CORRECTION FOR COMPTON SCATTERING IN GLASSY-CARBON DIFFRACTION PATTERNS

Leo G. Henry and Robert H. Bragg

December 1979
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price Code: A02

Lawrence Berkeley Laboratory is an equal opportunity employer.
CORRECTION FOR COMPTON SCATTERING
IN GLASSY-CARBON DIFFRACTION PATTERNS

Leo G. Henry and Robert H. Bragg

Materials and Molecular Research Division, Lawrence Berkeley Laboratory
and Department of Materials Science and Mineral
Engineering, University of California
Berkeley, CA 94720

ABSTRACT

In a preliminary investigation reported here, it has been found that
the use of Co-Ni balanced filters not only provided better monochromatiza-
tion of CuKα, but is quite suitable for determining the incoherent
(Compton) scattering in two Glassy-Carbon (GC) samples.

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Materials Science Division of the
In previous work we have used wide range x-ray diffraction\(^1,2\) or small angle x-ray scattering (SAXS)\(^3\) to characterize the structure of GC. In the latter, the SAXS was measured in transmission and used to calculate the specific surface area, \(S/V\) of samples. Since our measurements showed that at a given temperature the sample volume \(V\) is independent of time, the observed changes in \(S/V\) with HTT and HTt could be used to characterize surface area changes.\(^4\) The relevant equation takes the form

\[
\frac{S}{V} = 4c(1-c) \lim_{h \to 0} [h^3 J(h)] \int_0 \frac{hJ(h)dh}{hJ(h)dh}
\]

or

\[
\frac{S}{V} = \pi c(1-c) \lim_{h \to 0} [h^4 I(h)] \int_0 \frac{h^2 I(h)dh}{h^2 I(h)dh}
\]

depending upon whether the experimental situation employs slit or point\(^5\) collimation. Here, \(c\) = fraction of sample occupied by matter, \(h = 4\pi \sin \theta / \lambda\); \(J(h)\) = intensity for slit collimation; and \(I(h)\) = intensity for point collimation. There has been some uncertainty concerning which approximation is applicable to GC, because instances have been reported wherein the intensity was said to decrease as \(h^{-n}\), where \(n\) might range from 2 to 3.\(^6\) Recent careful measurements have shown that these reports are in error. For the full range of heat treatment temperatures employed in this work, 1000 to 2800°C, the SAXS extends to such large values of \(h\) that our experimental situation always approximates point collimation, for which \(n = 4\).
This result simplifies the correction of our wide range diffraction patterns for SAXS enormously. The corrections for Lorentz-Polarization, atomic scattering factor variations, and distortion due to low specimen absorption are easily made. It appears that the procedures for correcting for Compton scattering that we have used heretofore are adequate for obtaining a fully corrected 002 line profile in GC as shown in Fig. 1. However, we need to determine if the observed narrowing of the widths of x-ray line profiles induced by heat treatment are due to "crystallite" growth or stress relief. To do this, it is necessary that at least three orders of 006 and hk0 reflections be measured in order to separate size and strain components. Since the GC reflections are weak and very diffuse, exact corrections for the large contribution of the Compton component to the total intensity in the regions where the (100), (110) and the (004) reflections occur are mandatory.

In previous work we have assumed that in pyrolytic graphite, PG, the material is of high purity, and sufficiently close to a single crystal that far from a reciprocal lattice point the observed x-ray intensity is due mainly to Compton scattering. Thus if the linear absorption coefficient is µ and the material is t thick, the intensity will be totally caused by Compton radiation, and proportional to \(1/\mu^2\). Thus a separate measurement of background intensity and µ on PG can be used to determine the background level, i.e., the contribution of Compton scattering to the total intensity for a GC sample having the same µ. A paper on this method submitted to Carbon has been returned with the (valid) criticism that this procedure of determining the Compton intensity level should be
justified by comparison with an accepted method. We have decided to utilize a method which is based on the difference of the intensity of a diffracted beam when a filter is placed in the incident beam or in the diffracted beam. Our preliminary estimates of the Compton component obtained in this way differ from that obtained using PG by an order of magnitude. It is felt that the result obtained from PG is more nearly correct, and the low estimate obtained from the differences in absorption are caused by poor monochromatization. We have decided to use balanced filters10 to obtain better monochromatization and have just initiated this work.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48.
References

Figure Caption

Fig. 1 Effect of corrections on the 002 line profile of glassy carbon. (XBL 793-5970).
Fig. 1
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.