temperature T , the engine's entropy is increased 

Q h 
(6.12) S = ~ 

Since at the end of the cycle the engine returns to its original state, 

this amount of entropy must be returned to the outside when Q 

amount of heat is released to a reservoir at temperature T . 

Assuming that no further entropy is generated during the cycle, 

(6.12)' S = — 
c 

The amount of mechanical energy W extracted is the difference of the 

heat energy absorbed and released: 

W = Q. - Qc. 

Using (6.12) and (6.12)' we get the following formula for the efficiency 

W/Q. : 

., 0 , - 0 ST. - S T T . - T 
W h e h e h e (6.13) = 
Q, Q, ST. T, 

h h n h 
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This proves the theorem. Note that if there is entropy production 

during the cycle, e.g., by shocks produced by the operation of the 

engine, then an additional amount S' of entropy is produced and has to 

be gotten rid of. In this case, relation (6.12)' has to be modified to 

°e 
(6.12)" S + S' = ~ . 

c 

Clearly, this lowers the efficiency to 

W • T h - T c < i + S ' / S ) 

Q h T h 

Clearly, for sake of efficiency one must keep the entropy production 

and, thus, the strength of shock waves formed during the operation of 

the engine to a minimum. 

What does Carnot's theorem imply for gas dynamics? Imagine 

an infinite tube with unit cross section, filled from a cold reservoir, 

except for a finite section (-L,L) which is filled from a hot reservoir. 

The initial data are 

uQ(x) = 0 

(6.141 e^fxi 
!

e h for |x|<L 

e for Ix| > L 

{T h for Ix | <L 

T for Ix|>L 

The added heat energy is 

2L/)(eh - ec). 

According to Carnot's theorem, the amount that may be converted into 

mechanical energy does not exceed 
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T . - T h c 
2 L ' h e h ~ ' 

Therefore, kinetic energy, which is mechanical energy, can at no 

future time exceed this amount. 

This argument can be extended to variable initial data: 

uQ(x) = 0 for I x I >L 

f> e f o r | x | < 
.14)' e0(x) I 

u L = e
c
 f o r I x | > 

f£ T f o r | x | <1 
TQ(x) \ 

u |_= T f o r | > L . 

We can think of constructing such data by filling a finite section of 

the tube with gas taker, from a collection of reservoirs and setting it 

in motion. The amount of heat energy that can be converted to 

mechanical energy- is 

T 0 ( x ) - T c 

(6.15) J 0o(x)eo(x) T ( x ) dx 
0 

Kinetic energy at any time t>0 cannot exceed this amount plus the 

kinetic energy initially imparted to the system: 

Thec-rem 6.3: Let u. p, e. T denote the velocity, density, internal 

energy and temperature of a gas moving in a tube, whose initial data 

satisfy the restrictions (6.14)'. Then for ail t>0 

T - T 

(6.16) - j ou2dx $ - J pQu2
0dx + J p0eQ-^—dx. 

This inequality holds in any number of dimensions; it seems 

desirable to obtain a proof of it by PDE methods. 
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We conclude by recounting a curious result about strong shocks 

tha t seem to echo a theme in kinetic theory. The Rankine-Hugoniot 

relations (2.9) for the conservation laws of momentum and energy, see 

(6.1), are 

s [ m ] = [um+p] , 

(6.17) 

s [ E ] = [u(E+p)] . 

Assume that a strong shock is impinging on a gas at rest; we denote 

the quantities behind the shock by capital le t te rs : E, M, P, in the 

front by lower case le t ters : e, m, p; note tha t u = m = 0 . We 

rewrite (6.17) as 

sM = UM+P-p 

s(E-e) = UE+UP 

We solve the first equation for s and set it into the second: 

f p _ p l U+ (E-e) = UE+UP. 

from which 

P - p 
(E-e) = U(P+e) 

M 

M 
Multiplying by — we get 

P 

,6.18, (, - £ ] { : - 1] E . Ml' (l • I ] 

For a strong shock, p /P , e /E and e /P are small; so we get 

(6.18)' E = MU (1+e), 
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€ small. Thus, the total energy E behind the shock is approximately 

twice the kinetic energy —MU. In words: 
2 

Theorem 6.4: When a strong shock impinges on a gas at rest, the 

energy imparted to the gas is equipartitioned; that is, approximately 

half of it goes into kinetic, the other half into internal energy. 

Note that it follows from (6.18), (6.18)' that the internal energy 

is always a little greater than the kinetic. 

One would like to know what this kind of equipartition of 

energy has to do with the equipartitioning that is the hallmark of 

thermodynamic equilibrium. 
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