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Abstract

In this paper we discuss the basis of a
design for real time special nuclear material
{SNM) 1oss detectors., The design utilizes
process measurements and signal processing
techniques to produce a timely estimate of
material loss, A state estimator is employed
as the primary signal processing algorithm.
Material loss is fndicated by changes in the
states or process innovations (residuals},
The design philosophy is discussed in the
context of these changes.

I. Introduction

The need to account for and safeguard
special nuclear materials (SNM) in the
fabrication and veprocessing of nuclear fuels
is apparent, Most techniques currently
emplioyed in abtaining the physical inventory
of these SNM are off-line. If timely
accounting is to be used to detect material
loss, then more rapid and accurate inventory
techniques are required. Some recent work in
this area has proposed the use of on-line
techniques which appear promising.[1,2,3]
Part of our research program for the NRC has
been to investigate the capability of on-line
material estimator-detectors to perform
prescribed inventory and loss detection
tasks.,

In this paper we are primarily concerned
with the structural analysis of a process
monitor as a device to detect material loss,
We define a process monitor to be a device
which {1} maEes measurements on physical
parameters, (2) estimates process states
{material accounting), and {3) makes a
decision with regard to material loss
(diversion detection). We evaluated an
optimal estimator-detector scheme, henceforth
termed diversion detector, analogous to
devices employed in current aerospace system
fatlure detection systems.[4] The emphasis
of this paper is on the signal processing
prior to actual detaction (see Figure 1}. We
discuss in Section I1 a particular philosophy
of diversion detection - one which requires
minimal modeling of diversion acts. The
theoretical analysis of the design philosophy
is discussed in Section III. Analysis of the
design algorithms along with the corresponding

performance evaluation fs discussed in
Seition 1V for a simulated reprocessing plant
unit,

I1. DOiversion Detection Concepts

In this section we present (concentualiy)
the design of on-1ine, real-time diversion
detectors, In the next section we discuss the
theoretical justification for these concepts.
Our basic objective is to design a robust
device capable of providing accurate estimates
of SNM in process and timely detection of
material losses, By robust we mean a device
that can detect diversion in a wide range of
scenarios,

Suppose that a process has measurements
{zkl contaminated with noise and s given by

zk = hixg) + vy {1

where xy, zk are the n-state and p-measurement
vectors; h(+) 1s » p-vector function and v is
a zero mean Gaussian vector with covariance Ry
representing the measurement uncertainties,

The state xg 1s related to the mass of
SNM (e.g., concentration) {n process. Changes
in the state from normal or expected levels
can be used to infer abnormal process condi-
tions. These conditions can be interpreted
either as an upset, which is important for
control purposes, or as a potential theft of
material.

Estimates of the state can be accom-
plished in many different ways depending on
the accuracy and precision regquired. A state
estimator is a computer algorithm which may
Tncorparate: (1) knowledge of the chemical
process phenomonology; (i1} knowledge of the
measurement system; (1ii) knowledge of
measurement uncertainties in the form of
mathematical models to produce an estimate of
the quantity of SNM in process,

Estimates are calculated in a variety of
wiys. For exemple, there are process model-
based estimators (Kalman £11ters[S]),
statistical model-based estimators
(8ox-Jenkins filters[6), statistic-based
estimators (Covariance f11tersl7]). or even
optimization-based estimators (Gradient
filters[8)), In any case, most state
estimators can be placed in a recursive form
with the various subtleties emerging in the
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calculation of the current estimate (%014)«
The standard technique employed is based on
updating the current estimate as » new piece
of measurement data becomes available, The
state estimates gensrally take the recurrence
form

fnew = fo1d * Kitnew (2)
where
tnew = 2 - 2010 = 2 - h(ka1a) 3

Here we see that the new state estimate
{s obtained by correcting the old estimate by
a K-weighted amount. The term ipe, is the
new information or 1nnovntions[€3, j.e., it is
the difference between the actual measurement
and the predicted measurement (2414} based on
our old state estimate. The computation of
the weaight K depends on the error criterion
used {e.g,, mean-squared, absolute, ete,)[7]

Equations {2) and (3) are the quantities
of prime concern from a safequards viewpoint.
The corrected state (ﬁneu) is an estimate of
the amount of SNM in the unit process under
investigation (material accounting). Under
normal conditions, an estimator is tuned such
that the innovations sequence is s zero mean,
white {(independent) process and Xpey 15 an
accurate estimate of SN in process. No
attempt is made to model adversary diversion
scenarios because the effect of a diversion
will result in a model mismatch. ‘his
mismatch is reflected by varistion: in the
innovations statistics, i.e., they become
biased and correlated. Thus, a staie
estimator can provide us with two vuriables of
interest - the state estimate for use in
materia) account1n§ and detection, and the
Tnnovations For Indicating the degree of
process and measurement models mismatch., The
latter can be used in an innovations-based
detection operation,

ate-based detectors rely primarily on

the tracking capability of the filter while
innovations-based detectors rely on madel
mismatching information provided in the
statistics of the innovation sequence. The
inverse relationships between state and
innovations responses to a material loss (Ax)
{i.e., x+x + &x) for an estimator tuned to
different bandwidths or time constants, t, s
deiicted in Figure 2. These features can be
exploited for safeguards purposes, Without
using the innovations information, a
state-based estimator must trade off
estimation tracking accuracy with response
time. Figure 2s shows that low variance
estimates (e.g., Ty or t2) have an inherent
lag time before they begin to track a diver-
sili. By using the innovations to detect
diversion, an estimator can be tuned to yleld
improved steady state estimates (norma)
operation) for material accounting purposes.
Note the drastic change in the innovations
sequence in Figure 2b for 1y and for a large
Ax change. In this case the estimator is
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insensitive to Ax changes and therefore the
innovations indicate the mismatch or lack of
tracking,

Material diversion detection {s based on
simple hypothesiy testing techniques which
result in a Vikelihood ratio test for a
sufficient statistic. A simple thrashold
dctectoE which senses changes in the estimator
output % relative to a reference value can be
implemented using the priori knowledge of the
estimator error covariance while fnnovations-
based detectors require further computation.
In the next section we quantify these
concepts.

111. _Diversion Detection Theory

In this section we develop the theoreti-
ca) background necessary to quantify the
concepts of the previous section. We use a
process model-based estimator--~the Kalman
estimator{5]as the primary signal processor
in the diversion detector design, The
robustness of the Kalmsn estimator led us to
this choice.

Assume that & process upset or diversion
of SNM is represented by a deviation of the
process state (see Figure 3) from the normal
process trajectory, i.e.,

xd:2 5 < axt (4)
where

x0 {s the process state trajectory during
upset or diversion.

x is the process state trajectory during
norma) operation,

Ax is the deviation of the process state
from the normal trajectory.

We examine the effect'of the deviation ax
on the state estimator subsequently, but first
recall that from the Vinearity property(5] of
conditional expectations we obtain

k- & (5)

Therefore we can d 0 the state estimate
kd into two parts: the estimate during normal
process operation and the deviation from
normal during upset or diversion, Let us

examine the state estimator R9 more closely. .

v
d _ad d
Hew " %o1d * Kenew
() ,
d .49 4
ew " 2 = MXgyg

(Note that a process model is used to operate
RG_DES])'

iTi-e subscripts are suppressed throughout;

therefore x+xg.

ey



Substituting (5) into (6) and rearranging we
see that

d
kneu - Qnew . Apo1d + Kd‘he ) "
Normal Deviation

where
A
Atnew = A2 = hixgld

The performance of the state estimator is
indicated by two quantities: estimation error
(%= xqape = DT and dnnovations, The
tracking error indicates how accurately the
process state is estimated, while the
{nnovations indicate the model adequacy, For
the de:omposed estimator of (7] the estimation
error 1%

e X . & 8
\ , (8)
Norma)  Deviation
and the innovations are
4 e . b (9)
Cnew new Cnew
Normal  Deviation

This decomposition will help us analyze the
estimator performance for the three cases
presented in Figure 2:

(1)  t3-Estimator-- Trackstt State puring
Upset or DIversion
(41} T1-Estimator-- Does Not Track the State

During Upset or Diversion
(111) 1p-Estimator-- Partially Tracks the
State During Upset or Diversion
To quantify how well the state estimator
of (7) tracks, we examine the statistics of
the estimation error and innovations for each
case.
Case (1): rt3-Estimator
The 13-Estimator tracks the diversion
accurately within the diversion window (&9 =
~d o
- ax; % =% - BX; ¢9 = £ - Ac). Under this
condition X0, 8 are zero mean with respective
covariances ¥ and Rg 5 .

Case (if): tp-Estimator
The T1-Estimator is not robust enough to track

deviations from the normal state trajectory.

F——

The estimation error cannot be calculated in
practice unless the true trajectory xtpyp
is known,

118y tracking we mean the estimator accurately
estimates the state within a reasonable time
period caTled the diversion window.
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{xd = & 79 « %; cd = ¢). The estimation
error for this case is given by

FLE P {10)
The mean tracking error is
EX* = EX - EAx = -EAx = -BX
and
Cov(x*) » E(X « &)} (X - ax)7 « X &T =
H-mET

ghe innovations sequence for this case is given
i

‘;eu " Gy - 82 o
with the statistics

Eerqy ® ECpqy - EO2 * -BE
and

C°V(°:ew) . E(l:new - Az)(‘new - Az)T

+t
“BE R -EE

Finally, we consider the case of partial
tracking where we assume that

xBi= x « 0ax + (8 - 1)Ax
where 8RPXN and 6 » diagonat (64).

Case (111): To<Estimator

The Tp-Estimator is sensitive enough to
respond to deviations, but not robust enough to
accurately track (29 = % +(6 - 1)Ax;

X =% 4 (0 - 1)A%; ¢ = ¢ - acl®-1)), The
estimation error for this case 1s
(-1}

(12)

%8 = X ¢ A BT (13)
where

A% o - 1yax - &
The mean tracking error {s given by

X0 = X + (6 - 1) ERR(O-) . ggax » -0E

¥ ¥ contains cross terms since x and Ax are
correlated,

H'The innovations are no longer white since
they are time correlated due to the x and
Ax cross terms.



and the
Cov(R®) = E(X - &X(O-1))(x - &X(6-I))T .
& TTeT w: BR(e-1) - 6% TToT

Similarly, the innovations are given by

‘v?eu * Sew * A't(\:;l) - &2® 04)
where

act®-1) = Hto - 1) BXp1g

828:= HoAx
The statistics are

] 8-1 (] )
EChew * Efnew * EA"(new) - Eaz = -tz

and

Cov(c:“) ~ Elepgy * A'tsg;”)(tnew + A%:;I))T

P el

We summarize these results in Table I.

Anpther approach to this problem exists
by modeling the diversion of SNM as a change
in model parameters. In this case, one can
show that the innovations sequence also
becomes non-zero mean and correlated. In
either case, we see that parameter changes and
tracking inaccuracies both result in model
mismatch indicated by statistical changes in
the innovations. In the next section we
explore these concepts further by considering
a simuiuted diversion of SNM from a plutonium
nitrate storage tank.

1V, An Application

In this section we analyze the
performance of the signal processing algorithm
on noisy data simulating typical operation of
a plutonium nitrate storage tank, We consider
the three cases of estimator performance
discussed in the previous section,

A linear, dynamic and stochastic model
was developed for Pu{NO3)s solution which was
assumed to consist of three molar HNO3, Pu and
H20. The dynamics of the solution arise due to
radiolysis effects, through evaporation of ¥20
and HNO3 and by adversary diversion activi.
ties.[149] See Figure 4. Uncertainties tn
these effects are represented as process noise.
The process model relating solution mass-Mg(t)
and density -p{t) while neglecting the secondary
effects of radfolysis is given by

'.‘s"ln""l
p=w
where

(15)

4

Ay is the Ha0, HNO3 evaporation
coefficient,

and
w ~ N(0,Q)

The measurement systew used in the tank
is a standard ajr bubbler instrument which
measures differential pressures proportionat
to density and height. The measurement mode)
can)be developed from the pressure drops {4Py,
aPg) as

-{a/8 M k
- /8 ~la/Blg| M)} [ (k) (6

0 3'H Py Vz( k)
where

is the gravity constant (m/sec?);

is the tank cross-sectional area (mz);

is the tank heel (m);

is the distance between density bubbler

tubes (m);

Vi is a random vector modeling instrument
uncertainty (N/m?) and is distributed

N(ole);

A linear Kaiman filter algorithm[5] was
used to give least-squares estimates of the
process mode! variables based on linear
combinations of the measurement data, Even
though Mc(t) is not measured, it can be
reconstructed from the measuroments by the
estimator.

Simulated data are used to illustrate the
performance of the filter in estimating Mg(t)
and p(t). The estimator input was simulated
(corresponding to 8z = 300 Kg/msec?) measure-
wents (see Table II1 for parameters) of density
p(t) with a diversion of 10 kg of solution
mass. In this example the storage tank
capacity was 170 kg of Pu or 983 kg of
Pu{NO3)a. Large diversion signal levels are
used to illustrate the concepts.

Tp BPa

We consider the three cases and examine
the resulting estimation error and innovations,

Case (i}: Tt3-Estimator

In this case we obtain the estimate d
of (7). Recall that an estimator is con-
sidered tracking when 95% of the error samples
(Xd) reside within the 20 confidence Vimits 4n
the diversion window. As ghown in Figure 5, the
state estimate tracks the diversion, the
estimation error is within the 20 1imits
(Figure 6), and the innovations are indeed 2ero
mean and white? (Figure 7). The E%y = 0,
Eey ~ 0 and the covariances match those
predicted by the estimator,

IThe statistics of the innovations were

calculated separately and & whiteness test
performed; however, this property can be seen
from the figure also in the example.

el BN, ..



Case (i1): wy-Estimator

The ustimator does not respond within the
diversion window, In this case the error is
4x and a1l samples after the start of
diversion 1ie outside the confidence Yimits,
The statistics EXy = «BX) » =10 kg, Ecy » 37y
~-300 kg/msecZ, and the innovations were

no longer white, This case was not simulated
but would result in plots similar to Ty of
Figure 2,

Case {ii1}: rvo-Estimator

The estimator partially responds to the
diversion, The estimator underestimates the
diversion by ~ § kg as shown in Figure 8 and
the correiﬁpnd1ng estimation error in Figure 9
(EXy = <A<y w =7,5 kg). The innovations are
shown in Figure 10. We see that they are
biased {Ecy = -3Z1® = -115 kg/msec2) and
correlated (from whiteness test). We
summarize these results in Table III, The
results sppear quite reasonable and correspond
to those predicted by the theory, Although we
did not discuss the design of the decision
algorithm (refer to Figure 1%, previous work
has reported these results(3]) for given
detection algorithm. The signal processing
algorithm is the crucial component of a
diversion detector because it must improve the
signal-to-noise ratfo and thereby increase the
detection sensitivity.

This analysis quantifies the tradeoff
between estimation accuracy and response time
to changes in the process variables, In any
“measurement® scheme there {s usually this
tradeoff. This completes the application to a
plutonium nitrate storage tank.

V. Summar

This paper has analyzed the performance
of a model-based signal processing algorithm
as an integral component of diversion detector
design. We developed the analysis
conceptually, theoretically, and through an
example,

The concepts of model-based estimators
imply that either the state or {nnovation
signals provide different diversion
information which can be used for detection
purposes, The astimtor was examined in three
cases: () tr <in, (1) not tracking; and
(111) partially tracking. Theory shows that
these cases can be reasonably quantified and
an application to a plutonium nitrate storage
tank was shown,
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