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ELASTIC-WAVE RADIATION FROM 
SPHERICAL SOURCES 

ABSTRACT 
This report treats the radiation of spherical compressional waves from a spherical 

cavity in an ideal elastic solid. The equations for the radiation source and field are written in 
terms of the reduced-displacement potential. The source equation is studied in terms of 
characteristic frequencies, corresponding periods and wavelengths, and damping. The field 
equations for the stresses, strains, radial displacement, etc., are reviewed with regard to the 
transitions between the near and far fields, respectively. The natural parameters for defining 
the dynamic source and field characteristics are 2b/R and b/a in some cases and a/R in 
others, where a is the compressional-wave velocity, o the shear-wave velocity, and R the 
cavity radius. Transient solutions for stresses, strains, radial displacement, etc., include 
damped sirusoidal oscillations. The initial- and final-value theorems for the Laplace 
transform are used to obtain solutions for r (the reduced time) -> 0+ (high-frequency, far-
field) and T -» <= (zero-frequency, near-field). 

INTRODUCTION 
The infinitesimal point source of dilatation and the finite spherical cavity with variable pressure have 

beer, used as seismic source functions in many theoretical studies of seismic waves from earthquakes and ex­
plosives. A finite spherical cavity may be replaced by a point source by letting the cavity radius approach zero 
and the cavity pressure (if nonzero) approach infinity in such a way that the product of the pressure and the 
cube of the radius remains constant and finite. The subject of this paper is the radiation of compressional 
waves from a spherical cavity in an infinite homogeneous isotropic elastic solid. 

The first mathematical solution of this problem was published by Jeffreys (1931), who assumed a 
step change in cavity pressure for the source function and equal Lame constants (X = n) for the elastic solid. 
The first general solution in terms of X and n for a step change in cavity pressure was given by Kawasumi and 
Yosiyama (1935), who noted the similarity of their solution to that for the damped oscillations of a pendulum. 
Yoshiyama (1963) (apparently the Yosiyama of the 1935 paper) expanded on this analogy by obtaining a solu­
tion in the same form as that of the differential equation for a pendulum with damped oscillations. He wrote 
his solution in terms of the reduced-displacement potential, although he did not identify his function [a-f(-r)] 
as such, where T is the reduced time. Blake (1952) and Selberg (1952) were the first to use the reduced-
displacement potential in obtaining solutions for spherical-wave propagation, but neither used that term for 
their respective functions [A • H(T)] and [cty(r)]. Herbst, Werth, and Springer (1961) were the first to apply the 
term "reduced-displacement potential" to the potential function that is a solution of the spherical-wave equa­
tion and is not a function of space but of the reduced time alone. 

Using the reduced-displacement potential results in the following relation between the radial stress <rr 

(the driving function), and the reduced-displacement potential X (the response function): 

q r ( r - r ) x ( U \ 2 2isa +in M<i> + wrtl 
~ • 7 jy — ~ + w — + x ( r ) j 

where the reduced time 
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T = t - (r - R)/a 

and 

a = compressional-wave velocity, 
b = shear-wave velocity, 
r = radial coordinate, 
R = radius of cavity 
t = tirr-, 
v = shear modulus. 

Selberg and Yoshiyama derived equivalent forms of Eq. (1). 

SEISMIC RADIATION SOURCE 
The source of spherical compressional waves is defined by Eq. (1) with the substitutions r = R and 

ur(r) = -P(T) , where P is the cavity pressure. The Laplace transform (Gardner and Barnes, 1942, pp. 127-133) 
may be used to convert Eq. (1) with these substitutions into a transform equation in which P(s) is the driving 
transform and X(s) is the response transform: 

CHARACTERISTIC SOURCE EQUATION 

The polynomial function of the complex variable s on the right side of Eq. (3) is the characteristic 
function, and the characteristic equation for the source is formed by setting the characteristic function equal 
to zero. The roots of the characteristic equation in the complex s plane are called the characteristic values: 

s = (2b/R) [-(b/a) ± i [1 - (b /a ) 2 ] 1 / 2 } , (4) 

where 

(2b/R)(b/a) = the damping constant, 
(2b/R)[l - (b/a) 2 ] 1 / 2 = the characteristic angular frequency with damping, and 
(2b/R) = the characteristic undamped angular frequency (Gardner and Barnes, p. 171). 

The word natural is often used instead of the word angular in defining the above two frequencies; we will use 
the word natural in this report. Note that the real and imaginary components of Eq. (4) may be written in 
terms of only two parameters: one is 2b/R, the undamped natural frequency, and the other is 

b/a = damping ratio. 

The damping ratio is defined as the ratio of the actual damping to the damping required for the con­
dition that divides oscillatory from nonoscillatory transients. Draper and Bentiy (1940) introduced the use of 
the undamped natural frequency and the damping ratio in their analysis of instrument performance. They 
defined the reciprocal of the damping constant as the characteristic time. Either the characteristic time and the 
damping ratio or the undamped natural frequency and the damping ratio may be used to define the response 
of physical systems described by linear second-order differential equations such as Eq. (1) and its transform, 

2 



Eq. (3). Draper and Bentley use the characteristic time and the damping ratio for their purposes, but the use of 
the undamped natural frequency and the damping ratio became generally accepted for use in the analysis of 
servomechanisms (e.g., Brown and Hall, 1946). 

In the complex s plane as shown in Fig. 1, the modulus of the complex variable s (the length of the 
vector) from the origin to each of the 

• poles of the characteristic function of Eq. (3), or the 
• roots of the characteristic equation given by Eq. (4), 

is equal in magnitude to the undamped natural frequency 2b/R. The real component of this vector is equal in 
magnitude to the damping constant (2b/R)(b/a). The imaginary component is equal in magnitude to the 
natural frequency (2b/R)[-(b/a) 2] 1 / 2 . This vector and its real and imaginary components form a right 
triangle with sides whose lengths are in the proportions 

l:b/a :[l- (b/a) 2 ] 1 ' 2 

or 

a:b:(a - b ) 

Therefore, the proportional relations among the damping ratio and the damped and undamped natural fre­
quencies are determined by two parameters: i.e., the compressional-wave velocity a and the shear-wave 
velocity b. 

In electrical and mechanical systems, the damping ratio can be less than, equal to, or greater than 
unity. With these respective values of the damping ratio, the systems are underdamped, critically damped, or 
overdamped. The elastic system described by Eqs. (3) and (4) is underdamped because Poisson's ratio v for 
elastic solid is limited to the range of values 0 < i< < 1 /2; thus the damping ratio f is restricted to the following 
range of values: 

0< ? = b/a = lix/Q- * 2(01 l n = 1(1 - lv)ll(\ - v)\1/z < I'1'2 . (5) 

The relation between f and v is illustrated in Fig. 2. 

CHARACTERISTIC FREQUENCIES 

The Laplace transform may be replaced by the Fourier transform by letting the real component of 
the complex variable s approach zero so that s -• iai (Gardner and Barnes, pp. 99-107). Then Eq. (3) becomes 

/4M X(ko) I" ./RoA /Ra 2"]-i 

Inspection of the right side of Eq. (6) gives two convenient definitions for a characteristic dimensionless fre­
quency, i.e., Rw/a and Rw/2b. The former was used by Blake (1952), Herbst et al. (1961), Meyer (1964), and 
others. The latter was used by Gurvich (1965) and Rodean (1971). These two dimensionless frequencies have 
equal numerical values if a = 2b, i.e., if Poisson's ratio is equal to 1 ,/3 [see Eq. (5) and Fig. 2]. 
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+ i 

FIG. 1. Poies of the characteristic function [Eq. (3)] and roots of the characteristic equation 
[Eq. (4)], s = (2b/R) { - (lb/a) ± i[l - (b/a) 2]'/*}. Note that the proportions of the sides of the 
right triangles OAB and OA B' are a:b: (a 2 - b1)1'1. 
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It may seem more appropriate to use Rw/a than Ru/2b as the characteristic dimensionless fre­
quency, because compressional waves, not shear waves, are described by solutions of Eq. (1) and its 
transforms, Eqs. (3) and (6). Blake showed that the normalized specific acoustic radiation resistance for a 
spherical compressional wave source in an elastic solid is identical to that in an elastic fluid and that it is a 
function of Roi/a alone, i.e., (oiR/a)2 [1 +(o>R/a)2 ]~'. He also showed that the specific acoustic radiation reac­
tance is reduced to that for a fluid if fi->0, i.e., (a>R/a)[l+((DR/a)2]-'. Blake's solution for the radiation 
resistance illustrates one case in which Roi/a is the appropriate dimensionless frequency; other cases are 
shown later in the discussion of the seismic radiation field, where the appropriate dimensionless frequency is 
Rto/a. Blake's solution for the radiation reactance with n -> 0 shows that Rw/a is more appropriate than 
Ra/2b for analysis of fluid-like elastic solids because b-» 0 as n - .0. However, there are many other cases 
where the use of R«j/2b results in more convenient and compact mathematical relations that more clearly il­
lustrate the physical principles involved. This is because the undamped natural frequency R/2b is a fundamen­
tal :omponent in the roots of the characteristic equation for spherical radiation in an elastic solid [Eq. (4)]. 
Therefore, the reference frequency used in this paper is the characteristic undamped natural frequency: 

O)0 = 2b/R . (7) 

From Eqs. (4), (5), and (7), the characteristic natural frequency is 

cj n = c o 0 ( l - f 2 ) , / 2 . (8) 

Note that the frequency u>n -• UQ as f -»0 (Figs. I and 3), hence OJ0 is called the "undamped natural frequency." 
According to Eq. (8), the natural frequency exists if 0 < i; < 1. This range of values for the damping ratio is 
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0 0.2 0.4 0.6 0.8 1.0 
w n / w 0 and w r /w 0 

FIG. 3. Relations among the natural, resonant, and 
undamped natural frequencies (oin, u r , and OJ0, respec­
tively) as functions of the damping ratio given by 
Eqs. (8) and (12). 

possible for electrical and mechanical systems, but as indicated by Eq. (5), the restrictions on the value for the 
Poisson's ratio limit the damping ratio for the spherical elastic radiation to 0 < j" < 2 - 1 / 2 . Therefore, the 
elastic radiator described by Eqs. (3) and (6) is an underdamped, hence oscillatory, source of compression 
waves. 

Equations (5)-(7) may be combined and the result written in terms of the modulus and argument of a 
complex variable (Papoulis, 1962, p. 7) as 

-(4ji/R 3) lX(ico)/P(ico)] = AD(iw) exp - i0(ico) 

where the modulus or Fourier amplitude 

(9) 

A D < M = | {[l - (w/w Q ) 2 ] 2 + (2f O J / G J 0 ) 2 } - 1 / 2 I , 

and the argument or phase angle 

(10) 

«ko) = tan" 1 {2 f u/co 0 [ l - ( co /u 0 ) 2 ] } . (ID 

As shown by the values of the first and second partial derivatives of Eq. (10) with respect to a, AD(iu>) has a 
minimum value at « = 0 and a maximum value at the resonant frequency (Gille, Pelegrin, and Decaulne 
1959, pp. 99-101) 

W, = GJ0(1 - 2 f Z ) 2>l /2 
(12) 

The resonant frequency exists only if 0 < f < 2"1/*, the limits defined by Eq. (8), as illustrated in Fig. 3. 
At high frequencies, AD(ia)) -• 0, and </>(iu>) -• jr. Therefore, the physical system described by Eqs. (3) 

and (6) acts as a low-pass filter (Gille et al., pp. 103-106; Papoulis, pp. 117-118). There is no standard defini­
tion of the cutoff frequency of a low-pass filter, but one definition is the frequency « c at which the phase angle 
is equal to ir/2 (Gille et al., pp. 103-104) 

(13) 
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TABLE 1. Values of A_(icj) and 0(io>) for several frequencies. 

A D ( iu ) from Eq. (10) 0(iu)from Eq. (11) 

QJ = 

n " o ( 1 

u = 
c 

"o 

[ 2 « 1 - f 2 ) 1 ' 2 ] _ 1 

[2M1 - 3I*/*) 1 , Z ] _ 1 

(2f) _ 1 

( u 0 M 2 -* o 

t u i _ 1 [ ( l - 2 J 2 ) 1 / 2 / f ] 
a n " 1 [ 2 ( l - f 2 ) I / 2 / f ] 
ir/2 

ouT (-2fu)_/a;) — IT 

The definitions of the above characteristic frequencies and corresponding values of A(iu) and <£(ia>) 
from Eqs. (10) and (11), respectively, are given in Table I, together with values of A(iu;) and 0(iu) for a) = 0 
and Hi -> oo. Solutions for A(iw) and (iw) are plotted as functions of U'/WQ and f in Figs. 4 and 5, respectively. 

FIG. 4. Fourier amplitude [Eq. (10)] of the 
transform equation for -(4M/R3)[X(iu)/P(iu)] 
[Eq. (9)] as a function of the frequency ratio u/w0 

with the damping ratio £ as a parameter. The max­
imum value for f is 2~'/ 2 ; 0.1 is a minimum practical 
value. 

a < 

FIG. 5. Phase < .gle [Eq. (11)] of the transform 
equation for -(.->/R3)[X(iu.)/P(iu)] [Eq. (9)] as a 
function of the frequency ratio ID/U 0 with the damping 
ratio f as a parameter. The maximum value for f is 
2-'/*;0.1 is a minimum practical value. 

~i—rrn—i—i i i | i—i I I | i—TTT 

f = 0.1 ~ 

f = 0.1 
J I_LLI I l_LU 

10~2 10" 1 10° 101 10 2 

w/w n 
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CHARACTERISTIC PERIODS AND WAVELENGTHS 
The period T 0 corresponding to the frequency OJQ as defined by Eq. (7) is equal lo the time required 

for a shear wave to travel halfway around the surface of a sphere with radius R: 

T Q = 7rR/b = A 0 /b , (14) 

where Au is the characteristic wavelength of the shear wave. The period T n, corresponding to u.n as defined by 
Eq. (8) and the corresponding wavelength An, are related to TQ and AQ as follows: 

T n = T 0 ( l - r 2 r W 2 , (15) 

An = Afl (1 - J" 2)- 1 ' 2 • (16) 

For f > 0, T n > To, and An > An. With the surface of the spherical cavity in free radial oscillation at the 
natural frequency wn, there is more than sufficient time during each oscillation period T n for communication 
by means of shear waves between all points on the surface. The time T 0 is exactly sufficient for such com­
munication for oscillation at the undamped natural frequency UQ. 

However, none of the above equations describes the propagation of shear waves in any direction; the 
equations in this paper describe different aspects of the generation and propagation of spherically symmetric 
compressional or dilatational waves. The same kind of physical relation—or coincidence—as stated by 
Eq. (14) is given by Eq. (27), which defines a transition in the radial stress field outside the cavity. The 
significance of the relations given by Eq. (14) is discussed further in connection with Eq. (27). 

DAMPING 
The electrical analog of the cavity-elastic-solid system described by Eqs. (3)-(ll) is a resistance-

inductance-capacitance circuit, and its mechanical analog is a dashpot-spring-mass system. The oscillations 
of these electrical and mechancial systems are damped because energy is dissipated in their resistors and 
dashpots, respectively. However, Eqs. (3)-(ll) represent an ideal elastic system without energy dissipation. 
The oscillations are damped because energy is radiated away from the source. It is possible for an electrical or 
a mechanical system to be overdamped (f > 1) or critically damped (f = 1), but the ideal elastic system 
described by Eqs. (3)-(H) is underdamped (0 < f < 2~'/2) because of the restrictions on the value of 
Poisson's ratio (0 < i» < 1/2) as shown by Eq. (5). The damping approaches zero if the ;lastic solid tends to 
become like an elastic fluid (v -» 1/2 with X > 0 and n -»0). The damping approaches the maximum value if 
the elastic solid tends to become very rigid (v -»0 with A > 0 and \/n -»0). 

In anelastic wave propagation, the decay of the wave amplitude as a function of time at a fixed point 
in space has the form exp - ur/2Q, where Q is the specific attenuation or dissipation function (Knopoff, 
1964). From Eqs. (4), (5), and (7), the damping of the cavity-elastic-solid system has the form exp - onf T-
With oi = uiQ, the apparent specific dissipation function for the elastic system described by Eqs. (3)-(l 1) is 

Q=l/2? • (17) 

From Eqs. (10) and (12), the resonance ratio or peak value of magnification (Gille et al., pp. 99-101) 
is approximately equal to Q for small values of f 

V i w > « - « f

/ V ! w ) « - o = i 2 f< 1 -t 3 »" 2 i" 1 • < 1 8 > 
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Gille et al. used the symbol Q for the quantity defined by Eq. (18), but they did not identify Q as the specific 
dissipation factor. They noted that the resonance ratio is greater than unity only if (" < 2"' 2 , as is apparent 
from Eq. (18). Such resonance exists for the elastic system described by Eqs. (3)-(l 1) because 0 < •" < 2 - 1 : 

from Eq. (5). The resonance ratio defined by Eq. (18) and its relation to Q defined by Eq. (17) are plotted as 
functions of f in Fig. 6. 

As noted in connection with Eq. (13), Eqs. (3)-(ll) describe a system that acts as a low-pass filter. 
These equations may be converted into those for a band-pass filter by rewriting them in terms of 3X(T)/8T, the 
"reduced-velocity potential" whose Fourier transform is «:X(iu>). Then Eqs. (9) and (10) may be rewritten as 

/ i c j \ / 4 u \ r x ( M 1 A v ( i0J) exp - i[<p(io)) - 71/2] (19) 

A y(iW) = |(W/CJ0) {[l - ( W / W Q ) 2 ] 2 + (2fo)/O! 0) 2} 2 ) - l / 2 | (20) 

The relation for 0(iu) is given by Eq. (11). The system studied by Gurvich was based on relations for the far-
field displacement for a sinusoidal function of P(T), and his equation for the Fourier amplitude of the far-field 
displacement is similar to Eq. (20). The Fourier amplitude [Eq. (20)] has a maximum value of 1 /2.f at the reso­
nant frequency, <ur = o)0 in this case, and is approximately symmetrical about u = wQ in the Av(iu) vs ^ OJ0 

plane, as shown in Fig. 7. It is also shown in this figure that Av(ia;) is proportional to u.+ I for 0 < u.- < < u.0 

FIG. 6. Apparent specific dissipation function 
Q[Eq. (17)] and the resonance ratio 

AD('<'>)a,= u .r/ A D( i « , )a.=0 
[Eq, (18)]as functions of the damping ratio f. Note 
that the value of the resonance ratio approximates 
that of Q for small values of s". 

o 
II 
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< 

-
1 I I 1 I I 1 
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1 1 1 1 1 1 l) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

FIG. 7. Fourier amplitude [Eq. (20)] of the 
transform equation for 

- ( iu /« 0 ) (4( i/R 3[X(ito)/P(i a >)] 
[Eq. (19)] as a function of the frequency ratio oi/u9 

with the damping ratio f as a parameter. The max­
imum value for f is 2 ' / 2 ; 0.1 is a minimum practical 
value. 

w/w„ 



FIG. 8. Bandwidth Aw/w0 and the apparent specific 
dissipation furuion Q as functions of the damping 
ratio gjvfM; by Eq. (22). 

and to or1 for u 0 << w < ». The dynamic bandwidth of a bandpass filter is the frequency interval Aw be­
tween the two half-power points where Av(iw)/Av(io>L=u,0 = 2" 1/ 2 (Papoulis, p. 159). From Eq. (20), for this 
condition. 

A<o/u0 =11 + 2f2 + 2f(l + f 2 ) 1 ' 2 ) 1 / 2 - |1 + 2?2 - 2f(l + f 2 ) 1 ' 2 ) l n 

(21) 

After squaring both sides, Eq. (21) simplifies to 

Acj/to0 = 2f = 1/Q (22) 

and is related to Eq. (17) as shown. Gur/ich presented the above relation between Aw/u0 and f. The relations 
defined by Eq. (22) are shown in Fig. 8. 

The preceding demonstrates that u 0 and f are very useful parameters for describing the radiation of 
spherical compressional waves from a source in an elastic solid. 

SEISMIC RADIATION FIELD 
In the preceding section the source of the seismic radiation, i.e., a spherical cavity in an elastic solid, 

was the subject of study. In this section the seismic radiation field outside the spherical cavity (r > R) is 
studied. 

CHARACTERISTIC FIELD EQUATIONS 

The Laplace transform of Eq. (1) for the radial stress is similar to Eq. (3) 

©iir(i| s 2 +(a} |s+ 1 . (23) 
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Selberg derived equations for both the radial and tangential stresses. The Laplace transform of an equivalent 
form of his relation for the tangential stress is 

The only displacement in spherical compressional wave motion is radial: 

In Eqs. (23)-(25), X(s) is the driving transform, and o>(r,s), cT,(r,s), and u (r,s) are response transforms. 

TRANSITIONS BETWEEN NEAR AND FAR FIELDS 

The following discussion is similar to portions of Meyer's comprehensive study of the near and far 
fields in elastic and viscoelastic media. Many graphical illustrations of near-field ( r 3 or r 2 ) and far-field ( r 1 ) 
behavior for several physical parameters (stresses, strains, and radial displacement and its time derivatives) are 
given in Figs. 1-3, 6b, 7, 16-18, and 21 of Meyer's paper. Mathematical definitions of the transitions between 
the near and far fields for some of these parameters are given in Eqs. (4.2) and (5.1) of that paper. In this 
paper, additional mathematical definitions of near-to-far-field transitions are given. Equations that appear in 
either the same or equivalent form in Meyer's paper are identified by an asterisk. 

The Fourier transform equivalent of Eq. (23) for the radial stress is similar to Eq. (6): 

For values of rw -» 0, or for the static case with u = 0, the radial stress has relatively large values in only the 

r/R3^5r(r,i0J)1 feu 

[W X(i«) Jru-0~W ' 

For values of rw » R < ^ [see Eq. (7)], the radial stress has significantly large values that extend into the far 

r/R3\Sr(r,if?j - -* /<£ .? 

near field: 

field 

Let the transition between the near and far fields of the radial stress be defined by the condition that the real 
component (the sum of the near- and far-field terms) of Eq. (26) be equal to zero: 

rco = 2b . (27)* 

Note the similarity between Eqs. (7) and (27). The period corresponding to the frequency as defined by 
Eq. (27) is equal to the time required for a shear wave to travel halfway around a sphere defined by the radius 
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marking the transition between the near and far radial-stress fields. Meyer explained the role of the shear-
wave velocity in Eq. (27) as follows: "In the stress.. .transition,. . .the stored elastic energy (prevalent in the 
near field) begins to compare in magnitude with the kinetic energy of the solid. Since no quasi-static 
volumetric energy can be stored elastically in an infinite sphere under internal pressure, this equivalence ex­
presses itself in terms of an elastic shear wave length, even though such waves cannot exist in spherically sym­
metric motions." By analogy, this explanation may also apply to Eqs. (7) and (14). The transitional radial 
stress in the middle field, from F.qv (26) and (27), is 

|-,R3 3(<r,ifcJ) R ^ 

Note that the transitional radial stress is proportional to r~2, intermediate between the relations for the near 
field ( r 3 ) and the far field (r"1). 

The Fourier transform for the tangential stress, from Eqs. (5) and (24), 

Equation (28) has near- and far-field properties similar to those of Eq. (26) that are described above. 
However, the transition between the near and far fields of the tangential stress cannot be defined by the condi­
tion that the real component of Eq. (28) be equal to zero, as is the case with Eq. (26). As an equivalent, let the 
transition between the near and far fields of the tangential stress be defined by the condition in which the ratio 
of the imaginary component (the transitional field) to the real component (the sum of the near- and far-field 
terms) of Eq. (28) is a maximum: 

rcj = 2 b | 2 ( l - 2 f 2 ) r 1 / 2 . (29) 

For the condition defined by Eq. (29), the near- and far-field terms in Eq. (28) are equal in magnitude. 
The maximum shear stress (Jaeger and Cook, 1971, p. 22) is 

From Eqs. (26), (28), and (30), 

In this case the appropriate dimensionless frequency is obviously rw/a, not ru/2b. 
/v. ;n the case of the radial stress, let the transition between the near and far fields of the maximum 

shear stress be defined as the condition in which the real component of Eq. (31) is equal to zero: 

rw = a ( 3 ) 1 / 2 . (32) 

The mean normal stress (or pressure) determines uniform compression or dilatation and is defined 
(Jaeger and Cook, p. 32) as 

"»-i<B, + 2 f f . > - ( 3 3 ) 

The bulk modulus is defined as 

k = \ + 2/1/3 . (34) 
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From Eqs. (26), (28), (33), and (34), 

„3 5 (r,iu>) ,„ ,.2 

« / X(iw) \ » ' 

There is no near field in this ? ; J e because the mean stress varies as r ' everywhere, in contrast to the radial, 
langential, and maximum shear stresses. As for the maximum shear stress, the appropriate dimensionless fre­
quency is rw/a, not rw/2b. 

The Fourier transform for the radial displacement, from Eq. (25), is 

>=-Hf)] 
r 2 t £ 7 = " 1 1 + i m i ' <">" 

This equation is also applicable to the tangential strain u/r. It can be modified to give the transform for the 
radial velocity and radial acceleration, respectively: 

['•# ,'a i"'ry''.-ii»iFii, 07>-
io> X(iu) 

, 2 3 - « ( r , i c o ) / a r - = | j + i | a | m f . 32u(r,ico)/dT2 

w 2 X(icj) 

Lei the transition between the near and far fields of the 

radial displacement [Eq. (36)], 
';>ngenlial strain [Eq. (36)], 
radial velocity [Eq. (371 and 
radial acceleration [Eq. (>S)1 

be defined as the condition in which the real and imaginary components (the near- and far-field terms, respec­
tively) or these equations are equal in value. Then 

«J = a . (39)* 

It is clear that ru/a, not ru/2b, is the appropriate dimensionless frequency for the radial displacement, 
velocity, and acceleration, and Tor the tangential strain. 

The radial strain from Meyer, is 

| S = ! ! + ^ . (40) 
3r r M 

From Eqs. (31), (36), and (40), 

•»(fHfr-< du(r.i03)/Br ?:ll^\_ !"£[ ,.,,4* 
X(ico) 

As in the cases of the radial and maximum shear stresses, let the transition between the near and far fields of 
the radial strain be defined as the condition in which the real component of Eq. (40) is equal to zero: 

r t , - -a(2) 1 / 2 . (42)* 

It is clear that there is no single definition in terms of r<i> for the transition between the near and far 
fields of spherical compressionai-wave radiation. The definitions vary from parameter to parameter. The 
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TABLE 2. Definition* of cruuitioni between n o i ind far fields in spherical comrf esiional-wave radiation. 

Iccm Kq. Value of ru) 

Radial itrew (27) 2b 
Tangential stress <29) 2b[2(l - 2? 2)) ~ " 2 

Maximum shear stress (32) a ( 3 ) , / 2 

Radial strain (42) •<2) 1 / Z 

Radial displacement, velocity, (39) i 
and acceleration! tangential strain 

definitions involve the shear-wave velocity in some cases and the compressional-wave veiucity in others. These 
are summarized in Table 2. 

The moduli of the complex Fourier transforms of the spherical compressional-wave field parameters 
defined by Eqs. (26), (28), (31), (35)-(38), and (41) are presented in dimensionless form in Table 3. These 
moduli are plotted in Figs. 9-14 as functions of r/R with a/uty and f or Rcu/a as parameters. Note that there 
are strong relations between the near field and low frequencies and the far field and high frequencies. Other 
relations, such as those for relative phase in the near and far fields, are given by Meyer. 

TABLE 3. Moduli of Fourier cramformi for spherical compre»ional-wave radiation. These are plotted in Figs. 9-14 
as functions of r/R with cW<Jn and f or R -J/a as parameters. 

Item Eq. Parameter Moduli (absolute values) Fig. 

R 3 o (r.ico) 
Radial C.6) 
itrees 

Tangential 
stress 

Maximum shear 
stress 

Mean normal 

4/i X(iw) 

>3<; 

R 3S„,(r.i") B , n , . , v 2 

ItTBDI 

4/i X(ico) 

R33u(r,i(u)/3r j r , / R \ 3 R/Rcj\2"]2 „ / R \ 4 IRoo\2\ 
< 4 1 > X(ico) U 2 ( " ' ~~{~> J + 4 W {~' f 

tf&M. R[(R\2

 + (WT 
X(iu) 'Vrl \ a / J 

w, R3a! ( r>M/3r itizf-^ff+^f^Y2 

displacement1 X(iu>) 

jt23u(r,itd)/'*-- nT/nvZ /p,.,\2"|l/2 

velocity iu X(iw) 
R23u(r,ifa))/3T Rr/R\Z / R " \ 2 ~ | 1 / 2 

Radial (37) f - - + I 1 14 

R232g(r,iw)/3T2 R ^ R ) 2 / R C J \ 2 1 1 / Z 

Radial 
attenuation U* X(ico) 

1 Also applicable to the tangential strain u/r. 
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FIG. 9. Modulus of the Fourier transform of the radial stress 
[Eq. (26)] as a function of r/R with wjw0 and f as parameters. The 
solution for W/'WQ = 0 is independent of f and is the near-field static-
stress distribution. For u>/w0 = 1, the condition of Eq. (27) is met and 
the modulus of Eq. (26) is exactly equal to the imaginary component. 
Therefore the modulus is directly proportional to f and the stress dis­
tribution is that of the intermediate field. For u>/to0 = 10, the effect of 
J" is negligible and the stress distribution is that of the far field. 
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FIG. 10. Modulus of the Fourier transform of the tangential stress 
[Eq. (28)] as a function of r/R with a/w0 and f as parameters. The 
solution for U/OJ0 = 0 is independent of f and is the near-field static-
stress distribution. For f = 2~>/2 and w/w0 * 0, only the near-field 
and the (imaginary) transitional field contribute to the modulus. 
Hence the intermediate characteristics of the stress field for f = 2" 1/ 2 

and w/a'0 = 1 and 10, with a tendency toward near-field charac­
teristics as r/R -> 1. For f = 0.1, the stress distribution is charac­
teristic of the far field for both a/a>o = 1 and 10, with a tendency 
toward near-field characteristics for w/u>0 = 1 as r/R -» 1. 
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r/R 

FIG. II. Modulus of the Fourier transform of the maximum shear 
stress [Eq. (31)] as a function of r/R with Rai/a as a parameter. The 
solution for Ru/a = 0 is the static near-field stress distribution. For 
Roi/a = 3'/*, the condition of Eq. (32) is met and the modulus of 
Eq. (31) is exactly equal to its imaginary component. Therefore, the 
stress distribution is that of the intermediate field. For Ru/a = 10, 
the stress distribution is that of the far field. 
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FIG. 12. Modulus of £he Fourier transform of the mean normal 
stress [Eq. (35)] as a function of r/R with Ru/a as a parameter. The 
modulus is directly proportional to the square of Rw/a, hence it is 
zero if uj = 0. The stress distribution is that of only the far field. 
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FIG. 13. Modulus of the Fourier transform of the radial strain 
[Eq. (41)] as a function of r/R with Rw/a as a parameter. The solu­
tion for Rw/a = 0 is the static near-field strain distribution. For 
Ra>/a = 2 ' / 2 , the condition of Eq.(42) is met and the module of 
Eq. (41) is exactly equal to its imaginary component. Therefore, the 
strain distribution is that of the intermediate field. For Ru/a = 10, 
the strain distribution is that of the far field. 
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FIG. 14. Modulus of the Fourier transform for the radia! displace­
ment [Eq. (36)], radial velocity [Eq. (37)], and radial acceleration 
[Eq. (38)] as a function of r/R with Ru/a as a parameter. This figure 
is also applicable to the tangential strain u/r. The solution for 
Ru/a = 0 is the static distribution and is applicable only to the radial 
displacement and the tangential strain. For Ru/a = 1, the condition 
of Eq. (39) is met and the real and imaginary components of 
Eqs. (36)-(38) S'e exactly equal to each other. Therefore, th? dis­
placement, velocity, acceleration, and tangential strains have dis­
tributions characteristic of the intermediate field. For Ru/a = 10, the 
distributions ' re characteristic of the far field. 
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TRANSIENT SOLUTIONS FOR SEISMIC-RADIATION 
SOURCE AND FIELD 

Because of the roots [Eq. (4)] of the characteristic equations from Eq. (3) relating the output X(s) to 
the input P(s), the transient solutions for the 

reduced displacement potential [Eq. (3)]; 
stresses [Eqs. (23), (24), (31), and (35)]; 
strains [Eqs. (25), (41)]; 
radial displacement [Eq. (25)]; and 
partial derivatives with respect to time of 

the reduced displacement potential 
and radial displacement; 

ii mde damped sinusoidal functions of the form 

(exp -w 0 ?T) [sin (£Jnr - \|/)1 . 

The parameters f, UJ0, and u:n are defined by Eqs. (5), (7), and (8), respectively. The phase angle \j/ is a function 
of f, ui0, and parameters associated with the input function P(r) and the output functions X(r), aT(r,T), etc. 
(see, for example, the function-transform pairs 1.301-1.376 on pp. 342-345 of Gardner and Barnes). Damped 
sinusoidal transient solutions for some outputs (reduced-displacement potential, displacement, velocity, 
stresses, etc.) have been given by Jeffreys, Kawasumi and Yoshiyama, Blake, Selberg, Rodean, and others. 
Such transient solutions are not repeated in this paper. Instead, a summary of initial and final values of tran­
sient solutions is given. 

The initial- and final-value theorems (Gardner and Barnes, pp. 265-269) yield the following respec­
tive relations between the Laplace transform and the initial and final values of the transient solution: 

lim sF(s) = lim f(T) , 
S-KX> T->0+ 

lim sF(s) = lim f(r) . 
s-»u 7̂ «= 

In the initial-value theorem, T - » 0 + means that r > 0 and that the condition r = 0 is approached from 
positive, not negative, values of T. Initial and final values of seismic-radiation sources and fields are given in 
Table 4, assuming a step change in cavity pressure—a good approximation to an explosion. 

The following are apparent from Table 4 and Figs. 9-14: 

The initial value of the transient solution is related to the high-frequency far-field 
characteristics of the corresponding Fourier transforms. 

The final value of the transient solution is related to the zero-frequency near-field 
characteristics of the corresponding Fourier transforms. 

From Table 4, it is clear that the parameters determining the initial and final values of the 12 listed 
terms are the 

step change in cavity pressure PQ, 
cavity radius R, 
undamped natural frequency of the cavity ui0, 
damping ratio of the medium f, 
shear modulus of the medium ji, 
bulk modulus of the medium k, and the 
radial coordinate r. 
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TABLE 4. Seismic radiation sources and fields for T -» 0+ and T •* °° for a step change in cavity pressure P(s) = P„/s. 

Eqi. Symbol 
Value 

(3), (5), (7) 

(3), <5), (7) 

(3),(5),<7) 

X(T) 

/ i W X ( T ) 

WW 3 T 

/ 1 \ 92X(r) 
^_0 
4H 

19 
4fi 

DIS 

VEL 

ACC 

TSS 

MSS 

(3),<3).(7),(25) 

<3),<5>,<7M25) 

(3), (3), (7), (23) 

<3),(3),<7>,<23) 

(3), (3!, (7). (24) 

(3), (3), (7), (31) 

R 

' i \aU( t,T) 
R a j 3r ( 

/ 1 \3 2 u(r,T) 

crr(r,T) 

f t(r,T) 

P„ 

°„fr.T) 

2Mr 

R 
r 

(1 - 2f 2 )S 
r 

fo/R\2 

4^U/ 

"f Z 

1/R 

MNS 

RSN 

TSN 

<3).<3),(7),(35) 

<»,<»>, <7>,<41> 

<3).(3),(7),(23) 

° m (V) 

JjjB 

Hi££> 
r 

f 2 k R 
4 Hr 

-r *ir - - ( - ) 3 

fo/R^3 

4 j i \ r / 

*HDP, reduced-displacement potential) 
RVP, reduced-velocity potential) 
RAP, redueed-accelerfSlon potential) 
DIS, displaccmenti 

VEL, velocity) 
ACC, acceleration) 
RSS, nuliil nicni 
TSS, tangential im »i 

MSS, maximum shear stress* 
MNS, mean normal stretii 
RSN, radial strain) 
TSN, tangential strain. 
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CONCLUSIONS 
As shown in Fig. 1, the values of the undamped natural frequency, the damping constant, and the 

natural frequency for the damped oscillations of a spherical cavity in an elastic solid are in the ratio 
a:b:(a 2-b 2)'/2 

The undamped natural frequency m0 = 2b/R and the damping ratio f = b/a are the appropriate 
parameters for defining the dynamic characteristics of a spherical cavity as a source of compressional waves in 
an elastic solid. These parameters, u0 and f, are also the appropriate parameters for defining the charac­
teristics of the radial and tangential stresses in the near and far fields. However, Ru/a is the appropriate 
parameter for defining the maximum shear and mean normal stresses in the near and far fields, the radial and 
tangential strains, and the radial displacement, velocity, and acceleration. 

The transitions between the near and far fields are functions of both the radial coordinate and the 
frequency, and are different for the several stresses and strains, and for the radial displacement, velocity, and 
acceleration. 

The solutions for the stresses and strains, and the radial displacement, velocity, and acceleration, are 
high-frequency far-field solutions for T - « 0 + and zero-frequency near-field solutions for T -> <*>. 
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