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CHAPTER I
Z SPACES

Axioma for a topological space are generally based on
neighborhoods where "neighborhood" is an undefined term.
Then, limit points are defined in terms of neighborhoods.
However, limit points seem to be the basic concept of a topo-
logical space, rather than nelghborhoods. For this reason,
it will be attempted to state a set of axioms for a topo=-
logical space, using limit point as the undefined concept,
and to delete the 1dea of nelghborhoods from the theory.

If H and K are two point sets, H*K wlll mean the unlon
of H and K, H-K will mean the polnts of H which are not in
K, and H-K wlll mean the set of points in both H and K.

A 7 space 1s a set B in which tnere is assoclated with
sach element a class § of nonempty subsets of E. The elements
of B will be called points.

Definition 1.0l: If P is a point and M is an element of

Qp, then P is sald to be a limit point of M.

Definition 1.02: The statement that P is a boundary
point of M means that either (1) P is a point of M, and P
is a limit point of a subset of E-M, or (2) P is not a point
of M, and P is a limit polnt of a subset of i.



Definition 1.03: The statement that the point set M 1s

open means that no point of M is a boundary point of M.
Definition 1.04: The statement that the point set M is

closed means that if P is a limit point of M, then P is a
point of M.
Definition 1.06: If M is a point set, the statement

that M' is the derived set of M means that M' is the set of
all polnts P such that P is & limit point of M.
Iheorem 1.0l: The point set M is closed if, and only

if, the derived set of M 1s & subset of M.

Proof that the condition is necessary: Since M 1s closed,

every limit point of M is a polnt c¢f M. Hence, every point
of M', the derived set of M, is a point of M. Therefors, M
is a subset of M.

Proof that the condition is sufficient: Since M' is

a subset of M, every limit point of M is a point of M.
Hence, M 1s closed.

Theorem 1.02: The point set M is open 1f, and only if,
for each point P in M and each set H in Qp, M contains a point
of H.

Proof that the condition ls necessary: Since M is open,

no point of M is a boundary point of M. Let P denote a point
of M and let H denote a set in Qp. Since P 1s not a boundary
point of M, H is not a subset of E~M. Hence, M contains a
poeint of H. Therefore, 1f P is a point of M and H is a set

in Qp, M contains a point of H.



Proof that the condition ls sufficlent: Let P denote

& point of M. Since M contains a point of every set in Qp,
P is not a limit point of a subset of E-M. Therefore, P is
not a boundary polnt of M. Hence, M 1s open.

Definition 1.06: If T is a collection of sets, then T¥

will denote the unlon of all the sets in T.

Theorem 1.03: If T is & collection of open sets, then
T%# is open.

Proof: Let P denote a point of T¥. There exists a set
M in T such that P 1s a point of M. Since M 1s open, M con-
tains a point of every set in Qp by Theorem 1.02. Then T*
contains a point of every set in Qp, since M ls a subset of
T*, Hence, by Theorem 1.02, T% 18 open.

Definlition 1.07: The statement that the polnt set K is

closed in M means that 1f P is a point of M, and P 1s a limlt
point of K, then P is in K.
Theorem l.04: If M 1s a point set, H 1s a subset of M,

and K is closed in M, then K is closed in H.

Proof: Let P dencote a point of H such that P is a limit
point of K. Since H is a subset of M, P is a point of M.
By Definition 1.07, P is in K. Hence, K is closed in H by
Definition 1.07.

Definition 1.08: The statement that the point sets H
and K are mutually exclusive means that H and K are nonempty,

and no point of one is a point of the other.



Definition 1.09: The statement that the point sets H

and K are mutually separated means that H and K are nonempty,
and no polnt of one 1s & polnt or limit point of the other.
Definition 1.10: The statement that the point set M is

connected means that i is not the sum of two mutually sepa-

rated polnt sets.

Theorem 1.08: The polnt set M is connected if, and only

if, 1t is not the sum of two mutuslly exclusive sets, each
closed in M.

Proof that the conditlon is necessary:s Suppose M is the

sum of two mutuaslly exclusive sets, each closed in M. By
Definition 1.07, no point of one is a limit point of the other.
Then, M is the sum of two mutually separated sets. By Defi-
nition 1.10, M is not connected. A contradiction. Hence U

is not the sum of two mutually exclusive sets, each closed

in M.

Proof that the condition is sufficient: Suppose M is

not connected. Then M ls the sum of two mutually separated
sets H and K. OSince no polnt of X is a limit polnt of H; H
is closed in M by Definition 1.07. Likewise, K 1s closed in
M. Also, H and K are mutuaslly exclusive. Hence M is the sum
of two mutually exclusive sets, each closed in M. A contra-
diction. Therefore, M is connected.

Definition 1.11: The statement that the point set H is

open in M means that no point of H is a limlit polnt of M-H.



Theorem 1.06: The point set M is connected 1f, and only

1f, no nonempty proper subset of M 1s both open in M and closed
in M.

Proof that the conditlion 1s necessary: ©Suppose there

exlsts & nonempty proper subset H of M such that H is both
open in M and closed in M. Now H and M-H have no point in
common. Since H iIs open in M, no point of H is a limlt point
of M-H. Also, no point of M-H is a limit polnt of H by Defi~
nition 1.07. Hence H and M~H are mutually separated by Defi-
nition 1.09, and so M 1s not connected. A contradiction.
Therefore, no nonempty proper subset of M 1ls both open In M
and closed in M. |
Proof that the condition ils sufficient: Suppose M is

not connected. Then M is the sum of two mutually separated
sets H and K. Now H is a nonempty proper subset of M, No
point of H is a limit point of K by Definition 1.08. Hence

H 1s open in M by Definition l.ll. Also, no point of K ls

a limit point of H, hence H is closed in M by Definition 1,07.
Hence there exists & nonempty proper subset of M which is
both open in M and closed in M. A contradiction. Therefore,
M is connected.

Theorem 1.07: If M is a point set and H 1s a connected

set which contains a point of M and a point not in M, then H

contains & boundary point of M.

Proof: Suppose no point of H is a boundary point of M.
Consider the point sets H-M and H-M. Since no point of H is



a boundary point of M, no point of H-M is a limit point of
H-M and no point of H'M is a limit point of H-M by Definition
1.02. Then H-l and H-M are mutually separated, since no
point of one is a point or limit point of the other. Hence

H is not connected by Definition 1.10. A contradiction.
Hence H contains a boundary point of M.

Axiom An: If P is a point, M is in Qp and N contains

M, then N is in Qp-

This axiom will also be raferred to &s the inclusion
property. The inclusion property i1s a condition which seems
to be intultively true in one's normal concept of a limit
point. Z spaces which satlsfy the inclusion property will
now be considered.

Theorem 1.08: If T is a collection of closed point sets

which have a polnt in common, then the set of all points com-
mon to the elements of T is closed.

Proof: Let H denote the set of all points common to the
elements of T. Let P denote a limit point of H. HNow H is
a subset of each set in T. Hencs, by the inclusion property,
P is a limit point of each set in T. Therefore, since each
set in T is closed, ¥ is a polnt of each set in T. So P is
a polnt of Hs It then follows that H is closed.

Example 1,0l: This example will illustrate a Z space

for which Theorem 1.08 does not holde. Let E consist of three

elements: A, B, and C. The assignment of classes of subsets



of E for each polnt will be as follows: Q is empty, Qg con-
tains one set which contains only the point C, eand Q¢ 1s also
empty. It is seen that the incluslion property does not hold
for this Z space. Let M; denote the set which consists of
the points A and C. Let M2 denote the set which consgists

of the points B and C. Let T denote the collectlion which
consists of the sets Ml and Mg« Now My and M2 are closed,
since no point is a limit point of My or Ma. Let M denote
the set of points common to My and My o Now M consists of

the point C. Therefore, B is a limit point of M. Hence M

is not closed.

Definition 1.12: 7The statement that the point set M

is dense in itself means that 1f P is a point of M, then P
is a 1limit polint of M.
Definition l.13: %The statement that XK is the nucleus

of ¥ means that K is the sum of all ths subsets of M which
are dense in themselves.

Theorem 1.09:; If M 1s a point set and K is the nucleus

of M, then K is closed 1n M.

Proof: Let R denote a point of K. Since K is the nu-
cleus of M, there exlsts a set H containing K such that H is
contained in M, H is contained in K, and H is dense in itself.
Then R is a limit point of H, since H is dense in itself.

By Ag, R is a limit point of K. Since every point of K is
a limit point of K, K is dense in itself. Let P denote



a point of M such that P is a limit point of XK. Since P is
a limit point of K, Kﬁ{?} is dense in itself. Hence K con~
tains k+{P}. Therefore, K is closed in M.

Theorem 1.10: If M is a closed point set and H is a

subset of M which contains M', then H is closed.

Proof: Let P denote 2 limit point of H. Then P is a
limit point of M by the inclusion property. Hence by Defi-
nition 1.06, P is a point of M'. Therefore, P is a point of
H, and thus H is closed.

Theorem l.11: The point set M is open if, and only if,

E~M 13 closed.

FProof that the condition is necessary: Let P denote

a limit point of E-M. Suppose that P is a point of M.

By Theorem 1.02, M contains a point of every set in Qp.

But E~M is a set in Qp and contains no point of M. A contra-
diction. Hence P is in E~M, and by Definition 1.04, E-M is
closed.

Proof that the conditlion 1s sufficient: Let R denote

a point of M., Now E~M is not in QR by Definition 1.04.
By the inclusion property, no subset of E-M is in Qe Hence
M contains a point of every set in QR’ Therefore, M is open
by Theorem 1.02.

Theorem 1.12: If T is & collection of point sets such
that each set in T is dense in itself, then T 1s dense in
itself.



Proof: Let P denote a point of T¥. There exists a set
M in T such that P is a point of M. Since M is dense in it-
gelf, P is & limit point of M by Definition 1.12. Hence P
is a 1limit point of T* by the incluslon property. Therefore,
T 1s dense in itself.

Theorem l.13: If M is & polnt set and T is a collection

of point sets which have a polnt in common such that sach set
in T is closed in M, then the set of all points common to the
elements of T 1s closed 1In M.

Proof: Let H denote the set of all points common to the
elements of T. Let P denote & point of M which is a limit
point of He Since H is a subset of each set In T, P is a
1imit point of each set in 1 by the inclusion property. Then,
since each set in T is closed in M, P is a point of each set
in T by Definition 1.07. So P is in H. Therefore, H 1s
closed 1In M.

Theorem l.l14: A closed point set M 1s connected 1f,

and only 1f, it is not the sum of two mutually exclusive,
closed point sets.

Proof that the condltion is necssgsary: Suppose M is

the sum of two mutually exclusive, closed point sets. Then
no point of one is & point of the other, and since each set
is closed, no point of one is & limit point of the other.
Hence M 1s the sum of two mutually separated sets by Defl-

nition 1.09. Therefore, M 1s not connected. A contradliction.
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So M 1s not the sum of two mutually exclusive, closed point
seta.

Proof that the condition is sufficient: Suppose M is

not connected. Then M is the sum of two mutually separated
point sets H and K. No point of one is a point of the other
by Definition 1.09. Hence H and X are mutually exclusive.
Also, no point of one is & limit polnt of the other. Let P
denote a limit point of H. By the inclusion property, P is
a limit point of M. Then P 1s In M, since M is closed.
Therefore, P is in H, since P cannot be in K. Hence H is
closed. Llikewise, K is closed., So M is the sum of two
mutually exclusive, closed polnt sets. A contradiction.
Hence M is connected.

Definition l1.14: If M is a polnt set, the statement

that M 1s the closure of ¥ means that T is the sum of M and
MY,

Theorem 1.15t If M is a connected point set, then

is connected; and if H 1s & subset of M which contains M,
‘then H is connected.

Proof: Suppose M is not connected. Then M is the sum
of two mutually separated sets K and J. Now by Definition
1.14, M is a subset of M. Suppose M‘K and M:J both are non-
empty. Now K and J have no point in common, and so M'K and
M+J have no point in common. Suppose there exlists a point P

of M'K which 1s a limit point of ¥-J. Then P is a limit point
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of J by the inclusion propserty. But no point of H 1s a limit
point of J. Hence no point of MK is & 1limit point of M-J.
Likewlse, no point of M-J is a limit point of M-K. Hence
MK and ¥-J are mutually separated. However, M'K + M'J 1a M.
Therefore, M 1s not connected. A contradiction. So either
K or J contains M. Suppose K contains M. By Definition l.1l4,
J is a subset of M', Let P denote & polnt of J. Then P is

a limit polnt of K by the incluslion property. Therefore, K
and J are not mutually separated. A contradiction. Hence

M is connected. A simllar argument follows for the proof
that H is connected.

Theorem lL.16: If H and K are two mutually separated

point sets and M 1s a connected subset of HtK, then M 1s a
subset of H or a subset of K.

Proof: Suppose H-'M and K-¥ are both nonempty. Since H
and X have no point in common by Definition 1.09, H-M and K-M
have no point in common. Suppose there exists a point P of
H-M which 1is a limlt point of K-M. Then P is a limit polint
of K by the inclusion property. But no point of H is a limit
point of K. Hence no point of H'M is a limit point of KM,
Likewise, no point of K'M is a 1limit polnt of H-M. Now
H-M + XM is M. Therefore, M is the sum of two mutually
separated sets. Hence M is not connected. A contradliction.

S0 M is & subset of H or a subset of K.
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Theorem 1.17: If M 1s a point set such that if P and ®

are two points of M, then there exists & connected subset of
M containing P and R; then ¥ is connected. |
Proof: Suppose ¥ 1ls not a connected point set. Then M
1s the sum of two mutuelly separated point sets H and K. Let
P denote & point of H, and let R denote s point of K. Let N
denote a subset of M which contains P and K. Now H-N and K-N
are both nonempty, and no point of one is a point of the other.
Also, no point of H-N or K-N is a limit point of the other by
Definition 1.09 and the inclusion property. Hence H'K and K'N
are two mutually separated sets. Now H'N + K'N is N, and so N
is not connected. A contradiction. Therefore, M is connected.

Lemma: If H and K are two connected point sets such that

H and K have a point in common, then H+K is connected.
Proof: OSuppose H+K 1s not connected. Then HfK is the
sum of two mutually separated point sets I and J. Now suppose
H'I and H-J are both nonempty. Since I and J are mutually
exclusive, H-I and H'J are mutually exclusive. Since no
point of I or J is & limit point of the other, no point of
HI or H'J 18 a limit point of the other by the inclusion
property. Hence H-I and H-J are two mutually separated sets
by Definition 1.09. Then, since H-J + H-I 1s H, H is not
connected. A contradiction. Therefore, H is a subset of I
or J. Suppose I contains He Since H and K have a point in

common, K-I and K-J are both nonempty. This leads, in a
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similer manner, to the contradiction that K is not connected.

Hence H+K is connected.

Theorem 1.,18: If 9 is a collectlon of connected point

sets such that if H and K are two elements of T, then H and
K have a point in common; then T¥ 1s connected.

Proof: Let P and R denote two polnts of ¥, By Defi-
nition 1.06, there exists a set In T which conteins P, and
thers exlsts a set In T which contains R. Let H denocte a
set of T which contalns P, and let K denote & set of T which
containsg R. Now H and K have & point in common. Hence by
the lemma, HtK 1s connected. Now H+K i1s & subset of ¥ by
Definition 1.06. Therefore, by Theorem 1.17, T¥ is connected.



CHAPTER II
TOPOLOGLCAL SPACES

In Chapter I, Z spaces which were not subjected to any
condltions, and Z spaces which satisfied the inclusion prop-
erty, were lnvestigated. In this chapter, Z spaces which
satlsfy the following conditions will be considered.

Axiom Ay: If P i1s a point and ¥ Is a point set in Qp,

then M 1s nondegenerate.

Axlom Ao: If P 1s & polnt, M is a point set In Qp, and

N is a subset of M such thet N is not in Qp, then ¥ N is in
Qp-
Axiom Az: If P is a point snd M 1Is a polnt set such

that M is not in Qp, then there exists an open set H which
contains P and contains no point of ¥ distinet from P.
A Z space which satisfies axioms Ay, Ay, and Az is called

a topologlcal spacea.

Definition 2.0l: The statement that the polnt set M ls

compact means that, if K is an infinlte subset of M, then
there exists a point P which 1s a limit point of K.

Theorem 2.01: If My, Mg, Mz,... 18 & sequence of non-

empty, closed and compact point sets such that for each n,

M, contains Mj,y, then there ls a polnt common %o all the

14
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sets of the sequence, and the set of all points common to
the sets of the sequence 1s closed.

Froof: If there exists a positive integer N such that
1f n>N, then M, 1s My; then My i1s the set of points common
to the elements of the sequence, and My 1s closed.

If for each positive Integer N, there exists a positive
integer n>N such that M, 1s not My; then there exists a mono-
tone lincreasing sequence n,, Ng, Ngyeee of posgitive integers

such that, for each L, 1s a proper subset of M, . Let

"oy
py denocte a point of Mnl~an. Let pg

Mﬁg”“ﬁg' Let pgz denote a point of Mnﬁ~ﬁn4. Continuing thils

denote a polnt of

process, a sequence Py, Pg, Pgyee- of points 1is obtained such
that if { and j are two positive integers, then p { is not Pje.
Now each point of the sequence P1» Pps Pgsees ls a point of
ity » Since My 1s compact, there exlsts a point P such that P
1s a limit point of {Pl' Pg» p&""}' Then P is In Mj by the
inclusion property and the fact that Ml is closed. Now P ls
not a limit point of {pi} by A;. Therefore, P is a limit
point of {?2, Py, p4,...}. Then P is in My by the inclusion
property and the fact that Mz is closed. In a similar manner,
it can be shown that P 1s a point of each set In the sequence
Wy, My, Mg,.... Let K donote the set of all points common to
the elements of M, My, Ma,;... By Theorem 1.08, K is closed.
Theorem 2.02: If H and K are two point sets asnd P is a

limit point of HYK, then P 1s a limit point of H or K.
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Proof: If P 1s not a limit point of H, then P is a limit
point of (H+K)-H by Ag. Now K contains (HtK)-H. Hence, by
the inclusion property, P is a limit point of K. Therefore,

P is & limit point of H or K.
Theorem 2,05: If P is & limit point of the polnt set M,

then M 1s infinite.

Proof: Let Py denote & point of M. Now P is not a 1limilt
point of {Pl} by A,. Then P is a limit point of M-{pi} by Agy-
Let Pg denote & polint of m—{?l}. Now P is not a limit point
of-{pg}. Therefore, P is a limit point of m.({?£}+{§2}) oy

A This process may ve continued indefinitely, and hence M

20
is infinite.

Theorem 2.04: Every finite point set is closed.

Proof: If P is a point and M is a finite point set, then
P is not a limit point of M by Theorem 2.03. Hence every fine-
1te set is closed by Definition 1.04.

Theorem 2.056: If M is a nondegenerate, connected point

set, then M is dense in itself.

Proof: Let P denote a point of M. Consider the sets
M-{?} and {P}. Now no point of one is a polnt of the other,
but since M is connected, M-{?}'and {P]-are not mutually
separated. No point of M-{P} 1s a limit point of {P} by A,.
Hence P is & 1limit point of M«{?}. Therefore, every point
of M is a limit point of a subset of M and, thus, of M.

Hence M i1s dense in itself by Definlition 1.12.
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Theorem 2.06: If M is a point set, then ' is closed.

Proof: Suppose i' 1s not closed. Then there exists
a point P such that P is a limit point of M', and P is not
a point of M's 8ince P is not a point of the derived set of
M, P is not a limlit point of M by Definition 1.05. Hence
there exists an open set H such that H contains P, and H con-
tains no peint of M distinct from P. Let R denote a point of
H. Since H contains no point of M-{P}, R is not a limit
point of M-{P} by Theorem 1.02. Also, R is not & limit point
of {P} by Al. Hence R is not a limit polnt of M by Theorem
2.02. No point of H is a limit point of M, and so no point
of H is a polint of M'. Hence P is not & limit point of M!'
by Theorem 1.02. A contradiction. Therefore, M' is closed.
Theorem 2.07: If T ls a finite collection of closed

point sets, then T¥ is closed.
Proof: Let P denote a limlt point of 7 and let

Ml, Mg, M&”"’ Mﬂ denote the elements of T. HNow P is a

limit point of Ml or M2+M3+...+Mﬂ by Theorem 2.02. If P is
a limit point of Ml, then P is & point of Ml, and hence P 1s

in T, If P is not a limit point of M then P is a limit

1°
point of MB or §5+H4+...+MN. In this manner, it can be shown
that P is a limit point of one of the sets of T and, hence,

in that set. Then by Lefinition 1.06, P is in T¥. Therefore,
1% 19 closed.

Lemmas If M and N are two open sets, then M'N is open.
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gggggz Suppose -N is not open. Then, by Thecorem 1.02,
there exists a polnt P in ¥-N and a set H iIn QP such that M-N
conteins no point of He Now ¥ contains no point of H-N. Hence
H'N 1s not an element of §p by the Theorem 1.02. Then H - H-N
is in Qp by Age. But N contains no point of H - H-N. There-
fore, N is not opsn. A contradiction. Hence M'N is open.

Theorem 2.08: If T ls a finite collectlion of open sets,

then the set of all polnts common to the elemsnts of T 1s
open.

Proof: Let My, Mz, mﬁ,..., MN denote the elements of T.
Now Ml-mg is open by the lemma. Also, Mlcwz-m3 1s open by
the lemma. Continuling thls process, Ml-mz-Ma <+ My 1s open.
Hence the set of all points common to the elemsnts of T 1s

Oopen.



CHAPTER III
INVESTIGATION OF THE AXIOMS

Independence

The independence of the axloms for a topological space
will now be investigated. 4lso, the connection of AG and
the axioms for a topologlical space will be consldered.

It wlll now be shown that the axioms imply Ao. Let E
denote a set such that the associated Z space is a topological
space. Let P denote a point of E; let M denote a point set
such that ¥ ls in Q?; and let N denote a point set which con-
tains M. 8Suppose N is not in Q?. Then there exists an open
set H which contains P and such that H contains no point of
N distinct from P by a3. Also, P is not & limit point of
{P} by A. Therefore, by Ay, P 1s & limit point of N-{P}.
Since H is open, H contains a point R of M-{P} by Theorem
1.02. And, since R 1a a2 point of N, H contains a @oint of N
distinct from P. A contradiction. Therefore, if P is a point,
M is a polnt set such that M is in Qp> and N is a point set
which contains M, then N is in Qp. Hence the axioms for a
topological spaece imply ao.

it will now be shown that &; is independent of A

0’ g’

and Aa. Let E denote the set which conslists of two polnts,

s A

19
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P and R. The sets {P}'and E will be the elements of Qp, and
{E} and E are the elements of Qp. It 1s seen from the de=~
scription of Qp and Qy that AO ls satisfied, and llkewlse Aa
is satisfied. The point set {P} is open, since P is not a
limit point of-{R]'and hence not & boundary point of {?}.
Similarly, {R}-ia open. Therefore, As is satlsfled. However,

A, is not satisfied. So Al is Independent of AO’ A,, and A

1 2 3°
It will now be shown that Az is independent of AO’ al,
and A,. Let E denote the set of positive integers. If P is

3
e point and ¥ 1s a point set, then M is in Qp if, end only if,

there exists a positive integer N such that 1f nPN, then n
is in M.

Let P denote a point, let H denote a point set such that
H is in QP’ and let K denote 2 point set which contains H.
There exists & positive integer N such that if n>N, then n
is in H. 8ince K contains H, if n>N, n is In K. Therefore,
P ié a limit point of K, and so AO is satisfied. If M 1s in

QP’ then M is infinite. Hence A, is satisfied. Let R denote

1
a point and let J denote & polnt set which 1s not in QP'

Then there exists a positive Integer N, such thet N >R+l,

1 1
and Nl is not in J. There exists a positive lInteger Na such
that H2>N1+1, and Na is not in J. Continuing this process,

a monotone lncreasing sequence Nl, Né, Nﬁ”" of positive
integers 1is obtained. Let I denote {P, Ny, Ng, NS""}'
How no point of I—{?} ls & point of J. Also, no point of 1
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is & limit point of & subset of E~I, and so no point of I 1s
a boundery point of I. Therefore, I 1s open. MHence Ag is
satisfled. The point 1 is a 1imit point of the set of posi-
tive integers. The point 1 1s not a limit point of the set
of even, positive integers, and 1l 1s not & limit point of
the set of odd, poslitive integers. Therefore, &2 is not

satisfied. Hence &2 is independent of ﬁQ, &l, and 35’
It will now be shown that &s is independent of AQ, Al’

and A, Let M, denote {1/e, 1/4, 1/8,...}. Let i, denote

{ﬁ/&, 5/8, 9/16,‘..}; in other words, My is the set of
points relative to [}/2, g] as the polints of if; were
relative to [0, ;]. Let My denote {3/8, 5/16, 9/32,...};
in other words, @é is the set of points relative to

[1/4, 1/2} as the points of Ml were relative [b, i].

Continuing this process, a sequence i Mg"" of polint

1’ HQ’
sets is obtained. Let E denote {OftM, *Mj#i;+.... The polnt

set M is in QO if, and only i, M cantaiﬁs infinitely many
polnts of Ml' The point set M is in Q?, P= %?1, if and only

if M conteins infinltely many polnts of ¥n+1' If P is &

point, P is not 0, and P is not in Ml; then QP is empty.

It 1s seen from the classes Q that A. 1s satiafled and that

0

Al is satisfled. Let H dencte a point set in QO’ and let K

denote a subset of H which is not in QU' Then H contalns
Infinitely many points of Ml’ and K contains only a finite

number of points of ml. So H-K contains infinitely many

points of M and hence H-K is in QO' Let J denote a point

1)
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set in Q?, P=,5n , and let I denote a subset of J which is
not in Q?. Then J contalns infinitely meny points of En+1’
and I contalns only a finlte number of points of $n+1'
So J-1 contelins infinitely many pointsg of %h+l’ and hence J-1

1
point of MQ+M§—M4+'... Hence M2+H5+M4+... is not in QD.

is In QP' Therefora, ag 1s satisfied. HNo point of M, is a

Let U denote &n open set whlch contalns 0. M, is in Qo,

1
So there exlsts a polnt P, P==k§1, in U by Theorem 1.02.
Since P 1s in U, there exlsts a polint of gn+l in U by Theorem
1.02. Hence averj open set whilch contalns O contains a polnt
of m2+ﬁ5+mgf.... So &5 is not satisfied. Thersfors, Aa is
Independent of AQ, &1,-and Ag.
Hence the axloms for a topologlcal space are independent;
and, moreover, no two axioms along with the inclusion property

imply the third axiom.

Equivalence to Sierpinski's Axioms
An S space conaslsts of a set E and a class of subsets
of B called "neighborhoods" which satisfy the following four
condltions:
I. Bvery element of E possesses at least one neighbor-
hood. Ivery element is contalned in all its neighborhoods.
Ir. 1Irf Vl and Vg are two neighborhoods of an element P,
there existe a neighborhood V of P such that V is contained

in Vl*Vg.
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III. If R 1s &an eloment of E different from P, there
exists a nelghborhoocd V of P which does not contain R.
IVe If V is a neighborhood of P, and R 1s in V, there
exists a neighborhood W of R such that V contains W.l
These are Sierpinski's axioms for a topological space.
It will now be shown that an 8 space and a Z space which

is & topological are equivalent.

Definition 3.0l: In an & space, 1f M 1s a point set,

the statement that the point P 1s a limit point of M means
that every neighborhood of P contains a point of M distinct
from P.

Consider & Z space which 1s a topological space. It
will be shown that a class of neighborhoods can be assoclated
with E such that an $ space ls obtalned such that, if M is
in QP, then P is a limit point of M by Definition 3.01, and
conversely. Let "neighborhood" of a point measn open set
which contains that point. The set E is open, and hence E
is a neighborhocd of each point of E. By the definition of
nelighborhood, each polnt is contained in all its neighbor-
hocds. 8o condition I is satisfled.

Let V, and V,, denote twe nelghborhoods of the point P.

2

By Theorem 2.08, V1~V2 is open. Since P is a point of vl-va,

V., is contalned in V -V _..

vl~v2 is a nelighborhood of P, and Vl 2 1 Vo

Hence condition II is satisfled.

IWaolaw Sierpinski, General Topology (Toronto, 1956),
pe. 38.
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Let P and R denote two points. By Al,‘(R}-ia not in QP‘
Hence there exists an open set V which contains P and does
not contain R by Ag. Since V is & nelghborhood of P, con-
dition III is satisfied.

Let V denote a neighborhood of P, and let R denote
a point of V. Since V 1s a neighborhecod of R, there exlsts
a neighborhood of R contained in V. &o, cenditimn.IV is
satisfled.

Let P denote a point and let il denote a set in QP.

By A, {P} is not Qe Hence M-{P} 1s in Qp by A, There-
fore, every open set which contains P contains a polnt of
M—{?} by Theorem 1.02. So, P is a limit point of M by Defi-
nition &.0l.

Let P denote a point and M denote a point set such that
P is & limit point of M by Definlition 3.0l. Hence every open
set which contains P containsg a point of M distinct from P.
Suppose M 18 not in QP. Then there exists an open set which
contains P and contalns no point of M distinct from P.

A contradiction. Hence M 1s in QP‘

Consider now an S space. It will be shown that with
each point of E there can be associated a class @ such that
the Z space thus obtained 1s a topological space. If P lg
a point amd M is a point set, then M is In QP if, and only
if, P is a limit point of M by Definition 3.0l. Let P denote
e point and let M denote a set in Q?. By Definition 3.01,
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every neighborhood of P contains a point of M distinct from
P, and so i is nondegenerate. Hence Al is satisfied.

Let P denote a point; let M denote a set in Qp; and let
N denote a subset of i which is not in Q?. Suppose M«N
1s not in Qp. By Definition 3.01, there exists a neighbor-
hood Vl of P which contains no point of N distinct from P,
and there exists a naighburhpod V2 of P which contains no
point of M~N digtinet from P. Then there exists a nelighbor-
hood V of P which is a subset of V -V_ by condition II.

1 2
S3ince V is a subset of V -V _, V contains no polnt of M dis-

1 2

tinet from Pe Then P is not a limit polnt of M by Definition
3.01. Hence M 1s not in QP. A contradiction. So M-N 1s in
QP, and Az is satisfied.

Let R denots a point and let H denote a set which is
not in Qg. By Definition 3.01, there exists a nelghborhood
V of R which contains no point of H distincet from R. If
8 1s a point of V, then V contains a point of every set in
QS‘ Therefore, V 1s open by Theorem 1l.02. So &5 is satig~
fied.

Therefore, an 5 space and a topologlcal space are squiva~

lent.
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