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ABSTRACT 

A Monte carlo method cf evaluating typical particle and energy transport 

coefricienta is given for the ease in which the particle drift orbits are a 

significant fraction of the plasma radius. The method is applied to a 

preliminary design for a helical axis (heliac) stellarator experiment. 
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I. INTRODUCTIOS 

Recently, there has been renewed interest in stellaratore in the magnetic 

fusion program. The issues of equilibrium, stability, and transport can be 

studied in devices of modest size, about 1.5 m major radius and 25 cm minor 

radius. However, the small size implies that in the low colllsionality 

regimes of reactor relevance, the ion energy confinement time x i p may not be 

very large compared to the ion collision frequency v.. In practice, one often 

has TiE\j^ ~ 10. The finiteness of T, EU|, implies that the ion drift orbits 

have finite radial extent and that the ions have a significant deviation from 

a Maxwellian distribution. In this paper, we discuss a Monte Carlo method for 

studying transport under these conditions. The method is then used to study 

transport in a small heliac stellarator. 

In the hellac stellaratoc. Fig. 1, the magnetic axis follows a helical 

path around the torus instead of a nearly circular path as in most other 

stellarators. Theoretically, the helical displacement of the axis permits 

high equilibrium and stability g limits, where B * 3 t n e ratio of plasma to 

magnetic pressure. The coils required for a heliac can be simple planar 

circles. 

During 1982, a preliminary design was made at Princeton for a heliac 

experiment. The design. Fig. 2, was consistent with the PDX experimental area 

and the toroidal field coils could be those of the old ftTC device. The basic 

design parameters were 1.5 m major radius, 25 cm average minor radius, 1 T 

magnetic field, three periods, and a rotational transform of about 1.5 at the 

plasma center and 1.7 at the edge, Fig. 3. 

Analytic study of transport in a heliac is difficult not only due to the 

finiteness of tiEv± but also due to the similar rates and amplitude of change 

of the magnetic field strength along the fielC lines from helical and toroidal 
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effacts. At present only Monte Carlo studies of transport in a heliac have 

been made. 

II. BASIC MOKTE CARLO METHOD 

The basic elements of the Monte Carlo code have been previously 

explained. particle drift orbits are integrated in magnetic coordinates 

using a drift Hamiltonian. The magnetic coordinates of the Monte Carlo code 

<l" Bo' X a r e defined so that for a curl-free field 

% = $y x foQ = $x • ( 1> 

The flux enclosed by a magnetic surface, the toroidal flux, is 2TTI|I. The 

coordinate e is related to a poloidal angle 6 and a toroidal angle $ by 

e Q = 6 - i!i|>>+ (2) 

with i the rotational transform. The potential y is related to the angle $ by 

x = g$ o> 

with 2g/c the total poloidal current outside the plasma. The canonical 

coordinates of the drift Hamiltonlan are ^, 0 , %, and p. with p = 

V./teB/mo), the parallel particle velocity divided by the cyclotron 

freguency. The drift Hamiltonian ia 

1 cB 2 c 
H = — p . + — uB + C$ (4) 

2 mc H [ e H- » >•*' 
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with n the magnetic moment, 4> the e l e c t r i c p o t e n t i a l , c the speed of l i g h t , m 

the p a r t i c l e mass, and e i t s charge. Hamilton's equations for the not ion are 

2̂. _ iil 4 i _ J2_ 
dt 9di * dt se 

o 

d t a P j ' d t 3 X 

(5) 

In the computer runs reported in t h i s paper the e l e c t r i c p o t e n t i a l was 

chosen to be of the form 

4 = 4 (1 - ^-)2 (6) 
O ill 

*a 

with ij/ being the plasma edge and * 0 the p o t e n t i a l a t the a x i s , The magnetic 

f i e l d s trength B( î P B, <|>> was evaluated in Fourier decomposed form ' 

B (1^,6,1?) = Z A (^)cos(nijj - m9) (7) 

using the f i e l d produced by c i r c u l a r wire f i laments to represent the h e l i a c 

vacuum f i e l d . The Fourier c o e f f i c i e n t s , the A , are g iven in F ig . 4 . 

After each time s t e p using Hamilton's equat ions , Monte Carlo operators 

are evaluated t o represent the p i tch ar.gie and energy s c a t t e r i n g over that 

time s t e p . The p i tch \ = v . / v , the r a t i o of the p a r a l l e l to the t o t a l 

v e l o c i t y , i s changed from the o ld value l to the new value \ using 

, 1/ 
X = \ <1 - V . T ) ± [<1 - V > H , T ] 2 (81 
n o a L o a J 
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with VJ t n e angular collision frequency, t the length of the tirae step, and + 

a random sign. The kinetic energy is changed from its old value E to its new 

value E^ by 

with v E the energy collision frequency and T the background plasma 

temperature. Both collision frequencies are assuaed to have the simplified 

energy dependence 

\i 

i + ( E / T ] 3 / 2 

The following particle and collision simulation routines constitute the 

basic Monte Carlo code. The method of evaluating transport coefficients with 

this code is discussed in the next section. 

III. EVMjUfcTIOfJ OF DIFFUSION COEFFICIENT 

There is a fundamental problem in the definition of diffusion 

coefficients when the confinement time is comparable to the collision time, A 

local diffusion coefficient is only rigorously defined in the limit of 

infinitesimal radial excursion during a collision time, which is equivalent to 

the collision time being infinitesimal compared to the confinemfir.t time. The 

radial locality of a diffusive process converges as the square root of the 

collision time divided by the confinement time. This follows from the 

diffusion coefficient being a typical radial step squared times a collision 

frequency. In the proposed heliac experiment, the two times differ by roughly 

an order of magnitude; so although one can usefully define some typical 
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diffusion coefficient, one cannot assume a local definition of diffusion. 

Although there are other methods of evaluating a typical diffusion 

coefficient when a radial local coefficient does not exist, we used the 

following procedure. A group of 64 particles was launched halfway out in 

toroidal flux and the time t, ,_ it took half the particles to leave the plasma 

was recorded. He chose 64 particles as the code was vectorized on the MFE 

CRAy computer with respect to the number of particles and for reasonable 

statistics. A particle was defined as leaving the plasma wh'-n its ty position 

became larger than ill . The values of t, ._ for ions in heliac are illustrated Ta i / £ 

in Fig. 5. The points for n = 0, where « = nT, indicate the basic 

confinement without an ambipolar potential. Making the n = -3.9 improves the 

confinement time by an order of magnitude, A negative n implies the potential 

pulls ions inward. These confinement times are comparable to those obtained 

by making heliac into a symmetric torus with 

B = A + A Cos fa -K^l oo eq >• o g > 

where 

m . ,2i A = [r (-^—A ) £ ] eq ifl.m vn-itn nm'1 ' 

and A are the regular Fourier coefficients. The equivalent coefficient 

derived in this way gives the same Pfirsch-Schlffter transport as a symmetric 
3 torus. 

Figure 6 plots t. ,_ against the potential q at a constant density. In 

general it is impractical to measure electron escape times because of their 

better confinement. We did, however, obtain one point at zero potential. As 
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expected the electrons are an order of magnitude better confined. A potential 

of ~ -4 T is required for the ion and electron confinement times to become 

comparable. The tims t. ._ is inversely proportional to an average diffusion 

coefficient and the constant of proportionality can be determined by solving a 

diffusion equation. Since we were trying to find a typical diffusion 

coefficient for a heliae plasma of given density and temperature, we assumed 

the background plasma had a uniform density and temperature. 

To understand the relation between t.,, and an average diffusion 

coefficient, consider the cylindrical diffusion equation for charged test 

particles 

3n l 3 r ,an ne dft- n 

The relation between the density derivative and the electric potential 

derivative follows from the Einstein relation. That is, charged particles are 

in thermodynamic equilibrium for 

n a exp(- — J {12) 

in which case there is no net diffusion. The equivalent diffusion equation 

can be derived in flux coordinates (see appendix) but the final answer follows 

plausibly by noting that I[I is approximately proportional to r . The 

equivalent equation is 

it = i^ L2**> l-^ + T-d^] • ( 1 3 ) 

One could let D = 2i(0, but a constant D would imply a diffusion coefficient 
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in ordinary space which goes like 1/r near the magnetic axis. However, our 
2 earlier Monte Carlo paper gave the evaluation of D . The relation between 

the ordinary spatial diffusion coefficient D with units of cm /sec and D is 

D s = ^ _ D (14) 
<($4>) > 

with <(?i|0 > implying a flux surface average. For ty = Br 2/2 one has 

D = BD. If one assumes a form for D( <),) (we used a constant), then i.he 

constant of proportionality between D and 1/t \, can be evaluated by a simple 

Monte Carlo solution of Eq. (13). A Monte Carlo equivalent operator to Eq. 

(13) is 

•j, = .j, + L!L f2ib Dl - 2* D ^ ^ - 1 T ± ( * D T ) 1 / 2 . (15) *n *o Ld* *• 'o ' *o T dih J - <• *o > ya *o 

In other words one starts a group of particles on the same flux surface as in 

the particle following Monte Carlo code. One chooses a value for DT/ which is 

small compared to one, with T the time step of the Monte Carlo operator. 

Eg,! (15). Note that only D T appears in Eq. (15) and not D and T separately. 

The flux ij, is stepped along for each particle until half the particles leave 

the plasma. If N,,, is the number of applications of the Monte Carlo 

operator, Bj. (15), required to lose half the particles, then 

Dt1/2 " M N1/2 = C • ( , 6 ) 

This defines the constant of proportionality C between D and 1/t. ,_ as shown 

in Fig. 8. 

Using this relationship we have converted the data of Figs. 5-7 into 
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diffusion coefficients against density, Figs. 9i 10, and 11. 
Figure 12 shows diffusion coefficients for electrons obtained from 

measuring particle excursions in >J/ over times of the order of one collision 
time as described in Ref. 2. We show also the only datum from a t. ,_ 
measurement. The agreement between these two methods amounts to better than 
10%, which is surprisingly good. 

IV. OTHER TRANSPORT COEFFICIENTS 
in general. It is the energy, not the particle, confinement time which is 

of primary interest, in this section an approximate method for evaluating the 
thermal conductivity ^ will be given. 

To derive an approximation for ^(n,T) let us first assume that most of 
the radial transport of heat and particles is due to superthermal particles, 
E >> T. under this assumption, the scattering is independent of the 
temperature and is controlled by the particle energy E. The particle flux can 

then be written 

E 3 f M 3 
r = - / 0 m D„tn,E)(—) Ed v . (17) 

The function D,(n,E) is the diffusion rate of particles of energy E scattering 
on a background plasma of density n. On a relatively long time scale compared 
to the scattering that leads to radial transport the test particles form a 
local Maxwellian fM(ty,E!. For generality we have included a cutoff energy 
E . The radial derivative of the Maxwellian is 

3f 2 
H ,1 dn e_ d« ,J_ rav_ 2\i dT-|. 

3^ Ui dij, + T di|) + l>2 T " 2 J? d^J H ' ( 1 8 ) 
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so the particle flux is 

r.r »,fa" ne d« 3 n dT, , ,E 1 mV 3„, ln(T) .... T = -Dtn,T)(- + r - - - - - ) - [/on, j y V ^ l - j j - (19) 

with 

D(n,T) = 1 J*m D#fMd3V . (20) 

Using the fact that a Kaxwellian is of the form 

n f E—e *. 
T 

one can w r i t e the i n t e g r a l in Bq. (19) in terras of p a r t i a l d e r i v a t i v e s of 

D(n, 'r) with r e s p e c t t o t empera tu re and one f i n d s 

,dn n e d t aln(D) n dT , 
r DLd,(, + T d^ + 3ln(T) T d^J * K l i ) 

The t o t a l r a d i a l f l u x of energy can be w r i t t e n 

r E ,1 2 , , , S M 3 . „„ . q = - f m l - mv + e « j D . n . E h r T - d V (23) t J o v 2 i * \. J dty 

which can be w r i t t e n as 

, , 3 a l n ( D ) , _ , „ -3 31n(D) 3 aln(D) ,dT 

In o t h e r words, t h e energy f lux can be w r i t t e n a s t he sura of two t e r m s . r ,<he 

f i r s t terra says t h a t t he t y p i c a l p a r t i c l e which l e a v e s c a r r i e s 



-11-

T13/2 + 3ln(D)/3ln(T) 1 + e* unita of energy with it. This energy can be 
measured when particles leave the volume of the plasma in the Konte Carlo 
simulation. Fig. 13. Let. k. be the average kinetic onorgy carried out by an 
exiting particle divided by the average energy of particles in a Maxwellian, 
3T/2, then 

* l ~ 1 + 3 3ln(Tj * ( Z 5 ) 

The second term in the energy flux, Bj. (24), represents che diffusive 
transport of energy which persists even in the absence of a particle flux. It 
is natural co call this term the heat flux q. If we ignoro the generally 

2 2 
sra l l term, f, ln(D)/3ln(T) , then 

q = - ! n k * D ! f ( 26 ) 

and the total energy flux is 

•z 

qfc = (y ̂ T + e«)r + q (27) 

The diffusion coefficient for heat can then be defined as 

x(n,T) = k£D(n,T) . (28) 

Equation (28) allows one to define a typical heat diffusive coefficient and 
therefore make a reasonable estimate of the energy confinement time. 

Up until now we have based our approximation procedure on high energy 
particles dominating the transport, which la equivalent to k >> 1. Suppose 
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low energy particles dominate the transport. Under this circumstance the 

scattering rate of particles is determined by the thermal scattering rate 

v o n/T ' 2 and instead of Eq. (17) we have 

/ o m V v , E > ( - ^ i ) E d 3 V . (29) 

An analysis similar to that in the earlier part of the section gives the same 

results but with [3ln(D)/31n(T>Jn replaced by [31n(D)/31n(T)1 . How 

fSln(D), ,31n(DK 3 ,31n(D). 
••alnfT)^ l-3ln<T)-'n 2 ^lntn) >T " ' 

The primary case when [91n(D)/31n(T)) is small is in classical transport 

scaling with D a n 

In this case [gln(D)/81n(T)] = l. Consequently we 

expect k > 1, but for k. « I ve do not expect a simple dependence between the 

temperature dependence of r> and k . However, the relation between the heat 

flux, Bq. (28), and the average kinetic energy of heat particles, 3k,T/2, 

should remain valid. 

., V. CONFINEMENT TIME 

fe are now in a position to estimate the energy confinement time of a 

heliac with and without an electric field. For simplicity we assume a flat 

density profile and that 

X(T> a Ta . (31) 

The power deposition per unit volume is assumed to be p(r) a 1/r. Letting a 

be the plasma radi • •, one has equations for the heat flux q(r), -uhe 
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temperature T(r), and the total power P. 

q(r) » i / o
r p(r) r dr , (32) 

[I x(T)dT = | J r
a q(r)dr , (33) 

P = f a p(r) r dr . (34) 

The energy confinement time x_ is defined by 

3 i0
 T < r > d r 

T E = I i < 3 5' 

T (1 + o) a 
TE (2 + o)(3 + 2a> Xo 

with ĴJ the value of % at r = 0. Note that for a = 0 one obtains the well-

known estimate T E = a /'6Xb'* Using the estimate of a = 3/2 from Fig. 11 one 

finds the heliac ion energy confinement time is about 4.6 msec with the 

central temperature and potential at 1 kev. A larger potential could give a 

factor of two or three improvement. The 4.6 msec is approximately the ion 

energy confinement time required to reach the goals of the proposed HX1 

experiment. 
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APPEtJDIX - DIFFUSION EQUATION 

To derive a diffusion equation in general magnetic geometry, we assume 

the density n remains a function of \|i and t alone, or 

<A1) 
, . , M / J $ • ID [? n( , |„ t> + an/T $ *< ij,) 1] aed<j> 

3t Jjd8d<j> 

wi th J the magnetic c o o r d i n a t e Jacob ian 

-j = (fy, x ?e) • 5$ • (A2) 

Using the p r o p e r t i e s of the d ive rgence o p e r a t o r i n g e n e r a l c o o r d i n a t e s one 

then has 

at - ŝ L ^^-ai), T a^JJ 

with 

J = — — - Jjded^, U 4 ) 
(2TT) 

D 5 j _ K ^ 2 d e d , 
2i|) Jjdedifi 

- 2 2 In magnet ic c o o r d i n a t e s , J = g/H fo r a c u r l - f r e e f i e l d and B„ ( ii) measures o o T 

the magnetic well depth. Since the magnetic well in practice is shallow, J is 

to a good approximation a constant. Consequently, Bjs. (A3) and (A5) imply 

Eqe. (13) and (14). 
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FIGURE CAPTIONS 

FIG. 1• Basic design of the heliac snowing the bean-shaped flux surfaces and 

the helical spiral of the magnetic axis. 

FIG. 2. An engineer's view of heliac. 

FIG. 3. Variation of rotational transform i as a function of toroidal 

magnetic flux ty. 

FIG. 4. Variations of the Fourier amplitudes for the magnetic field, Aj, , as 

a function of toroidal mc:,>ietic flux <Ji. 

FIG. 5. Time for half the initial number of ions to escape confinement, t 1 /;,, 

as a function of density n, 

FIG. 6. Time for half the initial number of ions to escape confinement, t, , „ • 

as a function of r\, where nT is the potential on axis and T the 

temperature of ions. An analogous point for electrons is also shown. 

FIG. 7. Time for hair the initial number of ions to escape confinement, t ,,, 

as a function of ion temperature T at constant density n = 10 /cc. 

FIG. 8 The constant of proportionality, c = Dt ,,, for ions as a function of 

n, where nT = the ambipolar potential, D is the diffusion coefficient 

as defined by Eq. (13). A typical standard deviation is shown for 

one point. 
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FIG. 9. The diffusion coefficient o for ions as a function of density n. 

These data have been derived from those of Pig. 5 using the constant 

of Pig. 8. 

PIG. 10. The diffusion coefficient D for ions as a function of n where nT is 

the ambipolar potential. One point of reference for electrons is 

also shown. The ion density n = 10 /cc. 

PIG. 11. The diffusion coefficent D for ions as a function of ion temperature 

T at constant density n = 10 /cc. The electric potential was 1 keV. 

FIG. 12. The diffusion coefficient D for electrons measured by the method of 

Ref. 2 as a function of density n. 

FIG. 13. Average energy of escaping ions in units of ion temperature T as a 

function of density n with several potentials and configurations. ft 

typical standard deviation is shown on one point. 
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