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Abstract 

A number of binary geothermal cycles u t i l i z i n g  
mixed hydrocarbon working f lu ids  were analysed w i t h  
the overall objective of finding a working f lu id  which 
can produce low-cost e lec t r ica l  energy us ing  a moder- 
a te ly  low temperature geothermal resource. Both boil- 
ing and supercrit ical  shell-and-tube cycles were con- 
sidered. The performance of a dual-boiling isobutane 
cycle supplied by a 280F hydrothermal resource (cor- 
responding to  the 5MW p i lo t  plant a t  the Raft River 
s i t e  i n  Idaho) was selected as a reference. 
t iga te  the e f f ec t  of resource temperature on t h e  choice 
of working  f l u id ,  several analyses were conducted for  
a 360F hydrothermal resource, which i s  representative 
of the Heber resource i n  California. The hydrocarbon 
working f lu ids  analysed included methane, ethane, pro- 
pane, isobutane, isopentane, hexane, heptane, and mix- 
tures of those pure hydrocarbons. For comparison, two 
fluorocarbon refrigerants were also analysed. These 
fluorocarbons, R-115 and R-22, were suggested by Milora 
and Tester as result ing i n  high values of net plant 
geofluid effectiveness (watt-hr/l bm geofluid) a t  the 
two resource temperatures chosen for  the study. 
liminary estimates of re la t ive  heat exchanger s ize  

. (product of overall heat t ransfer  coefficient times 
heater surface area) were made fo r  a number of the 
be t te r  performing cycles. 

and 10% isopentane in a supercrit ical  cycle showed the 
highest value of net geofluid effectiveness of the 
working f l u i d s  assessed. 
provements of about 42% re la t ive  t o  the highest per- 
forming single-boil ing isobutane cycle, and 20% rela- 
t i ve  t o  the reference dual-boil ing isobutane cycle. 
For the 360F resource, w i t h  the plant ou t le t  geofluid 
kept above 160F ( t o  prevent s i l i c a  precipitation),  
mixtures o f  96% isobutane/4% heptane, 65% isobutanef35X 
isopentane, and 95% propane/5% hexane, a l l  resulted i n  
improvements i n  geofluid effectiveness of about 6% 
r e l a t ive  to  a 90% isobutanell0X isopentane mixture a t  
580 psia heater pressure (conditions approximating 
those which have been considered fo r  a 50MW plant a t  
the Heber s i t e ) .  
ploying mixed hydrocarbon working f lu ids  require 
heaters w h i c h  a re  estimated to  range from seven to  
approximately 50% larger i n  to ta l  surface area than 
those fo r  the reference cycles. 

BACKGROUND 

To inves- 

Pre- 

For the 280F resource, a mixture of 90% propane 

T h i s  working f l u i d  showed im-  

The more promising of the cycles em- 

A dual-boiling isobutane cycle was selected f o r  
the present 5-megawatt (5MW) Raft River P i lo t  Plant t o  
u t i l i z e  the lower-temperature geothermal resources 
near 300F). This study represents a second e f f o r t  
directed toward the design o f  an improved binary 
geothermal e l e c t r i c  plant suitable fo r  u t i 1  ization of 
the lower temperature resources. Earl i e r  studies (1 ) 
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have considered cycle improvements by way of introducing 
multiple boiling and condensing, and employment of 
d i rec t  contact heat exchangers. Those studies included 
a small e f fo r t  investigating use of hydrocarbon mixtures 
as working f lu ids .  
K. Star l ing ,  fo r  example, work of Reference 1 indicated 
that the mixtures showed promise. The in ten t  of the 
present e f f o r t  was to  expand the ea r l i e r  analyses o f  
binary cycles u s i n g  mixtures of pure f lu ids ,  and t o  
assess corresponding improvements i n  net geofluid 
effectiveness. 

of Energy, Assistant Secretary for  DOEDepartment of 
Geothermal Energy, under DOE Contract No. DE-AM07-76 
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BINARY GEOTHERMAL CYCLES 

Consistent w i t h  findings o f  

T h i s  work was supported by the U.  S. Department 

The working f l u i d  i n  a binary geothermal elec- 
t r i c  plant undergoes the processes of a Rankine thermo- 
dynamic cycle. Figure 1 ,  which i s  a schematic diagram 
of a simple binary geothermal cycle, i l l u s t r a t e s  these 
processes as well as the major components of  the binary 
plant. Start ing a t  the condensate storage tank, work- 
i n g  f lu id  is  pumped from the condenser t o  the heater 
pressure a t  nearly constant entropy. The working f lu id  
is t h e n  heated and vaporized a t  constant pressure i n  
the heater as heat i s  transferred from the geothermal 
f lu id .  
turbine a t  nearly constant entropy, producing work on 
the turbine wheel. The turbine exhaust vapor i s  then 
condensed (following desuperheating i f  necessary) by 
rejecting heat t o  the cooling water i n  the condenser. 

The working fluid vapor expands through the 

Feediump INEC.A.18 7 4  

Figurn 1: Simple 8lnuy Ge.othemal cycle 

T h i s  rejected heat, in t u r n ,  is  transferred to  the 
atmosphere i n  the cooling tower. 
f luid f ina l ly  passes into the condensate storage t a n k ,  
and the cycle i s  repeated. 

The condensed working 

For a cycle which u t i l i ze s  energy from a 



. 
geothermal f lu id  a t  a given i n i t i a l  temperature and 
re jec ts  heat t o  a given sink temperature, a theoretical 
maximum ex i s t s  fo r  the amount of work tha t  can be pro- 
duced by the  cycle per un i t  mass of geofluid. T h i s  
maximum corresponds t o  the change in thermodynamic 
ava i lab i l i ty  of the geothermal f lu id  between i t s  i n i t i a l  
s t a t e  and i t s  s t a t e  corresponding t o  the heat sink 
temperature. Actual net work i s  less  by the amount  of 
the thermodynamic irreversibi  1 i t i e s  generated during 
each of the real processes i n  the cycle. 

To i l l u s t r a t e  the principle behind the present 
approach, the general thermodynamics of two simple 
binary cycles are i l l u s t r a t ed  i n  the T-Q (temperature- 
heat exchanged) diagrams shown i n  Figure 2. A single 
boiling isobutane cycle is  shown w i t h  solid l i nes ,  and 
a cycle u s i n g  a mixed hydrocarbon working f l u i d ,  con- 
s i s t i ng  of 90% propane and 10% isopentane, is  shown 
u s i n g  dashed l ines .  Recognizing tha t  the irrevers- 
i b i l i t y  generated i n  a heat exchange process i s  direct-  
ly related t o  the to ta l  increase i n  entropy of the two 
f lu ids  involved, i t  can be shown tha t  the average d i f -  
ference i n  temperature between the two f lu ids  i s  a mea- 
sure of the thermodynamic i r r eve r s ib i l i t y  introduced. 
To help minimize this temperature difference, both 
cycles use counterflow heat exchangers f o r  heating and 
condensing. Figure 2 shows tha t  the constant tempera- 
ture b o i l i n g  and condensing behavior of isobutane a t  
constant pressure (charac te r i s t ic  of pure f lu ids)  re- 
s u l t s  i n  substantial departures of the geofluid and 
cooling water temperature profiles from the isobutane 
temperature prof i les ,  and i n  t u r n  s ign i f icant  irre- 
v e r s i b i l i t i e s ,  w i t h  losses i n  plant performance. The 
mixed hydrocarbon working  f lu id  cycle (dashed 1 ines) 
shows a reduced average temperature difference re1 a t ive  
t o  the pure f lu id  fo r  heating and condensing, and there- 
fore ,  reduced thermodynamic i r r eve r s ib i l i t i e s .  T h i s  
mixed f lu id  cycle incorporates a supercrit ical  heating 
process (boiling as such does not occur becaure heating 
i s  accomplished a t  a pressure above the c r i t i c a l  pres- 
sure);  however, the change i n  temperature during boil- 
i n g  fo r  a mixed f lu id  would show a similar reduction i n  
i r r eve r s ib i l i t y  r e l a t ive  to  a pure fluid.  
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CYCLE ANALYSIS APPROACH 

fo r  both pure and mixed hydrocarbon working f lu ids  for  
a resource temperature (TGF) of 280F. (For reference, 
similar calculations were made f o r  a dual-boiling iso- 
butane cycle corresponding t o  the SMW Raft River P i lo t  
Plant.) Working f lu ids  considered included methane, 
ethane, propane, isobutane, isopentane, hexane and two- 
component mixtures of those hydrocarbons. For compar- 

A number of single heating cycles were analysed 

ison, a fluorocarbon re f r igerant ,  R-115, was investi-  
gated. R-115 has been shown ( 2 )  t o  resu l t  i n  very good 
geofluid u t i 1  ization efficiency a t  the 280F resource 
temperature. The general approach taken fo r  each work- 
ing f lu id  investigated was t o  conduct cycle calcula- 
t ions which included determination of turbine power, 
working-fluid pumping paras i t ic  loss ,  and an estimate 
of the paras i t ic  loss introduced by a wet cooling 
tower. 
turbine-inlet  (o r  heater) pressures u n t i l  a maximum 
net p l a n t  power was found. A d i f fe ren t  working f lu id  
or mixture composition was then selected and the pro- 
cess repeated. 
adopted as follows: 

?he calculations were made for  a number of 

More spec i f ic  "ground rules" were 

1. 

2 .  

3. 

4 .  

5. 

6. 

7 .  

8 .  

9. 

She1 1 -and-tube heat exchangers were assumed. 

Geofluid pumping requirements ( a t  a given 
geofluid flow r a t e )  were assumed the same 
fo r  a l l  cases, and those paras i t ic  losses 
were not included. 

Component and piping f r ic t iona l  pressure 
drops were neglected. 

Pump and turbine e f f ic ienc ies  were assumed 
t o  be 80 and 85%. For simplicity,  elec- 
t r i ca l  motor and generator e f f ic ienc ies  
were taken as 100%. 

Except i n  several special cases fo r  TGF = 
360F, heater ou t l e t  s t a t e  points were 
selected to  avoid two-phase equilibrium 
conditions throughout the turbine expansion 
process and to  minimize desuperheating of 
the turbine exhaust. 

Pinch points ( m i n i m u m  approach temperature 
differences) in the heaters were 1 O F .  
Countercurrent flow was assumed. (For the 
360F resource temperature, additional cases 
were calculated as discussed in the next 
paragraph. ) 

Wet cooling towers were assumed which pro- 
vide cooling water t o  the condensers a t  70F. 
Countercurrent cooling water flow was 
selected t o  maintain condensing approach 
temperature differences of 1OF (see Figure 
2 ) .  

As discussed i n  References 1 and 3, t o t a l  
cooling tower paras i t ic  losses in watts 
were estimated from e a r l i e r  work as 0.077 
times the cooling water flow in lbm/hr fo r  
a cooling water temperature r i s e  (ATCW) = 
2OF. For ATCW # 2OF small adjustments in 
this fac tor  were made t o  account for  changes 
i n  pumping power required fo r  the modified 
cooling water flow. 

Water and fluorocarbon refrigerant proper- 
ties were taken from References 4 and 5. 
Mixed hydrocarbon working fluid properties 
were obtained u s i n g  Computer Program THERPP 
(6 ) ,  which  u t i l i ze s  S tar l ing ' s  modified 
Benedict-Webb-Rubin equation of s t a t e .  

To evaluate the e f f ec t  the geofluid resource 
temperature on the choice of working f lu id ,  additional 
cycles were calculated f o r  a resource temperature of 
360F. For this temperature two component mixtures of 
propane , i sobutane , i sopentane , hexane, and heptane 
were considered. Also included was R-22, which is  a 



fluorocarbon refrigerant suggested in Reference 2 as 
showing re la t ive ly  high geofluid u t i l i za t ion  efficiency 
a t  360F. The basic approach and assumptions used for  
the 360F resource were the same as f o r  280F, but w i t h  
two additional considerations. First, a t  the higher 
resource temperature suf f ic ien t  s i l i c a  i s  assumed t o  
be dissolved i n  the geofluid tha t  precipitation (possi- 
bly causing well-bore damage) may occur i f  untreated 
plant discharge geofluid i s  allowed to  reach tempera- . 
tures less  than 160F. Accordingly, cycle performance 
was calculated for  cases having plant ou t le t  tempera- 
tures of 160F as well as those which maintained 1OF 
pinch points in the heaters. Second, as an example 
i l l u s t r a t ing  the magnitude of the performance penalty 
associated w i t h  avoiding the two-phase region during 
turbine expansion, cycle calculations were repeated fo r  
96% isobutane/4% heptane fo r  several cases i n  which  the 
working f lu id  entered the two-phase region as i t  ex- 
panded through the turbine (assuming equilibrium condi- 
t i ons ) ,  and exited the turbine as saturated vapor. 
(This working f lu id  was chosen for  the example because 
i t  exhibited good geofluid effectiveness a t  moderate 
heater pressures both w i t h  and without the temperature 
r e s t r a in t  imposed on the discharged geofluid.) Wi th  
the same pure-vapor conditions a t  the turbine i n l e t  and 
e x i t ,  suf f ic ien t  departure from equilibrium may exist 
t o  allow a real expansion process to  occur without 
condensation, result ing i n  improved cycle performance. 

EVALUATION OF WORKING FLUIDS FOR TGF 

geofluid e f fec t iveness) ,  i s  plotted i n  Figure 3 versus 
turb ine  i n l e t  temperature f o r  several of the working 
f lu ids  selected. 
boiling cycles or single heating supercrit ical  Cycles 
shown schematically i n  Figure 1 .  Vertical dashed lines 

280F 

Net plant power i n  watt-hr/lbm geofluid, (net 

The cycles a re  generally single 
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intersecting the curves represent approximate boundaries 
between boiling and supercrit ical  cycles. I t  i s  seen 
tha t  fo r  a given working f lu id ,  the maximum performance 
can occur fo r  e i the r  supercrit ical  OF b o i l i n g  cycles; 
the t rans i t ion  occurs in a smooth continuous fashion as 
the pressure i s  changed. Turbine in l e t  pressures are 
shown f o r  each of the working f lu ids  a t  the turbine in- 
let  temperature corresponding t o  maximum performance. 
Mixtures o f  the pure f lu ids  can be seen to  provide 
higher performance than e i the r  of the two parent f l u ids ,  
a resu l t  consistent with Figure 2.  
a dual-boiling isobutane cycle is  shown as a dashed l i ne  
to provide a comparison w i t h  the performance of the 
reference 5MW p i lo t  plant. The dual-boiling cycle shows 
about 18% improvement re la t ive  t o  a single-boiling iso- 
butane cycle. 

Figure 4 shows the maximum net p l a n t  power plotted 
versus the mass percent of the heavier hydrocarbon for  
the d i f fe ren t  mi xed hydrocarbon systems considered. 
For comparison, the maximum performance of R-115 i s  
shown with the dashed l ine .  The highest net plant 
power found was f o r  a supercrit ical  cycle u t i l i z i n g  a 
mixture consisting of 90% propane and 10% isopentane, 
and occurred a t  660 ps i a  turbine i n l e t  pressure. 
approximate power balance f o r  the cycle consists of 
(1)  turbine = 5.64, ( 2 )  working f lu id  pump = 0.86, ( 3 )  
cooling tower = 0.47, and (4)  net power = 4.32 watt-hr/ 
lbm geofluid. This net performance i s  42% higher than 
f o r  pure isobutane i n  a single boiling cycle,  and about 
20% higher than f o r  the optimum dual-boiling isobutane 
cycle. The net plant power of 4.32 represents approxi- 
mately 44% of the thermodynamic ava i l ab i l i t y  of 9.73 

Net plant power fo r  

An 



watt-hr/lbm geofluid fo r  a 280F resource temperature 
and an assumed sink temperature of 70F. 
temperature corresponds t o  the assumed temperature of 
the cooling water entering the condensers.) 

EVALUATION OF WORKING FLUIDS FOR TGF = 36OF 

temperature a re  sumnarized i n  Figure 5, which again 
shows maximum values of net power for  each working 
fluid mixture. plotted versus the mass percent of 
heavier hydrocarbon. The solid l ines  correspond t o  
cases in which the heater ou t l e t  geofluid temperature 
was held a t  160F ( t o  prevent s i l i c a  precipitation),  and 
the dashed l ines  represent cases i n  which the ou t l e t  
geofluid was allowed t o  f a l l  below 16OF, b u t  the pinch 
point temperature difference i n  the heater was he ld  a t  
1OF. The two d i f fe ren t  r e s t r a in t s  r e su l t  i n  different 
values of maximum performance which occur, i n  general, 
a t  d i f fe ren t  values of composition and pressure fo r  a 
given working f lu id  system. 
ture  l imi t  resu l t s  in higher values of net power of up  
t o  14% depending on the working f lu id ;  the highest net 
plant power found was fo r  95% propane/5% hexane, b u t  
the required turbine i n l e t  pressure was 1400 psia. As 
a reference point, net power was calculated and plotted 
for  90% isobutane and 10% isopentane a t  580 pisa t u r -  
bine in l e t  pressure. This point shows net plant power 
for  conditions approximating those considered f o r  a 
50MW plant a t  the Heber s i t e  i n  California. Also in- 
cluded i n  Figure 5 a re  corresponding performance values 
for  R-22. 
isobutane/35% isopentane, and 95% propane/5% hexane 

(This s i n k  

Results of the cycle analyses fo r  a 360F resource 

Relaxing the 160F tempera- 

Mixtures of 96% isobutane/4% heptane, 65% 
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Figure 5 Maximum Effectiveness for Single-Heating 
Cycles, TGF = 38O'F 

showed approximately equivalent performance, and 
resulted i n  the highest net plant power of the working 

f l u i d s  considered fo r  a 360F resource when the 160F 
p l a n t  ou t le t  geofluid temperature was imposed. 
isobutane/4% heptane, as an example, the maximum per- 
formance then occurred a t  about 800 psia heater pres- 
sure; an approximate power balance consists o f :  
t u r b i n e  power = 11.05, (2)  working fluid pump = 1.56, 
( 3 )  cooling tower = 0.85, and (4)  net power = 8.64 
watt-hr/lbm geofluid. Curves fo r  tha t  mixture showing 
net power versus turbine i n l e t  temperature for  a heater 
ou t le t  geofluid temperature of 160F (open symbols) and 
for  a heater pinch point temperature difference of 1OF 
(shaded symbols) a re  presented in Figure 6 .  
figure includes curves both fo r  turbine expansions 
which avoid the moisture region (so l id  l i nes )  and those 
which en ter  the turbine i n  the vapor phase, expand in to  
the two phase region, and then leave the turbine as 
saturated vapor (dashed  l i n e s ) .  
fo r  t h i s  working f lu id  a loss in performance of 7% i s  
caused by imposing the 160F out le t  geofluid temperature 
fo r  those turbine expansion processes which avoid the 
moisture region; fo r  cycles which maintain a heater 
pinch point of lOF, passing through the moisture region 
provides a potential improvement in net power of about 
8%. The thermodynamic ava i l ab i l i t y  corresponding t o  
the 360F resource temperature and a sink (o r  heat 
rejection) temperature of 70F i s  17.5 watt-hr/lbm geo- 
f lu id .  The maximum net plant power fo r  the 96% iso- 
butane/4% heptane mixture, i n  a cycle which maintains 
1OF heater pinch points, represents approximately 53% 
of the ava i lab i l i ty  a t  360F i f  the turbine expansion 
avoids the moisture region. This value increases to  
about 57% i f  the turbine expansion has intermediate 
equilibrium s t a t e s  which f a l l  within the two phase 
region. 

For 96% 
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' RELATIVE HEATER SIZES 

To provide a preliminary assessment of re la t ive  
magnitudes of surface areas f o r  the working f lu id  
heaters, estimates of UA, t h e  product of overall heat 
t ransfer  coefficient and heat-transfer surface area,  
were made f o r  each of the working f lu id  systems con- 
sidered. 
f i r s t  t o  divide the heat exchanger in to  two regions; 
one region was for  temperatures above the pinch point 
or  "knee" i n  a curve of working f lu id  temperature 
versus enthalpy, and the other fo r  temperature below 
the knee. In each of these regions the heat load (9) 
in Btu/lbm geofluid and the "log mean temperature 
difference," (AT,,,! were determined. UA, i n  B t u / O F  lbm 
geofluid, was estimated as ( Q / A T m ) .  The UA value f o r  
the heater was then taken as t h e  sum of the values o f  
UA f o r  each region. 

Values of UA were calculated fo r  the maximum net 
power conditions shown i n  Figures 4 and 5 f o r  each of 
the working f lu id  systems, and are plotted versus net 
plant power f o r  the 280F resource temperature in 
Figure 7. As a reference point, a comparable value of 
UA i s  shown f o r  the dual-boiling isobutane cycle. 
comparison of dual and single boiling isobutane cycles 
shows, fo r  example, t h a t  the additional 18% net power 
attainable w i t h  the dual-boiling cycle requires 40 t o  
50% more heater surface, which a t  t h i s  low resource 
temperature should more than "pay f o r  i t s e l f "  i n  t e r n  
of final cost  of e l ec t r i c i ty .  The 90% propanello% iso- 
pentane mixture i s  estimated t o  provide the 20% i m -  
provement i n  net power, r e l a t ive  t o  the dual-boiling 

The approach taken fo r  estimating UA was 
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isobutane cycle (mentioned e a r l i e r ) ,  w i t h  only a 9% 
increase i n  UA. 
( supercr i t ica l )  produced about the same net power as 
the dual-boiling isobutane cycle, b u t  requires a value 
of UA approximately 60% higher. 

Figure 8 shows values of heater UA, s imilarly 
plotted,  fo r  the 360F resource temperature. 
symbols are fo r  cycles whose plant ou t l e t  geofluid 
temperatures were maintained a t  160F; the shaded 
symbols denote the cycles whose heater pinch pojnts 
were held a t  1 O F .  
perature of 160F, the 96% isobutane/4% heptane cycle 
requires about 45% higher UA t o  achieve the 6% increase 

I t  is  seen tha t  the R-115 cycle 
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in net plant power, re la t ive  t o  the reference 90% iso-  
butane/lO% isopentane 50MW cycle, whereas a mixture Of 
65% isobutane/35% isopentane achieves the same improve- 
ment w i t h  an  increase in UA o f  only 15% re la t ive  t o  the 
reference plant. The maximum performance R-22 cycle 
can be seen to require a value of UA over twice as 
large as does the reference cycle (with 160F out le t  
geofluid temperature) while producing about the same 
net plant power. 

SUMMARY OF RESULTS AND CONCLUSIONS 

Results and conclusions o f  the study can be 
sumnarized as follows: 

1 .  

2. 

For a g i v e n  working f lu id  and resource 
temperature, the maximum net geofluid 
effectiveness may occur for  e i ther  a boiling 
or supercrit ical  Rankine cycle, depending on 
t h e  particular combination of working f lu id  
and resource temperature. The higher values 
found in t h i s  study occurred for  super- 
c r i t i ca l  cycles. These resu l t s  generally 
support the work of Pope, e t  a l .  ( 7 ) ,  which 
indicates that  when the "optimum working 
f lu id"  is found fo r  a conventional binary 
geothermal Rankine cycle u t i l i z ing  a given 
hydrothermal resource, the optimum turbine 
i n l e t  s t a t e  will f a l l  close to the Transposed 
Crit ical  Temperature l ine .  

A t  the 280F resource temperature, the maximum 
net geofluid effectiveness found was for a 
working fluid consisting of 90% propane and 
10% isopentane. Improvements in effective- 

ound re la t ive  t o  
sobutane reference 

ness of 42 and 201 were 
l ing single and  dual-bo 

cycles. 



3 .  

4. 

5. 

6. 

7. 

8. 
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