GJBX--409-81 Vol. 1 DE82 005531

National Uranium Resource Evaluation

Airborne Gamma-Ray Spectrometer And Magnetometer Survey; Eureka Quadrangle, California

Final Report - Volume I

E

Acro Service Division Western Geophysical Company of America Houston, Texas 77001

April 1981

PREPARED FOR U.S. DEPARTMENT OF ENERGY Assistant Secretary for Resource Applications Grand Junction Office, Colorado

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report is a result of work performed by Aero Service Division Western Geophysical Company of America through a Bendix Field Engineering Corporation Subcontract, as part of the National Uranium Resource Evaluation. NURE is a program of the U.S. Department of Energy's Grand Junction, Colorado, Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. AIRBORNE GAMMA-RAY SPECTROMETER AND MAGNETOMETER SURVEY

EUREKA AREA CALIFORNIA

FINAL REPORT VOLUME I

This book was prepared as an account of work sponsored by an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, makes any completeness, or usefulness of any information, apparatus, product, or process disclosed, or commercial product, process, or service by trade name, trademark, manufacturet, or otherwise, dong to the resolution of the origination of the origination of avoing by the origination of States Government or any agency thread. The views and opinions of autors expressed herein do not necessarily constitute or infolging sequency thereof. The views and opinions of autors expressed herein do not states Government or any agency thereof.

AERO SERVICE DIVISION WESTERN GEOPHYSICAL COMPANY OF AMERICA HOUSTON, TEXAS

MAY, 1981

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY ASSISTANT SECRETARY FOR RESCURCE APPLICATIONS GRAND JUNCTION OFFICE, COLORADO UNDER CONTRACT NO. DE-AC13-76GJ01664 AND BENDIX FIELD ENGINEERING CORPORATION SUBCONTRACT NO. 80-460 PROJECT NO. IG0205

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

rb

.

TABLE OF CONTENTS

INTRODUCTION	7
DATA ACQUISITION	13 13 13 16
PRODUCTION SUMMARY	17
DATA REDUCTION	25
DATA PRESENTATION General	31 31 32 32 32 33
GEOLOGY	35 35 35 35 38
INTERPRETATION	39 39 40 41
SELECTED REFERENCES	72

LIST OF FIGURES

•

.

•

Figure	1, Index Map
Figure Figure	2-A, Final Flight Path Map, North
Figure	3, Block Diagram HISENS AGRS 2000R System
Figure	4, Terrain Clearance Histogram
Figure	5, Ground Speed Histogram
Figure	6, Data Reduction Flow Diagram
Figure Figure	7-A, Total Magnetic Field Contour Map, North
Figure Figure	8-A, Potassium Average Contour Map, North
Figure Figure	9-A, Uranium Average Contour Map, North
Figure Figure	10-A, Thorium Average Contour Map, North
Figure Figure	11-A, Uranium/Potassium Ratio Map, North
Figure Figure	12-A, Uranium/Thorium Ratio Map, North
Figure Figure	13-A, Thorium/Potassium Ratio Map, North
Figure	14, Interpretation Map 69

-4-

.

• .

.

LIST OF TABLES

Table I Aircraft Specifications and Characteristics	13
Table II Daily Production Summary	18
Table III Legend to Total Field Map	42
Table IV Legend to Potassium Average Map	45
Table V Legend to Uranium Average Map	49
Table VI Legend to Thorium Average Map	53
Table VII Legend to Uranium/Potassium Ratio Map	57 [:]
Table VIII Legend to Uranium/Thorium Ratio Map	61
Table IX Legend to Thorium/Potassium Ratio Map	65

10 K 2

TABLE OF APPENDICES

· · · · ·

· · · ·

۰..

-

Appendix A Geologic Legend	73
Appendix B List of Geologic Units by Anomaly	75
Appendix C List of Anomalies by Geologic Unit	79
Appendix D Mean Radiometric Values by Geologic Unit	81
Appendix E Standard Deviation Tables	89
Appendix F Format, Single Record Data Listing	95
Appendix G Format, Average Record Data Listing	97
Appendix H Format, DOE SINGLE RECORD REDUCED DATA TAPE	99
Appendix I Format, DOE RAW SPECTRAL DATA TAPE	103
Appendix J Format, DOE STATISTICAL ANALYSIS DATA TAPE	107
Appendix K Format, DOE STATISTICAL ANALYSIS SUMMARY DATA TAPE	111
Appendix L Format, DOE MAGNETIC DATA TAPE	115
Appendix M Reduced Calibration and Test Line Data	117
Appendix N Renumbered to Original Fiducial Correlations	119

INTRODUCTION

During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2° x 1° NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1° x 2° areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Eureka/Crescent City, California, map area.

Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 349.5 line miles are in this area.

This report is a result of work performed under Bendix Field Engineering Corporation Subcontract No. 80-460, Project No. IGO205, as part of the National Uranium Resources Evaluation. NURE is a program of the U. S. Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

The data were reduced and compiled in accordance with the technical specifications of the contract as stated in BFEC 1200-C and BFEC 1250-A. The parameters used in the processing of the radiometric data have been substantiated in a previously submitted calibration report of the Sikorsky S-58T installed airborne gamma-ray spectrometer system.

FILM IDENTIFIED TRAVERSE/TIE LINE INTERSECTION FILM IDENTIFIED GROUND GONTROL IMDEX FIDUCIAL (100 FIDUCIAL INTERVALS) FLOUM ISSO

FLIGHT PATH EUREKA NORTH NK 10-7 DOE/NURE

FLIGHT PATH EUREKA SOUTH NK 10-10 DOE/NURF

FIGURE 2-B 11/12

DATA ACQUISITION

Aircraft

The survey was conducted using a Sikorsky S-58T helicopter, registration N94523, owned and operated by Carson Helicopters, Inc., Perkasie, Pennsylvania. The flight crew consisted of a pilot (Carson), a navigator (Aero), and an electronics system operator (Aero). Some of the more pertinent characteristics and specifications of the aircraft are listed below:

TABLE I

Aircraf	ft	Sp	ec	if	ic	at	io	ns	and	Characteristics
Aircraft	•	•	•	•	•	•	•	•	•	Sikorsky Model S-58T,
										Registration N94523
Engine	•	•	•	•	•	•	•	•	•	Pratt - Whitney PT 6T Twinpack
Take off power	•	•	•	•	•	•	•	•	•	1875 Shaft HP.
Fuel Capacity	•	•	•	•	•	•	•	•	•	350 U. S. Gal.
Hourly Fuel Consumpt	io	n	•	•	•	•	•	•	•	100 U. S. Gal.
Range at Cruise Spee	d	•	•	•	•	•	•	•	•	350 Miles
Rate of Climb	•	•	•	•	•		•			1200 Feet per Min.
Service Ceiling	•	•	•	•	•	•	•	•	•	12500 Feet
Maximum Gross Weight			•	•		•		•		13000 Lbs.
Empty Weight	•	•	•	•	•	•	•	•	•	7200 Lbs.
Useful Load	•	•	•	•			•	•		5800 Lbs.
Pav Load				• .						1700 Lbs.

Gamma-Ray Spectrometer System

The survey was conducted using Aero Service's HISENS A(irborne) G(amma)-R(ay) S(pectrometer) 2000 R system shown in block diagrammatic form in Figure 3, page 14.

The detector assembly of the spectrometer consists of a primary detector, sensing data over a 4π solid angle, and an upward looking detector, sensing data over a 2π solid angle only. The primary detector package consists of

12 logs of 4" x 4" x 16" of Polyscin®, NaI(Tl), each hermetically sealed in a steel container and coupled to a high quality photo-multiplier tube. The sensors are assembled in three slabs of four logs each. Each slab is enclosed in a heated and thermally stabilized container. Total volume of the primary detector is 3072 cubic inches (50.34 liters).

The upward looking detector consists of two 4" x 4" x 16" logs of Polyscin®, each hermetically sealed in a steel container and coupled to a high quality photo-multiplier tube and enclosed within separate heated and thermally stabilized containers. Each of the upward looking detectors is mounted on top of one of the primary detector packages, separated by a 0.75" slab of lead shielding, in order to provide the 85% shielding effect @ 3.000 MeV.

The preamplifiers provide, with the photo-multipliers, virtually the total signal amplification. In order to ensure maximum stability, the preamplifiers are enclosed within the thermally stabilized packages.

The combined signal of each detector slab is output into the amplifiers, whose main purpose is summing the incoming pulses and shaping them into a bipolar gaussian form.

The summed and shaped signal from the amplifiers is input into the pulse height converter. This unit performs basically three functions: it determines whether a pulse has been received, it determines its amplitude and it converts the amplitude into a digital number. Since a successive approximation analog to digital converter is used, total dead time of the system is the same regardless of the energy of the pulse. This dead time is approximately 8 μ seconds per pulse due to the converter and approximately 1.5 μ seconds due to the remainder of the electronic circuit, for a combined total dead time of approximately 9.5 μ seconds per pulse. The exact system dead time, or rather live time, is measured in microseconds and recorded in milliseconds as channel zero (0) of the multispectral gamma-ray data.

The function of pulse height analyzer is performed by the HP 21 MX series Hewlett Packard minicomputer, which also stores and formats the data, outputs them on tape and compares the recorded data with the data stored in memory for a fool-proof read after write check.

The gamma-ray spectrometer system includes further a Rosemount barometric

-15-

altimeter, a Honeywell radar altimeter and a temperature transducer. A discrete interface exists in the Hewlett Packard minicomputer to accommodate a Doppler navigation system as well as other navigation systems, such as ANA, LORAN-C, OMEGA and others, although none of these were used.

Two tape drives are employed to record the data and automatic switching between the two occurs as each tape ends. Data are collected each second and recorded every five seconds. In addition to the gamma-ray spectrometer data of both the primary and upward looking systems, radar altimeter, barometric altimeter, atmospheric temperature, real time, gamma-ray spectometer live time and magnetometer data are recorded.

Additional ancillary equipment carried aboard the helicopter includes a cathode ray tube display, a 6-channel heat sensitive analog recorder and a 35mm camera, triggered by the data controller at a preselected interval.

Magnetometer

The magnetic sensor used for the survey was a Varian V-85 proton freeprecession magnetometer. This sensor was housed in a fiberglass bird and trailed approximately 100' below the aircraft to ensure optimal signal sensitivity without need for extensive aircraft compensation. "The magnetic data were recorded in increments of 0.01 gammas, with a sensitivity of 0.1 gammac.

PRODUCTION SUMMARY

The Eureka, California, area was surveyed as part of a subcontract covering ten (10) areas located over northern California and southwestern Oregon. These include the 2° x 1° quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1° x 2° areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. The subcontract covered the flying of a total of 16,880.5 line miles, of which 349.5 miles are in the Eureka area.

Four main bases of operations were used during the survey. Eugene, Oregon, located just north of the Roseburg quadrangle, was used from the commencement of operations through Flight 27 on August 22, 1980. Medford, Oregon, in the Medford quadrangle, was then used up through Flight 86 on September 19th. The aircraft and crew then moved to Redding, California, for operations through Flight 130 on October 2, 1980. The final base of operations was located at Yuba City, California, in the Chico quadrangle. Throughout the survey, extensive use was made of both a fuel truck and smaller, secondary airstrips for remote refueling stops, thus extending the helicopter's effective production range.

The first production flight was made on August 11, 1980. A total of 143 flights were made with the last flight being completed on October 9, 1980. Production flights were not possible for twenty of the sixty-one days the aircraft and crew were on site. One day was used to complete the high altitude calibration flight, ten days were lost to inclement weather conditions, six days were lost to aircraft maintenance, one day to electronic maintenance, and two days to the illness of the AGRS system operator. Many of these nonproduction days were used to complete the three moves to new operations bases. A complete summary of daily operations is given in Table II, pages 18, 19 and 20.

Total flying time was 253.2 hours for an average production rate of 66.7 miles per hour. An average of 118.1 miles were acquired per production flight and 411.7 miles were acquired each production day. When computed over the total number of days on site, data acquisition averaged 276.7 miles per day.

Flight line directions and spacing for the Eureka area were east-west traverse lines 6 miles apart and north-south the lines flown at 18 mile intervals. The nominal terrain clearance for the survey was 400 feet.

-17-

<u>TABLE II</u> Daily Production Summary

•

•

DATE	BASE	ACTIVITY	FLIGHT NO.
08/09/80	Eugene, Oregon	Ferry to Eugene, Ore.	
08/10/80	Eugene, Oregon	High altitude test	
08/11/80	Eugene, Oregon	Production	11, 12
08/12/80	Eugene, Oregon	Weather	
08/13/80	Eugene, Oregon	Weather	
08/14/80	Eugene, Oregon	Production	13, 14
08/15/80	Eugene, Oregon	Abort - helicopter	15
08/16/80	Eugene, Oregon	Helicopter maintenance	
08/17/80	Eugene, Oregon	Helicopter maintenance	
08/18/80	Eugene, Oregon	Helicopter maintenance	
08/19/80	Eugene, Oregon	Helicopter maintenance	
08/20/80	Eugene, Oregon	Production	16, 17, 18, 19
08/21/80	Eugene, Oregon	Production	20, 21, 22
08/22/80	Eugene, Oregon	· Production	23, 24, 25, 26, 27
08/23/80	Medford, Oregon	Weather	
08/24/80	Medford, Oregon	Production	28, 29, 30, 31
08/25/80	Medford, Oregon	Production	32, 33, 34, 35, 36
08/26/80	Medford, Oregon	Production	37, 38, 39
08/27/80	Medford, Oregon	Weather	
08/28/80	Medford, Oregon	Production	4Ú
08/29/80	Medford, Oregon	Production	41, 42, 43, 44, 45
08/30/80	Medford, Oregon	Production	46
08/31/80	Medford, Oregon	Abort-cloud cover	47
09/01/80	Medford, Oregon	Production	48, 49, 50
09/02/80	Medford, Oregon	Weather	
09/03/80	Medford, Oregon	Production	51, 52, 53
09/04/80	Medford, Oregon	Production	54, 55, 56
09/05/80	Medford, Oregon	Weather	
09/06/80	Medford. Oregon	Production	57, 58, 59, 60

Daily Production Summary

DATE	BASE	ACTIVITY	FLIGHT NO.
09/07/80	Medford, Oregon	Production then high winds	61,62
09/08/80	Medford, Oregon	Magnetometer failure	
	· .	then production	63, 64, 65
09/09/80	Medford, Oregon	Helicopter maintenance	
09/10/80	Medford, Oregon	Production	66, 67
09/11/80	Medford, Oregon	Production	68, 69, 70, 71, 72
09/12/80	Medford, Oregon	Weather	
09/13/80	Medford, Oregon	Weather	
09/14/80	Medford, Oregon	Clouds and fog, then	
		production	73, 74, 75, 76, 77
09/15/80	Medford, Oregon	Production	78, 79, 80, 81, 82
09/16/80	Medford, Oregon	Production	83, 84, 85
09/17/80	Medford, Oregon	Production	86
09/18/80	Redding, California	Weather	
09/19/80	Redding, California	Production	87,88
09/20/80	Redding, California	Production	89
09/21/80	Redding, California	Production	90, 91, 92, 93, 94
09/22/80	Redding, California	Production	95,96,97,98
09/23/80	Redding, California	Production	99, 100, 101, 102
09/24/80	Redding, California	Production.	103, 104, 105, 106
09/25/80	Redding, California	Production	107, 108, 109, 110, 111
09/26/80	Redding, California	Production	112, 113, 114, 115
09/27/80	Redding, California	Production	116, 117, 118, 119
09/28/80	Redding, California	Production	120, 121
09/29/80	Redding, California	Production	122, 123, 124, 125
09/30/80	Redding, California	Production	126
10/01/80	Redding, California	Production	127, 128, 129, 130
10/02/80	Redding, California	Operator sick	
10/03/80	Yuba, California	Operator sick	
10/04/80	Yuba, California	Production	131, 132, 133, 134
10/05/80	Yuba, California	Production	135, 136, 137, 138
10/06/80	Yuba, California	Production	139, 140, 141, 142, 143

Daily Production Summary

DATE	BASE	ACTIVITY	FLIGHT NO.
10/07/80	Yuba, California	Production	144, 145, 146, 147 148, 149, 150, 151
10/09/80	Yuba, California	Production	152, 153

Figure 4 shows a histogram of the terrain clearance of the helicopter as recorded by the radar altimeter. The histogram takes into account all final samples in this quadrangle. The mean terrain clearance, as observed, is approximately 420 feet. The ground speed of the aircraft, as determined from the distances between samples based on their final X-Y positions, is depicted in graphic form in the histogram of Figure 5, page 23.

			AERC S	ERVICE				
			CUAL EUREKA					1
JOB 627	RANCE PISTCOPPE							
								i.
			NUNBER CF D	ATA POINTS				
		- 400 60	0 . 800	10CC 1200	1400	1600 1800	2000	2200
	•	• •	•	• •	•	• • • • • • • • • • • • •	• • • • • • • • • • • • • •	
	0	•••••	••••••••••••••••••••••••••••••••••••••			·	<u></u>	
	•							
	•		· · · · · · · · · · · · · · · · · · ·					
	100.							1
	4					·		1
	4							1
	•							
			··· · ·					•
	•							:
	• • • • • • • • • • • • • • • • • • •					.,		
	.x							
	300XX				9 	e anna an a	•••••••••	
	, X X X X X X X X X X X X X X X X X X X	****		•		·		-
	. * * * * * * * * * * * * * * * * * * *	******************	××××××			· · · · · · · · · · · · · · · · · · ·		
l.	400	**************************************	· > > X X X X X X X X X X X X X X X X X	******				
े ।	.xx+xxx+xx.	*****************	***********	*************		4		· · · · · · · · · · · · · · · · · · ·
	······································	xxxxxxxxxxxxxxxxxxxx	,	*****				
		****	>>xxx*x*x		·		······································	
· · · · · · · · · · · · · · · · · · ·	500	<u> </u>	(X					
		*****************	'n					
AUTIMETER		XXXXX		· · · · · · · · · · · · · · · · · · ·		m 11. 1.49747, 141599-11,		
FEET		X			•	· · · · · · · · · · · · · · · · · · ·	n at in the	
		، 						
г) Li	. X X X X X X							
9	• • • • • • • • • • • • • • • • • • •				·····			
re e	700							
4	•XX					• • • • • • • • • • • • • • • • • • •	······································	
	• * * • X							
	• X							
						·		
	• X		•				· · · · · · · · · · · · · · · · · · ·	
	•X							
	X.							
-	• 11 JU		na interna interna ana ana ana ana ana ana ana ana ana					
4 ¹	•							
	• • • • •							
	•							

;

.

- 0

1000.. INTS GREATER THAN 10CO FEET

61 1

..

			LISTOODAL		AERI GUAC - EUREI	C SERVICE Ka	·				
	JOB 627		FISICG FF								
	<u></u>		300	600 90	NUNBER (1 0 1200	F CATA PCINTS 1500	1800 2100	2400	2700	3000	3300
		0	•	• • •	•	•	•	•	•	•	•
		•			• [*] • • • • • •						
		•					. . .		a dia manki di basa di daga mangi angga di sagang di		
		40.							,		
		······		<u></u>							·····
		•									
		80	X			· · · · · · · ·					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****							
		120.	**************************************	**************************************	XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX	*****************	************* ******	****			
			**************	****	**************************************	****	*****	****		****	•
.		• •	X X X X X X X X X X X X X X X X X X X	(X							
5		160.	X								
•	· · · · · · · · · · · · · · · · · · ·										
								•	·		
		200.			N						
	PER .		·				•		1		• •
	FOUR	240.							and a second		
1									······		
								••••••••••••••••••••••••••••••••••••••	4 		
l		280.		•					•		
) 								
			•								
		". DZE:	··· · · · · · · · · · · · · · · · · ·								
) 								
		360.									
			· · · · · · · · · · · · · · · · · · ·			·					
							N			· · · · · · · · · · · · · · · · · · ·	
		400.	· · ·								
				, .							

•

DATA REDUCTION

The data reduction process as used in the processing of the airborne gamma-ray spectrometer and magnetometer data obtained within the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program is shown in flow chart form in Figure 6, page 26.

Upon arrival in the Houston office, the digital data are edited and a back-up tape is generally produced. The EDIT consists partly of a data quality check, enabling the elimination of single record spikes in any field, outside a specified preselected limit. The EDIT program further checks for data continuity and flags all data acquired at terrain clearances exceeding the survey specification. The EDIT further sums a preselected number of spectral records at the beginning and end of each survey line and fits a gaussian curve to diagnostic photopeaks, such as the T1²⁰⁸ peak at 2614.5 KeV and the K40 peak at 1460 KeV for low altitude lines and the annihilation peak at 511 KeV and the K40 peak at 1460 KeV for high altitude lines. The position of these photopeaks is determined with an accuracy of better than 0.1 of a channel and is used to determine the exact position of the energy windows with regard to channel numbers. At the same time the calculated standard deviations of the fitted gaussian curves serve to obtain the system resolution at the photopeaks used. Note that the 2π system resolutions as determined at the K40 photopeak proved to exceed the 8% specification throughout much of the This was most likely due to a small crack in one of the two 2π survey. However, this condition proved not to adversely affect the crystals. acquisition or reduction of the radiometric data and it was decided, after consultation with BFEC, not to replace the crystal in the interest of The window count rates are expediting the completion of the survey. normalized for live time and are calculated as follows:

K : . 1362 KeV - 1566 KeV (Channel 114 -+ 130, @ 12 KeV/Channel) U : 1662 KeV - 1866 KeV (Channel 139 -+ 155, @ 12 KeV/Channel) T : 2406 KeV - 2826 KeV (Channel 201 -+ 235, @ 12 KeV/Channel) T.C. : 390 KeV - 2982 KeV (Channel 33 -+ 248, @ 12 KeV/Channel) Cosmic : 3054 KeV - 6000 KeV (Channel 255) U_{2π} : 1662 KeV - 1866 KeV (Channel 139 -+ 155, @ 12 KeV/Channel) The above channel numbers are valid only if system gain corresponds

-25-

Figure 6

-26-

exactly to 12 KeV per channel and there is no zero shift.

The CORRECT program applies the background and cosmic corrections to the single record window count rates, corrects the data for Compton scatter and atmospheric radon, and normalizes the terrain clearance. Background count rates and cosmic factors were determined from high altitude test data acquired over the Pacific Ocean, offshore California.

Potassium Background	=-	50.04	counts	per	second	
Uranium Background	=	8.21	counts	per	second	
Thorium Background	=	7.26	counts	per	second	
Total Count Background	=	286.06	counts	per	second	
2π Bismuth Background	=`	0.81	counts	per	second	
						•

Potassium Cosmic factor =	0.250	c.p.s. per count 4π cosmic
Uranium Cosmic factor =	0.202	c.p.s./cps 4π cosmic
Thorium Cosmic factor =	0.278	c.p.s./cps 4π cosmic
Total Count Cosmic factor =	4.438	c.p.s./cps 4π cosmic
2π Bismuth Cosmic factor =	0.0505	c.p.s./cps 4m cosmic

The Compton scatter functions were determined from data obtained over the Grand Junction test pads, using the radiometric analysis of the bulk sample with natural water content.

> $T/U = \tau = 0.08$ $U/T = \alpha = 0.30 + 0.02 + 0.000076H$ $K/T = \beta = 0.37$ $K/U = \gamma = 0.90$

The 2π and 4π uranium window count rates are related through the geometric or equivalency factor. For the present system, installed in the Sikorsky S-58T, this factor, f = 5.1. Part of the terrestrial radiation of energy higher than 1662 KeV - the lower threshold of the uranium window - is detected in the uranium window of the upward looking detector, due to incomplete shielding, skyshine and shine-around. This shine-through/shine-around effect is assumed to be a function of both the intensity of the terrestrial uranium and thorium radiation and of the aircraft terrain clearance. From multi-altitude data acquired over the Lake Mead Dynamic Test Range the shine-through/shine-around effect was determined for each altitude

-27-

level. The data provided a best fit for a linear terrain clearance function as follows:

shine-through/shine-around = $(0.067 - 2.6 \times 10^{-5}H) (U_{4\pi} + 0.30T_{4\pi})$ The shine-through/shine-around corrected Biair Count rate is then:

$$U_{2\pi c} = \frac{U_{2\pi} - (U_{4\pi} + 0.30T) (0.067 - 2.6 \times 10^{-2}H)}{1 - 5.1 (0.067 - 2.6 \times 10^{-5}H)}$$

The shine-through/shine-around correction is applied to the $U_{2\pi}$ count rate at each single record. The single record $U_{2\pi}$ count rates are then averaged over 35 records to make them statistically compatible with the data of the primary system. The atmospheric radon correction is applied to both the $U_{4\pi}$ and the Total Count count rates. The equivalency factor for the $U_{4\pi}/U_{2\pi} = 5.1$, for Total Count/ $U_{2\pi}$ it is 73.5.

Within the CORRECT program the data are normalized to a common datum of 400 feet terrain clearance. An exponential formula is used, based on an air column reduced to a standard temperature and pressure of 0°C and 760mm Hg. (32°F and 29.92" Hg). The air absorption coefficients used are those derived from the multiple altitude flight over the Lake Mead Dynamic Test Range for thorium, potassium and Total Count. The air absorption factor for uranium is obtained by straight interpolation between the potassium and thorium air absorption factors. Their values are respectively:

The formula used for the altitude normalization is:

$$N_{400} = N_{H} \cdot \overline{e}^{\mu(400 - \frac{273}{273 + t}} \cdot \frac{P}{29.92} \cdot H)$$

Where N_{400} , N_{H} are respectively the count rates at 400 feet and at altitude H, μ is air absorption factor, t is temperature in degrees Celsius and P is barometric pressure in inches Hg.

The last operation in the CORRECT program is the determination of statistical adequacy of the data. The criteria for adequacy of the data are

-28-

based on the work of Lloyd A. Currie (op.cit.). A critical level is recognized, below which all observations made fail to detect a signal, i.e. 95% of all measurements fall within the "normal" distribution of "noise". The detection level is similarly defined as the level above which 95% of the measurements made fall within the normal Poisson distribution of "signal". Currie's critical level has been adopted as the count rate level below which data are inadequate. Data with count rates above the critical level but below the detection level are considered marginal. Above the detection level data are considered adequate. For the single record data the formulas are then:

Count Rate ≤ 2.33 (Sum Corrections) $\frac{1}{2}$: data inadequate 2.33 (Sum Corrections) $\frac{1}{2} < \text{Count Rate} \leq 2.71 + 4.65$ (Sum Corrections) $\frac{1}{2}$: data marginal

Count Rate > 2.71 + 4.65 (Sum Corrections) $\frac{1}{2}$: data adequate

No ratios have been calculated involving inadequate data in either numerator or denominator. Ratios have been calculated when the data in the numerator are marginal, provided the data in the denominator are adequate.

The thorium, uranium and potassium data are subsequently averaged over 9 records in the SPECAVG program. The output is a spectrometer master tape containing both averaged and single record data.

Parallel with the radiometric data reduction process, the magnetic data are edited and processed. Using the recovered film intersections and the established ground identities, preliminary flight paths are prepared. The flight path is refined in the magnetic adjustment program until an accurate final flight path has been obtained. The reduced spectrometer data are then merged with the final X-Y position of the data points, the reduced magnetic data and the digitized geology, and a master tape is produced with data that The REGROUP program then eliminates all pertain to each quadrangle only. duplicate line segments, inserts reflight segments where required, orders the remaining line segments and renumbers the fiducials of these segments such that the resulting line is directionally consistent with location sequential The renumbered fiducials increase from west to east for sample numbers. traverse lines and south to north for tie lines. A listing relating the renumbered fiducials to the original fiducial numbers as recorded in flight is included in this volume as Appendix N and can also be found in the back of

-29-

Volume II. This listing gives both the line number as it appears on all final data and the line number as recorded in flight. Similarly, the start and end fiducials of each final line and/or line segment shown on the flight path base map are given along with the corresponding start and end fiducials as recorded in flight. When correlated with the final fiducial numbers, the original fiducials will increase sequentially for lines flown west to east or south to north and decrease for lines flown in the opposite directions.

The following processing steps are STATANAL and HISTGRM. HISTGRM groups the radiometric data by geological cell units, determines the distribution of the data as normal or lognormal, calculates the mean (for normally distributed data) or the mode (for lognormal distributions) as well as the standard deviations. The results from HISTGRM are used in the STATANAL program, which calculates the signed standard deviation from the mean for each averaged sample for each of the six radiometric parameters. Its output is the Final Spectrometer Master Tape, from which the anomaly maps, the statistical analysis tape, the averaged record and single record reduced data tapes and listings, the flight path maps and the radiometric and magnetic profiles are produced.

-30-

DATA PRESENTATION

General

The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps.

The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate bound volume. Complete data listings of both the reduced single record and the reduced averaged record data are found in the back of this report. The format of the printout of the microfiches and the format of the data files delivered on magnetic tape are in accordance with the specifications of the BFEC 1200-C and are described in appendices F through L of this report.

Radiometric Multiple-Parameter Stacked Profiles

The radiometric profiles have been prepared at the horizontal scales of 1:250,000 and 1:500,000 on an automated flatbed plotter. Displayed are from top to bottom: total magnetic intensity, IGRF removed, in gammas; radar altimeter, in feet; ratio of eT concentration in ppm/potassium concentration in %; ratio of eU/K; eU/eT ratio, atmospheric radon (BIAC) in counts per second, equivalenced to the 4π count rate; apparent concentration of terrestrial eT in ppm, apparent concentration of terrestrial eU in ppm; apparent concentration of potassium in %; "Total Count" count rate. Flags are indicated, where needed, below the base line of the corresponding parameter. A short flag indicates marginal data, including terrain clearances between 700 and 1000 feet, while a long flag indicates inadequate data. Fiducial markers are plotted every 200 records, along the top of the profile, every 10 records near the bottom.

The flight path and the geologic formations overflown along the line are shown on the bottom of both the radiometric and magnetic multiple-parameter stacked profiles below the lower fiducial markers. Six tiers of formation identifiers along with short markers on the flight line are used to indicate changes along the profile with the base of the identifier letters aligned with the corresponding marker. The first identifier found on the westernmost end of the profile applies to the start of the line and this formation continues until the next marker is encountered. Subsequent changes to the geology are

-31-

similarly indicated along the profile.

Magnetic and Ancillary Parameter Stacked Profiles

The magnetic profiles have also been plotted at scales of 1:250,000 and 1:500,000 on an automated flatbed plotter. The plotting sequence of the profiles is, from top to bottom: barometric pressure at aircraft altitude in mm Hg; atmospheric ambient temperature in degrees Celsius, terrain clearance in feet; magnetic variations at base station, in gammas; total magnetic intensity, IGRF removed, plotted at 50 gammas per scale division. Fiducial markers are again plotted every 200 records along the top of the profiles, every 10 records near the bottom. $\sqrt{}$

Histograms

Histograms have been prepared for the six radiometric parameters for each geologic cell unit of the NTMS quadrangle area. The horizontal scale of the plots is constant for each of the parameters. Frequency grouping has generally been done in 100 groups per full scale, although in some cases more groups may have been used for better definition. In all cases the vertical scale was normalized to the number of samples observed in the group with the highest sample frequency.

For each histogram the frequency distribution type (normal or lognormal) is listed, as well as the mean (or mode in case of lognormal distribution) and the signed standard deviations. Note that for both the normal and lognormal distribution curves the standard deviation is given in terms of the parameter value (K, eU, eT, eU/K, eU/eT and eT/K). The actual standard deviation is obtained by subtracting the mean parameter value from the +1 standard deviation figure in case of a normal distribution, by dividing the mode value into the +1 standard deviation figure in case of a lognormal distribution. In case of lognormal distribution curves the standard deviation is thus a multiplication factor.

Each histogram further lists the total number of samples observed in the geologic unit and the number of statistically adequate/marginal data samples in each parameter plot.

Anomaly Maps

۰.

The anomaly maps have been prepared at scales of 1:250,000 and 1:500,000

-32-

on an automated flatbed plotter. The fiducial numbers along the flight lines match those of the corresponding profiles. Positive signed deviations of the mean are indicated by a plus sign to the north or west of the flight lines, while negative signed deviations are indicated by a minus, plotted to the south or east of the line. The number of pluses or minuses corresponds with the levels of standard deviation from the mean. To avoid crowding, standard deviation signs are calculated and plotted for every fifth sample only.

Computer Printer Maps

Computer printer plots are produced for the total field and the six radiometric channels. Upper and lower limits were chosen based on the minimum and maximum values of the gridded data. Ten intervals are represented by the contour values 0 to 9. A minus (-) or a plus (+) sign represents those values less than the lower limit or those values higher than the upper limit.

The interval for each integer contour is further divided into two groups. For those values less than .5, the contour is printed; e.g. for values 4.0 to 4.5, the value 4 is printed, while values of 4.6 through 4.9 are left blank.

GEOLOGY

General

The Eureka survey area is located on the northern California coast and occupies the area between 40° to 42° north latitude and 124° to 125° west longitude. All rivers and streams flow west into the Pacific Ocean. Estuaries, lagoons and barrier beaches are typical of the coastal area where generally narrow flat Quaternary topography escalates radically into steep and rugged mountainous terrain.

Portions of two different geomorphic provinces are included within the boundaries of the map area. The southern half of the area includes part of the system of longitudinal ridges and valleys of the Northern Coast Ranges. These structurally controlled features trend generally N35°W and rise sharply from the terraced and wave-cut Pacific Coast. The irregular and knobby topography is proned to landsliding, a typical trait of Franciscan Formation rocks.

To the north, the topography becomes even more complex and rugged as described by the high, prominent peaks and ridges of the Klamath Mountains Province. This area seems more closely related to the Sierra Nevada than to the Coast Ranges with hard pre-Cretaceous rocks exposed throughout the province by deep cutting rivers and streams.

The geologic map of the area used here is a compilation of Weed and Redding sheets of the Geologic Map of California as published by the California Division of Mines and Geology.

Stratigraphy

Rocks of the Northern Coast Ranges Province are comprised for the most part of undivided upper Cretaceous marine sediments southwest of the Fresh Water Fault. The late Mesozoic Franciscan volcanics and metavolcanics and pre-Cretaceous metasediments are most common northeast of the fault. Upper Miocene to Pleistocene marine and nonmarine sediments and Quaternary fluvial and dune deposits are found in the estuarian areas and valleys that were submerged during a higher sea level. A minor Tertiary intrusive body is located east of Arcata Bay.

Hard pre-Cretaceous metasediments and Jura-Triassic metavolcanics cut by

-35-

Mesozoic ultrabasic plutons comprise the bulk of the rocks in the Klamath Mountain Province east of the South Fork Mountain Fault. Younger Franciscan Formation rocks crop out west of the fault. Pleistocene marine deposits occur in the vicinity of Crescent City. Younger nonmarine and Recent fluvial and dune deposits accumulate along the coast. Brief unit descriptions for Eureka stratigraphy follow, beginning with the oldest units.

Pre-Cretaceous Metasedimentary Rocks (ms)

The pre-Cretaceous metasediments are comprised typically of mica- and quartz-rich phyllites and schists, metamorphic chert, quartzite and slate.

Jurassic and/or Triassic Metavolcanic Rocks (JRv)

These metavolcanic rocks include metadacites and meta-andesites which occur as sills and flows. Also occurring are volcanic breccias and locally fossiliferous tuff.

Mesozoic Ultrabasic Intrusives (ub)

The ultrabasic intrusives of Mesozoic age which occur in the area are largely serpentinized peridotite, pyroxenite and dunite. Talc schist and soapstone occur only locally.

Franciscan Volcanic and Metavolcanic Rocks (KJfv)

The volcanic and metavolcanic rocks of the Franciscan Formation are composed predominantly of diabase, basalt, and agglomerate.

Franciscan Formation (KJf)

Rocks of the Franciscan Formation are comprised of massive graywacke and minor amounts of platy, dark-gray shale, thin-bedded chert, some greenstone and glaucophane schist.

Upper Cretaceous Marine Sedimentary Rocks (Ku)

The marine sediments of upper Cretaceous age consist of interbedded sandstone, shale and locally massive conglomerate.

Undivided Cretaceous Marine Sedimentary Rocks (K)

The undivided marine units include interbedded sandstone, graywacke, shale and conglomerate.

-36-

Tertiary Intrusive Rocks (Ti)

Intrusives include rhyolite plugs, andesitic breccias along with basaltic dikes and plugs.

Tertiary Marine Sedimentary Rocks (Tm)

Locally fossiliferous mudstone, shale and sandstone comprise the Tertiary marine sediments. They are further characterized by local sand lenses and conglomerate thin beds.

Tertiary Nonmarine Sedimentary Rocks, Undivided (Tc)

These undivided sediments are characterized by a predominant composition of auriferous gravels locally interbedded with sandstone and conglomerate.

Upper Miocene Marine Sedimentary Rocks (Mu)

The upper Miocene marine sediments are comprised of thick locally diatomaceous mudstone with basal layers of sandstone and conglomerate.

Middle and/or Lower Pliocene Marine Sedimentary Rocks (Pml)

Mudstones, sandstones and siltstone comprise the middle and/or lower marine sediments and are locally glauconitic in the southern half of the area.

Upper Pliocene Marine Sedimentary Rocks (Pu)

The upper Pliocene marine sedments consist chiefly of interbedded sandstone, mudstone and siltstone with locally conglomeratic beds. Rocks along the coast in the Eureka area are typically very fossiliferous.

Pliocene - Pleistocene Nonmarine Sedimentary Deposits (QP)

Largely undifferentiated lacustrine and fluvial deposits containing local conglomerates and interbedded sandstones and claystone comprise the bulk of the Pliocene - Pleistocene nonmarine sediments in the area.

Pleistocene Nonmarine Sedimentary Deposits (Qc)

Pleistocene nonmarine sediments consist generally of fanglomerates, deltaic sandstones, siltstones, gravel and clay. Deposits may include intercolated volcanic ash or debris in the southern part of the area.

Pleistocene Marine and Marine Terrace Deposits (Qm)

The Pleistocene marine terrace deposits are predominantly comprised of

-37-
alternating facies of sands and clays.

Quaternary Nonmarine Terrace Deposits (Qt)

The Quaternary nonmarine terraces include river, stream and lake terrace deposits, along with some fanglomerates, deltaic and slopewash deposits.

Recent Alluvium (Qal)

Alluvial silt to coarse gravels occur in the Great Valley and are often associated with fan, terrace or local lacustrine deposits. Recent alluvium in the northern portion of the area may also include zones of local glacial outwash.

Recent Dune and Coast Sand (Qs)

Well sorted dune sand and older eolian sand occur along the coastal areas of the Eureka area.

Structure

Being of very narrow land mass, the Eureka area contains only small portions of large major structures of the Northern California area.

One of the most notable structural features of the Eureka area, though exposed only to a very limited extent, is the San Andreas Fault which touches land in the southern part of the map area on Point Delgada. To the north the direction changes from almost north-south, to more northwesterly, paralleling the coastline until it moves out into the Pacific near Cooskie Mountain. From that point the San Andreas merges with the Mendocino Fault zone which trends east-west along the submarine Gorda Escarpment and Mendocino Canyon.

All thrust faults, including the Grogan Fault, Del Norte Fault and the Coast Range Thrust, are downthrown on the west and overridden from the east. Offshore faults in the northern half of the Eureka map area are oriented in a generally north-south direction, while the faults to the south more closely follow the onshore structural trends.

INTERPRETATION

General

The airborne gamma-ray spectrometer survey is conducted in support of the Department of Energy's National Uranium Resource Evaluation (NURE) program. The primary purpose of the survey is regional resource evaluation as opposed to local anomaly identifications. The interpretation of the radiometric data is directed towards determining zones of possible depletion of uranium which may have served as possible uranium sources, outlining areas of regional enrichment in uranium and indicating the geological formations which are most likely to be mineralized within a possible uranium province.

The areas of possible uranium depletion/enrichment are outlined with the aid of anomaly maps, which have been previously described. Enrichment or depletion of uranium on a regional scale is assumed to have taken place if the U/T and U/K ratio values remain higher/lower than at least one standard deviation above/below the mean for a distance of at least a mile, provided the K, U and T count rates are at the same time not less than one standard deviation below the mean. One mile equals approximately 35 samples.

The probability of a geologic formation to be mineralized by a given element may be estimated from the dispersion of the geochemical distribution curve (i.e. the smaller the ratio of the standard deviation over the mean) the less the likelihood that an extremely high concentration of that element exists within that formation. Obviously, the opposite holds true as well.

The decision of both the "favorability" of a formation and of the presence of a regional geochemical anomaly is influenced to a large extent by the choice of the geological cell units used in the correlation of the radiometric and geologic data.

The radiometric parameters used in the present report are concentrations in parts per million of equivalent uranium and equivalent thorium and in percent of potassium and their ratios. The radiometric count rates of the helicopter borne A.G.R.S. (Airborne Gamma-Ray Spectrometer) system were calibrated at the Lake Mead Dynamic Test Range against sources of known concentrations of potassium, uranium and thorium. The sensitivities of the A.G.R.S. system, normalized to 400 feet terrain clearance at standard temperature and pressure are:

-39-

Radioelement	Count Rate	Concentration
Potassium	105.71	1 <i>%</i> K
Uranium	12.05	1ppm eU
Thorium	7.32	1ppm eT

Geochemical Analysis

The geologic map of the Eureka area distinguishes 20 geologic units, 18 of which were sampled in this survey. Distribution histograms were prepared over each unit sampled for the K, U and T parameters and their ratios. Due to significantly low numbers of samples, data for units KJFV and MU were combined with geologically similar units, KJF and TM respectively for statistical purposes. No changes were made on the geologic map. The zones of unknown or inaccurate geology, unit UNK, account for only 34 samples, too few for any reliable analysis.

Narrow, somewhat erratic distribution curves centered about very low mean values were generated for all parameters over unit QS, dune and coast sand. Unit QAL, the alluvial deposits, produced broader distribution curves over moderate mean values for each radiometric parameter. The alluvial deposits which occupy many of the steep valleys include at least two varying lithotypes. The double-peaking in the potassium histogram reflects this heterogeneity of the composition.

With a relatively low number of samples (114), the Quaternary nonmarine terrace deposits, QT, display a scattered multipeaking distribution of all parameters, testifying to the probable diverse composition of the sediments. The marine terrace deposits, QM, however, appear to have a relatively uniform composition and produce much cleaner distribution curves centered about very low mean values at 0.2% K, 0.6 ppm eU and 2.8 ppm eT.

The bimodal lognormal distribution of the K parameter in unit QP, the largely undifferentiated nonmarine sediments, shows the variety of composition of these predominantly fluvial deposits. The conglomerates in the section are the probable cause of the nonuniformity of the distribution curve. All parameters are recorded at extremely low mean values over the unit.

The upper Pliocene marine sediments, PU, produce relatively clean, narrow distribution curves about moderately low mean concentrations. The slight spread in the peak region of the K histogram is an expression of the varying

-40-

amounts of felsic members in the unit.

Three relatively narrow, clean lognormal distribution curves were generated for unit TM, the Tertiary marine sediments. The higher concentration sample values creating the lognormal distributions probably relate to weakly anomalous readings taken along traverse 600 near fiducial 3530.

Unit K, comprised by the widespread, undivided Cretaceous marine sediments, with 2636 samples produced broad-based normal distribution curves over moderate mean values for all parameters. The very narrow and clean ratio curves reveal the uniform and similar dispersion of the radiometric elements throughout the unit.

A diversity of composition is the probable cause of the multipeaking K, U and T histograms of the undifferentiated marine sediments of unit KU. Samples under the two higher percentage peaks of the potassium histogram relate to outcrops along the Eel River where it is crossed by traverse 630. Samples under the lower percentage peak are probably associated with deposits along such waterways as the South Fork and Elk rivers and are more similar in their potassium response to unit KJF, the Franciscan Formation.

The 2555 samples collected over the Franciscan Formation produce very clean distribution curves for K, U and T around low mean concentrations at 0.5%, 0.9 ppm and 3.4 ppm respectively. The Mesozoic ultrabasic intrusions, UB, and the Jura-Triassic metavolcanics, JTRV, produced similarly narrow and very low radiometric responses for the K, U and T parameters at 0.1%, 0.3 ppm and 0.9 ppm and 0.1%, 0.4ppm and 0.8 ppm respectively.

A total of 13 uranium anomalies and 2 thorium anomalies are defined on the interpretation map. The unit with the most uranium anomalies is KJF with 7 anomalies. The unit with the most anomalies per thousand samples is again unit KJF with 2.74 anomalies, followed by QAL with 2.51, TM with 2.49 and unit K with 1.52 anomalies per thousand samples.

Computer Printer and Anomaly Map Analysis

Computer printer maps of the total magnetic intensity and of the six radiometric parameters at a scale of 1:500,000 have been prepared in addition to the radiometric anomaly maps of the area. The grid spacing of the pseudo-countour maps is 2117 by 1270 meters. As a result only the broader features

-41-

TABLE III

LEGEND TO TOTAL FIELD MAP (CAMMA)

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
-		51700.0
0	51700.0	51860.0
1	51860.0	52020.0
2	52020.0	52180.0
3	52180.0	52340.0
4	52340.0	52500.0
5	52500.0	52660.0
6	52660.0	52820.0
7	52820.0	52980.0
8	52980.0	53140.0
y	53140.0	53300.0
+	53300.0	

-42-

,

4= 350000.0 4=4655669.0	EUREKA, CALIFORNIA	NORTH	X3= 430000. Y3=4655669.
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
	· ·	99958888887777 8 9 888888 77 8 5 55555 6 78 9 1 1 00 1357999 - 0489 - 048 - 258 + 22111 12479 + 6555544 5789 + 77777766 78999	• + • • 8 8
	· • ·.	77 777 88 99 7 8 59 7 88 88 7 88 8 8 7 7 7 7 7 7	+ 7 7
		7 7 7 7 7 7 7 7 7 7 88	7 7 7
	· · · ·	888 7 88 888 88 88 88 8 8 8 8 8 8 8 8 8	8 8 8 8
	• . • ·	88 88 88 88 88 88 88 88 88 88 88 88 88	8 8
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8
		8	
T= 350000.0	rigure /-		X2 = 430000. Y2 = 4535000.

-43-

.

-44-

TABLE	IV

TATENT	ጥር	POTASSTIM	AVERAGE	ΜΔΡ
DEGEND	10	LOTADOTON	AVENAGE	PIAP

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
-		0,12
0	0.12	0.23
1	0.23	0.34
2	0.34	0.45
3	0.45	0.56
4	0.56	0.67
5	0.67	0.78
6	0.78	0.89
7	0.89	1.00
8	1.00	1.11
9	1.11	1.22
+	1.22	
+	1.22	

-45-

±=4000009.0			13-4000009
		X.	
		-365554442 4442	
		-25 5 4 33 4320-	
		14 54 3 2 10	
		-1345 4 3 210 -	•
		-13 44 3 210 -	
		023 33 21 0 -	
	,	1 1 1 0 -	
	• .	11 1 1 0 0-	
		11 1 1 CO0000-	
		-01 2222221	
· •		- 12 3333332	
		-12 3 4433	
		12 3 4 43 1274 4	
		0344 55	
		0345 5 5	
		0245 55-	
		02 3 44	
		-012 34	
		- 0123 5	
		-01234	
		0 1245	
	·	01 3455	
•		0 234	
		012	
		-0 1	
		1 0	
		21 1	
		8421 <u>11</u> 85211 1	
		421 2	
		432 2	
		5522 2 2	
		1 2 3	
		01 2 34	
		-012224	
		- 012332 2 34	
		0123332 3	
		01233 2	
		-1343 2 2 1	
		-14432 22 1	
		1	

. .

: .

.

.

· · · ·

-46-

X4=	350000.0
Y4=4	545669.0

SOUTH

x3= 430000.0 Y3=4545669:0

•		1	
• •		· •	•
•			
		00	
•		-211 2111	•,
•		-1 1 1 2 1	•
•	· · ·		•
•		22 1 232	•
•		33222 34	•
•		244333 45	
•		14555 4 4	•
•		14222 4 6	
		1256643 3467	•
•	· · · · · ·	235654 2 35	•
•			•
•		23430432 2 3	
•	32	345542 21	:
•		3 45532 1	
•	2	2 44422 1	
			•
. •	-1 2	3 4 3 22 1	:
•	- 01 2	2 3 3 22	•
•	- 012		•
•	- 412		
•	- 0 12	22 2 2	
•	-1 22 33	33 2 2 2	
•	-744443	33 2 2 2 2	•
•			:
•	1 1467754 4	1443 22 3 44	:
:	1 35887644	43 33 44	•
•	22 4688765 5	554 3 33 4	
•			•
•	2344 5111655	0054 33 3	•
•	134555 666 6	7 6544444 3	•
•	-14566 66 6	7765555 4 3	:
•			•
•	-240000 000 01	1105 5554 3	:
•	35677 77766 7	7755 44	•
•	577 77 887 7	6654 5	:
			•
•		07 7 7 C	:
•	798 8 99 67 7	65 66665 6	•
•	8 999 99 87 7	655 66 555	•
•			•
•	+ 777 90 /	1 6 55 4	:
•	+ 9 987	77765 4	:
•	+ 9987	777666655 43	•
•	A 0.097	79 77 4 543	:
•	+ 7 707	10 11 0 343	•
•	+ 9 98 777	888 777666	:
	999 9 8 8	8 888 777	•
•	66 6 6 6 6		:
•		777 00 94	
•	99 9 9 9 8 8	9 95 999+	:
•	989988	. 9 9	•
•	87 78 8	8 8 8 8 6 9	
•	57 10 0	0 000 90	•
•	5 5788 7	8 8 8 8 7	•
•	47957 7	8876	•
	48 C7 K	77 8976	:
			•
•	· 6	888 6 1 0	:
:	4	4 45678 999	•
•		1 137959999	•
•.			•
•		-20 4 81	•
:		+ 99 8	•
•		+99999	•
:			•
•		T Y Y	•
•	•	99	
•			•
•		· · · · · · · · · · · · · · · · · · ·	÷
•			:
+ • • • • • • • • • • • • • • • • • • •	••••••		••••+
X1= 350000.0	Figure 8-B	x2= 4	30000.0
Y1=4425000.0		VO_44	25000 0
	FUTADOTUM AVERAGE	12=44	2000.0

47/48

TABLE V

UPPER LIMIT CONTOUR VALUE LOWER LIMIT 0.20 _ 0.37 0.20 0 0.54 0.37 1 0.71 0.54 2 0.88 3 0.71 1.05 0.88 4 1.22 1.05 5 1.39 6 1.22 、1.56 1.39 7 1.73 1.56 8 1.73 1.90 9 1.90 +

LEGEND TO URANIUM AVERAGE MAP

-49-

X4= 350000.0 Y4=4655669.0	EUREKA, CALIFORNIA	NORTH	X3= 430 Y3=4655
+	••••••	•••••	• • • • • • • • •
•			
		456 88665 86432 45 67 76 6 6432	1
•		3456 666665321	-
•		1345 5 5543 1 -0124 5 4210 -	
		- 12344 3210 -	
•		10 1 2 21 0 -	
:		21 122 1 00- 12 1 12 2 1110 -	
•	· -	122 12 222 1 -	
		22 344444331	
:		3 4 5555541 3 55 5 5430	
•		555 5 530	
		555 787	
		45 6789+	
•		4 4688	
		0 1357	
•		- 12467 - 02367	
:		-0135	
		2 132	
		2 122	
:		0 1	
		-11 0	
•		-1 1 0 01 10	
•		322 1	
•		553 22	
• •		4 2 33 2	
		2 3333	
•		0 1244444	
•	•	-0134 4 5 1 123 33 5	
		121 1 22 2 45	
•		2 23 22 3	
		5433 4431	
•		643 35531- 642 37630-	
•		2	

.

.

.

-50-

X4= 350000.0 Y4=4545669.0

EUREKA, CALIFORNIA

+		•••••+
•		:
•	:	:
•	. 11	:
•	52 1 55	5
•	.521 234 5	5:
•	322 34 5	•
•	44444 55	:
	35 66 766	•
•	246 777777	
•	2 4665 5676	•
•	2 4553 346	•
•	23 3443 3 4	
•	743 34 333 32	•
• · · · · · · · · · · · · · · · · · · ·	743 222 3 2	•
•	7543 222 233	:
• •	13 3 2 233	•
•	0 123 3 2222 34	•
•	0 1 3 3 2 345	:
•	1 23 32 2 345	•
•		•
•	022 62 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	:
•		•
•	1 2467652 2222 22 22	:
•		•
		•
	52 5454 5 44 55 54 52 E 3 5444 54 E 44E43 31	•
		•
•		•
•		
•		•
•		•
•	66554 4567 76532 234443 21	•
•	76654 567 7654 2 4555432	•
	71765 56 65443 455 433	•
•	78765 5 6655555 4 43	•
•	678 765 5 6 6666665 44 42	•
•	67887655 6 77766542	•
•	88 76 77777 6 77 887765	•
•	87 7899957 6 67 887 76	•
•	577 79 86 67 76	:
•	597 79 86 6788888 76	•
•	6 68 876 678 9 8 7	•
•	5 689 58766 78 9 8 76	:
	4 68 5876 789 987 6	•
• •	5899 76 7 89 98 6	•
	57 9 77 789 97 6	•
	7 89 976 7	•
•	89 87 8	•
•	÷ 986-8	•
•	+ 97 8+	•
•	+ 9888+	•
•	+ 8 9+	•
•	988 9	•
•	7 76	•
•	665	•
•	· ,	•
• 		• • • • • • • • •
X1= 350000.0	Figure 9-B X2=	= 430000.0
Y1=4425000.0	LIRANTIM AVERAGE Y2=	-4425000.0

TABLE VI

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
	· · · · · · · · · · · · · · · · · · ·	
_		0.90
0	0.90	1.35
· 1	1.35	1.80
2	1.80	2.25
3	2.25	2 . 70 ·
4	2.70	3.15
5	3.15	3.60
6	3.60	4.05
7	4.05	4.50
8	4.50	4.95
. 9	4.95	5.40
+	5.40	

LEGEND TO THORIUM AVERAGE MAP

• . ·

.

.

-53-

	X4= 350000.0 Y4=4655669.0	EUREKA, CALIFORNIA	NORTH	X3= 430000.0 X3=4655669.0
	+ • • • • • • • • • • • • • • • • • • •	•••••	•••••	+ • • • • • • • • • • • • • • • • • • •
				•
			457777 87 67	174
	•		4567 777 6 0	530-
				042-
	•		-0224 4 5 421	. 0-
	•		-023 33 20	-
•			02 3 3 2 10	-
	•		012 3 2 10	-
			1 1 2 2 1 0	
	•	· -	11 12 2 1 1	0 -
			0 12 22222	211
	•		- 0134 544	332
		х _и . 1	- 1346665	554
	•	,	-13436 60	66 ·
	•		135 67	1 77
	•		03567	88
	•		-357	38 8
			-2007	88
			02340	57
	•		-0134	•56
			- 02	35 5 :
	• **		- 02	35 5
		•	-02	467
	● ● 1		-024	+676
			-013	3576
	•		01:	345
	•		-0	1
	•		-1	1 0
			01.	110
			1	1
			2	2 2 3 4
	•		65	2 44
	•		53	3 5
	•		54	4
			455	
			.543 7345 /	566
	•	•	2345	5 7
	•		• 2 34	567 .
	•		22 34	566
			1234	56
	•		0234	5
		,	-234	+ 4
			-245 44	3
	•		-2554,4	533
			L	• • • • • • • • • • • • • • • • • •
	† • • • • • • • • • • • • • • • •	Figure 1	0 - A	
	XI = 350000 0			スノニ 4.30000.0

.

X4=	350000.0	
Y4=4	545669.0	

SOUTH

•

• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
		•
		22
	-14	437 4444
· · · · · ·	-13	447 4 4
	24	55555
		55 666
	245	666 7
	0466	666 77
	02466	5 5677
· · ·	13565	4 3 56
	123465	4 3 4
· ·	52 <u>3</u> 4554	3 22 32
	5 3 554	3 232
	44 344	3222 3
	-12 333	33.
	- 012 22	2222 3
	- 02 2	233
	- 01233 2	233
	-012 333 2	23
	-2345544 33 2	2 34
	1 0357765 443 2	22 3 45
	1 25788765 43	3 45
		33
• <u>.</u>		33 <u>2</u>
	124444 222 2000000 12455 5 54 7 7	243 <u>2</u> 2523 1
		00432 L 7543 31
		1243 21
		2 22 2 22
$\mathcal{X}_{\mathcal{A}}$	6788 7 88887 6 5	- JJ 6 66
	788 8 89987 6 5 5	55444 4
	899 88 87 6 5 5	44
	5999 887 6 6 5	4 44
	99 9 8 7 6 6 6 5	55 4 4
	9 9 9 8 76 6 66	6655 4
	9 99 8 76 66 7	7 65 4
	959 9987 6 7	76 55
	89 99 987 7777 8	87 665
	78 9 877 89	9877 66
	7 5 9 8 89	9877 6
	8 9998 89	877 6
	7 7888 88 8	877 6
	4 57 88 88 8	8765
	4688 8 888 8	876 5
	3698 777777	8 8 7 5
	6 666 7	8 887
	54 45	1 899+
	1 025	18 9 + ·
	-15	18 9 9
	- 9	8 8 99
	,	00 0 V
		77 Y
		У У 0 0
		77
•		
= 350000.0	Fiqure 10-B	X2= 430000.
=4425000.0	THORIE MITCH	Y2=4425000.
-		

55/56

TABLE VII

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
		0.90
0	0.90	1.15
1	1.15	1.40
2	1.40	1.65
3	1.65	1.90
4	1.90	2.15
`5	2.15	2.40
6	2.40	2.65
7	2.65	2.90
. 8	2.90	3.15
.9	3.15	3.40
+	3.40	

LEGEND TO URANIUM/POTASSIUM RATIO MAP

-57- ·

4= 350000.0 4=4655669.0	EUREKA, CALIFORNIA	NORTH	X3= 430000 Y3=4655669
•••••••••••••••••••••••			••••••••••••
<i>i</i>		113 576 7 75 0 .	
		012456 6 77 69+	
		-C235 6899+	
		-C124 5679 + -C1245 689 +	
		-C12455 689+ 422 34654 5798	
	· .	4652 35775 4695	
		169643 69975 6754	
		4 3577766662	
		1376 55432-	
		6 5 4 31- 44 3	
		· 3 33 5 2 2 3457	
	· · · · · · · · · · · · · · · · · · ·	22 2 467 2 346	
		3 346 2 357	
		2 3475	
		4 3 5	
		321 0	
		421 0 421 0	
		2210 22 11	
		12210 02 10	
		13220 46541	
		0688633	
		27742	
		3 4432	
		5 5555 4 5 6653	•
		+ 322 33 3 + 321 123 3	
		3 22 34 3 633 4564	
	,	74 46884 84 37 952	
		8410 + 42 8	
1_ 250000 0	Figure 11-	· · · · · · · · · · · · · · · · · · ·	
1=4535000.0	URANIUM/POTASSIUN	I RATIO	$X_2 = 430000$ $Y_2 = 4535000$

X4=	350000.0	
Y4=4	545669.0	

21

2

210

10

X1= 350000.0 Y1=4425000.0

Figure 11-B

X2 = 430000.0Y2=4425000.0

1 11 1 0

URANIUM/POTASSIUM RATIO

59/60

TABLE VIII

LEGEND TO URANIUM/THORIUM RATIO MAP

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
_		0.180
0	0.180	0.215
1	0.215	0.250
2	0.250	0.285
3	0.285	0.320
4	0.320	0.355
5	0.355	0.390
6	0.390	0.425
7	0.425	0.460
8	0.460	0.495
9	0.495	0.530
+	0.530	

-61-

= 350000.0 =4655669.0	EUREKA, CALIFORNIA	NORTH	X3= 430000. Y3=4655669.
• • • • • • • • • • • • • • • • • • • •		•••••••	
		·	
		332 554 5 64 7+	
		245 45	
		023455 43 3	
•		-124000043210	
		-124665 4 321	
		522 3576555433	•
		38742 2578888876 7	
	· · ·	39 42 257877776 7	
		4 34776 6654	
		01554 4431	
		13754 320-	
		65 33 21-	
		332 2 4	
		232 2357	-
		232 357	
		2 36	
		1 136	
		2 1367 2 1257	
		0 23	
		0 11	
		4210 -	
		3210-	
		22110	
		222 1	
		02 2 1	
		46641	
		2676410	
		25653 0	
		1210	
		1 110-	
		-02 2 1	
		0 12 22 1	
	,	95 I III 3 9511 1 3	
		1 1 222 1	
	•	422 3 42	
		74 3674-	
		741 5795-	
		+	
250000 0	Figure 12-	A	10 10000 0

.

.

-62-

.

X4= 350000.0 Y4=4545669.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • • • • • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
43 3567643 34 56 6 5 243 2 34688664 344 4 5 5 2532 235788664 34 44 5 5	
• 3 34567764 345 555 5	• • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
34567764 4 5678753 3 7898642 3 + 853 36	•
+ 853 36 + 9654 6 9654 5 543 4	•

63/64

CONTOUR VALUE	LOWER LIMIT	UPPER LIMIT
	and and the state of the state	
-		2.05
0	3.65	4.35
1	4.35	5.05
2	5.05	5.75
3	5.75	6.45
4	6.45	7.15
5	7.15	7.85
6	7.85	8.55
7	8.55	9.25
8	9,25	9.95
9	9.95	10.65
· +	10.65	

LEGEND TO THORIUM/POTASSIUM RATIO MAP

TABLE IX

X4 = 350000.0	EUREKA, CALIFORNIA	NORTH	X3 = 430000.0
+ • • • • • • • • • • • • • • • • • • •		••••••	13=4055669.0
•			
	· · ·	-023 5555 54444 -023 45 66 55 4 0123456 776	
		1 1 2345689+ 31 123469 + 311 1 2 358 +	
		22 2 33 47 + 24233 44 46799 1355555554 5675 1246 7666 5 66532	
	· · ·	1 36666 6 6 532 66 6 6666 53 4 4 56 6 543	
		23 4676 5 4 3 45 65 4 345 4 4 4 4	
		3 4 43 3 34 543 2 4 543	•
	• .	234 53 234 54 234554 24 554	
		355 542 76654 55543	
•		-24 432 -2443 2 343 2	
		3 32 23 33 23 44 234 4	
		44 55 345 6 -2456 7	•
• • •		-2456 7 356 7 4676	-
• • • • •		567876 6788876 677 8:75 6 7765	
		66 678875 +8 5 5799853 +8 5 698752	•
- - - - - - - - - - - - - - - - - - -		54 47 76 54 46 6 5 456 7	
• • •		4 5676 67 43 795 77 3	
X 1= 350000.0	Figure 13-A	••••••	x2= 430000 0
Y1=4535000.0		1	Y2=4535000.0

• •

The second second

.

.

THORIUM/POTASSIUM RATIO

.

X4= 350000.0 X4=4545669.0

•		•
•	+	•
	088	7 79+
•	069	97 8+
•	7	87
•	37 1367 (9863
•	012346	6542
•	1 1 235	65420
•	11 2450	6643
•	011 234 32 11 234	55 4
•	3 1 234	4 56 :
	332 23	45
•	133 2 11	2 35
		234
•	0 23 3 2 1	1 244
•	0 123 32 1 2	22 3
•	0 123 32 1 22	222
•		2 1
	1 123321122	1111
•	11 1 22 11 2 1	0
•	110 1 1 1 2 21	0
•	110 11 123332	0 -
		0-
•	00 11 111 2 2 1	0- :
•	1 1 1 1 2 1	00
•		0
•		0
•	0 1	2
	0 1	111_2
•		1
		0 -
•		0 -
•	01 1111 1 1	0 -
:	1 1 1 1 1 1 1 1 1 1	0
•		
•	1 0 1232	10
	2 11111	10
•	1	
•	0 00	1 1 1
- 	- (1 22 :
	-(0 1 1
•		011
•		
•		11
• •	• • • • • • • • • • • • • • • • • • • •	••••••
X1= 350000.0	Figure 13-B	X2= 430000.0
¥1=4425000.0	THORIUM/POTASSIUM RATIO	Y2=4425000.0

67/68

69/70

can be seen on these maps and narrow events are normally not noticeable.

The magnetic map of the Eureka area displays a broad featureless magnetic signature over all but the northernmost part of the area where an approximately 2600 gamma anomaly delineates the extent of thrusting of Jura-Triassic volcanics over Franciscan sediments. The average total intensity of the area is 52,500 gammas.

The radiometric maps reveal a very close association between the potassium, uranium and thorium with the greatest distributions of concentrations being located in the southern third of the map area. With apparent concentrations of 1.2%, 1.9 ppm and 5.4 ppm for the K, U and T parameters, these zones match very well in location with anomalies which have been defined south of the Mattole Fault Shear Zone in the vicinity of the Mattole River over predominantly undifferentiated Cretaceous marine sediments. Other undivided Cretaceous rocks as well as rocks of the Franciscan Formation display higher than average radiometric response in the central and northern areas of the map reaching levels of 0.89%, 1.22 ppm and 4.00 ppm for K, U and T respectively.

Based on the information on interpretation in the general interpretation section, a total of 13 uranium anomalies and two thorium anomalies are designated on the interpretation map. Most are only weakly anomalous having ratio support in only one of the U/K or U/T parameters, with the other being anomalous due to low expression in the potassium or thorium channels. These anomalies are felt to be described adequately in the anomaly list in Appendix B and will not be discussed further here.

Uranium anomalies 10, 11 and 12 which occur on traverse 650 merit extra comments, however. Occurring along part of the Mattole River over unit K, the undivided Cretaceous marine sediments, the three uranium anomalies represent uranium concentrations approaching 2.0 ppm, with reliable ratio support. Each one is expressed very well on the radiometric profiles. Any further investigation should include a closer look at these areas.

The two thorium anomalies are weak and occur in areas of normal or only slightly below normal uranium response and are adequately described in Appendix B.

-71-

SELECTED REFERENCES

Aero Service, 1980: Report on calibration tests with the rotary wing gammaray spectrometer system. August, 1980.

- Brinck, J. W., 1974: The geochemical distribution of uranium as a primary criterion for the formation of ore deposits. <u>in</u> Formation of Ore Deposits. IAEA, Vienna, 1974.
- Butler, A. P. jr., Finch, W. I., and Twenhofel, W. S., 1962: Epigenetic uranium in the United States. U. S. Geol. Survey Misc. Investigations Resource Map, MR-21.
- Dott, R. H. Jr., 1971: Geology of the southwestern Oregon coast west of the 124th meridian. State of Oregon, Dept. of Geology and Mineral Industries, Bull. 69.
- Jenkins, Olaf P., 1938: Geomorphic Map of California. California Div. of Mines and Geology, Bulletin 138 (plate 2).
- Jennings, Charles W., et al, 1975: Fault Map of California with Locations of Volcanoes, Thermal Springs and Thermal Wells. California Div. of Mines and Geology.
- Norris, Robert M., and Webb, Robert W., 1976: Geology of California. John Wiley and Sons.
- Strand, Rudolph G., 1962: Geologic Map of California, Redding Sheet. Olaf P. Jenkins Edition. California Div. of Mines and Geology.
- Strand, Rudolph G., 1963: Geologic Map of California, Weed Sheet. Olaf P. Jenkins Edition. California Div. of Mines and Geology.
- Wijs, H. J. de, 1951: Statistics of ore distribution. Part I. Geologie en Mijnbouw, NWe Series, Jrg. 12, no. 11.
- Wijs, H. J. de, 1953: Statistics of ore distribution. Part II. Geologie en Mijnbouw, NWe Series, Jrg. 15, no. 1.

APPENDIX A

Geologic Legend

GEOLOGIC LEGEND

•

Aero Symbol	Map Symbol	Unit Description
QS	Qs	Recent dune and coast sand
QAL	Qal	Recent alluvium
QT	Qt	Quaternary nonmarine terrace deposits
QM	Qm	Pleistocene marine and marine terrace deposits
QC ·	QC	Pleistocene nonmarine sedimentary deposits
QP	QP	Pliocene-Pleistocene nonmarine sedimentary deposits
PU	Pu	Upper Pliocene marine sedimentary rocks
	Pml	Middle and/or Lower Pliocene marine sedimentary rocks
TC	Тс	Tertiary nonmarine sedimentary rocks
TM	Tm & Mu	Tertiary marine sedimentary rocks Upper Miocene marine sedimentary rocks
	Ti	Tertiary intrusive rocks
K	K	Undivided Cretaceous marine sedimentary rocks
KU	Ku	Upper Cretaceous marine sedimentary rocks
KJF	KJf & KJfv	Franciscan Formation Franciscan volcanic and metavolcanic rocks
UB	ub	Mesozoic ultrabasic intrusives
JTRV	Jtv	Jurassic and/or Triassic metavolcanic rocks
MS	ms	Pre-Cretaceous metasedimentary rocks
UNK		Incomplete or uncertain geology
W		Water

.

APPENDIX B

List of Geologic Units by Anomaly

List of Geologic Units by Anomaly

(Uranium .	Anomalies)
------------	------------

Anomaly	Geologic Unit	t-traverse tl-tie line	Fiducial	Brief Description
1	KJF	t-470	8800	very narrow, moderate U/T anomaly in area of normal response
2	KJF	t-180	9280	narrow, weak to moderate U/T and weak U/K anomalies in area of weak U response
3	kjf MS	t-510	16810	very narrow, weak to moderate U/T anomaly with some U/K support recognizable on profiles in area of normal U expression
4	KJF	t1-1010	5110	very narrow, weak U/K anomaly with some U/T support in area of normal U response
5	KJF	tl-1010	4953–5000	weak U/T and U/K anomalies in area of normal U response with some very weak ratio support on intersecting traverse
6	KJF QT QAL	t-580	350–456	weak to moderate U and weak U/K anomalies with weak zone in middle but otherwise good expression on profiles and support over same geologic units at intersection of t1-1010
.7	KJF QC	t - 590	4250-4310	weak to moderate U/T and U/K anomalies recognizable on profiles
8	TM	t-600	3530	very narrow, weak to moderate U/T anomaly and weak U and U/K anomalies

Anomaly	Geologic Unit	t-traverse tl-tie line	Fiducial	Brief Description
9	KU . TM	t1-1010	1320-1380	weak U and U/K anomalies
10	K QAL	t-650 	3340	narrow, moderate U and U/T anomalies and weak to moderate U/K anomaly, all recognizable on profiles
11	K	t-650	3470-3530	moderate U and U/K anomalies and weak to moderate U/T anomaly, all with very good expression on profiles
12	K	t-650	3570	narrow, moderate to good U and weak to moderate U/T and U/K anomalies with good expression on profiles
13	K	t-660	9040-9150	weak to moderate U/T and U/K anomalies and weak U anomaly
		(Thorium Ar	nomalies)	
I	MS	t1-1010	5290-5330	very weak T anomaly with some T/K support in area of normal U response
II	K	t1-1010	280-350	weak T and T/K anomalies in area of low U response

5

APPENDIX C

List of Anomalies by Geologic Unit

Geologic Unit	No. of Samples	No. of U Anomalies	No. of Th Anomalies
QS	126	-	-
QAL	828	2	_
QT	114	1	_
QM	388	1	_
QC	403	1	_
QP	460	-	-
PU	339	-	-
TC	4	-	-
TM	858	2	-
K	2547	4	1
KU	593	1	-
KJF	2580	7	-
UB	334	-	-
JTRV	95		_
MS	593	1	1
· U.NK.	34	-	-

List of Anomalies by Geologic Unit

APPENDIX D

Mean Radiometric Values by Geologic Unit
and the second second second second product of the

•

0

.

						 	ELR	EKA	Q1 450	UAC		· · ·			· .	
	UNIT	E THOR	EURN	FOT PCT	U/TH	U/K	THZE		'UN IT	E THCR	E UPN	PCT PCT	U/TH	U/K	тн/к	
	QM	0.03	0.08	0.73	0.0	0.0	0.0 4.021	:		0.24	1.22	11.34 6.56	0.241	2.369	7.052	•
							<u> </u>	LINE	460		: 					
	UNIT	E THCR	E URN	FOT PCT	U/TH	U/K	TH/ #		UNIT	E THOR	E URN	POT PCT	U/TH	U/K	тн/к	
	M OS	0.06	0.0	1.94	0.0	0.0	3.305		CT K.IF	0.32	1.10	16.92	0.229	1.008	4.396	
1 - 1 ¹	OAL	0.23	0.76	11.60	0.216	0.996	4.485		MS	0.25	0.75	8.58	C.192	1.338	6.860	
	00	U .UC	-	2 • 0 C	0.250	2.003	0.026	1.166	470							
		E 1400	C (10)	tor oct		· 1178	7012			E TLOD	E UDM	007 DCT	H /TH		TU / Y	
	W	0.04	0.45	1.67	0.565	3.061	4.865		KJF	0.10	0.71	2.98	0.423	3.099	7.549	
	QM .	0.09	0.64	4.41	0.232	1.894	4.58C 9.405		UB	0.07	0.44	1.21	0.0	2.395	8.866	
	QAL QT	0.12	0 25	4.78	0.134	0.715 1.1C0	5.642			0.07	0.44	1.99	0.381	2.796	7.036 	
	• , •		· ·				• ·	LINE	480	•	• •	•				
	UNIT	E THOR	E URN	FOT PCT	HTVL	U/K	TF78		UNIT	E THOR	E URN	POT PCT	U/TH	U/K	TH/K	
	W QS	0.01	0.0	0.71 1.58	0.0	0.0	0.0	<u> </u>	CM KJF	0.11	0.0 	4.99 8.88	0.0	0.0	5.414 7:306	
	TC	0.23	1.21	7.05	0.337	2.572	7.617									
		······································		<u></u>	•											
			. ,		· · · ·	·							a states sta		 	
i. s.														NT		· · ·
				<u>i=3., _ii-g ii</u> _		- <u> </u>							. <u>,</u>			
		<u>`</u>													· <u>·</u> ··································	
5. je	ti i kali 29 stati			-			*				· · ·	· · · · ·			i de la composición d	•
<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>				<u></u>			i	میں بین نیسی شنبہ میڈین <u>ی</u> ر	<u> </u>	
					·							- -				
							•	•	: .		· ·.	•				·
Sec. 2.	· · · ·		·		<u></u>		• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					<u></u>		<u> </u>

										A1 11 P			C 1440	****										
								1	<u>меак v</u> В	UREK	A ET GE		QUA						•					
	<u></u>		5 NON		<u>1998, 388</u>			<u></u>	TN	<u>ť</u>	ÎNE	450		8 THCO	 E LIDN			<u></u>	<u></u>	<u>: / 200 (1</u>		TUZ	<u>, , , , , , , , , , , , , , , , , , , </u>	
KJF KJF	E 11	108 31 31	0.58 0.58		36 36	0.215	1.	340 340	6.38	t t			F	0.31	0.98	FU	1.36	0	215 215		540 	6.3	6	
<u> </u>	<u></u>									t	INE	500	ವನಕ್ಕು							<u></u>		<u> </u>	······	
UNIT W QS	E 11	HOR 03 0	E URN 0.29 0.0	01 0 0	96 96 48	0.0 0.0	0. 0.	о. -0	0.0	•		UN C1 C1	L	0.08	0.25 0.45	PO	2+57 5+50	U 0 0	215 224	-1.0 	7 K 188 186	6.4	(35 19	
KJF	0.	25 × <i>()</i>	.0.95	8	.38	0.251		784	7.10	<u>1-法</u> L	<u>ine</u>	510						2.5	A AND A		<u>, (</u> , , , , , , , , , , , , , , , , , ,	<u></u>		<u></u>
UNIT	E TI	HOR		F0	T PCT	U/TH	U	0	3.55	*	<u>.</u>	UN	1T	E TFCF	E URN 0.75		1 ₽€Т 2.46		/TH • 596	U.	/ K 192 ::	TH7	(\7	
KJF		22	0.67	8	•01	0,308	્રેન્1.	866	6.42	<u></u>	1N F	CF () 521		0.13	0.46	<u> </u>	4.17	C	.233	1.	545	7.0	57	
UNIT	EI	HOR		FO	TOPCT	<u>U/TH</u>	t	j 7 K	TF7	· • •	····	UN	11	E-TFCF	 EURN	PQ	T-PCT		7 TH	U	/K	- TH71	(
			0.32			0.217					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u>/: "</u>						<u> </u>			<u>.</u>			
					- <u></u>										 									
a an				N.N.O.													, , ,						*	
							et a set								<u> </u>						<u></u>	<u></u>		
																10-10-10-10-10-10-10-10-10-10-10-10-10-1								<i>Î</i> ,
		<u> </u>				·····								. <u></u>										
		N.													er gola. Sala sa sa			÷.						
															 -					•		_		
						and a state of the																		3
<u>ar e e la centra da da da la c</u>	<u> Detda - Adr</u>	<u>a. 1977.</u> 1	<u> </u>		<u></u> .	<u>. 1997 - 199</u>	<u></u>	<u></u>	<u> </u>	<u></u>	1 <u></u>	•			 			<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>		

						l	TEAN VAL	UE BY GE	CLCGIC M	AP UNIT						
							EUR	EKA	a	JAC	*				2 •	
		; ; 		<u></u>	·	<u> </u>		T INE	<u>530</u>					·		
	UNIT	E THOR	E URN	FOT PCT	U/TH	U/K	TF/K		UNIT	E THER	E URN	POT PCT	U/TH	U/K	TH/K	
	KJF	0.18	0.55	4.75	0.203	1.754	8.841			0013				Lione	00510	
<u> </u>	· · · · · · · · · · · · · · · · · · ·				<u></u>	<u> </u>	<u> </u>	UINE	550	- 						
	UNIT	E THOR	E URN	FOT PCT	U/TH	U/K	147¥		UNIT	E THCR	E JRN	POT PCT	U/TH	U/K	TH/K	
	QM	0.0	0.09	2.22	0.0	0.0	0.0		ົ້ວວ	0.13	0+85	2.67	0.436	4.279	11.281	
	· · · · · · · · · · · · · · · · · · ·					<u></u>		LINE	560	······				<u></u>		
	UNIT	E THOR	EURN	FOT PCT	U/1H	U/K	TH/K		UNIT	E THCR	EURN	PDT PCT	U/TH	U/K	TH/K	
	QS	0.03	0.0	5.05	0.398	2.648	6.007		KJF	0.29	0.87	6.68	0.197	, 2.599	7.911	
	<u>QM</u>		0.30	0.20,	0.175	. 1.031	0.027	1 1 N E		· · · · · · · · · · · · · · · · · · ·						······
					·····						E					
- 84-	W	0.04	0.0	0.95	0.0	0.0	0.0		KJF	0.21	0+86	4.93	0.278	2.767	10.356	
1	QM-	0.23	0.02	5.86	0.250	2.260	10.007		cT	0.20	0.55	5.28	C .176	1.569	8.982	
													-			
							. •		•					: .		
					<u></u>								•	<u> </u>		
							• <u></u>								••••••••••••••••••••••••••••••••••••••	
							•		•• •	•	•		•		· · · ·	
							<u> </u>	<u></u>	<u>, ' </u> ,		<u>`</u>	·····		× 18.	<u></u>	
. 			······································													
		$\sum_{i \in \mathcal{N}} X_{i}^{i}$:					• •		_	."	•			
		····		<u> </u>		<u> </u>			 			`				
····-	•								·····							
		and the second													,	

,		
		•

4			•	· · ·	: • * •	ELR	REKA	QU	AC			<u>.</u> .		
		<u></u>			<u>.</u>		UTNE	580	······································			·· <u>····</u> ·····		
UNIT	E THOR	E URN	FOT PC1	U/TH	U/K	TH/K		UNIT	E THGR	E URN	PCT PCT	UZTH	U/K	TH/K
QS	0.10	0.59	8.50	0.366	1.824	4.435	• .	KJF	0.19	1.37	5.03 7.05	0.326	2.912	9.368
QAL	0.35	1.63	16.65	0.307	1.492	4.887		CT	0.36	2.42	14.21	0.437	2.604	5.993
							LINE	550					•	
UNIT	E THOR	E URN	FOT PCT		U/K	THIR	· .	UNIT	ETHUR	E URN-	PCT PCT	UTH	U/K	TH/K
QS A	0.07	1.45	3.03 5.7.53	0.250	1.490	5.653		CAL CC	0.22	0.86 0.76	11.54 6.54	0.258	1.235	4.684 7.046
KJF	0.15	C.E6	4.82	0.372	2.624	7.242	<u></u>	<u></u>						
							LINE	€00						
UNIT	ETHOR	E URN	FOT PCT	U/TH	· U/K	TH/K		UNIT	E THUR	E URN	POT PCT	U/TH	U/K	TH/K
	0.04	83.0	7.37	0.336	1.651	4.254	<u> </u>		0.16	0.60	5.76	0.293	1.935	6.654
QAL QT	0.21 0.18	1.40 0.80	11.82	0.407 0.289	1.677	4.231		KU Ku	0.12	0.25 0.69	8.08 5.36	C.158 0.273	0.678	3.409
	¥		· · · ·		•			610						
								C 10				te a		
W	0.13	0.63	6.66	0.275	1.205	4.411		GP CR	0+23	0.71	10.20	0.213	1.111	5.265
QAL 	0.34	1.45 0.66	15.70 10.46	0.273	1.223	4.421		TM 	0.16	0.67	7.51	C.256	1.456	5.188
, et al. it.	1	5						5. • • •			4		•	, <u>, , , , , , , , , , , , , , , , , , </u>
		·····		<u> </u>		<u> </u>			· · · · ·					
	, , , , , , ,	· · · · · · · · · ·				· ·			· · ·			t terra		
				<u>Y () () () () () () () () () () () () () </u>			• { }						4	
		· · · ·		<u>-</u>						-,,,,,,,,,,,,,_				
		'т К			•••	<i></i>						•		· •
	·······			<u></u>					<u></u>			· · · · · · · · · · · · · · · · · · ·	<u> </u>	
			····						•					
e Maria da se	•		1997 - 1997 1	· . ·						<u>.</u>			• •	1 1 - 2
·? .	·				-		· · ·	• •			•			· · · · ·

and the second secon

		<u>.</u>		·					MEAN VAL	UE BY (SECLCCIC	MAP UNIT			·			
	•	•				•		•	ELF	REKA		QUAC						
<u>,</u>	<u> </u>	<u> </u>					<u>.</u>	·		LINE	£20							
	UNIT	ET	HCR	E UR	N	FOT PCT	U/TH	U/K	T#/ #		UNIT	E TFCR	E URN	PET PET	U/TH	U/K	TH/K	
	W PU	0.	11			12.26	0.234	0.939	5.082		CP CT	0.20		9.51 10.55	0.281	1.485	5.217 6.927	
<u>.</u>	QAL	0.	31	1.17		15.81	0.247	1.081	4.358	· ·	KU	0.12	0.55	8.48	C.295	0.973	3.323	
										LINE	630							
	UNTT K	<u>ет</u>	H OR - 30	E UR	N	FOT: PC1	U/TH 0.235	1.075	TH/F	· · · · , ·		E THCR	E LRN 1,12	POT PCT 16.97	U/TH	U/K 0,991	TH7K	
	KU	0.	20	0.83		11.13	0.285	1.147	4.651								·····	.*
										LINE	£4C							
	UNIT TM	E T	H <u>08</u> 39	E UR	N	FOT-PCT	U/TH	U/K		<u> </u>		E TFCR	E-LRN 1.27	POT PCT	U/TH	U/K		
	KU	0.	29	1.38	· .	14.16	.4.307	1.481	4.787	••		· · · · ·						
	•							•		LINE	650							
0 20	UNIT K	ET	HOR 37	E UR	N,	13.85	0.285	U/K-1+299			UN ET KJF	E THCR 0.20	E-LRN 0.75		0.248	U/K		
27 	QAL	0.	40	3.24	•.	20.97	0. 531	2.374	4.165	• 	KU	0.33	1.43	17.98	0.278	- 1.194	4.358	
	· · ·							<u>.</u>						······································			·	
			· · · ·	· · · ·	· .				· · · · ·			· ·						
			·		• .				• •				<u> </u>			· · · · · · · · · · · · · · · · · · ·	•	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			<u> </u>		, <u>, , , , , , , , , , , , , , , , , , </u>	r				····			<u>.</u>		نه د ت ارژ ایر 			• ·
:			3					•	· · ·	<u> </u>	* t	. *		· .	· .	· • .		
<u> </u>			·	<u></u>		-	<u>.</u>		······································	· .						. <u> </u>		
۱ <u>۲</u>			<u></u>	· · ·		•		:		······································	······						····	
	<u> </u>							<u></u>					· · · · · · · · · · · · · · · · · · ·		·.	. <u></u> ,	•	·····

han a second

• • • • • • • • • • • • • • • • • • •	· · ·	· · ·	<u>. </u>			MEAN WAL									
	· · · ·		• '			FIR	FKÅ						·		
				· · · ·	· · ·		TINE	- <u>660</u>	····		. ·				Na 1914 - Angelander a
JNIT	E THOR	EURN	FOT PCT	U/TH	U/K	TH/M		UNIT	E THCR	E URN	POT PCT	U/TH	U/K	TH/K	
<hr/>	0.35	1.71	17.47	0.329	1.532	4.718 4.718		ĸ	0.35			0.329	-1.532	4.718	
`			<u>.</u>		· · · ·		LINE	E70		<u>. </u>	· · ·				
UNIT	E THOR	EURN	FOT PCT	U/TH	U/K	TF/K		UNIT	E THCR	EURN	PCT PCT	U/TH	U/K	TH/K	
K	0.33	1.74	17.46	0.313	L.380	4.465	, é a s é g	ĸ	0.33	1.14	17.46	0.313	1.380	465	
						, . 	LINE			<u>````</u>	<u> </u>			<u>.</u>	
	E THOR	E URN	FOT PCT	U/TH	U/K	TH/K	i	UNIT	E THER	E URN	POT PCT	U/TH	U/K	TH/K	
k	0.27	1.29	12.91	0.252	1.214	5.057	••	n n					· · · · · ·		
							LİNE	1010		<u></u>				÷ ·	
	E THOR	E URN -	FOT PCT	U/TH 0-255	U/K 	TF/F 		UN 1T	E THER	E URN	PCT PCT 5+82	U/TH 	U/K	TH/K 	
KU ⁵ Qal 1	0.29	1.36	14.5C 12.55	0.306 0.255	1.471 1.315	4.789 5.294	•	K J F	0.22 0.17	0.51 0.72	7.30 5.00	0.274	2.142 2.126	7.772 8.784	
TM UNK	0.15	0.77	6.72 10.24	0.325	1.724 1.136	5.364 4.68E		K MS	0.20	0.71		C-242 0.277	3.218 2.098	13-435 7-833	
ри др	0.23	0.71	11.68	0.254	1.181 	4.652		H UB	0.22	0.49	10.99	0.143	0.681	4.682 	
JTRV	0.04	0.48	0.0	0.0	0.0	0.0	4				۰.		· · · ·		•
· ·		· · · · · · · · · · · · · · · · · · ·							·		<u></u>	· · · ·			
						<u> </u>					·			· · · · ·	<u></u>
	•														
							· · ·				· · · · · ·		*	······	
			an a			· · · ·			·	· .		····		»	
		······································			· .					· ·					
					<u>-</u>	-				· .			·		
	JNIT JNIT JNIT VINIT KU DAL TM UNK PU OP JTRV	JNIT E THOR 0.33 0.33 UNIT E THCR 0.27 UNIT E THOR 0.27 UNIT E THOR 0.29 OAL 0.29 OAL 0.27 TM 0.15 UNK 0.21 PU 0.23 OP 0.11 JTRV 0.04	JNIT E THOR E URN (0.33 1.74 (0.33 1.74 (0.33 1.74 (0.33 1.74 (0.33 1.74 (0.33 1.74 (0.27 1.29 (0.27 1.29 (0.27 1.29 (0.29 1.36 OAL 0.27 1.04 TM 0.15 0.77 UNK 0.21 0.75 PU 0.23 0.71 OP 0.11 0.53 JTRV 0.04 0.48	JNIT E THOR E URN FOT FCT (0.33 1.74 17.46 (0.33 1.74 17.46 (0.33 1.74 17.46 (0.33 1.74 17.46 UNIT E THOR E URN FOT PCT (0.27 1.29 12.91 (0.27 1.29 12.91 (0.34 1.26 15.99 (0.34 1.26 15.99 (0.29 1.36 14.5C 0AL 0.27 1.04 12.55 TM 0.15 0.77 6.72 UNK 0.21 0.75 10.24 PU 0.23 0.71 11.66 OP 0.11 0.53 4.52 JTRV 0.04 0.48 0.0	JNIT E THOR E URN FOT PCT U/TH C 0.33 1.74 17.46 0.313 (0.33 1.74 17.46 0.313 UNIT E THGR E URN FOT PCT U/TH 0.27 1.29 12.91 0.252 (0.27 1.29 12.91 0.252 UNIT E THOR E URN FOT PCT U/TH C 0.34 1.26 15.99 0.255 KU 0.29 1.36 14.5C 0.306 DAL 0.27 1.04 12.55 0.255 TM 0.15 0.77 6.72 0.326 UNK 0.21 0.75 10.24 0.243 PU 0.23 0.71 11.66 0.254 OP 0.11 0.53 4.52 0.287 JTRV 0.04 0.48 0.0 0.0	JNIT E THOR E URN FOT PCT U/TH U/K 0.33 1.74 17.46 0.313 1.380 0.33 1.74 17.46 0.313 1.320 JNIT E THOR E URN FOT PCT U/TH U/K 0.27 1.29 12.91 0.252 1.214 UNIT E THOR E URN FOT PCT U/TH U/K 0.27 1.29 12.91 0.255 1.213 KU 0.29 1.36 14.5C 0.306 1.471 DAL 0.27 1.04 12.55 0.255 1.315 TM 0.15 0.77 6.72 0.326 1.724 UNK 0.21 0.75 10.24 0.243 1.136 PU 0.23 0.71 11.66 0.254 1.181 OP 0.11 0.53 4.52 0.287 1.726 JTRV 0.04 0.48 0.0 0.0 0.0	JNIT E THOR E URN FOT PCT U/TH U/K TF/M 0.33 1.74 17.46 0.313 1.380 4.465 0.33 1.74 17.46 0.313 1.320 4.465 UNIT E THOR E URN FOT PCT U/TH U/K TF/M 0.27 1.29 12.91 0.252 1.214 5.057 0.27 1.29 12.91 0.252 1.214 5.057 0.27 1.29 12.91 0.255 1.235 4.976 0.34 1.26 15.99 0.255 1.235 4.976 KU 0.29 1.36 14.5C 0.306 1.471 4.785 0AL 0.27 1.04 12.55 0.255 1.315 5.294 TM 0.15 0.77 6.72 0.326 1.724 5.364 UNK 0.21 0.75 10.24 0.243 1.126 4.686 PU 0.23 0.71 11.66 0.254 1.101 4.652 OP 0.11 0.53 4.52 0.207 1.726 6.135 JTRV 0.04 0.48 0.0 0.0 0.0 0.0	LINE UNIT E THOR E URN FOT PCT U/TH U/K TH/K 0.33 1.74 17.46 0.313 1.380 4.465 (0.33 1.74 17.46 0.313 1.380 4.465 LINE UNIT E THOR E URN FOT PCT U/TH U/K TH/K 0.27 1.29 12.91 0.252 1.214 5.057 (0.27 1.29 12.91 0.252 1.214 5.057 LINE UNIT E THOR E URN FOT PCT U/TH U/K TH/K 0.34 1.26 15.99 0.255 1.215 4.97(0.29 1.36 14.5C 0.306 1.271 4.785 OAL 0.27 1.04 12.55 0.255 1.315 5.294 TM 0.15 0.77 6.72 0.326 1.724 5.384 UNK 0.21 0.75 10.24 0.243 1.126 4.686 PU 0.23 0.71 11.66 0.254 1.181 4.652 OP 0.11 0.53 4.52 0.287 1.726 6.135 UTRV 0.04 0.48 0.0 0.0 0.0 0.0	LINE ETO JNIT E THOR E URN FOT PCT U/TH U/K TF/K UNIT C 0.33 1.74 17.46 0.313 1.380 4.465 K 0.33 1.74 17.46 0.313 1.380 4.465 K LINE EEO JNIT E THOR E URN FOT PCT U/TH U/K TF/K UNJT C 0.27 1.29 12.91 0.252 1.214 5.057 K C 0.27 1.29 12.91 0.252 1.214 5.057 K C 0.27 1.29 12.91 0.255 1.235 4.97C CT UNIT E THOR E URN FOT PCT U/TH U/K TF/K UNIT C 0.34 1.26 15.99 0.255 1.235 4.97C CT KU 0.29 1.36 14.5C 0.306 1.471 4.7E5 KJF OAL 0.27 1.04 12.55 0.255 1.315 5.294 CC TM 0.15 0.77 6.72 0.325 1.724 5.364 CM PU 0.23 0.71 10.64 0.263 1.126 4.68E MS PU 0.23 0.71 11.66 0.254 1.121 4.652 W DF 0.11 0.53 4.52 0.287 1.726 6.135 UE JTRY 0.04 0.48 0.0 0.0 0.0 0.0	LINE E URN FOT PCT U/TH U/K TF/K UNIT E TFCR 0.33 1.74 17.46 0.313 1.380 4.465 K 0.33 1.74 17.46 0.313 1.220 4.465 K 0.33 LINE EEU UNIT E THCR E URN FOT PCT U/TH U/K TF/K UNIT E TFCR 0.27 1.29 12.91 0.252 1.214 5.051 K 0.27 0.27 1.29 12.91 0.255 1.215 4.976 CT 0.16 KU 0.29 1.36 14.55 0.306 1.471 4.765 KJF 0.22 OL 0.27 1.04 12.55 0.255 1.724 5.364 CF 0.16 KU 0.29 1.36 14.55 0.325 1.724 5.364 CF 0.20 UNIT E THOR E URN FOT PCT U/TH U/K TF/K UNIT E TFCR KU 0.29 1.36 14.55 0.325 1.724 5.364 CF 0.16 KU 0.21 0.75 10.24 0.255 1.724 5.364 CF 0.20 UNK 0.21 0.75 10.24 0.243 1.126 4.665 K 0.021 UNK 0.23 0.71 11.66 0.254 1.121 4.665 K 0.021 UNK 0.23 0.71 1.66 0.254 1.121 4.655 K 0.21 UNK 0.23 0.71 1.66 0.254 1.120 4.655 K 0.21 UNK 0.23 0.71 1.56 0.77 6.72 0.737 6.135 0.227 UNK 0.04 0.04 0.04 0.00 0.0 0.0	LINE ETHOR EURN FOT FCT U/TH U/K TF/K UNIT ETHCR EURN C 0.33 1.74 17.46 0.313 1.380 4.465 K 0.33 1.74 0.33 1.74 17.46 0.313 1.380 4.465 K 0.33 1.74 UNIT ETHCR EURN FOT PCT U/TH U/K TF/K UNIT ETHCR EURN C 0.27 1.29 12.91 0.252 1.214 5.051 K 0.27 1.29 (0.27 1.29 12.91 0.255 1.215 4.976 C T 0.16 0.62 (0.29 1.36 14.56 0.306 1.471 4.765 KJF 0.22 0.51 OAL 0.27 1.04 12.55 0.255 1.315 5.294 CC 0.17 0.72 TM 0.15 0.77 6.72 0.326 1.724 5.666 K 0.20 0.17 UNK 0.21 0.75 10.24 0.254 1.126 4.666 M5 0.22 0.41 UNK 0.21 0.75 10.24 0.254 1.126 4.666 M5 0.22 0.49 OF 0.11 0.53 4.52 0.254 1.126 4.652 K 0.22 0.49 UTRY 0.04 0.48 0.0 0.0 0.0 0.0	INIT E HOR FOT FCT U/TH U/K TF/K UNIT E THCR E URN FOT PCT PCT PCT C 0.33 1.74 17.46 0.313 1.380 4.465 0.33 1.74 17.46 MIT E THCR E URN FOT PCT U/TH U/K TF/K 0.33 1.74 17.46 JMIT E THCR E URN FOT PCT U/TH U/K TF/K UNIT E THCR E URN FOT PCT JMIT E THCR E URN FOT PCT U/TH U/K TF/K UNIT E THCR E URN FOT PCT JMIT E THCR E URN FOT PCT U/TH U/K TF/K UNIT E THCR E URN POT PCT V/T 0.27 1.291 0.252 1.214 5.051 K 0.27 1.29 12.91 V 0.21 1.201 0.252 1.214 5.051 K 0.22 0.51 7.30 C 0.34 1.255 0.255 1.324 4.755 KJF	UNIT E THOR E URN FOT FCT U/IH U/K TF/F UNIT E HCR E URN FOT PCT U/IH 0.33 1.74 17.46 0.313 1.380 4.465 0.333 1.74 17.46 0.313 UNIT E THCR E URN FOT PCT U/IH U/K TF/F UNIT E THCR E URN POT PCT U/IH VINT E THCR E URN FOT PCT U/IH U/K TF/F UNIT E THCR E URN POT PCT U/IH VINT E THCR E URN FOT PCT U/IH U/K TF/F UNIT E THCR E URN POT PCT U/IH C 0.27 1.29 12:91 0:252 1:214 5:051 C 0:27 1:29 12:91 0:252 KU 0.29 1.36 14:50 0:252 1:214 5:051 C 0:02 0:51 0:22 0:51 7:32 0:227 1:2:91 0:2:29 0:2:2:91 0:2:29 0:2:2 0:2:2 0:2:2 0:2:2 <	LINE ETO UNIT E THOR E URN FOT FCT U/TH U/K TF/K UNIT E THCR E URN PCT PCT U/TH U/K G 0.33 1.74 17.46 0.313 1.380 4.465 UNIT E THCR E URN FOT PCT U/TH U/K TF/K UNIT E THCR E URN POT PCT U/TH U/K G 0.27 1.29 12.91 0.252 1.214 5.057 K 0.27 1.29 12.91 0.255 1.214 5.057 LINE 1010 UNIT E THOR E URN FOT PCT U/TH U/K TF/K UNIT E THCR E URN PCT PCT U/TH 'U/K C 0.34 1.26 15.99 0.255 1.234 4.97C CT 0.16 0.220 1.271 1.470 OAL 0.27 1.04 12.55 0.255 1.235 4.97C CT 0.12 5.00 0.270 2.2721 1.470 OAL 0.27 1.04 12.55 0.255 1.315 5.294 CC 0.17 0.12 5.00 0.260 2.126 UNK 0.21 0.75 10.24 0.243 1.126 4.68E PS 0.21 0.51 6.622 0.277 2.098 DNK 0.21 0.75 10.24 0.243 1.126 4.68E PS 0.21 0.51 6.62 0.277 2.098 OAL 0.23 0.71 11.66 0.256 1.181 4.455 PK 0.22 0.11 3.55 C.242 3.218 UNK 0.21 0.75 10.24 0.243 1.126 4.68E PS 0.21 0.51 6.62 0.277 2.098 DNK 0.21 0.75 10.24 0.257 1.129 4.121 4.552 PK 0.21 0.51 6.62 0.277 2.098 DNK 0.23 0.71 11.66 0.256 1.181 4.455 PK 0.22 0.11 3.55 C.242 3.218 DNK 0.24 0.04 0.04 0.04 0.04 0.00 0.0 0.0 0.0 0	ITT ETHOR EURN FOT FCT U/IN U/K TF/K UNIT E TFCR E URN PCT PCT U/IN U/K TH/K 0.33 1.74 17.46 0.313 1.380 4.465 X 0.33 1.74 17.46 0.313 1.380 4.465 UNIT E THCR E URN PCT PCT U/IN V/K TH/K V/K TH/K UNIT E THCR E URN PCT PCT U/IN U/K TH/K V/K TH/K UNIT E THCR E URN PCT PCT U/IN U/K TH/K UNIT F T+CR E URN PCT PCT U/IN TH/K C 0.27 1.26 12.91 0.252 1.214 5.051 UNIT E T+CR E URN PCT PCT U/IN TH/K UNIT E THOR E URN FOT PCT U/IN TH/K UNIT E T+CR E URN PCT PCT U/IN TH/K UNIT E THOR E URN FOT PCT U/IN TH/K U/IN TH/K U/IN </td

APPENDIX E

Standard Deviation Table

				EURE	(A	QUAD				
				FCRMATIGN	QAL					· · · · · · · · · · · · · · · · · · ·
CATA	SAMPLES	MEAN	. <u></u>	-3	2	-1	+1	+2	+3	•
-E-THORIUM-	7 8 7		NCRMAL		1.17	2.58	5.38	6.78	8.18	
E URANIUN	732	1.07	NORMAL	-0.42	0.08	0.57	1.50	2.00	2:20	,
POTASSIUM	<u> </u>	U.8/			0.10	<u>0.32</u>	1 • 4 4 			
EU/N EU/ETH	721	0.25	NGRMAI	-0.00	0.08	0.16	0.33	0.42	0.50	
ETH/K	727	4.45	NCRMAL	2.09	2.89	3.69	5.29	6.09	6.89	
		• ··········								······
	· · · · · · · · · · · · · · · · · · ·			FORMATICN	TO T		•			
CATA	SAMPLES	MEAN	· .	-3	-2	-1	+1	+2	+3	·
-E-THORFUM-			-NCR MAL		0:47	2.04	5.18	6+75	8.32	
E URANIUM	107	1.00	NORMAL	-0.45	0.03	0.51	1.48	1.96	2.44	· · · ·
POTASSIUM	114	0.58	NCRMAL	-0.19	0.07	0.33	0.84	1.09	1.35	
EU/K	99	<u>1.5</u> ¢	NCRMAL	-0.33	0.30	0.93	2.19	2.82	3.45	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
EU/ETH	106	0.25		0.03	0.10	U.18 4.70	U.55 7.54	U+4U A. QA	U.4/ 10.39	
E111/K		0.12		1.02	, 3 + 20	V10F	F 6 J 7			
)	ه میشد ۲۰ مربع میشد		· · · ·	FORMATION	QC					
CATA	SAMPLES	MEAN		-3	-2	-1	+1	+2	+3	
E-THORIUP-		-2.54-		0.00					5.08	
E URANIUM	382	0.65	NCRMAL	-0.03	<u>0.21</u>	0.45	0.93	1.17	1.41	.* ·
POTASSIUM	446	0.24	LCGNCRMAL	0.05	0.08	0.14	0.40	0.68	1.14	
EU/K	372	0.83	LCGNORMAL	0.09	0.19	0.40			7.46	·····
EU/ETH	382	0.22		0.06	0.09	U.14 3 00	0.34	0.55	0+05	
ETH/K	312	3.43	LLUNUKMAL	1.91	2 • 10	3.00	1.00	10.10	17+12	
	••			FORMATICN	QM		·	د جي ماري		· · · · · ·
DATA	SAMPLES	MEAN		-3	,-2	-1	+1	+2	+3	-
										· · · · · · · · · · · · · · · · · · ·
E URANIUM	309	0.64	NCRMAL	-0.33	-0.01	0.31	0.96	1.28	1.60	
POTASSTUM	386	0.24	LCGNCRMAL	0.04	0.08	0.14	0.42	0.75	1.32	
EU7K	289	1.49	- LCGNCRMAL	0.32	0.53	0.85	2.50		7:00	
EU/ETH	307	0.23	NCRMAL	-0.04	0.05	0.14	0.31	0.40	0.49	
ETH/K	289	10.76	NURMAL	-4.30	0.73	5.16	12.81	20.83	27.00	
•	,				÷	•				
				<u> </u>						

•

<u></u>					EUREK	A	C	UAD	·····			
	۰ ^۳				CC0447104				•		· · · · ·	
			<u></u>	<u> </u>	FURMATION				· · · · · · · · · · · · · · · · · · ·			
CATA	SAMPLES	MEAN		•	-3	-2	-1	+1	+2	+3		
-E-THORIUM-					-0.90		0.9	62.81		4.67		·
E URANIUM	55	0.78	NORMAL		-0.29	0.07	0.4	3 1.14	1.49	1.85		
POTASSIUM	120	0.38	NGRMAL	• • • •	-0.14	0.03	0.2	0 0.55	0.72		· · ·	· ·
FUZK		1.56			0.28	0.50		82-77		8.64		·
FUZETE	88	0.36	1 CGNCRMAL		0.10	0.15	0.2	4 0.61	0.97	1.55		
ETH/K	ÿ 93	4.75	NCRMAL		0.59	1.99	3.3	9 6.20	7.60	9.00		
			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
		•	· · · · ·	· · · · ·	FORMATICN	CP						
		<u></u>	· · · · ·			<u> </u>		<u>.</u>	<u>A. K </u>		<u>.</u>	<u></u>
DATA	SAMPLES	MEAN		•	-3	<u>–</u> 2	-1	+1	+2	+3		
						0.54-	, 0 . E	4	3.19	4.96	. ·	<u> </u>
E URANIUM	287	0.50	NCRMAL		-0.30	-0.03	0.2	3 0.77	1.03	1.30		
POTASSIUM	441	0.18	LCGNCRMAI		0.03	0.06	0.1	0.33	0.61	1.10		:
Ft1/K			CONCRMAT		0-29	0.40	0.6	6	2.83	4-60		·
FULLETH	270	0.19	I CONCRAMA	-	0.05	0_07	0.1	1 0.27	0.47	0_67		
ETH/K	266	5.15	LCGNORMAL	 -	2.33	3.03	3.9	5 6.71	8.74	11.39		
	···· ·	·	· · · · ·			· · ···		······································				·
		÷		1.14	CODNATION			•	÷. (
	<u> </u>	·				PU			· · · · · ·	<u> </u>		
DATA	SAMPLES	PEAN			-3	2	-1	+1	+2	+3		
· ····					1.05		^ _ ^ _	<u>. </u>		E_/7		
E-THURIUM-			NUKMAL		1.05	1.02	2+3	7 4713	4.490			
E URANIUM	333	0.74	NCRMAL		0.06	0.29		1 0.96	1.15	1.41	•	
POTASSIUM	339	C.78	NCRMAL		0.15	0.36	0.5	0.95	1.20	1.41		•** •**
EU/K	333	9.96	NCRMAL	· · · · ·	-0.10	0.25	0.6	c 1.31	1.66	2.01		
EU/ETH	233	0.22	NCRMAL		0.01	_0.08	0.1	5 0.29	0.36	5 0.43		
ETH/K	333	4.18	NCRMAL		2.01	2.73	3.4	6 4.90	5.62	6.34		
				1949 - 1949 1949 - 1949 - 1949 1949 - 1949 - 1949 1949 - 1949 - 1949 1949 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940	,							
	بې مەربى ئىرچە		•	*	FORMATICN	TC		· ·	· . ·			
DATA	SAMPLĖS	MEAN			-3	-2	-1	+1	+2	+3		
	<u> </u>				-	•••• -	-	-	-	-		
ETHORIUM-	à		NCRMAL		2.69			6		3.79	······	
E URANIUM	4	1,12	NCRMAL		0.95	1.01	1.0	7 1.18	1.24	1.29		
POTASSIUM	4	0.44	· NCRMAL		0.35	0.38	. 0.4	1 0.47	0.49	0.52		
EU/K	4	-2.45		<u></u>	1.95	2-12	2.2	82.61	2.78	32:94		
EU/ETH	4	0.33	NCRMAL		0.27	0.29	0.3	1 0.35	0.36	o.38		
ETH/K	4	7.18	NCRMAL	•	6.12	6.47	6.•8	2 7.53	7.88	8.23		
											•	
						/						
	······			i			· ·				ىرىما « يارى « يېزى يې د مارىك مېرى ياد » د مىلىسى تو د پېرى يې د » د مىلسى تو د پېرستوسى مى	
	• •											
	•											
											· · · · · · · · · · · · · · · · · · ·	

· .

.

···

i.

.

.

. .

DATA E-THORIUM E URANIUM POTASSIUM EU/K EU/ETH ETH/K DATA E-THORIUM E URANIUM POTASSIUM EU/K EU/ETH ETH/K	SAMPLES 802 676 802 676 675 676 SAMPLES 95 73 50 36 64	MEAN -1.87 0.52 0.34 1.16 0.26 4.75 MEAN 0.83 0.36 0.11 1.68	ECGN GRMAL LCGNORMAL LCGNORMAL LCGNORMAL LCGNORMAL NERMAL	FCRMATICN -3 0.48 0.14 0.07 0.34 0.09 1.60 FCRMATION -3 -0.17 -0.17 -0.21	TM -2 0.75 0.22 0.12 0.12 2.65 JTRV -2	-1 1.19 0.34 0.21 0.77 0.18 3.70 -1	+1 2.94 0.79 0.57 1.76 0.37 5.80 +1	+ 2 + 2 1.22 0.55 2.66 0.53 6.85 + 2	+3 7.26 1.88 1.58 4.03 0.76 7.90 +3		
DATA E THORIUM E URANIUM POTASSIUM EU/K EU/ETH ETH/K DATA DATA E THORIUM POTASSIUM EU/K EU/ETH ETH/K	SAMPLES 802 676 802 676 675 676 SAMPLES 95 73 50 36 64	MEAN 	LEGN GRMAL LEGNORMAL LEGNORMAL LEGNORMAL NERNAL NERMAL	-3 0.48 0.14 0.07 0.34 0.09 1.60 FCRMAT ICN -3 -3	-2 0.75 0.22 0.12 0.51 0.12 2.65 JTRV	-1 1.19 0.34 0.21 0.77 0.18 3.70 -1	+1 2.94 0.79 0.57 1.76 0.37 5.80 +1	+2 +2 1.22 0.55 2.66 0.53 6.85 +2	+3 7.26 1.88 1.58 4.03 0.76 7.90 +3		
E THORIUM E URANIUM POTASSIUM EU/ETH EU/ETH ETH/K DATA DATA E THORIUM POTASSIUM EU/K EU/ETH ETH/K	802 676 802 676 675 676 SAMPLES 95 73 50 36 64	-1.87 0.52 0.34 1.16 0.26 4.75 MEAN 0.83 0.83 0.36 0.11	ECGN GRMAL LCGNORMAL LCGNORMAL LCGNORMAL NERMAL NERMAL	0.48 0.14 0.07 0.34 0.09 1.60 FCRMAT ICN -3 -0.17	0.75 0.22 0.12 0.51 0.12 2.65 JTRV -2	1.19 0.34 0.21 0.77 0.18 3.70	2,94 0.79 0.57 1.76 0.37 5.80	+ . 62 1 . 22 0 . 55 2 . 66 0 . 53 6 . 85 + 2	7.26 1.88 1.58 4.03 0.76 7.90		
E URANIUM POTASSIUM EU/K EU/ETH ETH/K DATA DATA E THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	676 802 676 675 676 SAMPLES 95 73 50 36 64	0.52 0.34 1.16 0.26 4.75 MEAN 0.83 0.36 0.11	LCGNORMAL LCGNORMAL LCGNORMAL LCGNORMAL NERMAL	0.14 0.07 0.34 0.09 1.60 FCRMAT DON -3 -0.17	0.22 0.12 0.51 0.12 2.65 JTRV -2	0.34 0.21 0.77 0.18 3.70	0.79 0.57 1.76 0.37 5.80	L.22 0.55 2.66 0.53 6.85 +2	1.88 1.58 4.03 0.76 7.90		
POTASSIUM EU/K EU/ETH ETH/K DATA DATA E THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	802 676 675 676 SAMPLES 95 73 50 36 64	0.34 1.16 0.26 4.75 MEAN 0.83 0.36 0.11	LCGNORMAL LCGNORMAL LCGNORMAL NERMAL	0.07 0.34 0.09 1.60 FCRMAT DON -3 -0.17	0.12 0.51 0.12 2.65 JTRV -2	0.21 0.77 0.18 3.70	0.57 1.76 0.37 5.80 +1	0.55 2.66 0.53 6.85 +2	1.58 4.03 0.76 7.90		
EU/K EU/ETH ETH/K DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	676 675 676 SAMPLES 95 73 50 36 64	1.16 0.26 4.75 MEAN 0.83 0.36 0.11 1.69	ECGMORMAL LCGNORMAL NERMAL	0.34 0.09 1.60 FCRMAT ICN -3 -0.17	0.51 0.12 2.65 JTRV	0.77 0.18 3.70 -1	1.76 0.37 5.80 +1	2.66 0.53 6.85 +2	4.03 0.76 7.90 +3		
EU/ETH ETH/K DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	675 676 SAMPLES 95 73 50 36 64	0.26 4.75 MEAN 0.83 0.36 0.11	NCRMAL	0.09 1.60 FCRMAT ICN -3 -0.17	0.12 2.65 JTRV -2	0.18 3.70 -1	0.37 5.80 +1	0.53 6.85 +2	0.76 7.90 +3		
ETH/K DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	676 SAMPLES 95 73 50 36 64	4.75 MEAN 0.83 0.36 0.11	NER M AL	1.60 FCRMATIEN -3 -0.17	2.65 JTRV -2	3.70	5.80	6 • 85 + 2	7.90 +3		
DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	SAMPLES 95 73 50 36 64	MEAN 0.83 0.36 0.11	NCR MAL	FCRMAT ICN -3 -0-17	JTRV -2	-1	+1	+2	+3		
DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	SAMPLES 95 73 50 36 64	MEAN 0.83 0.36 0.11	NCR MAL	FCRMAT DON -3 -0-17		-1	+1	+2	+3		
DATA E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	SAMPLES 95 73 50 36 64	MEAN 0.83 0.36 0.11	NORMAL	-3 -0.17	2 	-1	+1	+2	+3		• • • • • • • • • • • • • • • • • • •
E-THORIUM E URANIUN POTASSIUM EU/K EU/ETH ETH/K	95 73 50 36 64	0.83 0.36 0.11	NORNAL	-0-17	······						
E URANIUN POTASSIUM EU/K EU/ETH ETH/K	95 73 90 36 64	0.36	NORNAL	-0.21		E.0					
E UKANIUM POTASSIUM EU/K EU/ETH ETH/K	13 50 36 64	0.38 0.11	NUKMAL		-0.00	0.14	0 50	0.01	1 03		
EU/K EU/ETH ETH/K	36 64	1.68	A MIC PO AN A 1	-0+01	-0.09	0.04	0.14	0.01	1.02		
EU/ETH ETH/K	50 64	1.0 "	₩UKTIAL 	-U+U4	10.0	U+U0	U + L C	V+21	······		
ETH/K	. 64	0 37	L'LGITUKMAL DECMAL	V•37	-0.00	0.14	6 60	7 + 77 C D D	1 05		
EIH/N	<u> </u>	7 21	NGKITAL LICONAL	-0.32	2 34	4 77	U, 27 , 0 4 E	17 19	14 63		
	0 E	1+21		-0.10		4.11	29.02	12.00	14+76		
				FCRMATECN		· · · · · ·		et Selecter			
	SAMPLES	MEAN	<u></u>	-3	-2	-1	+1	+2	<u></u> +3		······································
	57			2		-	-	-	•		
-E-THORIUM			HCR MAL	1.45	2.59			7.12		······	
E URANIUM	2569	1.31	NORMAL	-0.24	0.27	0.79	1.83	2.35	2.87		
POTASSIUM	2619	.1.05	NORMAL	0.34	0.59	0.84	1.34	1.59	1.84		
EU/K	2565	1.14	NCREAL	-0.14	0.29	-0.71	1.57	1.99	2:42		
EU/ETH	2563	0.26	NCRMAL	-0.02	.0.07	0.16	0.35	0.45	0.54		
ETH/K	2565	4.25	NCRITAL	2.11	2.84	3.56	5.01	5.74	6,46		*** <u>******************</u> *****
	• • •			FCRMATICN	κυ	· ·				• . •	
DATA	SAMPLES	MEAN	·····	-3	-2	-1	+1	· +2	+3		
	F01				0_0_3		6_31				
E HDANTIN	505	1.15		-0 52	0.03	0.50	1.70	2.24	7 9 7		
C UNANIUM	505	1+12	NUR IAL	-0+33	0.10	0.53	1 22	1.57	1 01		
	5¢£	19∡	개UN 께서도 됩다오봄 Ai	-0+10 <u>(-</u> - <u>0-</u> 0	0.13				107L 		
SU/STU	505	1+20	NCOMAL	0.05	0.12	0.21	0.34	0.44	0.52		
ETH/K		4.26		1_20	2.75	3.50	5.02	5.77	6.53		
	ر c ر	7020		L			J • V C				
					· · ·					, 	
					,						

.

<u></u>

١.

.

		. —			K IE	•				
	CANDIES	NEAN		-3	~2	- 1	+1	+2	+3	······································
UATA	SAMPLES	PERN		2		•				
-E-THORIUM-	2497	3-39	NORMAL	-0.76				6.16	7.54	
E URANIUM	, 2283	0.87	NURMAL	-0.38	0.03	0.45	1.29	1.10	1 22	
POTASSIUM	2456	0.45	NURMAL	-0.27		0.24	U • /4	U. 90	1.23	
EU/K	2236	1.40		. 0.28		0.14	2.00	4.05	0.40	
EU/EIH	2209	0.20	NUKMAL	-0.08	20.02	5 23	0.01	10 00	12 72	
ETH/K	2230	7.10	NUKMAL	1.04	3.47		9.03	10.00	12013	
	•		2. 	FGRMATICN	MS		• • •			
DATA	SAMPLES	MEAN		-3	-2	-1	+1	+2	+3	
-6 1409-148										
E HDANTHM	522	0.76	NORMAL	-0.30	-0.01	0.37	1.14	1.52	1.90	• • •
DULTYCCTIM	504	0.76 %		-0.20	-0-00	0.19	0.59	0.78	0.98	
- CIT/K						<u> </u>		4. 77	7.28	<u>.</u>
CU/N'	, 774 ,	C. 27	NCOMONIAL	-0.10	0.02	0.15	0.40	0.52	0.65	
ETH/K		7,20	NERMAT	0.53	2.79	5.04	9.56	11.92	14.07	
					7		····			
	Þt			FCRMATION	UB	· · ·	· .		•	•
DATA	SAMPLES	NEAN		-3	-2	-1	+1	+2	+3	
		0 = 9 2						1-84		
EURANTUM	157	0.34	NGRMAL	-0-34	-0.12	0.11	0.56	0.79	1.02	
RUITZASSTUN	239	0.07	1 CONCRMAT	0.01	0.01	- 0.03	0.15	0.33	0.74	
-FIJ7K			- TCGNCRMAT				2-17			
EU/ETH	. 92	0.24	NCRMAI	-0-08	0.03	0.13	0.35	0.46	0.57	
ETH/K	· P4	5.20	NCRMAL	1.67	3.18	4.69	7.71	9.22	10.73	
										<u>*************************************</u>
	· ·				•• • · ·			. :	· · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · ·		en <u>e sur s</u> er de	FCRMATION	UNK			e		
CATA	SAMPLES	MEAN		-3	-2	-1	+1	+2	+3	
-E-THORIUM-	34									
E URANIUM	34	0.67	NCRMAL	0.09	0.28	0.48	0.86	1.05	1.25	•
POTASSIUM	34	0.65	NCRMAL	0.30	0.42	0.53	0.76	0.88	0.99	
EU/K		1.02-	NCRMAL	0.27			1.27			, <u></u> ,
EU/ETH	34	0.23	NCRMAL	0.05	0.11	0.17	0.25	0.34	0.40	
ETH/K	34	4.25	NCRMAL	3.30	3.63	3.96	4.62	4.56	5.29	
			······································							
										÷
									· · · · · · · · · · · · · · · · · · ·	

				EUREK	Δ	CUAD				,
,	at a			FORMATION	W					
DATA .	SAMPLES	MEAN	<u></u>	-3	<u>_</u> -2	-1	+1	+2	+3	
E THORIUM E URANIUM POTASSIUM	190 129 181	0.41 0.25 0.06	LEGNORMAL LEGNORMAL LEGNORMAL	0.03 0.06 0.00	0.08 0.10 0.01	0.18 0.17 0.02	0.95 0.48 0.16	2.19 0.79 0.42	5.03 1.32 1.11	
EU/K EU/ETH ETH/K	80 [.] 72 79	0.84 0.27 4.23	NCRM NL NCRM NL	0.18 -0.12 1.68	0.30 0.01 2.53	0.14 3.38	0.40 5.08	0.53	0.66 6.78	
		1.1.2.3.3.1								
94-		-								
	<u>tar (* 1975-1987) 1987 - Standing Angel</u> a	<u></u>		<u>a de stallen in litter ann</u>	<u>, in the second s</u>	<u>, taka taka taka kuta da</u>	<u></u>	<u></u>		
				· ·.				;		
	<u> </u>						•			
Anna Anna Anna Anna Anna Anna Anna Anna										
		······································								
					<u></u>			<u> </u>	<u></u>	<u>handen (an harden de sense) - 1885</u> .
	P					· ·				

APPENDIX F

Format, Single Record Data Listing

-95-

REC			RESID	. EX X		rede		ATM	TATAL												BAKU)
N L	LAT	LEING	i4A.ji	CL	FLG	UNIT	CUSM.	U	COUNT	FLG	ETH	f L G	EU	FLL	ĸ	FLG	EUZETH	EU/K	E TH/K	TEMP	P RE S	
			GAMILA	FEET			CPS	LPS	CPS		PPM		PPM		PCT					CELCIUS	MMHG	1
50.70	44.0086	-160.9197	551.00	103	MAR	w	31	1	-12	NAU	-1.1	NAD	-0.5	NAD	U.0	NAD	0.0	0.0	0.0	12.7	740.8	i
50.00	64.0097	-160 9199	55105	761	MAR	u i	28	ī	16	MAR	0.0	NΔD	0.1	NAD	0.1	NAD	0.0	0.0	0.0	12.7	747.1	· · · · · · · · · · · · · · · · · · ·
5080	6 00 0 7	-140 9176	55115	2.1	MAR		26	i	4	ΝΛΠ	0.2	ΝΔΟ	0.1	NAO	-0.1	NAD.	0.0	0.0	0.0	12.7	747.4	21
5081	04+0007	-100-4140	55305	111	MAD		10		- 40	NAD	0.0	NAD	0.1	NAD	-01	MAD	0.0	0 0	0.0	12.7	747.7	31
5082	64.0088	-160.9100	55555	130			33	Ļ	- 60	NAU		NAD	2.1	INAU .		NAU-	0.0	0.0	0.0		7/3 0	
50 il 3	64.0088	-160.9154	55305	122	Мак	M	26	L	-4	NAU	-2.1	NAU	23		-0.4	NAU	0.0	0.0	0.0	12+1	740.0	0
50 84	64.0089	-160-9144	55302	/1 2	MAR	, W	28	1	-12	NAU	0.5	.NAD	-1.7	NAU	0.0	NAU	0.0	0.Q	0.0	12-1	748.1	•
5085	64.0099	-160.9131	55300	7J2	MAR	M	23	1	37	MAR	0.0	NAD	0.4	NAU	-0.3	NAD	0.0	0.0	0.0	12.7	748.5	
5086	64.0090	-160.9121	55305	691		W	22	1	50		0.3	NAD	-0.1	NAD	0.0	NAD	0.0	0.0	0.0	12.7	748.8	······································
50 87	64.0091	-160.9109	55335	080		H	23	1	46		0.3	NAU	0.0	NAU	-0.0	NAD	0.0	0.0	0.0	12.7	749.1	¦ o ¹
50.98	64.0092	-160-2099	55305	673		W	17	1	12		0.6	MAR	0.3	NAD	-0.3	NAD	0.0	0.0	0.0	12.8	749.3	1. I.
50.00	64 00 0 Z	-150.9087	5 5 3 0 5	668	•••	ü	20	ī	156		-1.5	ΝΔΠ	0.7	MAR	-0.0	NJO	. 0.0	0.0	0.0	17.8	789.4	······································
5069	44.0072	-140 0075	55114	61.6		- -	12	i	113		0.0	NAD	0.6	MAQ	0.0	NAD	0-0	0.0	0.0	12.8	749.4	
5090	64.0043	-100-9073	55554				10	-	247		-0.2	NAD	0.0	MAD	0.0	MAD	0.0	0.0	0.0	12 8	740 1	12
5091	64.0093	-100.9004	55554	-007			30		241		-0.2	NAU	0.0	PLAN	0.1	INAL				12.00	74743	in in i
509Z	64.0094	-160-9052	55304	6/1		W	29	1	343		0.2	NAU	1.1		0.3		0.0	4.0	0.0	42.0	14942	E 5
5043	64.0094	-160.9042	55304	679		W	23	L	659		2.9		-0.8	NAD	0+8		0.0	0.0	3.5	12.8	748.9	1.0
5094	64.00.95	-160.9030	55304	603		W	34	Û	965		3.2		1.4		0+8		0+5	1.9	4.1	12.9	748,5	
5095	64.0096	-160.9017	55305	647		K \$	24	0	1208		8.6		0.0	NAD.	0.5		0.0-	0.0	-18.3		748.1	1211
5096	64.0096	-160.9007	55305	463		KS	12	U	945		2.5		1.7		0.5		0.7	3.5	5.2	12.9	747.8	22
5097	64-0098	-160.8995	55305	455		KS	20	0	831		3.0		1.5		0.6		0.5	2.8	5.5	12.9	747.6	23
		=160.8985	5 5305	-457	•	· K S	22-	0	759		2 - 2222222222		1.4	- • • • •	0.3				······	·· -12.9	747:1-	24
50.00	64.0099	-160.8973	55305	465		K.C.	29	ŏ	699		1.7		2.0		0.5		1.1	6.4	4.1	12.9	746.5	
5100	64 0100	-160 8063	55305	407		N C	20	Ň	410		0.5	NAD	1 2		0 4		0.0	3 7	0 0	12 0	744 1	127
5100	64.0100	-100.0902	- 222V2	*19 ****		• • • • • • • • • • • • • • • • • • •		- · · o				UAN .			₩ •					1607		20
5101	64.0100	-160-8950	55305	491		KS	20	U	581		2.2		0.5	MAK	0.3		0.2	1.0	7.0	12.9	740.0	1994
5102	64.0101	-160.8940	55304	518		KS	35	U	512		1.3		-0.2	NAU	0.3		0.0	0.0	4.2	12.9	145.1	
5103	64.0101	-160.8928	55301	540		KS	20	0	677		2•1		1.0		0.2		0.5	5.6	11.2	12.8	745.5	31
	~64.010Z	=160:8918	. 22303.		••••		26	0.	··· 579				1-2		0-t	MAR		12.6-	-t7.0-	12.8	745.5	
5105	64.0103	-160.8905	55304	608		KS	51	-1	ol 1		3.2	,	3.1		0.0	NAD	1.0	0.0	0.0	12.8	745.6	34
5106	64.0103	-160.8895	55301	614		K5	16	- L	551		3.7		0.2	NAD	0+3		0.0	0.0	11.1	12.8	745.5	35
5107	-64.0104	=160.8883	55304	595	• • •• •• •	- KS		-1	488	· ·	··· I.5	••••••••••				MAR	15	18.5	12.5	12.8	745:4	36
51.08	64.0105	-160.8873	55302	5/5		KS	22	-1	510		0.2	NAD	1.3		0.3		0.0	5.1	0.0	12.8	745.3	130
5100	64.0106	-160.8860	55304	552		K S	28	-1	437		0.0	ΝΔΠ	1.0		0.1	MAR	0.0	9.0	0.0	12.8	745.2	30
	44:0107	20000000	. 88104	- 912	•	· · ·	28		- 405			NAD	1 1		0.3	man				1 7	.746	
5110	64 0107	-100.0040	50000	222		N.3	29	-1			0.5	MAD	-0.1	MAD	0.3		0.0	4 + 0	2.0	14.0	744 7	4.1
2111	04.0107	-100-0030	22202	214		K 3	27	-1	319		1.0	MAR	-0.1	NAU	0.3		0.0	0.0	3.0	12.0	14441	142' 1431
5112	64.0108	-160.8826	22302	501		Ka	35	-1	323		0.5	MAK	1.4		0.1	MAK	2.5	13.0	2.2	12.8	744.3	
5113	64.0178	=160.8816	55305	- 490			20	-1	··· 411 ·		0.0	" NAO			0.0	"N.4D		- 0.0-	0.0	12.8	744.3	**
5114	64.0109	-160.8803	55305	481		KS	22	-1	417		1.0		1.0		0.1	M.A.R	1.0	12.7	12.9	12.8	744.3	140
5115	64.0110	-160.8791	55305	417		K S	28	-1	517		0.8	MAR	1.1		0.3		1.3	4.0	3.1	12.8	744.1	47
51 [6	64.0110	-t60.878L		* 479	•	K5	17	0	615	•• •••	1:4		0.7		0.5	• •	0.5.		2.8		744.0	49
5117	64.0111	-160.8769	55304	486		K 5	23	0	623		4.3		0.8		0.6		0.2	1.4	7.0	12.8	743.9	50
5118	64.0111	-160-8759	55303	443		K.S	22	Ō	607		2.5		1.5		0.1		0.6	10.2	17.5	12.8	744.0	51
5110	64-0112	-160.8765		- 500		K 5	21	·· ň·	504			- ·· •-··	" D.S	MAR	·····n. 5			- T. T-	7.6	17:8	766.7	
5) 20	64.0113	-160.0734	55202	500		K S	22	-1	612		2.2		2.4		0.1		1.2	8.6	7.2	12 8	744.2	183
5120			22202	507		~ 2	20	- 1	436		2		0.2		0.3		0.0	0.0	10.0	12.0	744.6	01
		-100-0/24	-52202	- 910		·····		-1	000 474] + [ب∔ ⊷.هان		3•∪ 		C.U T.A		U.U.		LU.Y.			
5122	04.ULL3	-100.0712	22202	519		K3 -	25	-2	777		7.1		1		0.3		0.3	2.4	2072	12.0	744.9	171
5123	64.0113	-160.8701	20166	218		K.S	50.	-2	058		5.8		0.9	·	0.4		0.2	2.2	9.0	12.8	742.1	(80-
5124	64.0113	-100.8689	55302	- 517		K 5	32	-2	718		0.8	MAR	1.9		0.7		2.1	2.8	ι.3	12.8	745.6	:00
° 5125	64.0113	-160.8677	55302	523		R 5	32	-2	763	•	·· 2.T		. 2.2		T U • 2		0.8	.13.0	16:07	12.8	746.1	61
5126	64.0114	-160.8667	55302	541		K 5	25	-1	781		3.2		1.3		0.6		0.4	2.4	5.9	12.8	740.4	A2
5127	64.C114	-160.8654	55301	55.9		K 5	26	-1	736		1.1	MAK	2.6		0.3		2.2	8.2	3.8	12.9	746.8	63
5128	64.0114	-160.8644	- 55300	514		K 5	23	÷1	668		3.2		0.2	NAD	0.4		0.0		7.4	12.9	747.L	
51.24	64.0114	-160.8632	55300	542		K 5	21	Ō	640		2.4		3.5	. –	-0-0	NAD	1-4	0.0	0.0	12-9	747.3	
51 30	64.0113	-160-8620	5530.1	606		K S	14	ő	696		1.9		1.9		0.1		1.0	7.1	6-9	12.9	747_3	67
5131	64.0113	-) 60 66020	55107	1.17		g 5	27	ň	505		1.4		0.7	MAD	· 0. 3		0.5	2.4	· 6 6	11.0	747.7	
2121	0440113	100.0009	22206	011			C 1	0	273		1		U • 1	MAN	V+ 3		0.5	£ • 7	7.07	LJOV	14141	109
						CLACI	C DC	000			t ME	34	0 0	AGE								71
	0. 00 Fourt	FINC I INF	• • •			3 I NGL	C KEL	•UKU	UATA	ι	. INC	<u> </u>	U P.	40 C	L							- 721
PINISHE		TING LINE	24	U	.																	
LINE	220 1	rids 293	> T U	486	5 U	UPUT	10 5	KKD	IAPE									•				551
																						179
		•				-				•		•	•		·			• •				

-96-

APPENDIX G

Format, Average Record Data Listing

				REATO											EU	ΓŬ	ETH
	RECORD			TJFAL	GLOL		414.	THTAL		STD		S TD		STD	LTH STD	POTA STD	PUTA STD
	NUMBER	LAFITUDE	LONGITUDE	LIEPD	UNLT	CUSM	URAN	COUNT	CTH FLO	G DEV	LU	FLG DEV	POT F	LG DEV	RATIO DEV	RATIO DEV	RATIO DEV
				GAMMA		CPS	CPS	CPS	ррм		PPM	2	P(. 1				5 2 2 2
	52.38	64.0098	-160.1400	22232	W	55	-0	750	3.1	· 1	1.9	2			0,5 0	2.0 0	5 2 U
•	52 3 7	64.1058	-109.7444	22233	N 5	43	-6	172	3.7	0	2.1	0	0.7	0	0.6. 7	2.9 0	530
•	5240	64.0095	-160.7434	55247	~ .) ¥ C	21	- 7	990	2.5	0	2.2	0	0.7	ŏ	0.6 2	3.2 1	5.2 0
	5241	64.0098	-160.7412	55248	K C		-5	1083	3.5	0	2.1	· õ	0.7	0	0.6 2	2.9 0	4.8 0
	5742	64.0097	-160.7339	55287	ĸs	30	-4	1156	3.7	ŏ	1.9	õ	0.7	ő	0.5 1	2.7 0	5.0 0
	5766	64.0097	-160.7389	55287	KS	31	-4	1182	4.1	ň	1.9	Ő	0.8	ō	0.5 1	2.5 0	5.3 0
.1	5245	64.0097	-160.7379	55286	ĸs	26	-4	1245	4.0	ő	1.7	Ŭ,	0.8	ŏ	0.4 0	2.1 0	4.9 0
•	5246	64.0096	-160.7366	55285	KS	38	-4	1148	3.8	ő	1.6	Ō.	0.8	Õ	0.4 0	2.1 0	4.B 0
	52.47	64.0097	-160.7350	55285	ĸs	30	-3	1211	3.7	Ō	1.5	Ū.	0.8	0	0.4 0	1.9 0	4.5 0
	5248	64.0096	-160.7344	55295	ĸŝ	30	-3	1076	3.8	Ū	1.5	0	0.8	U	0.4 0	1.9 0	4.7 0
	5249	64.0096	-160.7334	55284	KS	29	-3	1016	3.7	0	1.3	0	0.8	0	0.4 0	1.6 0	4.6 0
	52 50	.64.0096	-160.7324	55283	KS	33	3	975	3.7	0	1.2	0	0.8	0	0.3 0	L.6 0	4.8 0
•.,	525L	64.0095	-160.7311	~55283	KS	23	-3	976	3.5	0	1.2	0	0.7	~ O`	0.3 0	1.7 0	5.0 0
	5252	64.0095	-160.7301	55283	KS	30	-3	948	3.7	0	1.1	0	0.7	. 0	0.3 0	1.6 0	5.1 0
e	5253	64.0095	-166.7299	55284	ĸs	33	- 3	921	3.8	0	1.0	-1	0.7	0	0.3 0	L.4 -1	5.2 0
•••	52 5 4	64.0095	-160.7278	55284	ĸs	37	-2	803	4.0	0	1.0	-1	0.7	· ·· 0	- 0.3 0	1.5 -1	5.6 0
·.	52 5 5	64.0995	-160.7266	55283	KS	23	-2	954	4.1	0	1.0	-1	0.7	0	0.3 - 1	1.4 -1	5.5 0
:	5250	64.0094	-160.7256	55293	KS	29	-1	1006	4.3	0	1.0	-1	0.7	0	0.2 -1	1.3 -1	5.8 0
· ·	5257	64.0094	-160.7244	55283	KS	37	-1	1133	4.0	0	1.0	-1	0.7	0	0.2 -1	1.3 -1	5.5 0
	5258	64.0194	-160.7233	55284	KS	23	0	1106	4-1	0	1.0	-1	0.7	0	0.2 -1	1.4 -1	5.9 0
	5259	54.0094	-160.7221	55285 66304	KS ME	28	0	1034	4.1	0	0.8	-1	0.7		0.2 -1	1.2 -1	6.1 0
• *.	52 60	64.0094	-160.7211	55284	5	21	0	963	4 • L	0	0.8	-1	0.7		0.2 -1	· 1.3 *L	6.2 0
·••	5261	64.0093	-160-7199	55294	N C	21	0	710	3.1	0	0.8	-1	0.6	- 1	0.2 -1	1.3 -1	
÷	5761	64.009J		55784	**	11	0	605	2.2	-1	0.9	-1	0.5	- 1	0.5 0	1.0	5 2 0
<i>.</i> Г	5265	64.0092	-160.7166	55244	K C	12	0	635	2.1	-1	0.0	-1	0.4	- 1	0.4 0	1.0 0	5.2 0
÷φ	52.65	64.0093	-160.7150	55283	ĸs	35	ŏ	507	1.7	-1	0.7	-1	0.3	-1	0.4 0	2.2 0	5.3 0
ł	52.66	64.0092	-160-7143	55283	KS	26	-1	521	1.6	-1	0.7	-1	0.3	÷ 1	0.5 1	2.5 0	5.4 0
	5267	64.0092	-160.7133	55283	ĸs	19	-ī	465	1.4	-1	0.8	-i	0.3	-1	0.6 2	2.9 1	5.1 0
	5268	64.0091	-160.7121	55283	พ่	34	-1	287	1.3	0	0.9	1	0.3	1	0.7 1	3.1 0	4.6 -1
· · · ·	- 5269	64.0091	-160.7110	55282	ĸs	29	-1	398	1.3	-1	1.0	-1	0.3	- 1	0.8 3	3.4 1	4.4 0
	5270	64.0092	-160.7100	55282	ĸs	. 42	-1	516	1.7	-1	1.1	0	0.3	-1	0.6 2	3.2 1	5.1 0
· .	5271	64.0092	-160.7090	55283	ĸs	29	0	716	1.9	-1	1.0	-1	0.4	-1	0.6 2	2.8 0	5.1 0
	52 T ?	64.0092	-160.7078	55283	KS	25	0	781	2.1	-1	1.1	0	0.4	- 1	0.5 1	2.9 0	5.2 0
1 0	5273	64.0092	-160.7068	55282	KS	32	0	738	2.4	-1	1.1	0	0.4	-1	0.5 1	2.7 0	6.0 0
**	5274	64.0091	-160.7057	55281	KS	25	0	853	2.5	-1	1.1	0	0.4	-1	0.5 1	2.7 0	5.9 0
مر	5275	64.0091	-130.7047	55282	KS	22	0	796	2.5	-1	1.1	Ø	0.5	-1	0.4 0	2.4 0	5.8 0
••	5276	64.0091	-160.7037	55281	KS	21	0	904	2.9	-1	1.0	-1	0.5	-1	0.4 0	2.2 0	6.1 0
•	5277	64.0092	-160.7025	55281	KS	31	1	810	2.9	-1	1.0	-1	0.4	-1	0.4 0	2.3 0	6.5 0
• `	5270	64.0092	-160-7014	55200	. N.S.	21	2	750	3.0	-1	0.9	-1	0.5		0.3 0	2.0 0	0.3 U
-5-4	5280	64.0092	-160.7004	55294	~ 3	21	1	790	2.47	-1	1.0	-1	0.5	-1	0.3 0	2.0 0	6.0 0
•• •	52.80	64.0092	-160.6984	55284	85	32	1	745	3.3	0	0.8	-1	0.5	- 2	·· 0:2 ·· -1		7.1 0
471	5282	64.0092	-160-6973	55283	KS	36	i	779	3.7	ő	0.8	-1	0.5	0	0.2 -1	1.5 -1	6.5 0
-4	5283	64.0092	-160-6963	55284	KS	31	i	821	3.8	ő	0_ R	-1	0.6	ň	0.2 -1	1.4 -1	6.6 0
	5284	64.0092	-160.6951	55283	ĸs	31	ī	858	3.8	ŏ	1.0	-1	0.6	· 0 ·	0.3 0	1.8 0	6.5 0
•.	5285	64.0092	-160.6941	55284	ĸs	30	1	948	3.7	Ō	1.2	ō	0.0	Ó	0.3 0	2.0 0	6.0 0
• •	52 96	64.0093	-160.6931	55294	ĸs	26	0	1054	3.7	0	1.3	0	0.6	0	0.3 0	2.1 0	6.0 0
•. `	5287	64.0093	-169.6920	55232	ĸs	32	0	963	3.3	υ	1.5	0	0.6	0	0.4 0	2.4 0	5.7 0
•.	5288	64.0093	-160.6910	552H1	ĸs	30	0	1040	3.3	U	1.3	C	0.6	0	0.4 0	2.1 0	5.5 0
• •	52 9 4	64.0093	-166.6900	55281	ĸs	25	0	991	3.3	0	1.3	0	0.6	U	0.4 0	2.2 0	5.5 0
	52.90	64.0093	-160.6890	55231	ĸs	32	0	944	3.0	0	1.5	0	0.6	Ο.	0.5 1	2.5 0	5.0 0

AVERAGE RECORD DATA

240 PAGE

LINE

4

.

-1

:# 11 ٠. . . -54 •• 40.0 47 с. ٠. . . ٠.

••

• .

APPENDIX H

Format, DOE SINGLE RECORD REDUCED DATA TAPE

DOE SINGLE RECORD REDUCED DATA TAPE

· ·

• •

Line Number	123456789	012345678	Character Number 3901234567890123456789012345678901234567890123456789012
1	02 0978	(DATA TAF	PE TYPE AND FORMAT SPECIFICATION DATE CODES)
3	SINGLE RE	CORD REDU	JCED DATA TAPE
56	FORMAT FO	OR TAPE II	DENTIFICATION BLOCK (SECOND BLOCK)
7	ITEM	FORMAT	DESCRIPTION
8	1	A40	QUADRANGLE NAME AS PROJECT IDENTIFICATION
9	2	A 20	NAME OF SUBCONTRACTOR
10	3	14	APPROXIMATE DATE OF SURVEY (MONTH, YEAR)
11 12	4	I1	NUMBER OF AERIAL SYSTEMS USED TO COLLECT DATA FOR - THIS QUADRANGLE
13	5	I1	AERIAL SYSTEM IDENTIFICATION CODE FOR FIRST SYSTEM
14	6	A20	AIRCRAFT IDENTIFICATION BY TYPE AND FAA NUMBER FOR
15	- ·		FIRST SYSTEM
16 17	1	FO•1	TERRESTRIAL POTASSIUM (K-40) TO ONE DECIMAL PLACE
10	8	FG.1	NOMINAL ALTITUDE SYSTEM SENSITIVITY RELATIVE TO
20	0	10•1	TERRESTRIAL URANTUM (BI-214) TO ONE DECIMAL PLACE
21			IN CPS PER PPM FOILTVALENT II
22 23	9	F6.1	NOMINAL ⁵ ALTITUDE SYSTEM SENSITIVITY RELATIVE TO TERRESTRIAL THORIUM (TL-208) TO ONE DECIMAL PLACE
24	40	÷7	IN CPS PER PPM EQUIVALENT TH
25	10	10	ADT SVORTM DARA OCTIECRION INTERDUAT DO RUDER DEVIMAT
20	11 .	10.7	4PI-DIDIEM DATA COLLECTION INTERVAL TO INCLE DECIMAL
21	10	TK 72	THACED IN DECONDS FOR FIRST STSTEM THE STOREM DAMA COLLEGENTON INMEDIAT OF THEFE DECIMAT
20	12	F0•9	ALL OT OTHER THE THE ALL OTHER AND TO THE ALL THE ALL OTHER A
29	13	тз	NUMBER OF CHANNELS (0-3 MEV) IN A PL SYSTEM FOR FIRST
31		1)	AFRIAL SYSTEM
32	11	13	NIMBER OF CHANNELS (0-3 MEV) IN 2 PI SYSTEM FOR FIRST
33	14	1)	AERIAL SYSTEM
34	15-24	(SAME)	REPEAT OF ITEMS 5-14 FOR SECOND AERIAL SYSTEM
35	*	*	*
36	*	×	×
37	*	* ·	×
38	85-94	(SAME)	REPEAT OF ITEMS 5-14 FOR NINTH AERIAL SYSTEM
39	95	13	NIMBER OF FLIGHT LINES ON THIS TAPE
40	·96	14	FIRST FLIGHT LINE NUMBER ON THIS TAPE
41	97	16	FIRST RECORD NUMBER OF FIRST FLIGHT LINE
42 43	98	13	JULIAN DATE (DAY OF YEAR) FIRST FLIGHT-LINE DATA WAS COLLECTED
44 45	99–101	14,6, &3	REPEAT OF ITEMS 96-98 FOR SECOND FLIGHT LINE ON THIS TAPE
46	*	*	*
47	*	*	*
49 50	390-392	14,6, &3	REPEAT OF ITEMS 96-98 FOR 99TH FLIGHT LINE ON THIS TAPE
51			

.

N	Line umber	1234567	789012345678	Character Number 3901234567890123456789012345678901234567890123456789012
				- <u>T</u>
	52 53	FORMAT	FOR SINGLE	RECORD REDUCED DATA RECORD (THIRD THRU LAST BLOCK)
	54	ITEM	FORMAT	DESCRIPTION
	55	1	I1	AERIAL SYSTEM INDENTIFICATION CODE
	56	2	14	FLIGHT LINE NUMBER
	57	3	ī6	RECORD IDENTIFICATION NUMBER
	58	4	16	GMT TIME OF DAY (HHMMSS)
	59	5	F8.4	LATITUDE TO FOUR DECIMAL PLACES IN DEGREES
	60	6	F8.4	LONGITUDE TO FOUR DECIMAL PLACES IN DEGREES
	61	7	F6.1	TERRATN CLEARANCE TO ONE DECIMAL PLACE IN METERS
	62	8	F7.1	RESTDUAL (IGRE REMOVED) MAGNETIC FIELD INTENSITY
	63	0	1101	TO ONE DECIMAL PLACE IN GAMMAS
	64	q	A 8	SURFACE GEOLOGIC MAP UNIT CODE
	65	10	T4	QUALTTY FLAG CODES
	66	11	F6.1	APPARENT CONCENTRATION OF TERRESTRIAL POTASSIUM
	67		2001	(K-40) TO ONE DECIMAL PLACE IN PERCENT K
	68	12 '	F4.1	UNCERTAINTY IN TERRESTRIAL POTASSIUM TO ONE DECIMAL
	69			PLACE IN PERCENT K
	70	13	F6.1	APPARENT CONCENTRATION OF TERRESTRIAL URANIUM
	71		1011	(BI-214) TO ONE DECIMAL PLACE IN PPM EQUIVALENT U
	72	14	F4.1	UNCERTAINTY IN TERRESTRIAL URANIUM TO ONE DECIMAL
	73			PLACE IN PPM EQUIVALENT U
	74	15	F6.1	APPARENT CONCENTRATION OF TERRESTRIAL THORIUM
	75			(TL-208) TO ONE DECIMAL PLACE IN PPM EQUIVALENT TH
	76	16	F4.1	UNCERTAINTY IN TERRESTRIAL THORIUM TO ONE DECIMAL
	$\dot{7}$			PLACE IN PPM EQUIVALENT TH
	78	17	F6.1	URANIUM-TO-THORIUM RATIO TO ONE DECIMAL PLACE IN
	79			PPM EQUIVALENT U PER PPM EQUIVALENT TH
	80	18	F6.1	URANIUM-TO-POSTASSIUM RATIO TO ONE DECIMAL PLACE IN
	81			PPM EQUIVALENT U PER PERCENT K
	82	19	F6.1	THORIUM-TO-POTASSIUM RATIO TO ONE DECIMAL PLACE IN
	83			PPM EQUIVALENT TH PER PERCENT K
	84	20	F8.1	GROSS GAMMA (0.4-3.0 MEV) COUNT RATE TO ONE DECIMAL
	85			PLACE IN COUNTS PER SECOND
	86	21	F6.1	UNCERTAINTY IN GROSS GAMMA COUNT RATE TO ONE DECIMAL
	87			PLACE IN COUNTS PER SECOND
	88	22	F5.1	ATMOSPHERIC BI-214 4PI CORRECTION TO ONE DECIMAL
	89			PLACE IN PPM EQUIVALENT U
	90	23	F4.1	UNCERTAINTY IN ATMOSPHERIC BI-214 4PI CORRECTION
	91		- , - ,	TO ONE DECIMAL PLACE IN PPM EQUIVALENT U
	92	24	F4.1	OUTSIDE AIR TEMPERATURE TO ONE DECIMAL PLACE IN
	93		- , - ,	DEGREES CELSIUS
	94	25	F5.1	OUTSIDE AIR PRESSURE TO ONE DECIMAL PLACE IN MMHG

APPENDIX I

Format, DOE RAW SPECTRAL DATA TAPE

DOE RAW SPECTRAL DATA TAPE

Line Number	123456789	9012345678	Character number 3901234567890123456789012345678901234567890123456789012
1	01 0978	(DATA TAI	PE TYPE AND FORMAT SPECIFICATION DATE CODES)
2 3 1	RAW SPEC	TRAL DATA	TAPE
5	FORMAT FO	OR TAPE I	DENTIFICATION BLOCK (SECOND BLOCK ON TAPE)
7	ITEM	FORMAT	DESCRIPTION
8	1	A40	QUADRANGLE NAME AS PROJECT IDENTIFICATION
9	2	A20	NAME OF SUBCONTRACTOR
10	3	14	APPROXIMATE DATE OF SURVEY (MONTH, YEAR)
11	4	11	AERIAL SYSTEM IDENTIFICATION CODE
12	5	A20	AIRCRAFT IDENTIFICATION BY TYPE AND FAA NUMBER
15	6 7	1) TK Z	ADT SYSMEM DAMA COLLECTION INTERVAL TO THREE DECIMAL
14	(10.9	PLACES IN SECONDS
16 17	8	F6.3	2PI SYSTEM DATA COLLECTION INTERVAL TO THREE DECIMAL PLACES IN SECONDS
18	9	13	NUMBER OF CHANNELS (O-3 MEV) FOR 4PI SYSTEM
19	10	13	NUMBER OF CHANNELS (0-3 MEV) FOR 2PI SYSTEM
20	11	13	NUMBER OF FLIGHT LINES ON THIS TAPE
21	12	14	FIRST FLIGHT LINE NUMBER ON THIS TAPE
22	13	16	FIRST RECORD NUMBER OF FIRST FLIGHT LINE
23	14	13	JULIAN DATE (DAY OF YEAR) FIRST FLIGHT LINE WAS
24			COLLECTED
25 · 26	15–17	I4,6 &3	TAPE
27	*	*	*
28	*	*	* <u>v</u>
29	*	*	
30 31	306-308	14,6 &)	TAPE
22 33 34	FORMAT F	OR RAW SP	ECTRAL DATA RECORD (THIRD THRU LAST BLOCK ON TAPE)
24 35	MTTT	FORMAT	DESCRIPTION
36	1	I1	AERIAL SYSTEM IDENTIFICATION CODE
37	2	I4	FLIGHT LINE NUMBER
38	3	16	RECORD IDENTIFICATION NUMBER
39	4	I 6	GMT TIME OF DAY (HHMMSS)
40	5	F8.4	LATITUDE TO FOUR DECIMAL PLACES IN DEGREES
41	6	F8.4	LONGITUDE TO FOUR DECIMAL PLACES IN DEGREES
42	7	F6.2	TERRAIN CLEARANCE TO ONE DECIMAL PLACE IN METERS
43 44	8	F7.1	TOTAL MAGNETIC FIELD INTENSITY TO ONE DECIMAL PLACE IN GAMMAS
45	9	A8	SURFACE GEOLOGIC MAP UNIT CODE
46	10	14	QUALITY FLAG CUDES
47	11	£4.1	OUTSIDE AIR TEMPERATURE TO ONE DECIMAL PLACE IN
48	40	TTE 4	ULATED OLICIUS
49 50 - 51	13	F5.3	LIVE TIME COUNTING PERIOD TO THREE DECIMAL PLACES IN SECONDS

Line Number	12345	567890123456	Character Number 78901234567890123456789012345678901234567890123456789012
52 53	14	14	SUMMED RAW OUTPUT FROM COSMIC CHANNELS (3-6 MEV) IN COUNTS
54 55 . 56	15 16 *	I4 I4 *	RAW OUTPUT FROM CHANNEL 1 IN COUNTS RAW OUTPUT FROM CHANNEL 2 IN COUNTS *
57	*. v	*	*
58 59	2 70	I4	RAW OUTPUT FROM CHANNEL 256 IN COUNTS

105/106

APPENDIX J

Format, DOE STATISTICAL ANALYSIS DATA TAPE

-107-

DOE STATISTICAL ANALYSIS DATA TAPE

Line Number	123456789	2012345678	Character Number 3901234567890123456789012345678901234567890123456789012
1	03 0978	(DATA TAI	PE TYPE AND FORMAT SPECIFICATION DATE CODES)
3	STATISTIC	CAL ANALYS	SIS DATA TAPE
5	FORMAT FO	OR TAPE II	DENTIFICATION BLOCK (SECOND BLOCK)
7	ITEM	FORMAT	DESCRIPTION -
8	1	A40	QUADRANGLE NAME AS PROJECT IDENTIFICATION
9	2	A20	NAME OF SUBCONTRACTOR
10	3	14	APPROXIMATE DATE OF SURVEY (MONTH, YEAR)
11	4	I1	NUMBER OF AERIAL SYSTEMS UDED TO COLLECT DATA FOR
12			THIS QUADRANGLE
13	5	I1	AERIAL SYSTEM IDENTIFICATION CODE FOR FIRST SYSTEM
14 15	6	A20	AIRCRAFT IDENTIFICATION BY TYPE AND FAA NUMBER FOR FIRST SYSTEM
16 17 18	7	F6.1	NOMINAL ALTITUDE SYSTEM SENSITIVITY RELATIVE TO TERRESTRIAL POTASSIUM (K-40) TO ONE DECIMAL PLACE IN CPS PER PERCENT K
19 20 21	8	F6.1	NOMINAL ALTITUDE SYSTEM SENSITIVITY RELATIVE TO TERRESTRIAL URANIUM (B1-214) TO ONE DECIMAL PLACE IN CPS PER PPM EQUIVALENT U
22 23 24	9	F6.1	NOMINAL ALTITUDE SYSTEM SENSITIVITY RELATIVE TO TERRESTRIAL THORIUM (TL-208) TO ONE DECIMAL PLACE IN CPS PER PPM EQUIVALENT TH
25	10	16	BLANK FIELD (999999)
26 27	11	F6.3	4PI-SYSTEM DATA COLLECTION INTERVAL TO THREE DECIMAL PLACES IN SECONDS FOR FIRST SYSTEM
28 29	12	F6.3	2PI-SYSTEM DATA COLLECTION INTERVAL TO THREE DECIMAL PLACES IN SECONDS FOR FIRST SYSTEM
30 31	13	13	NUMBER OF CHANNELS (0-3 MEV) IN 4 PI SYSTEM FOR FIRST AERIAL SYSTEM
32 33	14	13	NUMBER OF CHANNELS (0-30 MEV) IN 2 PI SYSTEM FOR FIRST AERIAL SYSTEM
34	15–24	(SAME)	REPEAT OF ITEMS 5-14 FOR AERIAL SYSTEM
35	*	×	ź
36	*	*	×
37	*	*	. X
38	85-94	(SAME)	REPEAT OF ITEMS 5-14 FOR NINTH AERIAL SYSTEM
39	95	13	NUMBER OF FLIGHT LINES ON THIS TAPE
40	96	14	FIRST FLIGHT LINE NUMBER ON THIS TAPE
41	97	16	FIRST RECORD NUMBER OF FIRST FLIGHT LINE
42	98	13	JULIAN DATE (DAY OF YEAR) FIRST FLIGHT LINE DATA WAS
43			COLLECTED
44 45	99-101	14,6 &3	REPEAT OF ITEMS 96-98 FOR SECOND FLIGHT LINE ONE THIS TAPE
46	×	×	*
47	×	*	*
48	*	*	
49 50	390-392	14,6 &3	REPEAT OF ITEMS 96-98 FOR 99TH FLIGHT LINE ON THIS TAPE
21			

Line			Character Number
Number	1234567	89012345678	3901234567890123456789012345678901234567890123456789012
52	FORMAT	FOR STATIS	TICAL ANALYSIS DATA RECORD (THIRD THRU LAST BLOCK)
57	ፕጥ⋤M	<u> </u>	DR:SC BT PTT ON
24	4	TI	
55	1		
50	2	14	FUIDI DIVE NUMERON NUMERO
57	3	16	RECORD IDENTIFICATION NUMBER
58	4	16	GMT TIME OF DAY (HHMMSS)
59	5	F.84	LATITUDE TO FOUR DECIMAL PLACES IN DEGREES
60	6	F8.4	LONGITUDE TO FOUR DECIMAL PLACES IN DEGREES
61	7	F6.1	TERRAIN CLEARANCE TO ONE DECIMAL PLACE IN METERS
62 63	8	F7.1	RESIDUAL (IGRF REMOVED) MAGNETIC FIELD INTENSITY TO ONE DECIMAL PLACE IN GAMMAS
61	q	48	SURFACE GEOLOGIC MAP UNIT CODE
65	10	TE	OUNTING FING CODES
· 0)	10	I) TA 1	
67	11	FO.I	(K-40) TO ONE DECIMAL PLACE IN PERCENT K
68 69	12	F4.1	UNCERTAINTY IN TERRESTRIAL POTASSIUM TO ONE DECIMAL PLACE IN PERCENT K
70 71	13	F5.1	POTASSIUM STANDARD DEVIATION FROM THE MEAN TO ONE
72 73	14	F6.1	AVERAGED CONCENTRATION OF TERRESTRIAL URANIUM (BL_214) TO ONE DECIMAL PLACE IN PPM EQUIVALENT U
74 75	15	F4.1	UNCERTAINTY IN TERRESTRIAL URANIUM TO ONE DECIMAL
75 76	16	F5.1	URAN IUM STANDARD DEVIATION FROM THE MEAN TO ONE
77 78 70	17	F6.1	AVERAGED CONCENTRATION OF TERRESTRIAL THORIUM
80	18	F4.1	UNCERTAINTY IN TERRESTRIAL THORIUM TO ONE DECIMAL
81 82	19	F5.1	THORIUM STANDARD DEVIATION FROM THE MEAN TO ONE
85 84	20 .	F8.1	GROSS GAMMA (0.4-3.0 MEV) COUNT RATE TO ONE DECIMAL
85 86	21	F6.1	UNCERTAINTY IN GROSS GAMMA COUNT RATE TO ONE DECIMAL
87 88	22	F5.1	ATMOSPHERIC BI-214 4PI CORRECTION TO ONE DECIMAL
89 90	23	F4.1	UNCERTAINTY IN ATMOSPHERIC BI-214 4PI CORRECTION
91 92	24	F6.1	TO ONE DECIMAL PLACE IN PPM EQUIVALENT U AVERAGED URANIUM-TO-THORIUM RATIO TO ONE DECIMAL
93 94	25	F5.1	PLACE IN PPM EQUIVALENT U PER PPM EQUIVALENT TH URANIIUM-TO-THORIUM RATIO STANDARD DEVIATION FROM THE
95	25	TK 1	MEAN TO ONE DECIMAL PLACE AND ALGEBRAICALLY SIGNED
90 97	20		PLACE IN PPM EQUIVALENT U PER PERCENT K
98 99 100	27	F2•1	THE MEAN TO ONE DECIMAL PLACE AND ALGEBRAICALLY SIGNED
101	28	F6.1	AVERAGE THORIUM-TO-POTASSIUM RATIO TO ONE DECIMAL PLACE IN PPM EQUIVALENT TH PER PERCENT K
103	29	F5.1	THORIUM-TO-POTASSIUM RATIO STANDARD DEVIATION FROM
104 105			THE MEAN TO ONE DECIMAL FLACE AND ADDIDICATORIDI SIGNED

APPENDIX K

Format, DOE STATISTICAL ANALYSIS SUMMARY DATA TAPE

DOE STATISTICAL ANALYSIS SUMMARY DATA TAPE

Line Number	123456780	2012345678	Character Number 3001 2345678901 2345678901 2345678901 2345678901 2345678901 2
Number	12/4/0105	012/4/010	5501254501050125450105012545010501254501050125450105012
1	05 0978	(DATA TAI	PE TYPE AND FORMAT SPECIFICATION DATE CODE)
3	STATISTIC	CAL ANALYS	SIS SUMMARY TAPE (OR FILE)
5	FORMAT FO	OR TAPE II	DENTIFICATION BLOCK (SECOND BLOCK)
7	TUEN	ΤΩRMAT	DESCRIPTION
Ŕ	1		OUADRANGLE NAME AS PROJECT IDENTIFICATION
q	2	A20	NAME OF SUBCONTRACTOR
10	3	I4	APPROXIMATE DATE OF SURVEY (MONTH, YEAR)
11	4	16	NUMBER OF GEOLOGIC MAP UNITS USED FOR THIS
12	·		QUADRANGLE
13			
14 15	FORMAT FORMAT FORMAT FORMAT	OR STATIS?	FICAL ANALYSIS SUMMARY DATA RECORD (THIRD THRU LAST
16			NT CONTON
17	TTEM	FORMAT	DESCRIPTION SUDDAGE GEOLOGIG MAD INIG IDENDIEVING CODE
18	1	A8 TC	BURFACE GEOLOGIC MAP UNIT IDENTIFIING CODE
19	2	10	TOTAL RECORDS FOR GEOLOGIC MAY UNIT
20	2	10	MUNICIPAL OF FURNISHIN RECORDS CONFULED FOR GEOLOGIC
22	٨	FG 1	POTASSTUM CONCENTRATION MEAN TO ONE DECIMAL PLACE
23	-+	10.1	IN PERCENT K
24	5	F6.1	POTASSIUM CONCENTRATION STANDARD DEVIATION TO ONE
25	2		DECIMAL PLACE IN PERCENT K
26	6	A3	POTASSIUM CONCENTRATION DISTRIBUTION CODE
27	7	16	NUMBER OF URANIUM RECORDS COMPUTED FOR GEOLOGIC UNIT
28 29	8	F6.1	URANIUM CONCENTRATION MEAN TO ONE DECIMAL PLACE IN PPM EQUIVALENT U
30	9	F6.1	URANIUM CONCENTRATION STANDARD DEVIATION TO ONE
31			DECIMAL PLACE IN PPM EQUIVALENT U
32	10	A3	URANIUM CONCENTRATION DISTRIBUTION CODE
33	11	16	NUMBER OF THORIUM RECORDS COMPUTED FOR GEOLOGIC UNIT
34	12	F6.1	THORIUM CONCENTRATION MEAN TO ONE DECIMAL PLACE IN
35			PPM EQUIVALENT TH
<u>56</u>	15	10.1	THORIUM CONCENTRATION STANDARD DEVIATION TO ONE
21	4.4	17	DECLIMAL FLACE IN FFM EQUIVALENT IN MUCHIMAL FLACE IN FFM EQUIVALENT IN
20 3 0	14	A) TG	NUMBER OF DEANTIM_PO_THORUM RATIO RECORDS COMPLETED
10	15	10	FOR GEOLOGIC INIT
40	16	F6.1	IRANTIM-TO-THORID RATIO MEAN TO ONE DECIMAL PLACE
42	10	10.1	TN PPM FOUTVALENT U PER PPM EQUIVALENT TH
43	17	F6.1	URANIUM-TO-THORIUM RATIO STANDARD DEVIATION TO ONE
44	• •		DECIMAL PLACE IN PPM EQUIVALENT U PER PPM EQUIVALENT
45			TH
46	18	A3	URANIUM-TO-THORIUM RATIO DISTRIBUTION CODE
47	19	16	NUMBER OF URANIUM-TO-POTASSIUM RATIO RECORDS
. 48		-	COMPUTED FOR GEOLOGIC UNIT
. 49 50	20	F6.1	URANIUM-TO-POTASSIUM RATIO MEAN TO ONE DECIMAL PLACE IN PPM EQUIVALENT U PER PERCENT K

Line		*	Character Number
Number	12345	678901234567	78901234567890123456789012345678901234567890123456789012
51	21	F6.1	URANIUM-TO-POTASSIUM RATIO STANDARD DEVIATION TO ONE
52			DECIMAL PLACE IN PPM EQUIVALENT U PER PERCENT K
53	22	A3	URANIUM-TO-POTASSIUM RATIO DISTRIBUTION CODE
54	23	16	NUMBER OF THORIUM-TO-POTASSIUM RATIO RECORDS
55			COMPUTED FOR GEOLOGIC UNIT
56	24.	F6.1	THORIUM-TO-POTASSIUM RATIO MEAN TO ONE DECIMAL PLACE
-57			IN PPM EQUIVALENT TH PER PERCENT K
58	25 .	F6.1	THORIUM-TO-POTASSIUM RATIO STANDARD DEVIATION TO ONE
59			DECIMAL PLACE IN PPM EQUIVALENT TH PER PERCENT K
60	26	A3	THORIUM-TO-POTASSIUM RATIO DISTRIBUTION CODE

113/114

APPENDIX L

Format, DOE MAGNETIC DATA TAPE

-115-

DOE MAGNETIC DATA TAPE FORMAT

Line Number	12345678	901234567	Character Number 8901234567890123456789012345678901234567890123456789012
1	04 0978	(data ta	PE TYPE AND FORMAT SPECIFICATION DATE CODES)
3	MAGNETIC	DATA TAP	E
5	FORMAT F	OR TAPE I	DENTIFICATION BLOCK (SECOND BLOCK)
7	ፐጥፑM	FORMAT	DESCRIPTION
8	1	A40	QUADRANGLE NAME AS PROJECT IDENTIFICATION
ğ	2	A20	NAME OF SUBCONTRACTOR
10	3	I4	APPROXIMATE DATE OF SURVEY (MONTH, YEAR)
11	4	13	NIMBER OF FLICHT LINES ON THIS TAPE
12	5	I4	FIRST FLIGHT LINE OF THIS TAPE
13	6	IĠ	FIRST RECORD NUMBER OF FIRST FLIGHT LINE
14	7	13	JULIAN DATE (DAY OF YEAR) FIRST FLIGHT LINE DATA WAS
15	•	-	COLLECTED
16	8	F8.4	LATITUDE OF GROUND BASE STATION TO FOUR DECIMAL
17			PLACES IN DEGREES FOR FIRST FLIGHT LINE
18	9	F8.4	LONGITUDE OF GROUND BASE STATION TO FOUR DECIMAL
19			PLACES IN DEGREES FOR FIRST FLIGHT LINE
20	10-14	(SAME)	REPEAT OF ITEMS 5-9 FOR SECOND FLIGHT LINE ON THIS
21			TAPE =
22	*	*	*
23	*	*	*
24	X	X	X
25	495-499	(SAME)	REPEAT OF ITEMS 5-9 FOR 99TH FLIGHT LINE ON THIS
26			TAPE
27			
28	FORMAT F	OR MAGNET	IC DATA RECORD (THIRD THRU LAST BLOCK)
29			
30	ITEM	FORMAT	DESCRIPTION
31	1	II	AERIAL SYSTEM IDENTIFICATION CODE
32	2	14	FLIGHT LINE NUMBER
- 33	3	16	RECORD IDENTIFICATION NUMBER
34	4	16	GMT TIME OF DAY (HHMMSS)
35	5	F8.4	LATITUDE TO FOUR DECIMAL PLACES IN DEGREES
36	6	F8.4	LONGITUDE TO FOUR DECIMAL PLACES IN DEGREES
37	7	F6.1	TERRAIN CLEARANCE TO ONE DECIMAL PLACE IN METERS
38	8	F5.1	OUTSIDE AIR PRESSURE TO ONE DECIMAL PLACE IN MMHG
39	9	AB	SURFACE GEOLOGIC MAP UNIT CODE
40	10	F'/•1	TOTAL MAGNETIC FIELD INTENSITY TO ONE DECIMAL PLACE
41		— .	IN GAMMAS
42	11	£'/•1	RESIDUAL (IGRE REMOVED) MAGNETIC FIELD INTENSITY
43			THE FINE THE LINE PLACE IN GAMMAS
		TTT 4	TO ONLY MACHINE TENDERIC TARTARTANT MACHINE DECEMAT
44	12	F7.1	DIURNAL MAGNETIC INTENSITY VARIATION TO ONE DECIMAL
44 45	12	F7.1	DIURNAL MAGNETIC INTENSITY VARIATION TO ONE DECIMAL PLACE IN GAMMAS MACHERIC DEPEND TO DASEMENT TO ONE DECIMAL PLACE

APPENDIX M

Reduced Calibration and Test Line Data

Date	Flight	Res. Thor. 583	Res. Thor. 2615	Low H Alt.	reflig T.C.	ht 2π	Low P Alt.	ostfli T.C.	ght 2π
 09/06/80	<u> </u>	6.2%	9.0%	400'	1250	11	400'	1250	11
09/07/80	61	6.0%	8.8%	400 '	1225	10	400'	1225	9
09/19/80	87	6.2%	8.6%	400'	1175	9	400'	1150	9
09/19/80	88	6.2%	8.6%	400'	1175	9	400'	1150	9
09/21/80	<u>92</u>	5.4%	8.6%	400'	1225	7	400'	N/A	7
09/21/େ୦	93	б.4%	8.6%	400 '	1225	7	400'	N/A	7
09/22/80	ĠĢ	5.3%	8.5%	400'	1150	7	, Nc	Test	
09/22/80	97	6.3%	8.5%	400 '	1150	7	Nc	Test	
09/23/80	<u>99</u>	5.5%	8.5%	400'	1175	8	400'	1150	7
09/23/80	1CO	5.5%	8.5%	400'	1175	8	400'	1150	7
09/23/80	101	5.5%	8.5%	400'	1175	8	400'	1150	7
09/23/80	102	5.5%	8.5%	400 '	1175	8	400'	1150	7
09/24/80	103	5.4%	8.4%	400'	1150	9	400'	1150	7
09/24/80	1C4	5.4%	8.4%	400'	1150	9	400'	1150	7
N/A = NO	C AVAILABLE								

Reduced Calibration and Test Line Data

÷

-

<u>APPE-NDIX N</u>

Renumbered to Original Fiducial Correlations

MAP FIDUCIALS 9180 TO 9477 CORRESPOND TO ORIGINAL FIDUCIALS 9477 TO 9180 LINE 490 FLOWN AS LINE 491 MAP FIDUCIALS 8937 TO 9136 CORRESPOND TO ORIGINAL FIDUCIALS 9136 TO 8937 500 FLOWN AS LINE 501 LINE MAP FIDUCIALS 10172 TO 10332 CORRESPOND TO ORIGINAL FIDUCIALS 10332 TO 10172 510 FLOWN AS LINE 511 LINE MAP FIDUCIALS 15788 TO 15897 CORRESPOND TO ORIGINAL FIDUCIALS 15897 TO 15788 520 FLOWN AS LINE 521 LINE MAP FIDUCIALS 15973 TO 16026 CORRESPOND TO ORIGINAL FIDUCIALS 16026 TO 15973 530 FLOWN AS LINE 531 LINE MAP FIDUCIALS 10757 TO 10875 CORRESPOND TO ORIGINAL FIDUCIALS 10875 TO 10757 LINE 550 FLOWN AS LINE 551 MAP FIDUCIALS 1961 TO 2206 CORRESPOND TO ORIGINAL FIDUCIALS 2206 TO 1961 560 FLOWN AS LINE 561 LINE MAP FIDUCIALS 2262 TO 2467 CORRESPOND TO ORIGINAL FIDUCIALS 2467 TO 2262 570 FLOWN AS LINE 571 LINE MAP FIDUCIALS 7598 TO 7808 CORRESPOND TO ORIGINAL FIDUCIALS 7808 TO 7598 580 FLOWN AS LINE 581 LINE MAP FIDUCIALS 207 TO 456 CORRESPOND TO ORIGINAL FIDUCIALS 456 TO 207 590 FLOWN AS LINE 591 LINE MAP FIDUCIALS 4040 TO 4334 CORRESPOND TO ORIGINAL FIDUCIALS 4334 TO 4040 600 FLOWN AS LINE 601 TIME MAP FIDUCIALS 3263 TO 3659 CORRESPOND TO ORIGINAL FIDUCIALS 3659 TO 3263 610 FLOWN AS LINE 610 LINE MAP FIDUCIALS 54 TO 509 CORRESPOND TO ORIGINAL FIDUCIALS 509 TO 54 620 FLOWN AS LINE 621 LINE MAP FIDUCIALS 65 TO 605 CORRESPOND TO ORIGINAL FIDUCIALS 605 TO 65

EUREKA MAP AREA

MAP FIDUCIALS 3849 TO 4225 CORRESPOND TO ORIGINAL FIDUCIALS 4225 TO 3849

MAP FIDUCIALS 4599 TO 3601 CORRESPOND TO ORIGINAL FIDUCIALS 3601 TO 4599

MAP FIDUCIALS 8604 TO 8982 CORRESPOND TO ORIGINAL FIDUCIALS 8982 TO 8604

450 FLOWN AS LINE 451

460 FLOWN AS LINE 461

470 FLOWN S LINE 471

480 FLOWN AS LINE 481

LINE

LINE

LINE

LINE

EUREKA MAP AREA

LINE 630 FLOWN AS LINE 631 MAP FIDUCIALS 3376 TO 3960 CORRESPOND TO ORIGINAL FIDUCIALS	3960 TO	3376
LINE 640 FLOWN AS LINE 642 MAP FIDUCIALS 2629 TO 3216 CORRESPOND TO ORIGINAL FIDUCIALS	3216 TO	2629
LINE 650 FLOWN AS LINE 651 MAP FIDUCIALS 3311 TO 3911 CORRESPOND. TO ORIGINAL FIDUCIALS	3911 TO	3311
LINE 660 FLOWN AS LINE 660 MAP FIDUCIALS 8805 TO 9223 CORRESPOND TO ORIGINAL FIDUCIALS	9223 <u>T</u> O	8805
LINE 670 FLOWN AS LINE 670 MAP FIDUCIALS 9333 TO 9501 CORRESPOND TO ORIGINAL FIDUCIALS	9501 TO	9333
LINE 680 FLOWN AS LINE 680 MAP FIDUCIALS 1569 TO 1596 CORRESPOND TO ORIGINAL FIDUCIALS	1596 TO	1569
LINE 1010 FLOWN AS LINE 1014 AND 1015 AND 1016 MAP FIDUCIALS 159 TO 1422 CORRESPOND TO ORIGINAL FIDUCIALS MAP FIDUCIALS 1423 TO 1825 CORRESPOND TO ORIGINAL FIDUCIALS MAP FIDUCIALS 1826 TO 3772 CORRESPOND TO ORIGINAL FIDUCIALS	1422 TO 505 TO 6899 TO	159 102 4953

1

. .