METAL VAPOR EXCIMER LASER

QUARTERLY PROGRESS REPORT
for Period May 1, 1979 – July 30, 1979

A. Mandl and D. Klimek

AVCO EVERETT RESEARCH LABORATORY, INC.
a Subsidiary of Avco Corporation
Everett, Massachusetts 02149

October 1979

prepared for
THE U.S. DEPARTMENT OF ENERGY
under Contract No. ES–77-C–02–4275
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
METAL VAPOR EXCIMER LASER
Quarterly Progress Report
for period May 1, 1979 - July 30, 1979
A. Mandl and D. Klimek

AVCO EVERETT RESEARCH LABORATORY, INC.
a Subsidiary of Avco Corporation
Everett, Massachusetts 02149

Contract No. ES-77-C-02-4275

October 1979

prepared for
THE U.S. DEPARTMENT OF ENERGY
9800 South Cass Avenue
Argonne, Illinois 60439

This book was prepared as an account of work sponsored by an agency of the United States Government, neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
ABSTRACT

The formation efficiency for discharge pumping HgCd* has been measured as 0.5 indicating near to unity branching of HgCd* formation. Gain/absorption measurements show what appears to be intrinsic absorption over the HgCd* emission band.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. HgCd* FORMATION EFFICIENCY</td>
<td>2</td>
</tr>
<tr>
<td>III. HgCd* GAIN/ABSORPTION MEASUREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Absolute HgCd* fluorescence intensity measurements over the HgCd* emission band and the HgCd* spectrum over the fluorescence band have allowed us to calculated the HgCd* formation efficiency.
II. HgCd* FORMATION EFFICIENCY

The efficiency of coupling the electrical discharge energy, \(i \times V \times \tau \), into energy in HgCd* fluorescence is given by

\[
\eta = \frac{[\text{HgCd*}] \ h\nu_{\text{HgCd*}} \ A \ell}{i \ V \ \tau} \tag{1}
\]

where

\([\text{HgCd*}] = \text{HgCd* density} \ (\sim 10^{16} \text{ cm}^{-3}) \)
\(h\nu_{\text{HgCd*}} = 2.6 \text{ eV} \ (470 \text{ nm}) \)
\(A = \text{geometric cross section of discharge} \ (1.25 \text{ cm}^2) \)
\(\ell = \text{discharge path length} \ (40 \text{ cm}) \)
\(i = \text{discharge current} \ (50-100 \text{ A}) \)
\(V = \text{discharge voltage} \ (10-15 \text{ kV}) \)
\(\tau = \text{discharge pulse duration} \ (\sim 1.5 \mu\text{sec}) \)

The determination of [HgCd*] was reported on in the last quarterly report. Operating under the above conditions, we typically measure [HgCd*] \(\sim 10^{16} \text{ cm}^{-3} \). Substituting the measured above parameters, one finds that the fluorescence efficiency for producing HgCd* is \(\eta \sim 0.5 \).

The dominant formation channel for the HgCd* in a Cd/Hg/Ne mixed metal discharge is

\[
e_p + \text{Ne} \rightarrow \text{Ne}^+ + e_p + e_s \tag{2}
\]
\[
e_s + \text{Cd} \rightarrow \text{Cd*} + e_s \tag{3}
\]
\[
\text{Cd*} + \text{Hg} + \text{M} \rightarrow \text{HgCd*} + \text{M} \tag{4}
\]
Thus, the quantum efficiency for producing an HgCd* goes as the ratio

$$\eta_{QE} = \frac{E(HgCd^*)}{E(Cd^*)} = \frac{2.6\text{ eV}}{3.7\text{ eV}} = 0.7$$

(5)

Our computer codes indicate that up to ~80% of the discharge energy goes into Cd* so one would expect that the maximum formation efficiency for HgCd* is (0.7) x (~0.8) ~ 0.5. These measurements, therefore, indicate unity branching into HgCd*.

The high efficiency for discharge pumping HgCd* combined with the low electron quenching rates (as discussed in the last quarterly report) made this system a promising candidate for a scalable laser for fusion. Since there has been some controversy associated with the gain/absorption measurements for optically pumped HgCd*, we undertook to repeat these measurements for discharge pumped HgCd*.
III. HgCd* GAIN/ABSORPTION MEASUREMENTS

Figure 1 is a schematic diagram of the gain/absorption apparatus. This is a standard gain/absorption setup in which we used a cw Ar ion tunable laser which has five lines that overlap the HgCd* emission continuum.

A typical measurement for a Cd/Hg/Ne mixture, 4.5 torr/110 torr/414 torr at 517 nm is shown in Figure 2. The lower oscillogram shows the I/V characteristics of the discharge. The ~1.5 µsec pulse is preionized by an ~200 A Febetron pulse occurring ~100 nsec before the discharge. The discharge voltage is ~13 kV and the discharge current rises during the pulse from ~50 A to ~100 A at which point a crowbar is applied to the voltage. Had the pulse been extended, a volumetric breakdown of the discharge would have occurred. The upper oscillogram shows two traces. The top trace is of the HgCd* emission as monitored by a photodiode/filter system with the filter centered at 470 nm and passing ~1/3 of the HgCd* emission. Note that the HgCd* emission rises with the discharge pulse, peaking where the crowbar is applied. The emission then decays in the afterglow with a ~2 µsec lifetime. The absorption is shown on the bottom trace of the upper figure. The absorption increases with increasing [HgCd*] formation and is seen to decay with the HgCd* decay. Similar measurements were made at various wavelength
Figure 1 Schematic of Gain/Absorption Measurement
Figure 2 Gain/Absorption Measurement in HgCd* for Cd/Hg/Ne: 4.5 Torr/110 Torr/414 Torr Mixture at 517 nm
across the HgCd* band and the results are plotted in Figure 3. The absorption increases toward the blue and follows the [HgCd*] so closely that it would seem to be intrinsic to the exciplex and probably arises from the HgCd* excited level. These results are similar to those reported by West et al.\(^1\) and to the more recent work of McGeoch.\(^2\)
Figure 3 Measured Absorption in HgCd* for 40 cm Path
REFERENCES

DISTRIBUTION LIST

Dr. Owen Lewis (6 copies)
New Laser Programs Manager
Office of the Assistant Director for Laser Fusion
Division of Laser Fusion C-404
U.S. ERDA
Washington, D.C. 20545

Dr. H. Kildal
Massachusetts Institute of Technology
Lincoln Laboratory
Lexington, MA 02173

Dr. Nicholas I. Djeu
Code 5540
Naval Research Laboratory
Washington, D.C. 20375

Dr. John L. Emmett
Associate Director for Lasers
Lawrence Livermore Laboratory
P.O. Box 808
Livermore, CA 94550

Dr. Robert Center
Mathematical Sciences Northwest, Inc.
P.O. Box 1887
Bellevue, WA 98009

Dr. Roger B. Perkins
L Division Laser
Los Alamos Scientific Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Ray Taylor
Physical Sciences, Inc.
30 Commerce Way
Woburn, MA 01801

Dr. James B. Gerardo
Sandia Laboratories
P.O. Box 5800
Albuquerque, NM 87115

Dr. William F. Krupke
Lawrence Livermore Laboratory
L-258
P.O. Box 808
Livermore, CA 94550

Dr. Donald Setser
Kansas State University
Department of Chemistry
Manhattan, KS 66505

Dr. James B. Gerardo
Sandia Laboratories
P.O. Box 5800
Albuquerque, NM 87115

Dr. William F. Krupke
Lawrence Livermore Laboratory
L-258
P.O. Box 808
Livermore, CA 94550

Dr. Gerald L. Rogoff
Westinghouse Electric Corporation
1310 Beulah Road
Pittsburgh, PA 15235