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I. INTRODUCTION

Recently, there has bheen renewed interest in stellarators in the magnetie
fusion program. The issues of equilibrium, stability, and transport can be
studied in devices of modest size, about 1,5 m major radius and 25 cm minor
radius. However, the small size implies that in the low collisionality
regimes of reactor relevance, the ion energy confinement time Tijp May not be
very large compared to the ion collision freguency vye In practice, one often
has TygYy ~ 10. The finiteness of TigYyr implies that the ion drift orbits
have finite radial extent and that the icns have a significant deviation from
a Maxwellian distribution. In this paper, we discuss a Monte Carlo method for
studying transport under these conditions. The method is then used to study
transport in a small heliac stellarator.

In the heliac stellaratot,1 Fig. 1, the magnetic axis follows a helical
path around the tarus instead of a nearly circular path as in most other
stellarators. Theoretically, the helical displacement of the axis permits
high equilibrium and stability g limits, where B is the ratio of plasma to
magnetic pressure. The coils required for a heliac can be simple planar
circles.

buring 1982, a preliminary design was made at Princeton for a heliac
experiment. The design, Fig. 2, was consistent with the PDX experimental area
and the toroidal field coils could be those of the old APC device. The basic
design parameters were 1.5 m major radius, 25 cm average minor radius, 1 T
magnetic field, three periods, and a rotational transform of about 1.5 at the
plasma center and 1,7 at the edge, Fig. 3.

Analytic study of transport in a heliac is difficult not only due to the
finiteness of T3gvy but also due to the gimilar rates and amplitude of change

of the magnetic field strength along the fiel< lines from helical and toroidal
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effects. At pregsent only Monte Carle studies of trangport in a heliac have

been made,

I1. BASIC MONTE CARLO METHOD
The basic elements <©f the Monte Carlo code have been previougly
explained.2 particle drift orbits are integrated in magnetic coordinates
using a drift Hamiltonian. The magnetic coordinates of the Monte Carlo code

¥r Byr x are defined so that for a curl-free field

§=§¢X§B°=§x- )

The flux enclogsed by a magnetic surface, the torocidal flux, is 27 The
coordinate 9, is related to a poleoidal angle g and a toroidal angle ¢ by
(2)

B, = 8 = e

with | the rotational transform, The potential y is related to the angle ¢ by

x = 94 (3)
with 2g/¢ the total poloidal current outside the p].asma.3 The canonical
coordinates of the drift Hamiltonlan are Ys Go' x» and Py with py =
VH/(eB/mc ), the parallel particle velocity divided by the cyclotron

frequency. The drift Hamiltonian ia

N

B 2 c
Pyt uB+ OO (4)
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with y the magnetic moment, & the electric potential, c the speed of light, m

the particle mass, and e its charge. Hamilton's equations for the motion are

% dy_
at - aw ' 4at = 26 ’
[+]
(5)
ay _ aH_ doy __am
FT op ' dat 3x

in the computer runs reported in this paper the electric potential was

chosen to be of the form

- _b,2
e = ¢ (1 “’a) (6}

with y, being the plasma edge and &, the potential at the axis. The magnetic

field strength B(y, 8, ¢} was evaluated in Pourier decomposed form4'5

B (y,0,9) = L Anm(qa)cos(nq, - m8) (7)
using the field produced by circular wire filaments to represent the hellac
vacuum field. The Fourier coefficients, the hnm' are given in Fig. 4.

After each time step using Hamilton's equations, Monte Carlo operators
are evaluated to represent the pltch argie and energy scattering over that
time step. The pitch )\ = vl/v, the ratio of the parallel toc the total

veloclty, is changed from the old value iy to the new value ), using

2 V.
A = A, (= v g [ - Drer] 2 (8)

i




i
i
|
i

'
|
i
H
1.

-5-

with yg the angular collision frequency, ¢ the length of the time step, and »

a random sign, The kinetin energy is changed from its old value E, to its new

value E; by
E dv [
3 ) e /;
BB (\’ET][ED - [_2— + vE) dBOJ * 2] o"’Et] 2 (9

with Vg the energy collision frequency and 7T the background plasma
temperature. Both collision freguencies are assumed to have the sipgplified

energy dependence

v
=)

1+ (E/TJ3/2
The following particle and collision simulation routines constitute the
basic Monte Carlo code, The method of evaluating transport coefficients with

this code is discussed in the npext section.

11I. EVALUATION OF DIPFUSIOR COEFFICIENT

There 1s a fundamental problem in the definition of diffusion
coefficients when the confinement time is comparable to the collision time. &
local diffusion coefficient is only rigorously defined in the limit of
infinitesimal radial excursion during a collision time, which is equivalent to
the collision time being infinitesimal compared to the confinewent time, The
radial locality of a diffusive process converges as the square root of the
collision time divided by the confincment time. This follows from the
diffusion coefficient being a typical radial step squarcd times a collision
frequency. In the proposed heliac experiment, the two times differ by roughly

an order of magnitude; sgo although one can usefully define some typical
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diffugion coefficient, one cannot assume a local definition of diffusaion.

Although there are other methods of evaluating a typical diffuaion

6

coefficient when a radial local coefficient does not exist, we used the

following procedure. A group of 64 particles was launched halfway out in
toroidal flux and the time t1/2 it took half the particles to leave the plasma
was recorded. We chose 64 particles as the code was vectorized on the MFE
CRAY computer with respect to the number of particles and for reasonable
statistics. A particle was defined as leaving the plasma wh-n its y position
became larger than Yt The values of 1:1/2 for ions in heliac are illustrated
in Fig. 5. The points for p = 0, where ¢, = nT, indicate the basic
confinement without an ambipolar potential. Making the p = -3.9 improves the
confinement time by an order of magnitude, A negative p implies the potential

pulls ions inward. These confinement times are comparable to those obtained

by making heliac into a symmetric torus with

3
B=A_*+ Aequs{e°+Ex]

where

Pog = [En G Pon)’)

and A, are the reqular Fourier coeificients, The equivalent coefficient
derived in this way gives the same Pfirsch-Schlffter transport as a symmetric
torus. >

Figqure 6 plots t1/2 against the potential n at a constant density. 1In
general it is impractical to measure electron escape times because of their

better confinement. We did, however, obtain one point at zero potential. As
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expected the electrons are an order of magnitude better conflned. A potential
of ~ -4 T is required for the ion and electron confinement times to become
comparable. The time t1/2 is inversely proportional to an average diftusion
coefficient and the constant of proportionality can be determined by solving a
diffusion equation. Since we were trying to find a typical diffusicn
coefficient for a heliac plasma of given density and temperature, we assumed
the background plasma had a uniform density and temperature.

To understand the relation between t1/2 and an average diffusion

coefficient, consider the cylindrical diffusion equation for charged test

particles
a0 _ 13y (30 ne dg
St T ¥ ar [rDs[ar *o er] . (11)

The relation between the density derivative and the electric potential
derivative follows from the Einstein relation. That is, charged particles are
in thermodynamic equilibrium for

n o exp(- ;—d’] {12)

in which case there is no net diffusion. The equivalent diffusion equation

can be derived in flux coordinates (see appendix) but the final answer follows

plausibly by noting that ¢ is approximately proportional to rl. The

equivalent equation is

an ne dé
3 1)

at=ﬁ[2w [a—w T dy . (13)

One could let DW = 2yD, but a constant D would imply a diffusion coefficient

¥
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in ordinary gpace which goes like 1/:2 near the magnetic axis. However, our

2

earlier Monte Carlo paper® gave the evaluation of D The relation between

e
the ordipary spatial diffusion coefficient D, with units of cmzfsec and D is

p = —2¥ p (14)

s 2

<(3¢) >
with ((V¢]2> implying a flux surfdace avearage. For ¢ = Br2/2 ane has
D_ = BD. If one assumes a form for D(y) (we uvsed a constant), then ihe

S

constant of proportionality between D and 1/t vbcan be evaluated by a simple
Monte Carlo solution of Eg. (13). A Monte Carlo eguivalent operator to Eg.
(13) is

b=yt {d—?,,; (24,0) - ZwOD%a%o]r s (yor)% . (15)
In other words one starts a group of particles on the same flux surface as in
the particle following Monte Carlo code. One chooses a value for D, which is
small compared to one, with ¢ the time step of the Monte Carlo operator,
BEq. {15). Note that only Dt appears in BEq. (15) and not D and 1 separately,
The flux y is atepped along for each particle until half the particles leave
the plasma. If N1/2 is the number of applications of the Monte Carlo
operator, B. (15), required to lose half the particlesa, then

Dt =C . (16)

12 7 (Pt

This defines the constant of proportionality C between D and 1/t1/2 as shown
in Flg. 8.

Using this relationship we have converted the data of Pigs. 5-7 into
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diffusion coefficients against denaity, Figs. 9, 10, and 11.

Figure 12 shows diffusion coefficients for electrons obtained from
measuring particle excursions in i over times of the order of one collision
time as described in Ref. 2. We show also the only datum from a t1/2
measurement. The agreement between these two methods amounts to better than

10%, which i= surprisingly good,.

IV. OTHER TRANSPORT COEFFICIENTS

In general, it is the energy, not the particle, confinement time which is
of primary interegt. In this section an approximate method for evaluating the
thermal conductivity y will be given.

To derive an approximation for y(n,T} let us first assume that most of
the radial transport of heat and particles 1s due to superthermal particles,
E >> T. Under this assumption, the scattering is independent of the
temperature and is controlled by the particle energy E. The particle flux can
then bhe written

af
r=- joEm D.(n,E)fEEE] v . (17)

E
The function D,{(n,E) is the diffusion rate of particles of energy E scattering
on a background plasma of density n., On a relatively long time scale compared
to the scattering that leads to radial trangsport the test particles form a
local Maxwellian fM(¢.E). For dgenerality we have included a cutoff energy

E ¢ The radial derivative of the Maxwellian is

of 2
H_1dn edo e’ 3.ar
v - magtrayt G - agls (e
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80 the particle flux is

2
_ an medy 3ndT, E 1mv 37 ()
r--n(n.T)[d¢+T dw-Zwa]- [Jor 3 —7 Dufd V] ay (19)
with
1 (E 3
D(n,T) =— [m D4V . (20)
Using the fact that a Maxwellian is of the form
n E-e ¢
£, o 372 °XP (- ra ) (21)

one can write the integral in Bg. (19) in terms of partial derivatives of

D{n,T) with respect to temperature and one finds

- - p@n ,pede ala(D) n dT
r= D[d¢, TS tanm T d;p] : (22)

The total radial flux of energy can be written

af
E 1 2 M 3
9, = =[, oz mv" + es) (0B} ATy (23)
which can be written as
= [(2 , 2ln(D) 3 3ln(p) 3 aln{D) \aT
% = LG * Giacmy)T ¢ =010 - 6 * Ginny * Finced amim Jay 0 (2%

In other words, the energy flux can be written as the sum of two terms. The

Eirgt term  gays that the typical particle which leaves carries
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T(3/2 + 3ln{D)/3ir(T)] + ed unita of energy with 1it, T™his enerdqy can be
neasured when particles leave the vclume of the plasma in the Monte Carlo
slmulatien, Fig. 13. Let kﬂ be the average kinetic onergy carried cat by an
exiting particle divided by the average energy of particles in a Maxwellian,

iT/2, then

{
kK =142 aln{p)

2 33t {25)

The second term in the energy flux, Bg. (24}, represents the diffusgive
transport of enerqgy which persists even in the absence of a particle flux. It
is natural co call this term the heat flux gq. IXf we ignorc the generally

srall term, 3°1n{D)/3ln(T)%, then

3 4aT
q-—znkgndq, (26)

and the total energy flux is

3
a, = (k,T+ee)r+q . (27)

The dlffusion coefficient for heat can then be defined as
x(n,T} = kED(n.T) . (28)

BEguation (28) allows one to define a typlcal heat Qiffusive coefficlent and
therefore make a reasonable estimate of the energy confinement time.
Up until now we have based our approximation procesdure on high energy

particles dominating the tranapcrt, which iz egquivalent to k 2 >» 1. Suppoge
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low eneryy particles dominate the transport. Under this circumstance the

scattering rate of particles is determined by the thermal scattering rate
/2 .

v a n/T and instead of Bg. (17) we have

E an

r=-~f, ™ D, (v,E) [W)Ed% . (29)

An analysisg similar to that in the earlier part of the section gives the same

results but with [aln(D)/aln(T)]n replaced by [aln(D)/aln(T}]v . Now

. (30)

3ln(p), _ ,3ln(D) 3 (3ln{D)
( )\,-( )n+2(

aln(T) aln{m 3ln{n) }T

The primary case when [aln(D)/aln(T)}n igs small is in classical transport
scaling with D g n/%ﬁ » In this case [aln(D)/aln(T)]v ='1. Consequently we
expect kﬂ > but for ki ~ 1 we do not expect a simple dependence between the
temperature dependence of D and kg. However, the relation between the heat
flux, Bg. (28}, and the average Xkinetic energy of heat particles, 3k£T/2,

should remain valid.

.. Vo CONFINEMENT TIME
¥e are now in a position to estimate the energy confinement time of a
heliac with and without an electric field, For simplicity we assume a flat

¢
density profile and that

x(?) « T . (31)

The power deposition per unit volume is assumed to be p(r) o 1/r. Letting a

be the plasma radl..., one has equations for the heat flux gql(r), e

e e A s 1
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temperature T(r), and the total power F.

qlr) =-£_— foz plr) rdr , (32)
[ ymar = £ [ atnar (33)
P = joa plr) rdr . (34)

The energy confinement time g is defined by

2
3 Io T{r)dr s
e T2 3
or
3 2
T, = s al (36)

a
E- (2 +0)(3 + 2a)

with Xo the value of y at r = 0. Note that for g = 0 one obtains the well-
known egtimate T = aZ/(G)b). Using the estimate of g = 3/2 from Fig. 11 one
finde the heliac ion energy confinement time i3 about 4.6 msec with the
central temperature and potential at 1 kev. A larger potential could give a
factor of two or three improvement. The 4.6 msec is approximately the ion
energy confinement time required to reach the goals of the proposed HX1

experiment.
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APPENDIX - DIFFUSION EQUATICN
To derive a diffusion equation in general magnetic geometry, we assume

the density n remains a function of { ard t alone, or

an(yt) _ JAR AR [05[3 nlyt) + en/T § oly) ]} dedg -

at [adedg

with J the magnetic coordinate Jacobian

3= ($yx Teo) - ¥y . (A2)

Using the properties of the divergence operator in general coordinates one

then has
an _ 138 r,z 80  en 3¢
ot = 3 Sl T 5] (a3)
with
- 1
I = 5 [aeds (n4)
(27)
LA
pzl —S5 ~CE¢ {A5)
2¢ [aed 4

In magnetic coordinates, J = glaozfor a curl-free field and BQZ(W) measures
the magnetic well depth, Since the magnetic well in practice is shallow, Jis
to a good approximation a constant, Consequently, Bgs, (A3) and (A5) imply

BEqs. {13) and (14).
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FIGURE CAPTIONS

Basic design of the heliac snowing the bean-shaped flux surfaces and

the helical spiral of the magnetic axis.

An engineer's view of heliac.

variation of rotatinmnal transform 1 as a function of toroidal

magnetic flux .

variations of the PFourier amplitudes for the magnetic fiela, Anne as

a function of toroidal moymetic flux .

Time for half the initial number of ions to emcape confinement, t1/,'

as a function of density n.

Time faor half the initial number of ions to escape confinement, t1/2.
as a function of p, where T is the potential on axis and T the

temperature of ions. An analagous point for electrons is also shown.

Time for half the initial number of ions to escape confinement, t1/2'

as a function of ion temperature T at constant density n = 1014/cc.

The constant of proporticnality, C = Dt1/2, for ions as a function of
ne where nT = the ambipolar potential, D is the diffusion coefficient
as defined by Eg. {(13). A typical standard deviation is shown for

one point.
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The diffusion coefficient D for lons as a function of density n.

These data have been derived from those of Pig, 5 using the constant

of Fig. 8.

The diffusion coefficient D for ions as a function of p where pT is
the ambipolar potential. One point of reference for electrons is

also shown. The lon density n = 1014/cc.

The diffusion coefficent D for ions as a function of ion temperature

T at constant density n = 10'4/cc. The electric potential was 1 kev.

The diffusion coefficient D for electrons measured by the method of

Ref. 2 as a function of density n.

Average energy of escaping lons in units of ion temperature T as a
function of density n with several potentials and configurations. A

typical standard deviation is shown on cne point.
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