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ELASTIC-WAVE RADIATION FROM
SPHERICAL SOURCES

ABSTRACT

This report treats the radiation of spherical compressional waves from a spherical
cavity in an ideal elastic solid. The equations for the radiation source and field are written in
terms of the reduced-displacement potential. The source equation is studied in terms of
characteristic frequencies, corresponding periods and wavelengths, and damping. The field
equations for the stresses, strains, radial displacement, ctc., are reviewed with regard to the
transitions between the near and far fields, respectively, The natural parameters for defining
the dynamic source and field characteristics are 2b/R and b/a in some cases and a/R in
others, where a is the compressional-wave velocity, v the shear-wave velocity, and R the
cavity radius. Transient solutions for stresses, strains, radial displacement, etc., include
damped sirusoidal oscillations. The initial- and final-value theorems for the Laplace
transform are used to obtain solutions for r (the reduced time) — 0+ (high-frequency, far-
field) and r - @ (zero-frequency, near-field).

INTRODUCTION

The infinitesimal point source of dilatation and the finite spherical cavity with variable pressure have
been used as seismic source functions in many theoretical studies of seismic waves from earthquakes and ex-
plosives. A finite spherical cavity may be replaced by a point source by letting the cavity radius approach zero
and the cavity pressure (if nonzero) approach infinity in such a way that the product of the pressure and the
cube of the radius remains constant and finite. The subject of this paper is the radiation of compressional
waves from a spherical cavity in an infinite homogeneous isotropic elastic solid.

The first mathematical solution of this problem was published by Jeffreys (1931), who assumed a
step change in cavity pressure for the source function and equal Lame constants (A = y) for the elastic solid.
The first general solution in terms of A and 4 for a step change in cavity pressure was given by Kawasumi and
Yosiyama (1935), who noted the similarity of their solution to that for the damped oscillations of a pendulum.
Yoshiyama (1963) (apparently the Yosiyama of the 1935 paper) expanded on this analogy by obtaining a solu-
tion in the same form as that of the differential equation for a pendulum with damped osciilations. He wrote
his solution in terms of the reduced-displacement potential, although he did not identify his function [a-f(7)]
as such, where 7 is the reduced time. Blake (1952) and Selberg (1952) were the first to use the reduced-
displacement potential in obtaining solutions for spherical-wave propagation, but neither used that term for
their respective functions [A -+ f{r)] and {c2{()]. Herbst, Werth, and Springer (1961) were the first to apply the
term *“‘reduced-displacement potential™ to the potential function that is a solution of the spherical-wave equa-
tion and is not a function of space but of the reduced time zlone.

Using the reduced-displacemant potential results in the following relation between the radial stress o,
(the driving function), and the reduced-displacement potential X (the response function):

o (r,7) 2 524 .
L [T SN ry 3X(m)
YT [(Zb) ar? £ 5 ”“”] ' w

where the reduced time




r=t- (r- R¥{a 2)

and

a = compressional-wave velocity,
b = shear-wave velocity,

r = radial coordinate,

R = radius of cavity

t = tim~,

u = shear modulus.

Selberg and Yoshiyama derived equivalent forms of Eq. (1).

SEISMIC RADIATION SOURCE

The source of spherical compressional waves is defined by Eq. (1) with the substitutions r = R and

a,(r) = -P(7), where P is the cavity pressure. The Laplace transform (Gardner and Barnes, 1942, pp. 127-133)

may be used to conver: Eq. (1) with these substitutions into a transform equation in which P(s) is the driving
transform and X(s) is the response transform:

s [(R\? 2, (R -
) ( ’) B [(lb) ; +(a) “1] ’ @

CHARACTERISTIC SOURCE EQUATION

The polynomial function of the complex variable s on the right side of Eq. (3) is the characteristic
function, and the characteristic equation for the source is formed by setting the characteristic function equal
to zero. The roots of the characteristic equation in the complex s plane are called the characteristic values:

s=(2b/R) F(bra) i [1- (b/a)?13/2) @
where

(2b/R)(b/a) = the damping constant,

@b/R)1 - (b/a)z]‘/ 2 = the characteristic angular frequency with damping, and

(2b/R) = the characteristic undamped angutar frequency (Gardner and Barnes, p. 171).
The word natural is ofien used instead of the word angular in defining the above two frequencies; we will use
the word natural in this report. Note that the real and imaginary components of Eq. (4) may be written in
terms of only two parameters: one is 2b/R, the undamped natural frequency, and the other is

b/a = damping ratio.

The damping ratio is defined as the ratio of the actual damping to the damping required for the con-
dition that divides oscillatory from nonoscillatory transients. Draper and Bently (1940) introduced the use of
the undamped natural frequency and the damping ratio in their analysis of instrument performance. They
defined the reciprocal of the damping constant as the characteristic time. Either the characteristic time and the
damping ratio or the undamped natural frequency and the damping ratio may be used to define the response
of physical systems described by linear second-order differential equations such as Eq. (1) and its transform,
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Eq. (3). Draper and Bentley use the characteristic time and the damping ratio for their purposes, but the use of
the undamped natural frequency and the damping ratio became generally accepted for use in the anatysis of
servomechanisms (e.g., Brown and Hall, 1946).

In the complex s plane as shown in Fig. 1, the modulus of the complex variable s (the length of the
vector) from the origin to each of the

e poles of the characteristic function of Eq. (3), or the
e roots of the characteristic equation given by Eq. (4),

is equal in magnitude to the undamped natural frequency 2b/R. The real component of this vector is equal in
magnitude to the damping constant (2b/R)(b/a). The imaginary component is equal in magnitude to the
natural frequency (2b/R)[ - (b/a)?]'/2. Tnis vector and its real and imaginary components form a right
triangle with sides whose lengths are in the proportions

1ibla:{1 - (bray?} e
or

a:b:(a? - bH)2 |

Therefore, the proportional relations among the damping ratio and the damped and undamped natural fre-
quencies are determined by two parameters: i.e., the compressional-wave velocity a and the shear-wave
velocity b.

In electrical and mechanical systems, the damping ratio can be less than, equal to, or greater than
unity. With these respective values of the damping ratio, the systems are underdamped, critically damped, or
overdamped. The elastic system described by Eqgs. (3) and (4) is underdamped because Poisson's ratio v for
elastic solid is limited to the range of values 0 < # < 1/2; thus the damping ratio { is restricted to the following
range of values:

0<¢t=bl/a= (O +201 Y2 = ((1- wy20 - 12 <272 {5)

The relation between ¢ and v is illustrated in Fig. 2.

CHARACTERISTIC FREQUENCIES

The Laplace transform may be replaced by the Fourier transform by letting the real component of
the complex variable s approach zero so that s -+ iw (Gardner and Barnes, pp. 99~107). Then Eq. (3) becomes

() Xdw [, R _ Ry ]!
(Rz) F(iw)—[lﬂ(a) (2':,)] ' ©

Inspection of the right side of Eq. () gives two convenient definitions for a characteristic dimensionless fre-
quency, i.e., Rw/a and Rw/2b. The former was used by Blake (1952), Herbst et al. (1961), Meyer (1964), and
others. The latter was used by Gurvich (1965) and Rodean (1971). These two dimensionless frequencies have
equal numerical values if a = 2b, ie., if Poisson’s ratio is equal to 1/3 [see Eq.(5) and Fig. 2].
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Upper limit of b/a from Eq. (5}
7

Lower limit of b/a from Eq. {5)
+

FIG. 1. Poles of the characteristic function [Eq, (3)] ard roots of the characteristic equation
[Eq. (4)], s = (2b/R)} { - (b/n) % i[1 - (b/a)?]"/2}. Note that the praportions of the sides of the
right triangles OAB and OA B’ are a:b: (a2 - b?)1/2,
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It may seem more appropriate to use Rw/a than Rw/2b as the characteristic dimensionless fre-
quency, because compressional waves, not shear waves, are described by solutions of Eq. (1) and its
transforms, Eqs. (3) and (6). Blake showed that the normalized specific acoustic radiation resistance for a
spherical compressional wave source in an elastic solid is identical to that in an elastic fluid and that it isa
function of Rw/a alone, i.e., (WR/a)2[1+(wR/a)2 I\ He also showed that the specific acoustic radiation reac-
zance is reduced to that for a fluid if u + 0, ie., (wR/2)[1+(wR/a)’]"!. Blake’s solution for the radiation
resistance illustrates one case in which Rw/a is the appropriate dimensionless frequency; other cases are
shown later in the discussion of the seismic radiation field, where the appropriate dimensionless frequency is
Ruw/a. Blake's solution for the radiation reactance with p -0 shows that Rw/a is more appropriate than
Ruw/2b for analysis of fluid-like elastic solids because b - 0 as p — 0. However, there are many other cases
wliere the use of Rw/2b results in more convenient and compact mathematical relations that more clearly il-
lustrate the physical principles invelved. This is because the undamped natural frequency R/2b is a fundamen-
tal zomponent in the roots of the characteristic equation for spherical radiation in an elastic solid {Eq. (4)].
Therefore, the reference frequency used in this paper is the characteristic undamped natural frequency:

wg = 2b/R . (7

From Egs, (4), (5), and (7), the characteristic natural frequency is

wn=wo(l-§2)”2 . (8)

Note that the frequency w, » wp as ¢ - 0 (Figs. 1 and 3), hence wy is called the “undamped natural frequency.”
According tc Eq. (8), the natural frequency exists if 0 < { < 1. This range of values for the damping ratio is
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possible for electrical and mechanical systems, but as indicated by Eq. (5), the restrictions on the value for the
Poisson’s ratio limit the damping ratio for the sphericai elastic radiation to 0 < { < 2-!/2, Therefore, the
elastic radiator described by Eqs. (3) and (6) is an underdamped, hence oscillatory, source of compression
waves,

Equations (5)-(7) may be combined and the result written in terms of the modulus and argument of a
complex variable (Papoulis, 1962, p. 7) as

-(@u/R?) [RGw)Blw)] = Ap(iw) exp - idlic) )

where the modulus or Fourier amplitude

Ap i) = [{[1 - (wiwg?T + @F wiw?} 121, (10)

and the argument or phase angle
#(ie) = tan™! {2 § worea 1 - (i} : (11)

As shown by the values of the first and second partial derivatives of Eq. (10) with respect to «, Ap(iw) hasa

minimum value at w = 0 and a maximum value at the resonant frequency (Gille, Pelegrin, and Decaulne,
1959, pp. 99-101)

W= w(1- 2012 (12)

The resonant frequency exists only if 0 < { < 2-1/2, the limits defined by Eq. (8), as illustrated in Fig. 3.

At high frequencies, Ap(iw) + 0, and ¢(iw) - . Therefore, the physical system described by Egs. (3)
and (6) acts as a low-pass filter (Gille et al,, pp. 103-106; Papoulis, pp. 117-118). There is no standard defini-
tion of the cutoff frequency of a low-pass filter, but one definition is the frequency w, at which the phase angle
is equal to x/2 (Gille et al., pp. 103-104)

W, =g - 13



TABLE 1, Values of Ap, (iw) and ¢(iw) for several frequencies.

“ AD(iw) from Eq. (10) ¢(iw) from Eq. (11)
[ 1 N
w = uo(l - 2;1)1/2 [2¢01- s_1)1/11 -1 m—-l (- 2{1)1/2/5']
w, = wo(l - ;2)1/2 [zr(ll_ 3‘,2/4)1/2] -1 mn-l(Z(l _ rz)uzm
“e= %o (%) iz
W (mo/w)2 -0 ﬂn-l(-zrwolw) e

The definitions of the above characteristic frequencies and corresponding values of A(iw) and ¢(iw)
from Eqs. (10) and (11), respectively, are given in Table I, together with values of A(iw) and ¢(iw) for w = 0
and « —+ ®, Solutions for A(iw) and (iw) are ploited as functions of w/uwy and { in Figs. 4 and 5, respectively.

FIG.4. Fourier amplitude [Eq.(10)] of the
transform equation for —(4x/R3)[X(iw)/P(iw)]
{Eq. (9)] as a function of the frequency ratio w/wy
with the damping 7atio { as a parameter. The max-
imum valee for { is 2°1/2; 0.1 is a minimum practical
value.

FIG. 5. Phase .:ugle [Eq.(11)] of the transform
equatior for -(=./R3)[X(iw)/P(iw)] [Eq.(9)] as a

function of the frequency ratio w/wy with the damping .

ratio { as a parameter. The maximum value for { is
2-1/2; 0.1 is a minimum practical value.
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CHARACTERISTIC PERIODS AND WAVELENGTHS

The period Ty corresponding 1o the frequency wg as defined by Eq. (7) is equal 1o the time required
for a shear wave to travel halfway around the surface of a sphere with radius R:

T,=TRb= Ayl as)

where Ag is the characteristic wavelength of the shear wave. The period T, corresponding to «;, as defined by
Eq. (8) and the corresponding wavelength A, are related to Tgand Ag as follows:

= - ¥24-112
T, =T, -tV as)

24-172
A=Ay - 858 (16)

For { > 0, T, > Ty, and A, > Ag. With the surface of the spherical cavity in free radial oscillation at the
natural frequency w,, there is more than sufficient time during each oscillation period T,, for communication
by means of shear waves between all points on the surface. The time Ty is exactly sufficient for such com-
munication for oscillation at the undamped natural frequency wg.

However, none of the above equations describes the propagation of shear waves in any direction; the
equations in this paper describe different aspects of the generation and propagation of spherically symmetric
compressional or dilatational waves. The same kind of physical relation—or coincidence—as stated by
Eq. (14) is given by Eq.(27), which defines a tramsition in the radial stress field outside the cavity. The
significance of the relations given by Eq. (14) is discussed further in connection with Eq. (27).

DAMPING

The electrical analog of the cavity-elastic-solid system described by Eqs. (3)~(11) is a resistance-
inductance-capacitance circuit, and its mechanical analog is a dashpot-spring-mass system. The oscillations
of these electrical and mechancial systems are damped because energy is dissipated in their resistors and
dashpots, respectively. However, Egs. (3)-(11) represent an ideal elastic system without energy dissipation.
The oscillations are damped because energy is radiated away from the source. It is possible for an electrical or
a mechanical system to be overdamped ({ > 1) or critically damped ({ = 1), but the ideal elastic system
described by Egs. (3)-(11) is underdamped {0 < { < 2-!/2) because of the restrictions on the value of
Poisson’s ratio (0 < » < 1/2) as shown by Eq. (5). The damping approaches zero if the :lastic solid tends to
become like an elastic fluid (v -+ 1/2 with A > 0 and u - 0). The damping approaches the maximum value if
the elastic solid tends to become very rigid (» - 0 with A > 0 and A/u - 0).

In anelastic wave propagatiorn, the decay of the wave amplitude as a function of time at a fixed point
in space has the form exp - wr/2Q, where Q is the specific attenuation or dissipation function (Knopoff,
1964), From Egs. (4), (5), and (7), the damping of the cavity-elastic-solid system has the form exp - wof 7.
With w = wy, the apparent specific dissipation function for the elastic system described by Eqs. (3)-(11)is

Q=1/2¢ . an

From Eqs. (10) and (12), the resonance ratio or peak value of magnification (Gille et al., pp. 99-101)
is approximately equal to Q for small values of ¢

Ap (i), IAp(in), o = (28 (1 - 2t (18)
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Gille et al. used the symbol Q for the quantity defined by Eq. (18), but they did not identify Q as the specific
dissipation factor. They noted that the resonance ratio is greater than unity only if < 2-' 2, as is apparent
from Eq. (18). Such resonance exists for the elastic system described by Egs. (3)-(11) because 0 < « < 2! 2
from Eq. (5). The resonance ratio defined by Eq. (18) and its relation to Q defined by Eq. (17) are plotted as
functions of { in Fig. 6.

As noted in connection with Eq. (13), Egs. (3)-(11) describe a system that acts as a low-pass filter.
These equations may be converted into those for a band-pass filter by rewriting them in terms of #x(r), a7, the
*reduced-velocity potential™ whose Fourier transform is o.X(la) Then Egs. (9) and (10) may be rewritten as

R (‘:_,.";.) (%‘;) [}ﬁ(_((il:w))} A (iw) exp - ilptiw) - 1/2] 19
A (i) = Hwiwg) {1 - (@iw)? ] + (2twiwg)?} =172 (20)

The relation for ¢(iw) is given by Eq. (11). The system studied by Gurvich was based on relations for the far-
field displacement for a sinusoidal functicn of P(r), and his equation for the Fourier amplitude of the far-field
displacement is similar to Eq. (20). The Fourier amplitude [Eq. (20)] has a maximum value of 1 /2{ at the reso-
nant frequency, w, = wy in this case, and is approximately symmetrical about « = wy in the A (ic) vs « '«
plane, as shown in Fig. 7. It is also shown in this figure that A(iw) is proportional to «*! for 0 < « << uyq

=0

3" T T T 1T 1
3 4 . , _
= Apliw) ., Apliw), -
FIG. 6. Apparent specific dissipation function o 4| DM¥wew, D 1w =g
Q[Eq. (17)] and the resonance ratio o S.\_ 7
AD(i“))u:=wr/AD(iw)u:=0 3 2 —
{Eq. (18)]as functions of the damping ratio {. Note 3
that the value of the resonance ratio app:~ximates 3 1+ Q— ~,] —
that of Q for small values of . ':;o 0 oL L Lt 8
< 0 010203040506 0708
$
10! T,
- $=0.1 3
- 4
FIG.7. Fourier amplitude (Eq.(20)] of the i )
transform equation for 3 0
~(iw/wg) (41 / R3[X(iw)/ P(iw)] = 100 FE IE
[Eq. (19)] a5 a function of the frequency ratio w/wp < . [ 3
with the damping ratio { as a parameter. The max- B a1/2 n
imum value for ¢ is 2°1/2; 0.1 is a minimum practical = f=2 .
value. | -
10 1 11 LLlll [ AN
107! 100 10



FIG. 8. Bandwidti Aw/wjand the apparent specific
dissipation furziion Q as functions of the damping
ratio givsz by Eq. (22).

and to «™! for wy << @ < @, The dynamic bandwidth of a bandpass filter is the frequency interval Aw be-

tween the two half-power points where A (iw)/A (iw)y=ug = 27/2 (Papoulis, p. 159). From Eq. (20), for this
condition,

Aw/wo =[1+28% 42001 + EHV2 120 1, 02 - 2001 + Rz 21)

Afier squaring both sides, Eq. (21) simplifies to

Awlwo =2{=1/Q (22)

and is related to Eq. (17) as shown. Gurvich presented the above relation between Aw /wp and ¢. The relations
defined by Eq. (22) are shown in Fig, 8.

The preceding demonstrates that wp and { are very useful parameters for describing the radiation of
spherical compressional waves from a source in an elastic solid,

SEISMIC RADIATION FIELD

In the preceding section the source of the seismic radiation, i.e., a spherical cavity in an elastic solid,

was the subject of study. In this section the seismic radiation field outside the spherical cavity r>R)is
studied.

CHARACTERISTIC FIELD EQUATIONS

The Laplace transform of Eq. (1) for the radial stress is similar to Eq. (3)

()52 (& #+ o
) xe T\ " NS @



Selberg derived equations for both the radial and tangential stresses. The Laplace transform of an equivalent
form of his relation for the tangential stress is

3\ 8 (r,s) 2 .
Lol Bk elad PP 2 AL e Y . B | 4
(w) T o )(Zb) ® (3)2 2’ @4

The only displacement in spherical compressional wave motion is radial:

z ~

r“ u(rs) [ r ]
- =- 11 +{z)s] . (25)
X(S) (a)

In Egs. (23)-(25), )“((s) is the driving transform, and r;r(r,s), ;,(r.s)‘ and 1 (r,s) are response transforms,

TRANSITIONS BETWEEN NEAR AND FAR FIELDS

The following discussion is similar to portions of Meyer’s comprehensive study of the near and far
fields in elastic and viscoelastic media. Many graphical illustrations of near-field (r or r2) and far-field (r-')
behavior for several physical parameters (stresses, strains, and radial displacement and its time derivatives) are
given in Figs. 1-3, 6b, 7, 16-18, and 21 of Meyer's paper. Mathematical definitions of the transitions between
the near and far Ticids for some of these parameters are given in Egs. (4.2) and (5.1) of that paper. In this
paper, additional mathematical definitions of near-to-far-field transitions are given. Equations that appear in
either the same or equivalent form in Meyer’s paper are identified by an asterisk.

The Fourier transform equivalent of Eq. (23) for the radial stress is similar to Eq. (6):

(i) ar(r,iw)= L i(l,\ i (&J)z 26°
a1 RGe 2 G )

For values of rw — 0, or for the static case with w = 0, the radial stress has relatively large values in only the
near field:

(Ra> ar(r,iw)] (R 3
du )?(iw) rw—#O_ r) )
For values of rw >>Ruy [sce Eq. (7))}, the radial stress has significantly large values that exiend into the far

field:
[(Ra) b"(r,iwﬂ R feo
) Xiiw) Jrw>>Rwy r‘nq)z

Let the transition between the near and far fields of the radial stress be defined by the condition that the real
component (the sum of the near- and far-field terms) of Eq. (26) be equal to zero:

rw=2b . en*

Note the similarity between Eqs. (7) and (27). The period corresponding to the frequency as defined by
Eq. (27) is equal to the time required for a shear wave to travel halfway around a sphere defined by the radius

1}




marking the transition between the near and far radial-stress fields. Meyer explained the role of the shear-
wave velocity in Eq. (27) as follows; *'In the stress. . .transition,. . .the stored elastic energy {prevalent in the
near ficld) begins to compare in magnitude with the kinetic energy of the solid. Since no quasi-static
volumetric energy can be stored clastically in an infinite sphere under internal pressure, this equivalence ex-
presses itself in tzrms of an elastic shear wave length, even though such waves cannot exist in spherically sym-
metric motions.” By analogy, this explanation may also apply to Egs. (7) and (14). The transitional radial
stress in the middle field, from Eqs. (26) and (27), is

3.6 (riw) 2
B -

X(iw) rw=2b

Note that the transitional radial stress is proportional to -2, intermediate between the relations for the near
field (r-}) and the far field (r}).

The Fourier transform for the tangential stress, from Eqs. (5} and (24),

! a(r:m) r ]

(41.«) Xtiw) -"l_z 'z'{m)+(l -4 ( )

Equation (28) has near- and far-ficld properties similar to those of Eq.(26) that are described above.
However, the transition between the near and far ficlds of the tangential stress cannot be defined by the condi-
tion that the real component of Eq. (28) be equal 1o zero, as is the case with Eq. (26). As an equivalent, let the
transition between the near and far fields of the tangential stress be defined by the condition in which the ratio

of the imaginary component (the transitional field) to the real component (the sum of the near- and fas-field
terms) of Eq. (28) is a maximum:

(28"

rw = 2bf2(1 - 28H) 12 (29)

For the condition defined by Eq. (29), the near- and far-field terms in Eq. (28) are equal in magnitude.
The maximum shear stress (Jaeger and Cook, 1971, p. 22) is

1
o, =:_)--(or - o‘) . (30)

From Egs. (26), (28), and (30),

a (r, nw)

(4u) Riw) [ (M) (w) ] s1f

In this case the appropriate dimensionless freguency is obviously rw/a, not rw/2b.
A 'n the case of the radial stress, let the transition between the near and far fields of the maximum
shear stress be defined as the condition in which the real component of Eg. (31) is equal to zero:

rw=a3)l’? | 32)

The mean normal stress (or pressure) determines uniform compression or dilatation and is defined
(Jaeger and Cook, p. 32) as
0 =Xo +20) . 33)
m_ 3r t

The bulk modulus is defined as

k=X+2u/3 . (34)



From Egs. (26), (28), (33), and (34),

o a (r, u..))

(_) T (?) X asy*

Tkhere is no near field in this c...¢ because the mean stress varies as r! everywhere, in contrast to the radial,
rangential, and maximum shear stresses. As for the maximum shear stress, the appropriate dimensionless fre-
quency is rw/a, not rw/2b.

The Fourier transform for the radial displacemens, from Eq. (25), is

pllie) [1 +i ’—"3)] G6"
X(iw) a

This equation is also applicable to the tangential strain u/r. It can be modified to give the transform for the
radial velocity and radial acceleration, respectively:

2 au(rllw)/a'r [l +i(f_¢2)] , an'
iw X(iw) 3
u(r iw)ar? [ ] .
38
x-rmal O Y o

Let the transition between the near and far fields of the

radial displacement [Eq, (36)),
tangential strain [Eq. (36)),
radial velocity {Eq. (37! and
radial acceieration [Eq. (.8)]

be defined as the condition in which the real and imaginary components (the near- and far-{ield terms, respec-
tively) of these equations are equal in value. Then

wea . 39"

It is clear that rw/z, not rw/2b, is the appropriate dimensionless frequency for the radial displacement,
velocity, and acceleration, and for the tangential strain.
The radial strain from Meyer, is

-4
=

® K°

u
= -
r

(40)

=4
-

From Egs. (31), (36), and (40),

B diw)or o ). (_r_n_:)‘ .
a

. @y
X(iw)

As in the cases of the radial and maximum shear stresses, let the transition between the near and far fields of
the radial strain be defined as the condition in which the real component of Eq. (40) is equal to zero:

rw = 22)1/2 @2

It is clear that there is no single definition in terms of rw for the transition between the near and far
fields of spherical compressional-wave radiation. The definiticns vary from parameter to parameter. The
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TABLE 2. Definitions of transitions berween ncar and far firlds in spherical compressional-wave radiation.

Item Eq. Value of rw
Radial stress 27) 2b
Tangencial stresa (29) 2bl21 - 2ty 7172
Maximum shear stress (32) e
Radial strain (42) .(2)1/2
Radial displacement, velocity, (39) [

and scceleration; tangential scrain

definitions involve the shear-wave velocity in some cases and the compressional-wave veiucity in others. These

are summarized in Table 2,

The moduli of the complex Fourier transforms of the spherical compressional-wave field parameters
defined by Eqgs. (26), (28), (31), (35)~(38), and (41) arc presented in dimensionless form in Table 3. These
moduli are plotted in Figs. 9-14 as functions of r/R with «/wy and { or Rw/a as parameters. Note that there
are strong relations between the near field and low frequencics and the far field and high frequencies. Other
relations, such as those for relative phase in the near and far fields, are given by Meyer.

TABLE 3. Moduli of Fouricr transforms for spherical compressional-wave radiation. These are plotted in Figs. 9-14
as functions of r/R with w/w, and { or R.o/a as parameters.

Item

Fq. Parameter Moduli (absolute valucs) Fig.
Rsar(r.iw) R’} R/w\2)? [ 2)1r2
Radial .8 = vy B o B 9
strees 4p X(iw)

- R3G (r,iw) ARy T2 [o\4 40120102
Tangentinl ‘18) = ;b(ﬂ) +{1- 2;’2)(5) (2)] +(i‘-> (ﬂ) 10
stress 4u X(iw) r rj\w, Wo

R¥G (r.iw) 3 272 4 23112
Mmmibew G e PG - 2T &) Ry "
stress 4u X(iw) r rta a
3A .
R am(r,xw) R/Rw\ 2
Mean normel 3s) a . T(—a_) 12
stress k X(iw)
R330(r,iw)/d RV} R(Rwiz]2 . ,/R}* [Rw}?|!/2
s w L R .
strain X(iw)
2a, . 2 271/2
Badial ge B 5[(5) . (&’) ] 14
displacement X(iw) rur a
R228(r.ic0)/8 2 27172
Rediat en  Ronior 5[(5) + (B2) ] 1
velocity iw X(iw) rur a
R%3%jriw)dr?  RI/R\Z  [Rw)2]M2
Radi on LR 20+ ) 1
attenustion w* X(iw)

2 Also applicable to the tangential strain u/r,
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FIG.9. Mudulus of the Fourier transform of the radial stress
[Eq. (26)] us s function of r/R with w/wp and { as parameters. The
solution for w/wp = 0 is independent of { and is the near-field static-
stress distribution. For w/wg = 1, the condition of Eq. (27) is met and
the modulus of Eq, (26) is exactly equal to the imaginary component.
Therefore the modulus is directly proportional to { and the stress dis-
tribution is that of the intermediate ficld. For w/wy = 10, the effect of
¢ is negiigible and the stress distribution is that of the far field.
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FIG. 10. Modulus of the Fourier transform of the tangential stress
[Eq. (28)] as a function of r/R with w/wy an2 ¢ as parameters, The
solution for w/wp = O is independent of { and is the near-field static-
stress distribution. For { = 2-V/2 and w/wy # 0, only the near-field
and the (imaginary) transitional field contribute to the medulus,
Hence the intermediate characteristics of the stress field for { = 2-1/2
and w/wp =1 and 10, with a tendency toward near-field cherac-
teristics a8 r/R - 1. For { = 0.1, the stress distribution is charac-
teristic of the far field for both w/wy = 1 and 10, with a tendency
toward near-field characteristics for w/wy = 1asr/R - 1.
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FIG. 11. Modulus of the Fourier transform of the maximum shear
stress [Eq. (31)] as a function of r/R with Rw/a as a parameter. The
solution for Rw/a = 0 is the static near-field stress distribution, For
Rw/a = 31/2, the condition of Eq.(32) is met and the modulus of
Eq. (31) is exactly equal to its imaginary component. Therefore, the
stress distribution is that of the intermediate field. For Rw/a = 10,
the stress distribution is that of the far field.
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FIG. 12, Modulus of the Fourier transform of the mean normal
stress [Eq. (35)] as a function of r/R with Rw/a &s a parameter. The
modulus is directly proportional to the square of Rw/a, hence it is
zero if w = 0. The stress distribution is that of only the far field.
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FIG. 13. Modulus of the Fourier transform of the radial strain
[Eq. (41)] as a function of r/R with Rw/a as a parameter. The solu-
tion for Rw/a = 0 is the static near-field strain distribution. For
Ruw/a = 21/2 the condition of Eq. (42) is met and the modul:s of
Eq. (41) is exacily equal to its imaginary component. Therefore, the
strain distribution is that of the intermediate field. For Rw/a = 10,
the strain distribution is that of the far field.
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FIG. 14, Modulus of the Fourier transform for the radia! displace-
ment [Eg. (36)], radial velocity [Eq. (37)], and radial acceleration
[Eq. (38)] as a function of r/R with Rw/a as a parameter. This figure
iz also applicable to the tangential strain u/r. The solution for
Rw/a = 0 Is the static distribution and is applicable only to the radial
displacement and the tangential strain. For Rw/a = 1, the condition
of Eq.(32) is met and the real and Imaginery components of
Eqs. (36)(38) gre exactly equal to each other. Therefore, the dis-
placement, velocity, acceleration, and tangential strains have dis-
tributions characteristic of the intermediate field. For Rw/a = 10, the
distributions - re characteristic of the far field.
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TRANSIENT SOLUTIONS FOR SEISMIC-RADIATION
SOURCE AND FIELD

Because of the roots [Eq. (4)] of the characteristic equations from Eq. (3) relating the output )?(s) to
the input P(s), the transient solutions for the

reduced displacement potential [Eq. (3)];

stresses [Eqs. (23), (24), (31), and (35)];

strains [Egs. (25), (41)};

radial displacement [Eq. (25)]; and

partial derivatives with respect to time of
the reduced displacement potential
and radial displacement;

1 sude damped sinusoidal functions of the form
(exp ~w §7) Isin (w 7- W] .

The parameters {, wp, and w, are defined by Eqs. (5), (7), and (), respectively. The phase angle y is a function
of {, wg, and parameters associated with the input function P(r) and the output functions X{r), a(r,7), etc.
(see, for example, the function-transform pairs 1.301-1.376 on pp. 342-345 of Gardner and Barnes). Damped
sinusoidal transient solutions for some outputs (reduced-displacement potential, displacement, velocity,
stresses, etc.) have been given by Jeffreys, Kawasumi and Yoshiyama, Blake, Selberg, Rodean, and others.
Such transient solutions are not repeated in this paper. Instead, a summary of initial and fina! values of tran-
sient solutions is given,

The initial- and final-value theorems (Gardner and Barnes, pp. 265-269) yield the following respec-
tive relations between the Laplace transform and the initial and final values of the transient solution:

lim sF(s) = lim f(r) ,

[iadead >0+
lim sF(s) = lim f(7) .
s-0 T-boo

In the initial-value theorem, r -0+ means that r > 0 and that the condition = = 0 s approached from
positive, not negative, values of 7. Initial and final values of seismic-radiation sources and fields are given in
Table 4, assuming a step change in cavity pressure—a good approximation to an explosion.

The following are apparent from Table 4 and Figs. 9-14:

The initial value of the transient solution is related to the high-frequency far-field
characteristics of the corresponding Fourier transforms.

The final value of the transient solution is related to the zero-frequency near-field
characteristics of the corresponding Fourier transforms,

From Table 4, it is clear that the parameters determining the initial and final values of the 12 listed
terms are the

step change in cavity pressure Py,

cavity radius R,

undamped natural frequency of the cavity wy,
damping ratio of the medium {,

shear modulus of the medium g,

bulk modulus of the medium k, and the
radial coordinate r.
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TABLE 4. Scismic radiation sources and fields for 7 - 0+ and 7 - o= for a step change in cavity pressure F(s) =PByls.

Value
Item® Eqs. Symbol T+ 0+ o=
X(r) Do
RDP (3,05, (N R [ a
RVP (3),(5),(7) ('_]') _a)(i) 0 0
' s sto aT
(3),{5),(n —_ w - ‘E [}
RAF e Riwy? o 4
wer) Po /Ry 2
DIS (3),(5), (1), (25) R [} Z;l('r')
P.R
1 \du@,1) tey
VEL (3, (5), (7, (28) (Rwo) ar —2‘“_ 0
1 azu(rl'r)
ACC (3),(9), (1), (2%) Rw_‘ez' arl o 0
a.(r,7) R R\3
RS> 3)48), (M), (23) ?, T - (‘;)
g (r,7) 3
\ £ - 2w 1R
158 (3), (53, (7). (24) P (1-2f 3 2( r)
g (t,7) 3
Chal - 2R _3R
MSS () (), (M, 31) % &3 4( ,)
am(r,'r) ) (zk_R
MNS (3).(9),(7),3%) P, ur 0
du(r,7) zPoR Pyiry3
REN 3), (5), (N, (41 3 ) ur m r)
P 3
u(r,7) _o/R
TSN 3), (5), (), (25) . 0 4IJ( r)
SxDp, reduced-displacement potential; VEL, velocity; MSS, maximum shear stress;
RVP, reduced-velocity potentialy ACC, acceleration; MNS, mean normal stress;
S RAP, reduced lerrzion p ial RSS, radial stressy RSN, radial strain;
DIS, displacement; TSS, tangential str w; ‘TSN, tangential strain,
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CONCLUSIONS

As shown in Fig. 1, the values of the undamped natura! frequency, tke damping constant, and the
natural frequency for the damped oscillations of a spherical cavity in an elastic solid are in the ratio
a:b(a? - b)1/2,

The undamped natural frequency wg = 2b/R and the damping ratio { = b/a are the appropriate
parameters for defining the dynamic characteristics of a spherical cavity as a source of compressional waves in
an elastic solid. These parameters, wy and {, are also the appropriate parameters for defining the charac-
teristics of the radial and tangential stresses in the near and far fields. However, Rw/a is the appropriate
parameter for defining the maximum shear and mean normal stresses in the near and far fields, the radial and
tangential strains, and the radial displacement, velocity, and acceleration.

The transitions between the near and far fields are functions of both the radial coordinate and the
frequency, and are different for the several stresses and strains, and for the radial displacement, velocity, and
acceleration.

The solutions for the stresses and strains, and the radial displacement, velacity, and acceleration, are
high-frequency far-field solutions for 7 - 0+ and zero-frequency near-field solutions for r —» o,
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