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MAXIMUh LIKELIHOOD ESTIMATION FOR 
CYTOGENETIC DOSE-RESPONSE CURVES 

E. L. Frome and R. J. DuFrain 

ABSTRACT 

In vitro dose-response curves are used to describe the relation 

between the yield of dicentric chromosome aberrations and radiation 

doso for human lymphocytes. The dicentric yields follow the Poisson 

distribution, and the expected yield depends on both the magnitude and 

the temporal distribution of the dose for low LET radiation. A gener­

al dose-response model that describes this relation has been obtained 

by Kellerer and Rossi using the theory of dual radiation action. The 

yield of elementary lesions is <[Yd+g(t,T)d2], where t is the time and 

d is dose. The coefficient of the d 2 term is determined by the recov­

ery function and the temporal mode of irradiation. Two special cases 

of practical interest are split-dose and continuous exposure experi­

ments, and the resulting models are intrinsically nonlinear in the 

parameters. A general purpose maximum likelihood estimation procedure 

is described and illustrated with numerical examples from both experi­

mental designs. Poisson regression analysis is used for estimation, 

hypothesis testing, and regression diagnostics. Results are discussed 

in the context of exposure assessment procedures for both acute and 

chronic human radiation exposure. 
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1. INTRODUCTION 

In recent years there has been considerable interest in evalu­

ating the influence of the magnitude and temporal distribution of low 

linear energy transfer (LET) radiation on biological systems. An 

extensive review of studies on a wide spectrum of species and experi­

mental systems is given in NCRP Report No. 64—Influence of Dose and 

i ts Distribution in Time on Dose-Response Relationships for Low-LET 

Radiations (1980). The linear-quadratic (LQ) model 

A(d) = ad + pd 2 (1.1) 

is used extensively throughout NCRP64 to describe the effect of ab­
sorbed dose d on a specific biologic endooint. The LQ model and its 
more general form (1.2) are also discussed in the latest report of the 
Committee on the Biological Effects of Ionizing Rjdiations of the 
National Academy of Science (BEIR III, 1980 Chap. 2). It is pointed 
out that the LQ model is a convenient empirical model for complicated 
endpoints in complex systems. For "simple" cellular systems the LQ 
model has been extensively used in the evaluation of radiobiologic 
data. In the discussion that follows we shall consider studies which 
focus on specific lesions 1n the chromosomes of somatic cells as the 
end point of interest. Most of the early research on the quantitative 
aspects of the effects of ionizing radiation on specific chromosome 
aberrations utilized plant cells (see Savage, 1975 for a recent re­
view). Starting 1n the 1960's and continuing on to the present this 
line of research has shifted more to the use of animal cells. Most 
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recent work In human cytogentlc dosimetry util izes cultured peripheral 

blood lymphocytes to quantitatively assess the effect of low LET 

radiation on chromosome damage. This approach provides an effective 

method for the evaluation of one type of radiation damage in man. 

Numerous studies have demonstrated that chromosome alterations Induced 

In lymphocytes after In vitro exposure to low LET radiation are both 

qualitatively and quantitatively similar to alterations observed after 

in vivo exposure. Thus i t is assumed that data obtained with carefully 

controlled in vitro irradiation of human lymphocytes will accurately 

reflect the effect of dose magnitude and its temporal distribution on 

exposed persons. This provides a basis for the indirect evaluation cf 

the effect of both acute and chronic human radiation exposure. 

Cytogenetic methods are currently used to provide dosimetry estimates 

for radiation accident management (see DuFrain et a l , 1980, Frome and 

DuFrain, 1978), and i t has been proposed that they be used for the 

indirect assessment of the long term biologic effects of chronic 

exposure to radiation and other clastogens in human population—see 

Evans et al (1979), Savage, (1979), Holden, (1982). 

In the next section we will describe a maximum likelihood estima­

tion procedure that can be used to estimate the parameters from an in 

vitro experiment. We assume that (1) the dependent variable y (the 

number of chromosome aberrations) follows the Poisson distribution, 

and (i1) that a regression function that describes the relation be­

tween y and the radiation exposure 1s specified. The role of the 

Poisson distribution in describing the dispersion of dicentric chro­

mosome aberrations has been discussed by Edwards, Lloyd, and Purrott 
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(1979) and Merkle (1981). The index of dispersion can be used as a 

monitoring test for Poisson variation—see Fisher (1950) and Frome 

(1982)—and Frome, Kutner, and Beauchamp (1973) have discussed testing 

for heterogenity of variance and "lack of f i t " in a regression con­

text. Two examples are presented to i l lustrate both linear and non­

linear analysis using both empirically and theoretically derived 

models. In the f i rs t example we present results that were obtained 

using a "linear models" approach to evaluate the effect of dose and 

dose-rate on aberration yield. This in i t ia l analysis is straight­

forward and wa.. designed to test the hypothesis that the coefficient 

of the d 2 term in (1) "depends" on dose-rate. Although this in i t ia l 

analysis is technically correct we were led to reject this approach as 

being both inappropriate and misleading on biologic grounds. We then 

propose a more appropriate analysis that util izes a nonlinear model 

that is derived from the theory of dual radiation action (DRA) de­

scribed by Kellerer and Rossi (1972). To emphasize the importance of 

the DRA theory a second example is presented using data obtained from 

a dose-fractionation procedure vhich leads to an appropriate dose 

response model under the DRA theory. 

The DRA theory proposed by Kellerer and Rossi (1972) utilizes 

concepts from microdosimetry to provide a quantitative characteri­

zation of the effect of various temporal distributions of absorbed 

dose on the production of chromosome aberrations (CAs). It 1s postu­

lated that elementary lesions are produced at a rate that 1s propor­

tional to the square of the local energy concentration produced by 

charged particles 1n certain "critical sites". The form of the 
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dose-effect model that is appropriate here (see Kellerer and Rossi, 

1972, Section 5.4) is 

x(d,t) = *[Yd+g(t,T)d2], (1.2) 

where d denotes dose, t is time, and x(d,t) is the yield of elementary 

lesions. The parameter K is a biophysical proportionality constant 

that reflects the target sensitivity for the biologic system (lympho­

cyte). The parameter y depends on the radiation quality and can be 

related to the specific energy produced in a critical site by a single 

ionization. The linear term in (1.2) represents the effect due to 

intratrack interactions and the quadratic term represents the effect 

of intertrack interaction. The coefficient of the d 2 terra is referred 

to as the 'reduction factor', and assuming an exponential recovery 

process 
* • 

g(t,T) = / e _ s / T h(s)ds , 
0 

whert h(t) describes the distribution of the time intervals t between 

dose increments for a given temporal mode of irradiation. For contin­

uous i rradiation of duration t one obtains (see Example 1) 

g(t,x) * i l - I x i d - e - t / t ) . (1.3) 
* t 2 

For a dose d given in two fractions separated by time t the reduction 

factor is (see Example 2) 

g(t,t) * l - 2 f ( l - f ) ( l - e " t / T ) , (1.4) 

where f * di/d, and d\ 1s the first dose. Substitution of (1.3) and 

(1.4) into (1.2) gives the appropriate dose-response curve for the 
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continuous exposure and split dose experiments, respectively. The 
resulting models are intrinsically nonlinear in parameters and the 
appropriate statistical analysis is based on the general maximum like­
lihood estimation procedure described in the next section. Note that 
as t-K) in both (1.3) and (1.4) g(t,x)+l, and x(d)=K[Yd+d2] which is 
equivalent to the LQ model (1.1), for the limiting acute exposure sit­
uation. The parameterization in (1.1) has traditionally been used as 
a matter of computational convenience, and consequently the estimates 
of o and 0 can be viewed as 'computational artifacts'. Note that for 
the continuous exposure, split dose experiments, *nd acute exposure 
experiments, the parameters of interest are the same, i.e. K, Y, and 
T. In the acute exposure experiments one assumes that t « t so that 
g(t,r)=l for all values of d, and T cannot be estimated. 

2. MAXIMUM LIKELIHOOD ESTIMATION 

Let y^ denote the number of dicentric cAs observed at thr> ith 
set of experimental conditions, i.e. dose d. and time t. for 
i = i, ..., n. The y^'s are assumed to be independent and to follow 
the Poisson distribution with expectation 

where c, denotes the total number of cells scored (in units of 100 
cells) and A(X,,6) denotes the average yield of CAs per hundred cells 
scored. The regression function A(X,e) describes the relation between 
the expected CA yield, the 1th set of predictor variables, 



7 

X- = ( x - , , x-p x ^ ) and the p-dimensional vector of unknown 

parameters 8. The kernel of the log likelihood function of 0 is 

L(e) = ? [y. log [ C . X ( X . , B ) ] - c . x ( x . , s ) } (2.1) 
i = l i i i - i l -

The maximum likelihood (ML) estimate $ is a root of the likelihood 

equations 

3L(f) n 
£ 

i= l 

aXvX^B) 

3C1 X(X.,B) " C i 
. k = 1 p . (2.2) 

Since these equations are generally nonlinear with respect to the 

unknown parameters, the method of scoring is used to develop an itera­

tive procedure to find a root of (2.2) . A convenient computational 

approach is obtained by us^ng iteratively reweighted least squares 

(IPLS). Let y. = y^/c, denote the average CA yield per 100 cells 

scored, and consider the following weighted sum or squares 

12 S(B) = ^ w i \yi - \{XV»)]2 , (2.3) 

where w. denotes a weight that is inversely proportional to the vari­

ance of y^. Since A(X,p) is , in general, nonlinear in the parameters 

an iterative procedure is required to obtain an estimate of e. On 

iteration k+1 we replace A(X. ,g) with the linear terms in a Taylor 

series expansion about the current estimate 3 

X(X1 >B)«X(X1,g! t) + P^6k , (2-4) 

where P, denotes the ith row of the nxp matrix of partial derivatives 
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k 
p.. = 3X(X.,e)/30. evaluated at the current estimate 3 , «»rd 

£ = ( « i . . . . , f i p ) ' . Using (2.4) in (2.3) with the appropriate 'Poisson 

k 
weights', w. = c /X(X. ,B ) , and the least squares principle we obtain 

k 
the 'correction vector' 6 by solving following system of p linear 

equations: . . . 
A ( f ) f = G(§K) , (2.5) 

where A(p k) = P(Bk) W P(pk) is the information matrix, G(p k) is (2.2) 

k 
evaluated at the current estimate 6 , and W=diag(w.). This leads to 

k+i if k the revised estimate 0 = fir + 6 , and the process continues until 

some convergence criteria are satisfied. 

The ML estimate of 0, the estimated parameter covariance matrix, 

and the deviance for each model are obtained using this IRLS algorithm 

--see F'ome, Kutner, and Beauchamp (1973) for a detailed discussion of 

Poisscn regression analysis and for examples of intrinsically non­

linear models see Frome and Beauchamp (1968) and Frome (1983). This 

cen be done using any statistical package that supports IRLS and the 

statistical package GLIM (Baker and Nelder, 1978) is particularly 

suited for this analysis for generalized linear models. A further 

advantage of the IRLS approach is that the basic 'building blocks' for 

regression diagnostics are easily obtained using the IRLS approach. 

The basic building blocks for Poisson regression diagnostics (see 

Frome, 1983) are some type of standardized residual and the diagonal 

terms h. from the matrix 

H = W l /2P(P'WP) P'W 1 / 2 , (2.6) 

where all quantities that depend on 0 are evaluated at the ML estimate 
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B. For generalized linear models X(X-fl) = g(rii), where ->. = X-B, and 

we obtain 

H * V1/2X(X'VX) X'V 1 / 2 . 

where V is diagonal with v^ = cAtq,/&\^)2/$.. For linear models 

this reduces to 

H = «1/2X(X'WX)~ X'w 1 / 2 , 

where the w,'s are the Poisson weights c./\{X.,&). Note that E*^- P 

ani that large values of h. (say greater than 2p/n) indicate extreme 

points in the model space that may have a substantial influence on the 

f i t ted model. I f u. denotes a standardized residual for the i th ob­

servation, then the variance of u. is approximately 1-h., and adjusted 

residuals are given by u.//(1-h-)(see Haberman, Chap. 4, 1974). There 

are several possible choices for standard zed residuals for Poisson 

data. The most obvious is u. = {y±-v*)Jv*, where ^ = CjX(X.,$), 

but this 'chi square type1 residual behaves poorly when y. is small. 

An alternative to this is the Freeman-Tukey (FT) residual 

u.=/y.+ /(y^+1) - /(4p.+l)(Freeman and Tukey, 1950). The FT residu­

als appear to be the best choice for routine use ir. regression diag­

nostics. Velleman and Hoaglin (Chap. 9, 1981) have noted that when 

some of the w- are small (less than 1) an adjusted degrees of freedom 

can be obtained by subtracting z ( l - p . ) 2 (where the sum 1s over values 

of 1 where w,<l) *rom the usual degrses of freedom n-p for the 'lack 



10 

of f i t ' s tat is t ic Eu?. A third choice that would be preferred on 

theoretical grounds is the 'signed leviance1 d. as defined in (2.7). 

The signed deviance and various approaches to using the standardized 

residuals, and h.'s have been given by Pregibon (1981) in the context 

of logistic models for binomially distributed data. 

In order to construct an ANOVA-like table for Poisson regression 

models we use the deviance 3(y,u) = I d ? as a measure of residual 

variation, where 

dj = sgn(y i -y 1 ) {2[y 1 log(y i / i . ) - ( y , - ^ ) ] } 1 7 2 , (2.7) 

and |L.- C. A(X>,§). This measure of residual variation was proposed. 

by Nelder and Wedderburn (1972) and is minus twice the ratio of the 

log likelihood function of the model defined by X(X,, 0) relative to 

the 'complete' model in which there is one parameter for each value of 

i . In the anal/sis that follows we f i t a sequence of models and use 

the deviance as a measure of unexplained variation to construct an 

ANOVA-like table. The simplest (or minimal) model of interest in this 

situation is given by A(X-,e) = 3x,, where x. is the radiation dose. 

The maximum likelihood estimate of e is f$ = ^. -y j /^x.c. , and the devi­

ance for the minimal model is D[y,Jj(l)] = -2 2̂  y^ lo j (y^/c^ §x..). 

Following the approach described by Efron (1978) for the binomial 

distribution, we f i t an increasing sequence of models for the 

explanatory vector u, say y H k , H cH.c... . The f i t ted vector for 
A 

the kth model, say u(k), is that value of p H. that minimizes the 
deviance, i.e. the ML estimate restricted to H. . Note that the 



11 

decrease in the deviance that is obtained when a less restrictive 
model is considered is a test statistic for the more restrictive 
hypothesis. The procedure is illustrated in the next section for a 
sequence of models that are linear in the parameters, 
i.e. AfX^fS) = X|e . 

3. EXAMPLES 
Example 3.1.1 Continuous Exposure Experiment 

The data in Table 1 (Purrott and Peeder, 1976) were obtained from 
an experiment (using gamma radiation from a caesium-137 source) that 
was designed to investigate the effect of dost rate on GA yield. 
According to theoretical predictions from microdosimetry, a quadratic 
dose-response relation is predicted for low LEV radiation, i.e. dicen­
tric frequency is equal to ad + 0d 2, where d is radiation dose. From 
a biological point of view the two coefficients are thought of as cor­
responding to two different physical events. The linear term de­
scribes the induction of dicentrics by a single ionization or track, 
and the dose squared term which describes the induction of dicentrics 
by two different ionizations or tracks. Thus, the two break asymmetic 
exchange (dicentric) frequency is believed to be the result of these 
two phenomena, an<\ is described by a second degree polynomial in 
dose. Th»> validity of the quadratic model is predicated on the 
assumption that the absorbed dose is delivered to a 'critical site' 
in a short period of time, i.e. at a high dose rate. 

The purpose of the study by Purrott and Reeder was to test the 
hypothesis that the effect of decreasing the dose-rate would be to 
decrease the contribution of the dose-squared term, without changing 
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Table 1 

Dicentric CA Yields For CONTINUOUS Exposure Experiment 

Dose (Grays) 

Dose Rate 
G/hr 

1.0 2.5 5.0 
Dose Rate 
G/hr c y c y c y 

h 1 H 
.1 4.78 25 3.28 52 2.10 100 
.25 19.07 102 1.85 51 1.38 113 
.5 22.58 149 3.42 100 1.60 144 
1.0 23.29 160 3.10 100 1.20 106 
1.5 12.38 75 2.78 107 .9C 111 
2.0 14.91 100 2.59 107 1.00 132 
2.5 15.18 99 2.49 102 3.13 419 
3.0 7.64 50 2.98 110 1.82 225 
4.0 13.G7 100 2.43 107 1.44 206 

NOTE: y = number of dicentrics, c = cells scored (100s) 

Source: Purrott and Reeder (1976) 

the linear term. Model 4 (see Table 2) corresponds to the most 

general case in which both the linear and quad-atic coefficients are 

allowed to vary with dose rate, i .e . X.. - o.d. + a.d?, where j iden­

t i f ies the dose rate group. For each of the models in Table 2 the 

regression function x(X,3) is linear in the parameters, and the pro­

cedure described in Section 2 was used to obtain the Poisson ANOVA. 
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Table 2 

Poisson ANOVA Data in Table 1 

Regression Model Number of Deviance df 
Parameters 

1 od1 1 1075.30 26 

2 o^+ed? 2 228.00 25 

3 od.+p-d.2 10 21.52 17 
I J 1 

4 a.d.+p.d? 18 11.10 9 

5 Complete 27 0.0 0 

A test statistic for the hypothesis B, = B2 = . . . = Bg is obtaineC 

using the difference of the deviance D[y,p(2)] - D[y,y(3)] = 206.48. 

This test statistic has an asymptotic chi-squared distribution with 8 

degrees of freedom (df ) , i f the more restrictive hypothesis is true. 

Consequently, we reject the hypothesis that the coefficient of the 

quadratic term is independent of dose rate. An alternative approach 

is to test for 'lack of f i t ' of model 3. The deviance for this model 

is 21.52 with 17 df indicating that model 3 cannot be rejected. 

3.1.2 Ad Hoc Model for Example 1 

If the ML estimates of the quadratic coefficients obtained from 

model 3 are plotted against the log of the dose rate i t appears that 

the 3s increase linearly with log dose rate, and this can be 

described by the following regression model 
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\jk = * k + K61 + 8? l o W r j > ] d k -

The ith row of the model matrix for this ad hoc model is 

X,- = (d.-i d?, d?logi 0 r ) . The ML estimates and estimated standard 

errors for this model are given in Table 3. The value of the deviance 

for the model is 29.95 with 24 dF, indicating that this ad hoc model 

cannot be rejected for these data. This model provides a good 

description of effect of dose rate on dicentric yi t d, i .e . , the 

Table 3 

Maximum Likelihood Estimates for Ad Hoc Model 
for Dose-Response Curve Data in Table 1 

Parameter Estimate Standard Deviation 

a 2.86 .305 

01 3.80 .141 

e 2 2.26 .144 

quadratic component increase with the log of dose rate, and the 
linear component is independent of dose rate. 

3.3.3 Dual Radiation Action Model 
The ad hoc model described in the previous section can be used as 

an empirical description of cytogenetic dose response curves for this 
experiment. The parameters 1n this model do not have a clear 
interpretation 1n terms of the quantitative effects of ionizing 
radiation. The DRA theory (see the Introduction) leads to the dose 
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effect model (1.2) and for a continuous exposure experiment the 

function g(t ,T)~original ly proposed by Lea ( P 5 5 ) ~ I s given by 

(1 .3) . Using (1.3) in (1.2) we obtain (see Kellerer and Rossi, 1972, 

Section 5.4) 

^ , 0 ) = ^ + - I [1 -T {1 - expt-t./tJl/tJ d*} , (3.1) 
i 

where d is the absorbed dose and t is the duration of exposure at a 

constant dose rate. The parameters Y» K, and T can be related to the 

radiation quality, target sensitivity, and the recovery process (see 

the Introduction and Discussion). 

The ML estimates of the parameters in (3.1) for the data in Table 

1 were obtained using the IRLS procedure described in Section 2. 

Since the DRA model is nonlinear in the parameters, the partial 

derivatives of (3.1) with respect to the parameters must be supplied 

(see the Appendix). The ML estimates and their standard deviations 

are given in Table 4. The deviance for this model is 28.58 with 

Table 4 

ML Estimates for the DRA Model for the Data in Table 1. 

Parameter Estimate Standard Deviation 

< 5.44 .208 

Y .269 .0677 

T 7.40 .857 

24 df (p ».236) indicating that the DRA model cannot be rejected. 

The standardized residuals 1n Table 5(a) are used to identify 



16 

outlying observations, and In this example there Is one large negative 
residjal. The diagonal terms from the H matrix (2.7) are given in 
Table 5(b). There are several large h values (greater than 2p/n-0.22) 
in column 3, and two of these are in the first two rows, I.e. the 
highest dose and the lowest exposure rates (see the Discussion). 

Table 5 
Regression Diagnostics for Data in Table 2 Using the Nonlinear Model (3.1) 

(a) Standardized Residuals u. = (y^-u.O/p}/2 

0.127 -0.929 
» . . . * 

. U?5 
-1.23 0.315 1.19 
0.291 -0.627 -1.05 
0.383 -0.563 -2.92 

-0.927 0.914 -0.140 
-0.111 1.48 0.247 
-0.423 1.26 0.315 
-0.293 0.144 -1.17 
0.670 1.88 0.732 

(b) Diagonal terms from the H matrix (p/n»0.111) 

0.056 0.164 0.406 
0.143 0.038 0.239 
0.155 0.036 0.157 
0.161 0.035 0.080 
0.086 0.037 0.062 
0.105 0.038 0.075 
0.107 0.039 0.251 
0.054 0.049 0.154 
0.097 0.043 0.132 
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3.2.1. Split-dose Experiment 

Schmid, bauchinger. and Hergenthaler (1976) undertook a study to 

investigate the "tine-dependent" quadratic component of the LQ model 

using a split-dose technique. Two experiments were carried out using 

250 KV X-rays for the in vitro exposure of human peripheral lympho­

cytes. The first experiment was carried out to determine the coeffi­

cients for the LQ model (see Table 6a). In the second experiment the 

lymphocytes were irradiated with a dose of 3.4 Grays split into two 

equal fractions separated by intervals of 50 minutes to 6 hours ~ see 

Table 6b. They assume that the primary damage induced by the first 

dose fraction decrease at a constant rate, and obtain the follow ex­

pression for the "interval dependent" yield 

y =Jd5e-t/T . 
t 2 

The "interval dependent" yield is taken to be the observed yield at 
time t for d = 3.66 minus the observed yield at d = 1.76 with t » 0. 
Using the results from the DRA theory (see Kellerer and Rossi, 1972 
Section 5) for a split dose experiment we see that g(t,i) is given by 
(1.4). Using (1.4) in (1.2) with f * 1/2 we obtain 

X(Xf,B) - <{»di +l[l*exp(-t i/T)]dp , (3.2) 

where X, » (d . , t . ) , and t = [*,y,r)'. Since half the dose 1s given 

at t * 0 the coefficient of d 2 can be written l<d 2 + l K d 2 e - t / T , I.e. 
2 2 

where the second component is the Identical to the expression for the 
Interval dependent yield given by Schmid, Bauchlnger and Mergenthaler 
(19/6, equation 11). Consequently we can combine the data from Table 
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Table 6 

a) Dicentric Yields For Acute Exposure Experiment (t=0 and c=i) 

d-dose (Grays) 
.25 .50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

3 5 9 30 37 54 74 77 128 

1 4 12 27 41 57 70 84 123 

b) Dicentric Yield for Split-Dose Experiment (d=3.4 Grays)* 

Interval 
hours) 

Cells Analysed 
(c 100s) 

Dicentrics 
y 

0 5 135* 
0 6 540 

.83 5 417 
1.00 5 393 
1.17 3 238 
1.33 2 150 
1.50 3 214 
1.67 5 354 
1.83 2 141 
2.00 4 277 
2.50 3 200 
3.00 2 122 
3.33 2 127 
4.00 2 104 
5.00 2 107 
6.00 2 104 

•Dose • 3.4 Qrays for all except the first row where d»1.7G. 

Source: Schmld, E. t et al (1976). 
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5a and 5b and use (3.2) to obtain ML estimates of K, Y> and T as 
described in Section 2. Table 7 shows the ML estiaates of K and y 
obtained using Experiment 1 data only, the ML estiaates when 
experiments 1 and 2 are combined, and the ANOVA for the sol it dose 

Table 7 

Results for Split Dose Data in Table 6 

a) IL Estimates 

1.37 Acute Only 5.49 ' * 1.37 -

Acute & Split Dose 6.23 .88 2.15 

(St. Deviation) (.49) (.28) .42 

Regression Model 
b) Poisson ANOVA 

df Deviance 

od 33 162.2 

cd+fld2 32 115.2 

DRA (3.2) 31 18.45 

Each (d,t) 9 2.6 

Complete 0 0.0 

experiment. A 'lack of fit' test for the DRA model is obtained from 
lines 3 and 4 of Table 7b and the value of the likelihood ratio test 
statistic 1s 15.8 with 22 d.f., indicating that the model cannot be 
rejected. 
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4. DISCUSSION 

The results in Section 3 show how Poisson regression methods can 

be used in the analysis of cytogenetic dose-response curves. In our 

original analysis of the continuous exposure experiment data in Table 

2 (see Frome and DuFrain, 1978) our objective was to show how to use 

linear model analysis to test the hypothesis of interest as specified 

by Purrott and Reeder (1976). In order to simplify the analysis only 

those data with three doses at each dose rate were include 1. There 

ware six additional deta points at the low dose rates (see Table 8 ) , 

Table 8 

Additional Data for Continuous Exposure Experiment in Table 1 

Dose Dose Rate Cells Scored Dicentrics 
d G/hr C(100s) y 

5.0 .15 2.04 157 

2.5 .15 2.25 50 

2.5 .05 5.40 100 

1.0 .05 14.01 50 

1.0 .05 5.74 25 

1.0 .019 6.29 25 

and these data were also excluded from our latter analysis using the 

DRA model (see Frome and DuFrain, 1982). This was done partially to 

ensure comparability with the earlier analysis and partly on 
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biological grounds since the stability of the unstimulated 6 0 

lymphocyte maintained in culture for long time intervals can be 

questioned. Theresults of fitting the ad hoc model, the DRA nodel, 

and a third model 

^ . B ) * Bid+B 2d 2+B 3(d 2logt) 

are given in Table 9. When all of the data are Included both of the 

empirical linear models provide better fits for the complete set of 

Table 9 

Values of the Deviance for Continuous Exposure Study 

Table 1 Table 1+Table 8 
Regression Model n=27 n*33 

d*d2+d2logt 24.54 35.00 

d+d2+d2logr 29.95 41.96 

DRA (eq. 3.1) 28.58 50.37 

data. Both of these models can be rejected however, on biological 

grounds since they do not lead to reasonable results 1n the limiting 

situations of interest, i .e. as t-»0 and as t *» . Much of the lack of 

f i t for the DRA model comes from the data at the lowest dose rates, 

and as we noted earlier there are reasons to question these data. The 

second experiment provides further support for the DRA theory since i t 

provides an appropriate mathematical model for both the split dose and 

continuous exposure experiments. 
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It is apparent that both of these studies were motivated by the 
ORA theory, and consequently we feel that the use of the appropriate 
model for these and related experiments is of prime importance in fur­
thering our understanding of the effects of the temporal distribution 
of low LET radiation on the yield of dicentric aberrations. Under 
similar experimental conditions the results from both continuous expo­
sure and split dose experiment should be comparable for the human lym­
phocyte data. The parameter Y is re 1 ted to radiation quality but the 
values of K and T should be t»e same for normal human lymphocytes, we 
propose that future research efforts should focus- on experiments that 
are designed to test for lack of fit of model, with particular empha­
sis on the time-dependent component. It is apparent that a more gen­
eral form of the model could be obtained, 'or example, by assuming a 
more general form for the repair process. The purpose of this paper 
is to describe the ML estimation, hypothesis testing, and regression 
diagnostic procedures that can be used for any appropriate dose-
response model for CAs that follow the Poisson distribution, we are 
currently considering the use of resistant regression techniques to 
reduce the influence of atypical data, so that th. DRA model can be 
fitted to all available human lymphocyte data, from both split dose 
and continuous exposure experiments without the need for arbitrary 
decisions concerning potential anomalies. 
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APPENDIX 

When the function A(X,s) is intrinsically nonlinear in the 

parameters the IRLS procedure can be used to obtain ML estimates of 

p's (see Frome, Kutner, and Beauchamp, 1973). This requires the 

partial derivatives of X(X,B) with respect to each of the e.-s. As 

an example of the general procedure, consider the model for the split 

dose experiment—see equations (1.2) and (1.4) - -

X(d,t) = K { Y d + [ l - 2 f ( l - f ) ( l - e - t / T ) ] d 2 ] . 

To obtain ML estimates of the parameters using GLIM we wrote a GLIM 

macro named FITNL (see Figure 1). The partial derivatives of x(d,t) 

with respect to K, y, and T are called PI , P2, and P3 in the macro 

KRSD. Additional macros that are required for this nonlinear model 

are also listed in Figure 1 and the reader is referred to the GLIM 

manual (Nelder and Baker, 1977, Chap. 18) for further details. 

Identical results can also be obtained using the FORTRAN program 

PREG (Frome, 1981), the SAS (Goodnight and Sail , 1982) procedure NLIN, 

or the BMDP (1979) program P3R. Each of these approaches requires the 

partial derivatives, ini t ia l estimates of the parameters, and some 

v^nvergence cr i ter ia. A listing of a GLIM program and detailed 

computational results for the split dose data in the example can be 

obtained from the authors. Note that the same GLIM procedures, FITNL 

in Figure 1, can be easily modified for alternative nonlinear models. 

Additional examples of nonlinear models are given in Frome and 

Beauchamp (1968) and Frome (1983). This Is done by (1) replacing the 

macro isrfSD with a new macro with the appropriate regression function 
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I MAXIMUM LIKELIHOOD ESTIMATION FOR POISSON REGRESSION 
1 USING 
I IRLS ALGORITHM FOR NONLINEAR MODEL IN GLIM ( VER 3.12 ) 
SSUBFILE KRSD I KRSD.RSS 12 FEB 1983 
I MACRO FITNL REQUIRES THE FOLLOWING INPUT DATA: 
! C- NUMBER OF CELLS SCORED 
! L- CA YIELD T- TIME BETWEEN FRACTIONS 
! D- TOTAL DOSE Fl- FIRST FRACTION 
! ON EXIT THE FOLLOWING VECTORS ARE AVAILABLE: 
! LHAT- ESTIMATED CAS PER 100 CELLS SCORED 
1 CS- STANDARDIZED RESIDUAL ( CHI-SQ TYPE ) 
! H- DIAGIONAL TERMS FROM H MATRIX 
SMAC FITNL I FIT NONLINEAR MODEL DEFINED BY MAC KRSD 
SDATA 3 B$READ 6 0.9 2.2 ! STARTIWG VALUES FOR BETA 
SCA %K> 12 : IC-0.0001 1 SET CONVERGENCE 
SWEIGHT W $YVAR Z SOWN Rl R2 R3 R4 I 

$WHILE %K KRSD SDISP ESEXTR %VL SCA H=%VL*W ! 
SCA CS « (Y-LHAT*C)/%SQRT(LHAT*C) $ 
! DELETE WORK ARRAYS AND MACROS 
$DEL %WT %FV %WV %LP %VA %VL %PE Z DB F ! 

PI P2 P3 W CCHK Rl R2 R3 R4 SEND ! 
i 
SMACRO KRSD ! KELLERER-ROSSI SPLIT DOSE MODEL 
! F IS THE REGRESSION FUNCTION 
• PI P2 P3 ARE THE PAHTIAL DERIVATIVES— SEE EQ 2.4 
! B= (KAPPA,GAMMA,TAU ) 
SCA F-1-2*F1*(1-F1)*(1-%EXP(-T/B(3)) ) I 
SCA Pl= B(2)*D + F*D**2 : P2« B(1)*D I 
SCA P3=2*T*B(1)*F1*(1-F1)*%EXP(-T/B(3)) ! 

*( D/B(3) )**2 ! 
SCA LHAT= B ( l ) * ( B(2)*D + F*D**2 ) ! 
SCA W=C/LHAT : Z=L-LHAT : %LP=Z SSCA 1 .0 ! 
SFIT P1+P2+P3-%GM SEXTR %PE SCA DB=%PE ! 
SCA B= B + DB SPR %K • ESTIMATES=« B ! 

SUSE CCHK $ ! CHECK FOR CONVERGENCE 
SEND 
! MACROS REQUIRED BY FITNL FOR POISSON REGRESSION 
! MACROS REQUIRED BY OWN 
SM Rl SCA %FV»%LP$E $M R2 SCA %DR=1.0 $E $M R3 SCA %VA»1.0$E ! 
$M R4 SCA %DI- 2*( Y*%LOG(L/LHAT)-C*Z)/W SE 1 
SMAC CCHK » CONVERGENCE CHECK FOR FITNL 
SCA DB= %IF( %LE(DB,0) , -DB,DB) /B ! 
SCA DB= %IF( %LE(DB,%C),0,1) SCA %T» %CU(DB)! 
SCA %K«%K-i SCA %K» %IF( %LE (%T,0) ,0 ,%K) $E I 
SRETURN 

FIGURE 1 
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and partial derivatives, and (ii) providing initial estimates of 0 in 
FITNL for the data and model being considered. Further note that the 
computational approach described here can be extended over situations 
where y is in the regular exponential family for general nonlinear 
models (see Charnes, Frome, and Yu, 1976). This requires the two 
modifications just described and appropriate changes in the weight 
vector W and the deviance in macro R4. 
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