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ABSTRACT 

Combining the'modern and proven power conversion system of t h e  closed-  
cyc l e  gas  t u r b i n e  (CCGT) wi th  an  advanced high-temperature  gas-cooled 
r e a c t o r  (HTGR) r e s u l t s  i n - a  power p l a n t  w e l l  s u i t e d  t o  p r o j e c t e d  u t i l i t y  
needs i n t o  t h e  21s t  cen tury .  The gas t u r b i n e  HTGR (HTGR-GT) power p l a n t  
b e n e f i t s  a r e  c o n s i s t e n t  wi th  n a t i o n a l  energy g o a l s ,  and t h e  h igh  power 
conversion e f f i c i e n c y  p o t e n t i a l  s a t i s f i e s  i n c r e a s i n g l y  important  r e sou rce  
conserva t ion  demands. .Es tab l i shed  technology bases  f o r  t h e  HTGR-GT a r e  
o u t l i n e d ,  t oge the r  wi th  t h e  ex t ens ive  des ign  aud. development program 
necessary  t o  commercialize t h e  nuc l ea r  CCGT p l a n t  f o r  u t i l i t y  s e r v i c e  i n  
t h e  1990s. This  paper o u t l i n e s . t h e  most r e c e n t  des ign  s t u d i e s  by General 
Atomic f o r  a dry-cooled commercial p l a n t  of 800 t o  1200 MW(e) power, based 
on both non-intercooled and i n t e r c o o l e d  c y c l e s ,  and d i s c u s s e s  va r ious  
primary system a s p e c t s .  D e t a i l s  are given of t h e  r e a c t o r  t u r b i n e  system 
(RTS) and on i n t e g r a t i n g  t h e  major power conversion components i n  t h e  pre- 
s t r e s s e d  conc re t e  r e a c t o r  v e s s e l .  

'work suppor ted  by U.  S .  Department of Energy Contract  DE-AT03-76SF70046. 



INTRODUCTION 

The advan tages  of t h e  g a s  t u r b i n e  high-tempera- 
t u r e  gas-cooled r e a c t o r  e x e m p l i f i e d  many t imes i n  
r e c e n t  y e a r s  (1-4).  c o n s i s t  o f  t h e  fo l lowing :  (1)  
p l a n t  s i m p l i f i c a t i o n ,  ( 2 )  improved economics ,  and 
(3) s i t i n g  f l e x i b i l i t y .  A n  e x t e n s i v e  d e s i g t ~  and 
development program f o r  t h e  HTCR-CT components is 
n e c e s s a r y  t o . c o m m e r c i a l i z e  t h e  p l a n t  f o r  u t i l i t y  
s e r v i c e  i n  t h e  l a s t  decade of t h i s  c e n t u r y .  T h i s  
paper  d i s c u s s e s  d e s i g n  a s p e c t s  o f  t h e  HTGR-GT p l a n t  
i n  i t s  p r e s e n t  c o n c e p t u a l  d e s i g n  s t a g e  and o u t l i n e s  

' 

t h e  e s t a b l i s h e d  t echno logy  b a s e s  f o r  t h i s  new power 
p l a n t  concep t .  The e x i s t e n c e  o f  o p e r a t i n g  exper-  
i e n c e  from bo th  gas-cooled r e a c t o r s  and c losed -cyc le  
gas  t u r b i n e  (CCGT) power conve r s ion  sys t ems  makes t h e  
HTGR-GT p l a n t  a  p o t e n t i a l  commercial r e a l i t y  f o r  t h e  
l a t e  1990s. 

I n  t h e  c u r r e n t  p e r i o d  o f  ene rgy  c o n s c i o u s n e s s ,  
t h e  u t i l i t y  companies a r e  r ev iewing  t h e i r  n u c l e a r  
c a p a c i t y ,  i n c l u d i n g  t h e  impor t an t  e lement  of power 
p l a n t  r a t i n g .  T h i s  pape r  r e p o r t s  on s t u d i e s  b a s e d  on 
d i f f e r i n g  p l a n t  v a r i a n t s  i n  t h e  800 t o  1200 MW(e) 
range.  The m u l t i l o o p  power conve r s ion  sys t em a f f o r d s  
f l e x i b i l i t y  toward f u t u r e  u t i l i t y  needs  and i n c r e a s e s  
p l a n t  a v a i l a b i l i t y ,  s i n c e  o p e r a t i o n  can  b e  s u s t a i n e d  
w i t h  a  l o o p  s h u t  down. ~ e s ' i ~ n  s t u d i e s  f o r  bo th  non- 
i n t e r c o o l e d  and i n t e r c o o l e d  c y c l e s  a r e  underway t o  
maximize p l a n t  c o s t  e f f i c i e n c y  and r e s o u r c e  
ronsc - rva t ion .  

'1 '111.  . e x c e l l e n t  c:o):e~ic~:;rtion c a p a b i l i t i e s  o f  t h c  
II'I'(:K-C;T p l a n t ,  made p o s s i b l e  by t h e  s e n s i b l e  h e a t  
r e j e c t i o n  o f  t h e  CCGT, have been w e l l  documented 
(5-7).  However, i t  i s  t h e  s i t i n g  f l e x i b i l i t y  o f  
dry-cooled p l a n t s  ( cove red  i n  t h i s  r e p o r t )  t h a t  has  
a t t r a c t e d  u t i l i t y  a t t e n t i o n  both  i n  t h e  U.S. and 

Europe. Dry c o o l i n g  r e l i e v e s  p l a n t  l o c a t i o n  from 
b e i n g  t i e d  t o  r i v e r s  and b o d i e s  o f  w a t e r  t h a t  may 
w e l l  have a l r e a d y  r eached  t h e i r  a s s i g n e d  the rma l  e f -  
f l u e n t  c a p a c i t y .  The HTGR-GT p l a n t  a l s o  t a k e s  advan- 
t a g e  of l i m i t e d  c o o l i n g  w a t e r  v i a  w e t l d r y  c o o l i n g .  
For t h e  s i t e s  w i t h  c o o l i n g  w a t e r  i n  t h e  n e x t  c e n t u r y ,  
i t  Is p fu j r cLed  t h a t  bo t toming  c y c l e  c o g e n e r a t i o n  
w i l l  b e  a v a i l a b l e  a s  an  o p t i o n  t o  t h e  u t i l i t y  owner. 

Compliance w i t h  n o n p r o l i f e r a t i o n  g u i d e l i n e s  
and chang ing  and more demanding s a f e t y  c o n s i d e r a t i o n s  
have had i n c r e a s i n g l y  impor t an t  impact  on n u c l e a r  
power p l a n t  d e s i g n .  The HTGR-GT p l a n t  is a d a p t a b l e  
t o  high- ,  medium-, and low-enrichment f u e l  c y c l e s .  . 
T h i s  pape r  o u t l i n e s  power p l a n t  s t u d i e s  based  on t h e  
medium-enriched uranium (MEU) f u e l  c y c l e ,  which a r e  
t h u s  i n  compliance w i t h  t h e  c u r r e n t  U.S. n o n p r o l i f e r -  
a t i o n  g o a l s .  A c o n s e r v a t i v e  d e s i g n  approach h a s  been 
emphasized f o r  t h e  m u l t i l o o p  p l a n t  concep t  t o  p rov ide  
f o r  maximum s a f e t y  and d u r a b i l i t y .  The HTGR is an  
i n h e r e n t l y  s a f e  r e a c t o r  t y p e  by v i r t u e  o f  i ts gra-  
phi te-moderated c o r e ,  s i n g l e - p h a s e  working f l u i d ,  and 
con ta inmen t  of a l l  t h e  n u c l e a r  equipment i n  a pre-  
s t r e s s e d  c o n c r e t e  r e a c t o r  v e s s e l  (PCRV). 

T h i s  pape r  r e p o r t s  o n l y  p a r t  of t h e  r a p i d l y  i n -  
c r e a s i n g  i n t e r n a t i o n a l  e f f o r t s  t o  combine t h e  g a s  
t u r b i n e  and n u c l e a r  energy w i t h i n  t h e  n e x t  two de- 
cades .  The e x t r a o r d i n a r y  r o l e  of t h e  HTGR-GT i n  
mee t ing  i n t e r n a t i o n a l  ene rgy  g o a l s  is s i g n i f i c a n t .  
The s t u d i e s  r e p o r t e d  i n  t h i s  pape r  r e p r e s e n t  an  
impor t an t  s t e p  towards  t h e  s e l e c t i o n  o f  a n  o p t i m i z e d  
HTCR-CT p l a n t  c o n f i g u r a t i o n  f o r  t h e  U.S. commercial 
marke tp l ace .  

BACKGROUND OF HTGR-GT PLANT STUDIES 

As HTGR-GT p l a n t  d e s i g n  s t u d i e s  have p r o g r e s s e d  
( s i n c e  i n i t i a t i o n  i n  1972). t h e  thermodynamic c y c l e  
and p l a n t  c o n f i g u r a t i o n  have evo lved  from i n v e s t i -  
g a t i o n s  o f  t h e  b e s t  means t o  s a t i s f y  t h e  v a r i o u s  per-  
formance,  economic, s a f e t y ,  and o p e r a t i o n a l  g o a l s .  
Many p a p e r s  have been p u b l i s h e d  i n  t h e  open l i t e r a -  
t u r e  i n  t h e  l a s t  seven y e a r s :  a summary  of t h e  d e s i g n  
e v o l u t i o n  is g iven  i n  Re f .  (8). During t h i s  p e r i o d ,  
e x t e r n a l  a s s e s s m e n t s  o f  t h e  HTGR-GT p l a n t  have  been 



c a r r i e d  ou t  by t h e  government and by s p e c i a l i s t  con- 
s u l t  i n g  companies. From t h e  t e c h n i c a l  and economic 
s t a n d p o i n t s ,  t h e s e  reviews have been f a v o r a b l e ,  a s  
exempl i f i ed  by t h e  most r e c e n t  assessment  done by NUS 
Corporat ion under c o n t r a c t  from E l e c t r i c  Power 
Research I n s t i t u t e  (EPRI) ( 9 ) .  

An e x t e n s i v e  pruyram of d e s i g n ,  dcvclopment, 
and t e s t i n g  on t h e  n u c l e a r  gas  t u r b i n e  p l a n t  is nec- 
e s s a r y  t o  ach ieve  performance and s t r u c t u r a l  i n t e g -  
r i t y  and t o  q u a l i t y  the  equipment f o r  n u c l e a r  power 
g e n e r a t i o n .  Th is  program is a main p a r t  of an i n t e r -  
n a t i o n a l  c o o p e r a t i v e  program c u r r e n t l y  underway. A 
d ia logue  has  been i n  e f f e c t  f o r  s e v e r a l  y e a r s  between 
t h e  U.S. program (General  Atomic) and t h e  European 
High Temperature Helium Turbine (HHT P r o j e c t )  p a r t -  
ne.rs. T h i s  e f f o r t  i n t e n s i f i e d  i n  1977-78 r e l a t i v e  
t o  t h e  d e f i n i t i o n  of a  European-si ted demonstrat ion 
p l a n t .  Such a  demonstrat ion p l a n t  i s  cons idered  an 
a t t r a c t i v e  npproach t o  c r e a t i n g  the necessa ry  tech-  
n i c a l  b a s e  from which f o l l o w o n  commercial p l a n t s  
could be  engineered w i t h  a  h i g h  degree  of commonality 
f o r  both 60 Hz United S t a t e s  and 50 Hz European power 
systems.  

F ig . l  Demonstration-commercial p l a n t  r e l a t i o n s h i p s  

F igure  1 p r e s e n t s  q u a l i t a t i v e l y  t h e  r e l a t i o n s  
between t h e  U.S. p l a n t  s t u d i e s ,  t h e  European (HHT) 
demonstrat ion p r o j e c t ,  and p o s s i b l e  U.S. and European 
follow-on commercial p l a n t s .  I n i t i a l  d e t a i l s  of t h e  
HHT demonstrat ion p l a n t  concept have been d i s c u s s e d  
p rev ious ly  (10) .  The main f e a t u r e s  of t h e  demonstra- 
t i o n  p l a n t  w i l l  be f i n a l i z e d  i n  l a t e  1979, and an 
e x t e n s i v e  i n t e r n a t i o n a l  e f f o r t  w i l l  be i n i t i a t e d  t o  
meet t h e  goa l  of demonstrat ion p l a n t  o p e r a t i o n  by 
about  1990. It is  recognized t h a t  complete des ign  
convergence between t h e  U.S. and European p l a n t  v a r i -  
ants is  nut  p o s s i b l e  because of (1)  t h e  fundamental 
i r equency  d , i f fe rence ,  (2)  d i f f e r i n g  codes and s tan-  
d a r d s ,  and (3) d i f f e r e n t  s a f e t y  and l i c e n s i n g  c r i -  
t e r i a .  I t  is f u r t h e r  recognized,  however. t h a t  com- 

. monal i ty  i n  t h e  main f e a t u r e s  of t h e  p1ants;together 
wi th  a  s t r o n g  technology exchange e f f u r c ,  would bc 0 

. 

move i n  t h e  d i r e c t i o n  o f  minimizing o v e r a l l  c o s t  and 
lowering development r i s k s ,  by u t i l i z i n g  worldwide 
technology.  

Work on t h e  HTGR-GT p l a n t  over  t h e  l a s t  few 
y e a r s  has  been suppor ted  by t h e  U.S. Department of 
Energy and a  group of e l e c t r i c a l  u t i l i t i e s .  w i t h  
p a r t i c i p a t i o n  by i n d u s t r i a l  companies. A key element 
i n  t h e  fo rmula t ion  of  a  new power p l a n t  concept is 
p a r t i c i p a t i o n  by u t i l i t y  o r g a n i z a t i o n s  r i g h t  from t h e  
o n s e t .  and indeed ,  such a  rappor t  has  been i n  ex i s -  
t e n c e  on t h e  IITGR-GT program s i n c e  1972. With t h e  
formation of  t h e  Gas Cooled Reactor  A s s o c i a t e s  
(GCRA), t h e  u t i l i t y  i n p u t s  t o  p l a n t  des ign  a r e  now 
more formalized.  With r e g u l a r  meet ings of t h e  GCRA 
Technica l  Advisory Committee (TAC), t h e  u t i l i t y  
d i r e c t i v e s  can be f a c t o r e d  i n t o  t h e  p l a n t  des ign  on 
an on-going b a s i s  r i g h t  from t h e  conceptual  des ign  
s t a g e .  

U n t i l  r e c e n t l y ,  work i n  t h e  U.S. a t  General  
Atomic had been d i r e c t e d  towards t h e  des ign .  perfor-  
mance, and economic assessment  of a  HTGR-GT p l a n t  i n  
t h e  1200-MW(e) c l a s s  wi th  c a p a b i l i t y  of  b e i n g  adapted 
t o  bo th  s m a l l e r  and l a r g e r  u n i t s .  A 1200-MW(e) r e f -  
e r e n c e  p l a n t  e s t a b l i s h e d  i n  1977-78, based on a  non- 
i n t e r c o o l e d  c y c l e  and embodying t h r e e  power conver- 
s i o n  loops  (PCLs), has  been desc r ibed  p rev ious ly  (1 1). 

Over t h e  l a s t  few y e a r s ,  p l a n t  l ayou t  s t u d i e s  
have been done f o r  a  wide range of power l e v e l s .  
These s t u d i e s  have c o n s i s t e d  e s s e n t i a l l y  of va ry ing  
t h e  number of PCLs, s i z i n g  t h e  major components. 
e v a l u a t i n g  t h e  impact of component o r i e n t a t i o n  on 
PCRV d iamete r ,  computing p l a n t  e f f i c i e n c y ,  and e s t i -  
mating c o s t s  ( c a p i t a l  and power g e n e r a t i n g  c o s t s ) .  
The range of p l a n t s  s t u d i e d  i n  a  concep tua l  manner 
and t h e  impact on PCRV diameter  (which is regarded 
a s  a m j u r  c a p i t a l  c o s t  i n d i c a t o r )  a r e  shown nn 
Fig.  2 .  
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The technology resources from which the  APGR-GT 
p lan t  can draw a re  formidable and a r e  b r i e f ly  out- 
l ined i n  t h i e  secCion. The necessary technologies 
stem from severa l  sources, a s  shown i n  Fig. 3, and 
when combined, form the  bases from which a successful  
nuclear gas turbine p l an t  can be designed, developed, 
and introduced i n t o  u t i l i t y  service  with a high de- 
gree of confidence t h a t  t he  performance, economic, 
safety,  and r e l i a b i l i t y  goals w i l l  be realized.  

From the reactor  standpoint, there  i s  extensive 
operating experience f o r  gas-cooled reactors ,  and i n  
par t icular ,  f o r  the  helium-cooled high temperature 
reactor. Valuable pioneering experienqe from the  
experimental high temperature reactors  i n  the United 
Kingdom (Dragon Projec t )  , in the  U. S. (URTREX) , and 
i n  t he  Federal Republic of Germany (AVR) formed the  
bas is  f o r  the  f i r s t  HTGRs entering commercial 
service:  the Peach Bottom and Fort  St. Vrain reac- 
t o r s  in the U.S. and ( in  the near future) the  THTR 
plant i n  Germany. These HTGRs, while based on a 
steam-cycle power conversion system, provide valuable 
u t i l i t y  operating experience input t o  the HTGR-GT 
program. 

While the  CCGT i s  not well known i n  t he  U.S., it 
bas demonstrated very high h e 1  u t i l i z a t i o n  ef f ic ien-  
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c i e s  and a high degree of r e l i a b i l i t y  i n  t he  various 
European plants.  Since operation of the pioneer 
p lant  i n  1939, the 4 0  years of experience have sub- 
s t an t i a t ed  the  claim t h a t  t h i s  prime-mover technology 
is wel l  established (12). With the  helium turbo- 
machine i t s e l f  being the  s ingular ly  most important 
PCL component from t h e  development standpoint,  the  
app l i cab i l i t y  of es tabl ished technologies from 
(1) European CCGT plants ,  (2) helium t e s t  f ac i l -  
i t i e s ,  (3) APGR components and steam-cycle p l an t  
operating experience, and (4) advanced open-cycle 
i n d u s t r i a l  gas turbines  a r e  recognized. The in- 
d u s t r i a l  technology bases from which the turbo- 
machine can benef i t  a r e  sham on Fig. 4, which i l l u s -  
t r a t e s  ex i s t i ng  hardware. The emphasis here  r e l a t e s  
t o  the avai lable  comprehensive world-wide resources, 
which i f  u t i l i z e d  on an in ternat ional  cooperative 
bas is ,  w i l l  make near-term introduction of the nuclear 
gas-turbine p lant  a r ea l i t y .  

An important helium turbine  p lant  i s  the foss i l -  
f i r e d  50 MW(e) Oberhausen 2 un i t  which was b u i l t  by 
Energieversorgung Oberhausen AG (EVO) i n  t he  Federal 
Rephblic of Germany. Many repor ts  and papers have 
been wri t ten  describing the  EVO plant construction 
and operation (13-15). In addi t ion  t o  providing elec- 
t r i c a l  power [50 MW(e)] and d i s t r i c t  heating 
[54  MW(t)], t he  t e s t s  car r ied  out  on the EVO plant  a r e  
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Fig.4 Technology bases f o r  nuclear closed-cycle helium turbomachine 

intended t o  supply information ( fo r  the nuclear gas- 
turbine program) on the  dynamics of the  overa l l  p lant  
and on the long-term behavior of spec i f i c  components. 
Another important p lant  is the  high temperature helium 
tes t . . fac i l i ty  (M1V) a t  the Kernforschungsanlage (KFA) 
i n  Julich. The operation of t h i s  helium t e s t  p lant  
represents a cen t r a l  t e s t  within the  European HHT 
project .  By t h i s  program, e s sen t i a l  cha rac t e r i s t i c s  
of the  turbomachine a re  t o  be 'verified. Furthermore, 
t h i s  p lant  serves f o r  t e s t s  of prototype components 
f o r  the  HHT demonstration plant. A f u l l  account is 
given i n  Ref. (16) of the  ro l e s  of the EVO plant  and 
HHV test f a c i l i t y  i n  the  development of the  European 
HBT project .  

Emphasis of the formidable technology bases f o r  
the HTGR-GT plant  has been made i n  t h i s  sec t ion  of the  
paper, because t h i s  adds c r e d i b i l i t y  t o  the claim t h a t  
a new power p lant  type such a s  the  HTGR-GT, while now 
only i n  the  conceptual design s tage ,  could become a 
commercial r e a l i t y  f o r  u t i l i t y  service  by the year 
ZUUU. 

THERMODYNAMIC CYCLE(S) AND PERFORMANCE 

A deta i led  account of t he  systems-related 
s tud ie s  leading t o  t he  se lec t ion  of an optimized s e t  
of cycle parameters is reported i n  a separa te  paper 
(17), so only a b r i e f  summary of t he  impact these 
have on p lant  layout and design w i l l  be covered here. 
In  the  HTGR-GT plant  s tudies  done over the l a s t  few 
years by General Atomic, there  has been a s t rong 
motivation t o  use t h e  non-intercooled cycle f o r  the  
following reasons: (1) p lant  s impl ic i ty  i n  both 
turbomachine and primary system and (2) high r e j e c t  
temperature f o r  economical dry cooling and optional 
bottoming cycle. In Europe, on the  o thet  hand, t he  
intercooled cycle has always been favored because 

(1) it has higher ef f ic iency,  (2) the  r e j e c t  water 
temperature i s  well  su i ted  t o  d i s t r i c t  heating,  and 
(3) there  i s  a carry-over from the European foss i l -  
f i r e d  CCGT plants ,  which have a l l  been intercooled. 

In any compression process involving a multi- 
s tage  system, cooling between the s tages  reduces the 
compression work, and i n  the  case of the CCGT, the  
p lant  ef f ic iency is increased by v i r tue  of t he  higher 
ne t  turbine  output. On a purely thermodynamic bas is ,  
an increase of about 3 percentage points can be com- 
puted f o r  the intercooled cycle. When the  addi t ional  
pressure l o s se s  i n  the  in tercooler  and in  the  more 
complex ducting arrangement a r e  taken i n t o  account, 
t he  gain i n  ef f ic iency is  reduced t o  about 2 percent- 
age points.  Nevertheless, such a gain over the  40- 
year operating l i f e  of the p lant  has s ign i f i can t  
economic implications,  and hence, t he  current  study 
of p lant  designs is based on both intercooled and 
non-intercooled cycles. Some of t he  major fac tors  
involved i n  t he  i ssue  of in tercool ing  versus non- 
in tercool ing  a r e  outl ined on Table 1. 

As mentioned previously, e f f o r t s  a r e  underway 
f o r  both p lant  var iants  t o  s e l ec t  t h e  cycle param- 
e t e r s  f o r  minimum power generating cost. For the  
purpose of component s i z ing  and plant  configuration 
layout s tudies ,  it was necessary t o  e s t ab l i sh  ear ly  
comparative cycle data. The t en t a t ive  values used 
a r e  shown on Table 2 ,  and these data  a r e  f e l t  t o  be 
very representa t ive  f o r  design purposes. The key 
di f ferences  between the  two cycles a r e  shown on the  
loop diagram f o r  the non-intercooled p lant  (Fig. 5) 
and on t h e  flowpath diagram f o r  t he  intercooled 
var iant  (Fig. 6). 

An important parameter influencing t h e  e f f i -  
ciency of the  closed-cycle plant i s  the  turbine  
i n l e t  temperature. For the  power p lant  s tud ie s  out- 
l ined i n  t h i s  paper, a turbine i n l e t  temperature of 
850°C has been assumed. This temperature is modest 



TABLE 1 
MAJOR FACTORS RELATING TO TW ISSUE OF INTERCOOLIUG 

yon-intercooled Plant 
1. Simpler turbomachine (shorter rotor,  less duct 

coniec tions) 
2. Simpler gas flow paths and primary system 

layout 
3, Less complex system implies improved ava i l ab i l i ty  

and r e l i a b i l i t y  
4. High re jec t  tenperature well  sui ted fo r  cogenera- 

t i o n  Li.e., binary aycle, process steam, d i e t r i f t  
heating, eta. 1 

5. Reduced plant construction tim (simpler PCRV) 
6. Reduced complexity and r i s k  

Intercooled Plant 
1. Increased cycle thermodynamic efficiency 
2. Reduced helium mass flow ra te  (i.e., smaller 

components) 
3. Source of cooler high-pressure gas available f o r  

cavity l i n e r  cooling 
4. Reduced core i n l e t  gas temperature 
5. Possible use of additional water-to-helium heat 

exchanger (intercooler) for  decay heat removal 
6. Heat re ject ion s p l i t  between two water-to-helium 

exchangers (precooler and intercooler) r e su l t s  i n  
smaller u n i t  assemblies 

7. Ut i l izat ion of European exuerience f r m  the small 
fossil-fired CCGTe 

8. Water ou t l e t  temperature well sui ted f o r  d i s t r i c t  
heating 

9. Addit%o~.I. maintenance requirements 
10. Increased plant cap i t a l  cost 
11. Additional potent ia l  source of water ingress t o  

primo_ry system 

TABLE 2 
ItTGR-GT CYCLE DATA USED I N  PLMFT COWPIDUBATION 

COMPARISON STUDIES 

Fig.5 Loop cycle diagram f o r  non-intercooled dry- 
cooled RTGR-GT power plant 

Fig.6 F l w  path diagram f o r  two-loop intercoolad 
li'P3R-m plant  Intercooled 
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compared t o  that fo r  most industr ia l  gas turbine 
practioe (18); it is below the level  where turbine 
blade coolins is necessary, and it f a c i l i t a t e s  
u t i l i za t ion  of an exis t ing nickel-base a l loy which 
is used extensively in  industr ia l  gas turbines. The 
impaet o t  turbine inlet temperature, together vrlth 
other important parameters, is shown on Fig. 7 fo r  a 
non-intercooled cycle. Projected operating regimes 
fo r  various CGGT plant  applications a re  shown on 
t h i s  plot.  It is clear  from Fig. 7 that  the C W  
of fe r s  s ignif icant  potent ia l  fo r  high l eve l s  of plant 
efficiency when dry cooled. 
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PUNT C ~ I C U l U T I O N  STUDIES 

Three-Lwn. 1200-W(e) Non-Intercooled Plant Concept 
A s  ureviously mentioned, t h i s  1200-MW(e) plant 

variant h;ls recei& the most design at tent ion in 
recent years, and i n  r e m s  of performance and cost ,  
forms the base case for  comparison with other plant 
concepts. An isomettic view given on Pig. 8 shows 
the major elements of the power conversion system 
integrated inside the PCRV. The compact nature of 
the ins ta l l a t ion  is shown on the plan view of the 
PCBV (Fig. 9). &a O ~ V ~ O U S  goal in  a l l  plant design 
and layout studies i s  the minimization of the PCRV 
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Pig.7 Representarive cycle parameter array f o r  non- 
intercooled BTGR-GT plant 
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Fig.8 Intagrated HTGR-GT plant  based on 3 PCLs and 
non-intercooled cycle 

diameter because of its economic impact. The arrange- 
ment shown on Fig. 9 has the following main features: 
(1) centraliaed core cavity, (2) de1t.a or ienta t ion of 
the  three turbamaohines, and (3) reeuperator and pre- 
cooler positioned over the turbomachine cavity. This 
arrangerrent represents a very good u t i l i za t ion  of 
space within the  reactor vessel,  and i n  fact ,  s a t i s -  
f i e s  the economic goal of PCRV diameter minimization. 

Fig.9 PCBV plan v i w  f o r  3 x 400-MW(a) non- 
intercooled HTGa-GZ plant 

The d e l t a  or ienta t ion of the PCLa, as shown on Pig. 9, 
is well  sui ted t o  the non-intercooled cycle. Incor- 
poration of in tercoolers  is not a t t r ac t ive  in  t h i s  
three-loop arrangeeent, s ince  they must be positioned 
rad ia l ly  outvards from the turbomachine cavity,  and 
t h i s  r e s u l t s  i n  an uaacceptabby large increase iiId 
PCRV diameter. As  w i l l  be outlined in the  following 
sections,  evaluation of the  intercooled cycle is being 
done for  two-loop plant  variants.  

Two-Loop, 12MbMW(e) Intercooled Plant Concepts 
The w t i v a t i b n s  fo r  the study of a two-loop 

plant  included the  following: (1) potent ia l  capi ta l  
cost  reduction, (2) f l e x i b i l i t y  i n  power range, (3) 
adaptabi l i ty  t o  inrercooling, (4) -imiaation of 
Lr~ l~u lc r r l  luLrrclmt~ge becWs%Y~ U.S. md European pro- 
grams, and (5) simplified turbomachine maintenance. 
Accordingly, s tudies  i n  the l a s t  year have invol-md 
the  conceptual design and layout of two-loop plant  
var iants  based on both intercooled and nm-intercooled 
cycles. 

A representative layout of a two-loop intercooled 
plant  is shown on the PCRV plan view given on Pig, 10. 
While s tudies  have been performed fo r  PCL r a t ings  of 
400, 500, and 600 W(e), the mab featwres of the 
plant  a r e  e s sen t i a l ly  the  same, and the view shown on 
Pig. 10 fo r  a 2 x 600 MWie) concept can be considered 
representative. Again, a s  i n  previous s tudies ,  ef- 
f o r t s  were expemded t o  minimize the diameter of the 
PCRV, and t h b  w a s  rSchieved by a combination of the 
following: (1) o f f se t t ing  the core cavity, (2) 
chordal posittoning of rhe two horizontal turbomachine 
cavi t ies ,  (3) positioning the recuperator and pre- 
cooler over the turbomachine cavity,  and (4) estab- 
l i sh ing  simplified gas flow paths within the  primary 
system. Layout s tudles  led to  the positioning of the 
two intercoolers  and three decay heat removal systems, 
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Fig.10 PCRV plan view fo r  2 x 600-W(e) intercooled 
HTGR-GT plant 

a s  shown on Fig. 10, t o  give an acceptable arrangement 
from tbe standpoints of gas flow paths and PCRV Struc- 
t u r a l  considerations. It is recognized that  with more 
in-depth studies the positioning of the major compo- 
nents within the vessel (and the angle of the turbo- 
machine cavi t ies)  may change; however, the general 
arrangemnt shown on Fig. 10 is regarded as the opti- 
mum fo r  a two-loop intercooled plant. The elevation 
view through the PCBV on Fig. 11 shows the s iaple  gas 
flow paths between the turbomachine and the heat 
ezchangers ( i t  should be noted t h a t  the intercooler is 
not shovn in t h i s  par t icular  sectional view). The gas 
flow paths t o  and from the reactor care  cavity are  
shown on Fig. 12. Also shown on t h i s  figure is a sec- 
t ion through the core auxiliary cooling system (CACS), 
and the gas flow pathe t o  and from the core cavity and 
i n  the heat exchanger and ci rculator  can be c lear ly  
seen. 

'£wo-toop Non-I~tercwled Plant Coa~entq 
A s  par t  ~f the  study to  compare the designs, 

economics, performance, and ava i l ab i l i ty  of in ter-  
cooled versus non-intercooled plants,  a layout study 
was performed t o  ident i fy  the main features of a two- 
loop non-intercooled p l a t  variant. 

A representative layout of a two-loop non- 
intercooled plant is shown on the PCRV plan v i e w  glven 
on Fig. 13. While studies have been performed f o r  P a  
ratings of 400, 500, and 600 MW(e), the main features 
of the plant are  essent ia l ly  the same, 8nd the view 
shorn on fig. 13 fo r  il 2 a 500 W(s) concept can be 
considered representative. Several layout var iants  
were developed fo r  the  non-intercooled plant,  and the 
one shown on Fig. 13 has the following characteri$tica: 
(1) o ~ ~ t r a l i z a d  cam cavity, (2) r.hordal t~rbomachine 
cavity o t iwta t ion ,  and (3) recuperator and precooler 
positioned over the turbomachine cavity. The p o s t  
t ioniag of the three CACS uni ts  ( in  a di f ferent  ori-  
entation from the aforementioned intercooled variant) 
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Fig.11 V i e w  through PCI. fo r  two-loop HTGR-GT plant 
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Fig.12 Elevation through PCRV showing core cavfty 
and decay heat removal system 
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Fig.13 Plan view of PCRV f o r  2 x 500-We) non- 
intercooled HTGR-GT plant 

is conducive t o  good gas flow paths, PCRV s t ruc tu ra l  
considerations, and minimization of the  vessel diam- 
e ter .  The main character is t ics  of the elevation views 
through the PCRV (shown previously fo r  the  intercooled 
var iant  on Figs. 11 and 12) a r e  near ident ical  for  the  
two-loop non-intercooled plant. 

Summarv of P l w t  Layout St- 
Two major decisions i n  the  Xi'fGR-GT program 

w i l l  be made i n  1979: (1) the power plant rating. 
and (2) the  issue of intercooling versus nan- 
intercooling. A s  w i l l  be mentioned i n  the follow- 
ing sections,  a &cision has been made t o  proceed 
with a plant  embodying two PCLs. The plant layout 
s tudies  presented i n  t h i s  paper a r e  i n  rupport of 
the  overal l  evqluation that  w i l l  lead t o  the se- 
lec t ion of a nerv reference planc concept. 

A s  shown on Big. 2, design s tudies  have been 
performed fo r  a wide range of p lant  variants. tlow- 
ever, the  most recent work done (and reported i n  t h i s  
paper) has centered on (1) two- and three-loop con- 
cepts,  and (2) PCL ra t ings  of 400, 500, and 600 W e ) .  
A summary of the s a l i e n t  features  of some of the  
plant  concepts studied is given on Table 3. The w i n  
disadvantages of t h e  three-loop plant  a re  (1) inflex- 
i b i l i t y  of power rating'[i.e., i t  is  be t t e r  sui ted t o  
plants  of 1200 MW(e) and higher], (2) not a t t r a c t i v e  
a s  an intercooled var iant  (i.e., complex gas flow 
paths and large PCRV diameter), (3) high cap i t a l  cost  
associated with the large  number of components, and 
(4) an operational problem e x i s t s  i n  tha t  the genera- 
tor  must b e  moved before a turbomachine can be 
replaced. 

From Table 3 and the  layout concepts presented, 
it can be observed that  the  two-loop plant o f fe r s  a 
simplified PCRV arrangement and has r a t ing  f l e x i b i l i t y  

i n  the range of 800 t o  1200 W(e).  It is a l so  signi- 
f i can t  t h a t  an in tercooler  can be embodied without a 
major impact on PCRV diameter. The motivations fo r  
u t i l i z a t i o n  of a two-loop plant  layout concept a r e  
given on Table 4. 

COMPONENT DESIGN CONSIDERATZONS 

It is  not the  purpose of t h i s  paper t o  describe 
i n  d e t a i l  the  design conaiderations fo r  the  mej~r 
components of the  HTGR-GT plant ,  s ince  a s  noted below, 
these have been reported previously. However, f o r  an 
integrated plant ,  the PCL components Cannot be t reated 
a s  isola ted uni ts ,  and iudeed, t h e i r  design and the  
resolution of the  interconnecting gaa flow path geom- 
e t r i e s  must be considered during the  establishment of 
the plant  primary system configurations. During the  
aforementioned primary system design s tudies ,  exten- 
s i v e  layout work was done t o  ident i fy  the  most 
a t t r a c t i v e  ine ta l l a t ion  and or ienta t ion of the  major 
components. The main PCL counponents which have a 
strong influence on the  primary system design a r e  the 
turbomachine and the  heat exchangers, and br ief  
descriptions of these a r e  given below. 

Hellurn Turbomachine 
'Ke most recent turbomachinery design work for  

the HTGR-GT power plant has been done by the Power 
Systems Division and P r a t t  and Whitney Aircraf t  Pivi- 
aion of United Technologies Corporation (UTC). Gen- 
e r a l  Elect r ic  and Brown Boveri Company were e a r l i e r  
par t ic ipants  i n  the  RTGR-GT program. Since d e t a i l s  
of the  helium turbomachine have been described pre- 
viously (18-Zl), only a very b r i e f  summary w i l l  be 
given i n  t h i s  paper. 

I n  support of the plant configuration studies,  
turbomachine conceptual designs were d ~ n e  fo r  machines 
in the  600, 500, and 600 M e )  power c lasses  for  both 
intercooled and non-intercooled types. To span the  
above pomr range and t o  i l l u s t r a t e  the difference 
between the  machine types, only the  400 W(e)  (non- 
intercooled) and 600 PIWle) (intercooled) var iants  
wi l l  be addressed in t h i s  paper. Details.of the  400 
and 600 W(e) turbomachines a re  shown on F i e .  14 and 
15, respectively, and the  s a l i e n t  features  a r e  sum- 
marized on Table 5. A s  w i l l  be discussed below, the 
two machines embody s i m i l a r  fea tures  i n  many areas. 
The design andperfomance predictions for  these 
machines r e f l e c t  the influence of technology from a 
demonstrated advanced technology indus t r i a l  gas tur- 
bine i n  the  70 t o  100 MW(e) power s i z e  (22). 

An extremely simple arrangement consisting of a 
single-shaft direct-drive arrangement was chosen for  
beth machinear The uao of n tua bear ins  ro te r ,  
f e a s i b i l i t y  pf which has been confirmed by ro to r  
dynamic analyses t o  ensure adequate c r i t i c a l  speed 
margin, maintained the  smallest  number of individual 
pa r t s  and tended t o  minimize the  overal l  cost  of the  
machine, and t o  ease inspection and maintenance 
requirements. 

Aerothermodynamic analysls  showed that f o r  both 
the 400 and 600 bRJ(e) machines a s ing le  turbine i n l e t  
duct (from the  reactor) could be u t i l i zed ,  and the  
pressure losses  and flow i n l e t  geometry t o  the tur- 
bine bladed sect ion were sa t is factory,  In the  plant  
layout studies,  i t  was found tha t  a key element (from 
the standpoint of effect ive  PCRV volume u t i l i za t ion)  
is the  embodiment of a turbomachine with a s ingle  
turbine i n l e t  duct. For machine s i z e s  above 7WO W(e),  
s tudies  have shown the  need fo r  two turbine i n l e t  
ducts; fo r  a p lant  embodying two such gas turbines, 
the  gas flow paths a r e  unduly complex, and the  PCRV 
diameter is excessive. 



TABLE 3 
COWPARISON 0F.HTGR-GT PLBWT CONCEPTUAL DESIGNS 

1 .  Efficient PCRV design of small dia5?ter strongly impacts cost. 
2. S-lified *..el (tendon layout e a d  in bottom head). 
3. htereool ing can be u t i l i zed  with no r j o r  impact on PCRV a im.  
0. &intercooled eff ic iency o f  40%. and intercooled value of 42% 

Loop Rating, 
(W(e) 

Thermodynamic 
cycle 

No. of loops 
Plant output, 

We1 
Plant e f f i -  

ciency. % 
Core ra t ing,  

W ( t )  
Plant  type 
Heat r e j ec t ion  
Liner type 
Core type 
Fuel type 
Fuel cycle,  yr  
Core power den- 

s i t y ,  w/cm3 
Core posi t ion 
Turbomachine 
posi t ion 

No. of recupera- 
t o r s  

' No. of in ter -  
coolers 

No. of 
precoolers 

No. of major 
cav i t i e s  

PCRV diam, m 
PCRV height, m 
No. o t  WCS hits 
Design s t a t u s  

possible. 
5. Shpl i f i ed  gas f l w  paths within PCRV (pressure lase 1 12%). 
6. Ease of maintenanre, since generator does not haw to be moved 

to replace the turboaulchine. 
7. Seare machine approacb by u t i l i t y  group/or$anization ensurea 

high plant avai labi l i ty .  
8. Plant operation on one loop eonsidered pomsible (ibpacc on gvgL1- 

OuiliCy a d  heat supply). 
9. Flexibility In pmer range advantage for differea: u t i l i t i e s .  

10. G w w t h  p a t e a t i d  poaeible from conservatively d e s i d  pwer 
COUVerSiOU rpUiPmt.  

11. Mais laop cool-dmm perhaps eased by dupliwtion of turbomachinee. 
12. Capero id  pt&t CM be replicated f m a  tba f i r s t - q h - k i n d  plant. 
13. No seal ing from d w  to ~ommre ia l  plane qQaessary. 
16. Reduced daveloprnt riek and crmt. 
15. S w l i f i e d  e l ec tr i ca l  system sfnce a i l  of tlie high vattaf 

coM8eStws a m  a t  oae e d  of the p law,  

The 400-MW(e1 non-intercooled machine (Fig. 14) 
has 18 comjwessor s tages  and e ight  turbine stages. In 
the 660-W(e) machine (Fig. 15), i n t e r c o o l b e  neces- 
s i t a t e s  s p l i t t i n g  the compressor krae 2 efght-atape 
sections,  aad a high-efficiency nine-ptage turbine  10 
ut i l ized.  For both machines, the r o t o r s  a re  of welded 
construction. Welded r o t o r s  have a long successful 
h is tory  i n  Europe f o r  both gas and steam tugbines. 
The s t r e s s  Levels i n  the  turbine blades are  commensur- 
a t e  with a l i f e  of 280,000 h (i.e., 40 years a t  80% 
capacity factor).  For the turbine i n l e t  temperature 
of 850°C, blade cooling is not necessary, and an 

existing=nlckel-base a l loy  (IN-loo), wNch has been 
wed  extensively in open-cycle indus t r i a l  gas tur- 
bines, was se lec ted f o r  the  turbine blading. 

The casing diameter for  both machines is 4.0 m, 
but  of course. the higher helium mass flow r a t e  f o r  
the 600-MJ(e) machine r e s u l t s  i n  an increased annulus 
flow area  and l a rge r  blade heights. a s  shown on Table 
5. The ove ra l l  lengths of the 40(hMFJ(e) (no* 
intercooled) and 600-W(e) (intercooled) machines a re  
11.3 m and 15.8 m, respectively. Since the  turbo- 
wl?nine is ins t a l l ed  ins ide  the  reactor  vessel,  ro to r  
burs t  protection is incorporated in the machine design 
in the form of containment rings around the compressor 
and turbine ro to r  bladed sections. 

Mrm-access provisions a re  provided i n  the PCRV 
f o r  Inspection and limited maintenance work on the  
journal bearings, which a r e  of the multiple,  t i l t i n g  
pad, oil-lubricated type. The spaces i n  whlch the  
bearings a r e  located a r e  i so l a t ed  frcm the matn cycle 
working fltlfd by shie lding (purge gas from the  plant 
helium storage system is used to  give an acceptable 
radiological environment f o r  man-access). The dr ive  
to  the generator is from the compressor end of the 
t u r b o n b ~ d ~ l ~ ~ r .  and the chrusr bearing is located 
external  t o  the  PCRV t o  f a c i l i t a t e  inspection and 
maintenance and to  l i m i t  the number of oil-systems 
i n  the primary system t o  a minimum. Diagnostic con- 
d i t i o n  monitoring, in-s i tu  inspection, and maintenance 
fea tures  a r e  designed i n t o  the turbomachine system 
(23). 

For a single-shaft  helium turbomachine (with a 
ro t a t iona l  speed of 3600 rpm) i n  the  power range of 

400 500 

Non- 
intercooled 

2 
1000 

WO.0 

2500 

Non- 
intercooled 

2 
800 

W0.0 

2000 

Intercooled 

2 
800 

-2.0 

1905 

Power conversion system integra ted i n  PCRV 
Dry-cooled 

Conventional, insulated, and water-cooled 
BTGR prismatic f u e l  e l e m n t s  

MEU 
3 

6.8 

600 

Intercooled 

2 
1200 

M2.0 

2860 

Offset  
Chordal 

2 

-- 
2 

12 

37.2 
35.4 
3 

Conceptual 

400 

Non- 
intercooled 

3 
1200 

Q40.0 

3000 

o f f s e t  
Chordal 

2 

2 

2 

14 

39.6 
35.4 
3 

Conceptual 

Central 
Chordal 

2 

-- 
2 

12 

39.6 
35.4 
3 

Conceptual 

7 

Offset 
Chordal 

2 

2 

2 

14 

42.7 
35.4 
3 

Conceptual 

Central  
Delta 

3 

-- 
3 

16 

39.3 
35.4 
3 

Conceptual 



TO RECUPERATOR 
(LP SIDE) 

Pig.14 400-W(e) non-intercooled turbomachine fo r  HTGR-GT plant 

Fig.15 600-W(e) intercooled turbomachine f o r  HTGB-GT plant  

400 to  600 MW(e), the rota t ing section is compact and 
is substant ia l ly  smaller than an equivalent a i r -  
breathing machine because of the  high degree 01 
pressurization (par t icular ly  a t  the turbine e x i t )  and 
the  high spec i f i c  power associated with the helium 
working fluid.  The external dimensions of the  helium 
turbomachines discussed in t h i s  paper are,  i n  fact ,  
qui te  s imilar  t o  those of an exis t ing air-breathing, 
advanced, open-cycle indus t r i a l  gas turbine in the 
70 t o  100 MW(e) range. The fac t  thac the  helium 
turbine (par t icular ly  the ro to r  assembly and casings) 
is comparable i n  s i z e  with exis t ing machines substan- 
t i a t e s  the claim that conventional fabrication methods 
and f a c i l i t i e s  can be used. 

The aforementioned helium turbomachine design 
a c t i v i t i e s  have been done i n  support of the  EETCR-GT 
plant  f o r  the  U.S. marker (60 Hz system); however, i t  
droulcl be poinred aut chat a ronrtfdable e t t o r t  has 
a l so  been expended i n  Europe fo r  the EIT plant (lo),  
and de ta i l s  of the turbomachine f o r  t h i s  5 0 4 z  system 
have L c b  ~ r y u r  Lrd h Refs. (24-26). 

Heat Exehasgers 
While d e t a i l s  of the heat exchangers have been 

discussed previously (27), it i s  meaningful t o  discuse 
them br i e f ly  in the context of t h i s  paper, since they 
a re  l a rge  components and have a s ignif icant  influence 
on the integrated primary system. The combined e f fec t s  
of s i z e  constraint (integration i n  the PCRV side-wall  
cavi t ies) ,  in-service inspection (ISI),  in-situ re- 
pa i r ,  and maintenance and fabr icat ion considerations 
have a s ignif icaut  e f fec t  on the choice of surface 
geometry, flow configuration, and mechanical design. 

I n  the  conceptual dasign phase of the  HTGR-GT 
plant,  the  thermalhydraulic s iz ing and analysis of 
the  heat exchangers was performed by General Atomic, 
and the mechanical design work was done by Combustion 
Engineering. I n  support of the plant configuration 
studies,  heat exchanger conceptual designs were done 
for  un i t s  with PCL rat ings  of 400, 500, and 600 W(e) 
fo r  both intercooled and wn-intercooled tppes, TQ 
span the above power range and t o  i l l u s t r a t e  the  
major differences between the  two cycle types only, 
the  exchangers f o r  the  400-W(e) (non-intercooled) 
and 600-MW(e) (intercooled) var iants  a re  discussed 
i n  t h i s  paper. The sa l i en t  features  of the  recuper- 
ators,  precoolers, and intercooler are  given on 
Table 6. 



TABLE 5 
DETAILS OF RTGB-OT PLANT TORBOMCUINE DESIQIS 

Turbomachine Eatinn. MWte) 400 600 

The heat exchanger types se lec ted f o r  t he  HTGR- 
DT plant  conceptual design haveaa sound technology 
base, and i n  t h i s  regard can be considered t o  be con- 
servative.  The helium-to-h4im recuperator concept 
(shown on Fig, 16) remains unchanged from t h a t  
reported previously in Ref. (281, namely, a s t ra ight-  
tube, counterflow a r r a n g e n t ,  with an ove ra l l  assem- 
b ly  made up from a mul t ip l i c i ty  of contiguous hexa- 
gonal modules. In  +he case of t he  h e l i w t o - w a t e r  
exchangers (precooler and in tercoeler) ,  an extensive 
study l ed  t o  a change i n  concept from the previous 
straight-tube, caimterilow, maodular apprnneh (283, 
t o  a multipass crow-counterflow h e l i e a l  bundle con- 
f igura t ion a s  typif ied  i n  Fig. 17. The h e l i c a l  ap- 
proach has the advantages af higher water velocity,  ' 

considerably fewer tubes, l a r g e r  tube diameters, more 
straightforward headering, and b a t t e r  IS1 aceess ibi l -  
i t y  than the  straight-tube comte r f lov  variant.  

The recuperator, precooler, and i a t e r c ~ o l e r  
assemblies are w e l l  in tegra ted iq t he  PCBV, and the  
in t e r f aces  hva received attent-  during the  con- 
ceptual design phaae t o  ensure the  v i a b i l i t y  of the  
se lec ted mechanical design approaches. The a x i a l  
counterflow recuperator (embodying: tubes of small  
diameter) bears a close resemblance t o  un i t s  that  
have operated trouble-free f o r  over hal f  a ~nFZlion 
hours in the  European foss i l - f i red  CCGI plants.  The 
multipass cross-counterflow h e l i c a l  bundle approach 
se lected f o r  t h e  precooler and in tercooler  has been 
used extensively f o r  steam generators i n  gas-cooled 

Machine type 
Blachine arrang~nent 
Reqwmcy, tiz 
No. o f  turbine inlet ducts 
Turbine inlet m. 'C 
CDnprersor pressuee ratio 
No. of comprensor stages 
Wu compressor tip dim. II 
Blade height. e (dnlrex) 
Colllpre~m adiabatic 

efiicZeDcy (actoss 
bladtss). X 

No. of turbine stagen 
Ksx turbine tip d h .  r 
E l d e  height. eza (*/mar) 
Turbine isentropic effic.  

( a & ~ s  blading). X 
Blading l i f e ,  h 
Blade cooling 
Turbine blade w e r i a l  
Gsnerp~or drive end 
Rotor burst shield 
Thrust bearing position 
No. OF journal bearings 
kurnal bearing laa aecaps 
Tgpe of rotor mnstmction 
Whine  easing &am. m 
Huchine length, m 
Machin? wei&t, kg 

technology base 

TABLE 6 
DETAILS OF'HTGR-CT PLANT HEAT EXCHANGER DESIMS 

Nowintercooled 
Single-shaft 

MI 
1 

850 
2.50 
18 
1.83 

80,01125.7 
89.6 

8 
2.18 

125.7f297.2 
91.8 

280,000 
No 

Intercwled 
Singlcshaft 

60 
1 

850 
3.0 (1.7311.73) 

8 + 8  
2.18 

76.21165.1 
90.8 LPl90.2 W 

9 
2.40 

165.11393.7 
92.2 

280.000 
Ilo 

PCL Rating, 
W e )  

Exchanger 

Exchanger 
configuration 

Construction type 

h a t  Butyluait. W(t)  
Lam, OC 
Effectiveness 
Tubes per exchanger 
Tube o.d., o 
Wall thtokness, ma 
Modules per exchanger 

I Exchanger dim, m 
- Effective tube 

length. m 
Effective bundle ht, 

0 

Exchanger atmy. ht. m 
Exchanger assy. wt,  

tomtea 
War lphl Ceap, *C 
He% internal AP, 
m* 

htlterids 

ISIlrepair level 

Assembly location 

Transportation mode 
ASME cede class 
ksi@ status 
Technolow statua 

Nickel-base d l o y .  XN-IOU 
Compressor 

Yes, integral part of machine structure 
, External to PCW 

2 
Yes 

Welded rbtor 
1.0 
11.3 

276.770 

400 m[e) 

2 
Yes 

Welded rotor 
4.6 
15.8 

317,668 

State-of-the-art-techno lixgy 

Recuperator 

Counterf l o w  

Straight tube 
modular 
918 
42.5 
0.898 

66.483 
11.1 
1.1 
83 
5.64 
12.2 

12.2 

20-4 
726 

515 
4.62 

Fezritic 
2 114 Cr-1 Fh 

Module 

Fectoryl 
optiaaal 

Barge . 
~ C ~ ~ Q I I  VIII 

600 MW(e) 

Urge industrial opetrcycle gas turbines 

Non-intercooled 

Precooler 

Etultipess 
cross 
counter- 
f l w  

Helical 
bundle 
581 
30.5 
0.972 

82 7 
28.6 
2.9 
1 
4.72 

105 

12.5 

19.8 
4 35 

377 ,"!$.a3 

knp&loy 
112 Cr 

~ndividuai 
tubes 

Factory 

Barge 
Sectim VLII 

Conceptual 

Recuperator 

Counterflou 

Straight tube 
modular 
1253 
44.3 
0.898 

94.668 
11.1 
0.8 

161 
6.8 
12.8 

12.8 

21.1 
998 

469 
1.08 

Petripic 
2 114 Cr-1 b 
M u l e  

Ractoryl 
optional 

B a r e  
Section VIII 

Intercooled 

Precooler Intercooler 

Multipass cross 
counterflw 

Uelical bundle 

533 
27.3 
0.961 

1196 
28.6 
2.9 
1 
4.9 
82.3 

13.7 

21.1 
490 

125 
1.3 

X3 7 
19.3 
0.939 

1118 
28.6 

L.9 
1 
1.7 
76.2 

10.97 

18.3 
363 

89 
9.2 

Low alloy, 112 Cr 

Individual tubes 

Pnrtory 

R ~ I F ~ ~ L '  
SectLon V l I I  



HP HELIUM 
FROM 

v i t i e s  have been pursued in support of the IITGW-GT 
plant  f o r  tke U.S. market; however, it should be 
pointed out t h a t  a formidable e f f o r t  has  a l so  been 
expended i n  Europe f o r  t he  HHT plant  and d e t a i l s  of 
these heat  exchangers have been reported in Ref. 
(29). 

HP HELIUM 
TO 
REACTOR 

LP HELIUM 
FROM TURBINE 

LP 
L HELIUM 

TO 

Fig.16 Straight-tube, modular, counterflow recuper- 
a t o r  concept f o r  HTGR plant 

reactors. Thus, i n  adopting the aforementioned con- 
servative design approach, it can be s t a t ed  t h a t  the  
exchanger design types selected f o r  t he  HTGR-GT plant  
have a proven background in the  u t i l i t y  power- 
generating industry. 

Another obvious issue  re la ted  t o  the s i z e  m~rl 
weight of the heat exchangers is the  technology fo r  
handling, transporting, and ins t a l l i ng  the  un i t s  in 
the reactor  vessel. It has been shown (27) tha t  the 
heat  exchangers f o r  the  HTGR-GT are ,  i n  f ac t ,  no 
longer o r  heavier than un i t s  being b u i l t  fo r  contem- 
porary steam plants ,  and tha t  ex i s t ing  and proven 
methods of handling and transportation a r e  indeed 
applicable. 

For a long-term p r o g t a  such a s  che HTGK-GT, 
there  is an obvious incentive to  maintain the com- 
pet i t iveness  of the  p lant  by u t i l i z i n g  technology 
advancements in a prudent manner. Improvements i n  
the heat exchangers w i l l  be continually sought, such 
a s  the  adoption of advanced surface geometries, and 
the obvious goals t h a t  w i l l  be addressed i n  the 
fu ture  inklude (1 ) increased r e l i a b i l i t y /  
ava i l ab i l i t y ,  (2) cos t  reduction, (3)  s i z e  reduction, 
and (4) improved IS1 capabi l i ty  and maintenance 
approaches. 

The aforementioned heat exchanger design ac t i -  

WATER 

HEUUM TO COMPRrnR 

Fig.17 Helical-bundle. cross-counterflaw, helium-to- 
water heat exchanger concept (pracooler and 
intercooler) f o r  WCR-GT plant  

BALANCE OF PLANT DESIGN 

The main point of t h i s  paper has been a discus- 
s ion of the  reactor  turbine system (RTS) fo r  d i f f e r ing  
power plant  concepts. In  addition t o  the RTS, which 
is integra ted in the reactor  vessel, an important task 
i n  the design process is the  establishment of the  
ove ra l l  p l an t  configuration, and t h i s  e s sen t i a l ly  in- 
volves the design of  a l l  the balance of p lant  equip- 
ment and buildings. Since t h i s  is a comprehensive 
task  and the  subject  of a forthcoming paper, balance 
of plant design w i l l  only be highlighted i n  t h i s  paper, 
but t he  importance of the task  should be noted.since 
a s ign i f i can t  percentage of the ove ra l l  plant cost  
is associated with the balance of plant items. In 



addition, many of the plant operational require- 
ments, such a s  service systems, pur i f icat ion t ra ins ,  
refueling schemes, and on-site maintenance f a c i l i -  
t i e s ,  strongly impact the balance of plant features  
and economics. 

Details of the overal l  plant plot  plan fo r  the 
three-loop non-intercooled plant  have been discussed 
previously (231, so only the recent work associated 
with the two-loop variant w i l l  be mentioned here. 
As s h m  on F&g. 18, a reactor c o n t a i ~ n t  building 
(XB) encloses the PCBV, and while the  configuration 
i l lus t ra ted  is i n  a conceptual s tage f o r  the.2 x 600 
W ( e )  intercooled plant  variant,  it can be considered 
ropreseatative I o r  the HTM-GT plant. 'IAe secondary 
containment building and the PCRV incorporate sa fe ty  
features tha t  l i m i t  l o s s  of primary coolant and m i n i -  
mize damage i n  the event of f a i lu res  i n  the turbo- 
machine, shaf t  seals, heat exchangers, generator, ar 
PCRV cavity closures. 42.7 M MAM PCRV 

A s ignif icant  change from 'previous plant  con- 
ceptual designs involves the u t i l i za t ion  of a11 water- 
cooled generators of the type that  have beeu exten- 
s ively  used i n  Europe f o r  many years. T b  former 
hydrogen-cooled generator involved ins ta l l a t ion  in 
local  generator cells Carhich increased the  complexity 
and cost of the X3) t o  prevent the possibl i ty  of a 
hy6rogen explosion within the c o n t a i w n t  building in  

. the  event of a gas leakage from the generator in ter-  
n a b .  As can be seen from Fig. 18, a simpler concept 
is now proposed with t h e  generator located within the  
contafnment building. This eliminates the  conc.ern 
over a secondary containment rota t ing sea l  penetration. 

Fig. 18 ~ l e v & i o n  view through RCB f o r  two-loop HTGR- 

the geueral layout of the various bui ldims.  and in- GT plant 

depth s tudies  a r e  currently underway by ti;e-architect/ 
engineei  t o  fur ther  define the balance of plant  f ac i l -  
i t i e s  to sa t i s fy  all of the plant requirements. 

The work reported i n  t h i s  paper is only one par t  
of the widespread internat ional  e f f o r t s  t o  c h i n e  the  
gas tutbine and nuclear energy. The bepef i ts  of the  
WGR-GT plant are such tha t  the  worldwide e f f o r t s  t o  
bring it in to  w e  should increase rapidly. It is pro- 
jected tha t  with a dedicated e f fo r t  the demonstration 
plant b u l d  be introduced i n t o  commerc$al u t i l i t y  
service in the late 1990s, and the f i r sE  c-rcial 
plant (essent ia l ly  replicated from the  demo plant) 
could be on-line around the turn of the century. 

For the next generation of nuclear power plants,  
the dominant criteria i n  a l l  design endeavors is t o  
as tabl ich unquea t iu~~d~l t?  safety  features. The HTGR 
with its graphite-moderated core, single-phane gas- 
eous working fruid ,  and integratform of the  equip- 
ment within a PCRV of fe r s  unprecedented safety  
charactar is t ies .  In addition t o  t h i s  v i t a l  element, 
the prospective advantages of the HTGR-GT t o  u t i l i -  
ties include plant simplification, improved econo- 
mics, and s i t ing.  f l ex ib i l i ty .  

The work reported in this paper has outlfned 
design-related s tudies  which a re  i n  progress and 
directed cowards the select ion of a commercial plant 
reference design. A companion paper (17) has addressed 
systems-related s tudies  leading to  the selection of 

RQAO FUEL MRIN6 
MIL CAR 

Fig.19 Tantative overall  arrangement for  two-loop 
W R - G T  power plant 

&timized parrtlrrtera fur power generating cost. 
As discussed, a decision has been made t o  proceed with 
the dogign of a two-loop comrsercial p lant  caafigura- and (2) the choice of intercooled o r  non-intercooled 
tion. This paper presents design-related s tudies  cycle. These decisions w i l l  be wde i n  1979, and the 
which are  iu%part;@nt to Rmciding on the def ini t iun of def ini t ion of the reference commercial plant concept 
two v i t a l  It--GT features: (1) ra t ing of the P a s  wil1 be presented in  a future paper. 



the  Develoement of the  HTGR Direct-Cvcle Svstem ACKNOWLEDGEMENTS 

Appreciation is hereby expressed by the  authors 
t o  the  management of General Atomic Company f o r  p e r  
mission t o  publish t h i s  paper. Work on the HTGR-GT 
plant  has been supported by the  U.S. Department of 
Energy under Contract DE-AT03-76SF70046, and by a 
dedicated group of e l e c t r i c  u t i l i t y  companies. The 
contribution oL Hans lbatmann of General Atopric is 
grateful ly  acknowledged. The authors wish to  ac- 
knowledge work done by United Technologies Corpo- 
ra t ion,  Conbustion Ehgineoring, and the European 
HET Project. 

1 Kellar,  C., and Schmidt, D., " Industr ia l  
Closed-Cycle Gas Turbines for  Conventional and 
Nuclear Fuel," ASMe Paper No. 6 7 4 - 1 0 ,  1967. 

2 Bammert. K.. "A General Review of Closed- 
Cycle Qa ~ u r b i n i s  using Fossil ,  Nuclear, and Solar 
Energy," Thfepig Paperback, Vol. 57, Munich, 
Septeuber, 1575. 

3 k ~ o n a l d ,  C.F., "The Closed-Cycle Gas 
Turbine - Present and Future Prospectives f o r  Bossil 
and Nuclear Heat Sources," ASME Paper No. 78-GT-102, 
1978. 

4 McDonald, C.B., and Krase, J.M., "Nuclear 
Gas Turbine Power Plant Act ivi t ies  i n  the  United 
States," ASMB Paper No. 77-JPGC/GT-5, 1977. , 

5 Gopdjohn, A. J . , and Law, S .H. , "GT-HTGR - A 
Total Energy Uti l iza t ion Option," AIAA/IEEE Conference 
on New Optioms i n  E a e r ~ y  Technology. San Francisco, 

&&&fornia. Auaust 2-4. 19773 
6 McDonald, C.F., "The Closed-Cycle Gas Tur- 

bine - A Proven Cogeneration Plant Adaptable t o  F o e  
sil, Nuclear, nnd Solar Heat Gourccs," Conference 
on Energy E o n s e ~ a t t o n .  Sponeored by U.S. Deuartment 
of Enerw. Milan. I t a ly .  March 26-29. 1979. 

7 Frutschi, B.U., "The 'Itelationship of Power 
and Heat Production with Closed-Cycle Gas Turbines," 
AS&@ Paper 79-GT-103. 1979. 

8 McDonald, C.F., "Large Closed-Cycle Gas 
!d-Cycle Gag 
kr Fluid 

, ,$zty O r m i -  

the  Gas Turbine - 
High-Teaaperature ~ S - C o o l e d  (Helium) Reactor," EPRI 
NR-805, Project  900, Interim Report, E l e c t r i c  Power 
Research Ins t i tu t e ,  June 1978. 

10 Amdk, E . . + ,  "WHT-I3nmnnwtration 
PLaat," paper presented a t  European Nuclear Confer- - Hamburp. Federal R ~ D U % ~ ~ C  of Germany, lfay 6 - j ~  - 
1070 .*,a. - 

11 MCDOIUX~~ ,  C.F., e t . ,  "Primary System 
Design Studies for  Advanced Direct-Cycle Nuclear Gas 
Turbine Plant," ASW Paper No. 77-GT-25, 1977. 

12 Kellcr,  C., "korty Years of Experience on 
Closed-Cycle Gas Turbines," Annals of Nuclear Enerm, 
Vol. 5, No. 8-10, 1978. pp. 405-422. 

-. - -.-- - 
(HIIT) ," S&sium on Gas-Coolsri Reactors with Emphasis 
on Advanced Systems. Jhl ich,  Federal Republic of 
&many. October 1975, Vol. 11, IAEA. Vienna, Austria, 
May 1976, pp.-189-200. 

17 Kaaaerzell. L.L.. "WGR-GT Syatams Opt imi-  
zation Studies," 25th ASW-~nternatio&l G& ~ k r b i n e  
Conference. New Orleans. Louisiana. hlarch 1980, t o  be 
presented. 

18 McDonald, C.F., "The Nuclear Closed-Cycle 
Gas Turbine (GT-WGR) - A U t i l i t y  Power Plant fo r  the 
Year 2000," AIM Paper 79-0191, 1919. 

19 A w ,  R.G., and Boenig, F.H., "The Design 
of the  Turbomachiaery f o r  the  Gas Turbine HTGE Power 
Plant," ASMB Paper lo .  77-GT-38, 1977. 

20 Adam* R.G., a., "Bearing Compartmnt 
Seal Sysrema f o r  Tvrbqs~achinery i n  Direct-Cycle HTGR 
Power plants," ASME Paper No. 78-0f-38, 1978. 

21 McDonald, C.F., and Smith, M.J., "Tu~bo- 
machinery DeSlgn Coneiderations f o r  the  Nuclear 
HTGR-GT Power Plant," 5 th  ASW Internat ional  Gas 
Turbine Conference, Ne: Orleans, Louisiana. WrcQ 
1980. t o  be presented. 

22 de Bi-5, D., "FT-50 Design Shortcut t o  1980 
Technology," Gas Turbine World, Nov. 1975, pp. 9-15. 

23 H&mald, C.F., and Paget, J.A., "Maintenance 
Considerations i n  the Design of the  Direct-Cycle 
Nuclear Gas Turbine Power Plant," ASME Paper No. 
794-116, .  1979. 

24 Haselbacher, H., and Eiermann, A., "Develop- 
ment of Helium Gas Turblne Systems i n  the Nuclear 
Field." ASME Paper No. 74-GT-123, 1974. 

25 Haselbacher, H.,-., "HHT Helium Turbine 
and the HHV Plant." Nuclex 78. Basel, Switzerland, 
October 3-7. (Paper No. A4/21). 

26 Baselbacher. H.. "Closed-Cycle Gas Turb tn~a  
t o r  HTR Nuclear Power plants  and LNG Renasification 
 plant^,^' Brown Boveri Revue, Vol. 66, N:. 2, Wb. 1979, 
pp. 120-129. 

13 Bammert, K., and Deuster. G., " L a y ~ ~ t  and 
Present Sta tus  of the  Closed-Cycle Eelium Turbine 
Oberhausen," ASNE Paper No. 74-GT-132, 1974. 

14 Zenker, P.. "The Oberhaweu 50 W(e) Helium 
Turbine Plant," ~otpbustion, Vol. 47, No. 10, Oct. 
1976, pp. 21-25. 

15 Weber, D., "Helium Turbine Explores Future 

27 Van Hagan, T.H., McDonald, C.F., and Creek, 
R.B., "Heat Exchanger Designs fo r  Gas Turbine HTGR 
Power Plant," ASME Paper No. 79-U/GT-2. 1979. 

28 McDonaLd, C.F.. Van Hagan, T.H., and Yepa, 
K.. " h a t  &changer Design Considerations fo r  Gas 
Turbine REGR Power Plant," ASMB Journal of Engineer iq  
fo r  Power, Vo1. 99, April 1 n 7 .  pp. 237-245. 

29 Wegelin,  R.. e r . ,  "Heat Exchangers f o r  
tlilT Plants," Dluclex 78. Basel, Switzerland, October 
3-7. 1978, (Paper No. A4116). 

Nuclear Application, " 
No. 4, Aprll. 1978, pp 

16 Noack. G.. -., "Significance of the 
Helium Turbine Plant a t  Oberhausen (EVO) and of the  
Hi& Temperature Test Gracility a t  Jiilieh (HIiV) for 



.M 
E N E R A L  ATOM- 

GENERAL ATOMIC COMPANY 
P. 0. BOX 81608 

SAN DIEGO, CALIFORNIA 92138 




