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CHAPTER I
INTRODUCTION

Preliminary Remarks

1.1 This paper will be concerned with an investigation of the
generalizations of continuous real functions of a real variable. In
particular, the relationship between uniform continuity and ordinary
continuity is considered, The concept of uniform continuity was first
introduced by Heine about 1900,

1.2 A pojnt get will mean a set of real numbers.

1.3 The set of all real numbers will be spoken of as the points
of the linear sontinuum, and is denoted by C.

1.4 The potation ¥ = E will mean x is an element of E and
will refer to clements of sets.

1.5 The potation £ C & will mean the set E is contained in
the set S, or E is a subset of the set 5,

1.6 A function {f, E, 3) is a mathematical systema consisting of
a set E and a set 8 and a correspondence { which mates every element
x of E with a unique element or set of elements y of 5, the latter
being denoted by {(x}). The sets E and § are called, respectively, the

\athematical Association, Journal fir die xeine und Ange-
swandte k, Vol. LXXIV (1871), edited by A. L. Crelle
{Berlin, 1826), p. 188,



- the domain and the W of the function and the variahlu'x, and y of the
sets E and S are respectively called the independent and dep endent
variables. | o o

1.7 (£, E, 8) is said to be &

d if for each x < E, f(x)
is a unique element in 3. N | |
1.8 u.z,s) i: sammm ar_nl.mmii 5 is amtairml
numbers, and to be s function of & real variable if Ef is ;:m of real
numbgrs. | | -
3.. 9 (1’1. Ei‘ s,) = (£, EZ. Syl will mean (1) E;wﬂz and (2) for
wury x =E;=E,, tllw) =f,(x), It is not necessary for S; to equal S;.
1.10 By definition 1.9, a function {f, E, 8) = (f, E, C) where C is
the linear contimuum. Thﬁ fact justitias using the ;ymﬁal if, E) in
place of {f, E, 8). Hereafter, the potation (f, E) will be used, and wm
always denote a MM uﬂmmm nLit real variable. In
other words, E will alwwxn denote a set of real smmh&rs. and § will
b§ understood to be C.
1.11 X {f,E) is a function and E:lcm then (f, E,} will be used
to duma a function (g, E¢) where if x < El then gix) =f({x). Such a
function (t. Ej) will be called a contraction of {f, E),
1.12 (F,E,) is an extension of (f, E) means (1) EC E; and (2)
whenever x < E, then F(x) = f(x), |
| 1.13 A closed interval [a, blis the set of real numbers x, ‘sue:h
that a< x< b. ‘ |
1.14 MWW {a,b) is the set of real numbers x,

suchthat a < x 2 b,



1.15 £ is a limit point of E, if every open interval I contains
E contains points of E, .

1.16 If E is a set, then the gomy ent ¢E of E is the set of

all real numbers not in E, that is, cE=C - E, HECS, then § « E
s of E xelative to S. |
1.17 £ is an interior pointof E, if ¢ 1is not a limit point
of cE.and if £ € E. | |
© 1.18 A set of points E is glosed, if E contains all of its
limit points. :

is called the complem

1,19 A set of pmhﬁ E is gpen, if ‘&v&% point of E iz an

interior point of E. ' ' ' |
1,20 U is an upper hound of {f, E) on E, if for every x < E,
if(x) U - | - '

1.21 L is a lower bound of {f, E) on E, if for every x < E,
flx) = 1.

1.22 U is the least upper bound of {f, E) on E, if it is an upper
bound and for every & > O, there exists an x & E such that
tH>U - &.

1.23 L is the greatest lower hound of (f, E) on E, if it is 2
lower bound and for every < > 0, there exists an x & E such that
e L+ €. | |

1.24¢ A set E is dense-in~itselt if every point of E is a
limit point of E. |

1.25 A set E is nowhere dense if every interval contains a
subinterval which contains no points of E.



1.26 A setis everywhere dense if every interval contains
points of E. |

1.27 A finite covering T of a set E means T is a finite set of
open intervals 1), I, ..., I, such that every point of E is in at least
one of the intervals of T. |

1.28 A boundary point of E is a point of E which is not

interior to E. _

1.29 A null sequence will mean any kequma of numbers that
converges to zero.

1.30 A neighborheod of a point ¢ will mean an open interval

containing ¢ and will be denoted by N¢ .

1.31 The derivative of a set E of real numbers is the set of
limit points of E, and will be denoted by E',

1.32 The ypion E + S of two sets E and § is the set consisting
of all the elements either in E or in S, /

1.33 The intersection ES of two sets E and S is the set con-
sisting of all the elements belonging to both E and S,

1.34 The glosure of E is the union of E and E', and will be
denoted by E.

1.35 An isolated point of E will mean any peint x = E which
is not a limit point of E.

. 1.36 E is an isolated set means E is a set of isolated points

of E, , ,

1.37 E s a J - isolated set means for every ¢ & E,
EI%; (§), where Neg = (g -3, £+ J).



1.38 I E; < E is such that every point of E is a limit point of
Eq, then E; in uiﬂtebaﬁmum E. N -

1.39 A point € of a set E; is uid to be mww a! Ey
relative to E if s neighborheod N € of 3 existn. fw whwh all t)u
points of E in N g are alse points of Ey. .

1.40 A sequence { xn} is Wﬂt a‘ thtm i# a xmwbw £
such that for € > 0, there exists an integer N wch tlmt wkmww
n >N [xg-gfedl S

1.41 EyC Eis u:l# to be gpen relative to E if every ﬁ_amt af
Ej is an interior point of E; relativeto E. ,

1.42 A set Ey C E is gclosed relative to E if every iimit Tpﬁint
of Ey which is in E, is uim in E,. _

1.43 Definition I (Cauchy). {f, E) is continuous at g i m
€ & E and (2) for every € > 0 there exists a J > 0 such that
whenever [x - £/ J and x < E, then [{(x) ~£(§)’ te.
Il (Heine). (f, E) is continuous st £ if (1)

§ & E and (2) for every convergent sequence { X, } & E whose limit
is €, the sequence | fix,) ] converges and the lim flx ) = f(£ ).
s £, the sequence { Ixa)} converges an i (x?*’ =f(£)

1.45 The Definitions I and Il are equivalent. 2

1.46 {1, E) is continuous on E; means (f, E} is continuous at

every point of E;.

z&”ur a ywa! vaf thin &quivalmﬂ, see H, C. Pwri#h "Thn
Analegues for T-Continuity of Certain Theorems of Crdisary Contin- -
uity, "' unpublished master's thesis, Department of Mathematics,
North Texas State Teachers College, Denton, Texas, 1941, p. 7.



1.47 It should be noticed that if {f, E) is gontinuous

on Ey, then
necessarily E; C E.
1.48 (f,E) is continuous at £ relativeto E; < E if (1)
£ < E and (2) for every € > 0 there exists a J > 0 such that
whenever x < Ej and [x - £] £ J, then [f(x) -1 £ €.

1.49 Examining definitions 1.43 and 1.48, it is seen that
(f, E) is.continuous at £ if and only if ¢, E) is continuous at €
relative to E.

1.50 I, E) ism on El relative to Eg where Ei — E
and E;  E, means (f, E) is continuous at ¢ relative to Ej for every
point £ of Ey. o

1.51 By dciinﬁtiom 1. &&. l.ﬂ and 1,50, it can be seen that
(t, E) is continuous on Ey if and only if (f, E) is continvous on £,

1.82 {{,E) is lower
(2) tor every € > O there exists a J > 0 such that whenever

|x- €| 4 J andx &E, thent(§) > flx) - €.

1.53 (f, E) is upper semi-continuous at ¢ if (1) § & E and
(2) for every € > 0 there exists a J' > 0 such that whenever

|x- €| 2 J and x < E, thenf(£) £ fix + €.

1.54 {f, E} is lower semi-continus |
Ej CE# (1) £ & E and (2) for every € > 0 there exists a J > 0
such that whenever x < Ej and [x - £]<J thenf(§) > f(x} - €,

ous at ¢ () § < Eand

ous at ¢ relative to



i (1) £ & E and (2) for every € > 0 there exists a O > 0 such that

whenever x < Eyand [x- £] £ & thentl§) £t + € .

1.56 (f,E) is lower (upper) semi-continuous on Ey means
{f, E} is lower (upper) semi-continuous at every point of E;.
1. 57 (£, E) is lower (uppex) semi-continuous on E, relative to

Ep if it is lower (upper) semi-raanmmn at ¢ relative to Ea for
every point ¢ of Ey. -

1.58 (£, E) iszmmmmuiw every € > 0
thtm exists a J > 0 such that kawer x.a:* & E and lxux’ ’ Zd.,
then [t -tix) | L €. R |
| 1.59 {1, E} ts upiformly continuou

€ > 0 there exists a J > 0 such that for x < E and x' e\:‘ E, with
|x-x'[ £ & , then HUEEL] | 2 €. |
1.60 (£, E) is sniformly continuous on £, rewivt to £ *wlawa
E1 C E U for every € > 0 there exists 2 J > 0 such that whenwar
x € Ejandx' € Ewith [x-x' [ 2 J, then [t(x-tlx) | £ €.
1.61 By definitions 1.58 and 1,60 it can be seen that {f, E) is
nuous on £, it {1, E) is unifermly continueus on £y
X.ﬁhtmmﬁ ‘ ; | |
| 1.62 {£,E)is mizwmly continuous on El relative to Ep, where

3 on Iﬁi C E if for every

Ey < Eand E;  E, means for every € > 0 there exists a Jd >0
such that whenever x < E;, x' < Ep, and [x+x' [ £ J , then
|t -t | ~ €.



1,63 By definitions 1,59 and 1. 61, it can be seen that if {f, E)
is uniformly continuous on E, then {f, E) is uniformly continuous on
esch subset of E relative to E,

1.64 f, E) is sbsolutely continuous on E, if for every & > 0
there exists a J > 0, such that whenever x, 2} e Eforl £icn
and 2 Ihq - xy) | £ J, then zli(x{) ‘ﬂki,’ L €.

1,65 f{f, E} is gbsolutely continuous on E, relative to E, if for
every & > 0 there exists a Jd>o such that whenever x; & E; and
x{ e~ Efor 1 41 <nand zlfxiuxi) | £ J, then
>t - ttmp) | £ €.

1.66 {f, E) is absolutely continug
Ey C Eand E; CE, if for every & > 0 there exists a J > 0 such

ug on Ey relative to Ep where

that whenever x; < E, and x] & Ey for 1 £ i< nand
Sl -x) | £ J, then Sheixp) - tix) | £ €.

1.67 {{,E) is bounded from above if there exists an M > 0
such that for all x & E, f(x) £ M,

1.68 (f, E) is bounded from below if there exists anm > 0
such that for all x & E, f{x) > m.

1.69 (f,E) is bounded if there exists an M > 0 such that for

everyx < E, [fix) | £ M,

1.70 (£, E) is bounded at a point £ & E if there exists a
neighborhood N g of € andanM > 0 such that for every
x =ENg , [tx)] < M,



Assumed Theorems

1.71 I a closed and bounded set E is covered by a class T of
open intervals, then there is 8 finite number of intervals J;, Jp, ...,
Jp.of the class T which govers E.

I:YE-Exmhmmwmmmamsxmmm

1.73 Every infinite bounded sequence of numbers fx,g} son-
tains 8 convergent subsequence {x, ) . wheren) £ n; £ . ...

1.74 X A and B are real numbers, then |A +B| £ |a)+]B].

1,75 If A and B are real pumber.
[lar - 1Bll<ja-B] 2 |al+ lﬁ’ |

1.76 IL A, B and C axe real numbers, then |A - G| £
[a- B8]+ [B-c]. |

1.77 MWW{%}MSWM

1.78 } £ & E.and for svery sequence {x,] which converges
to £, lim flx,) exists, mm&smmmm;nmnma
He). ‘

1,79 A sequence {xn} of real numbers converges if, and

only i, it is a Cauchy sequence, that is, if € > 0 is chosen, there
exists an N such that whenever s > Nandm S N, [xy - %, [ £ €.

Thwrmu ‘
| Th& £wﬂw£ug tkmrmg along with tlmir wlatea dmﬁnmms
wm k«c required in this paper. B o
1,80 Let {f, E} be bounded and assume EI # 0. Then the
following interval functions are associated with {f, E).
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() M [it, E), 1] will mean the Lu.b of t{x) for x < EI,
and will be denoted by M(D).

i) m Ef. E), I]wm mean the g.1.b of f{x) for x & EI,
and will be denoted by mi(l).

(1) o [, E), 1] will mean M Bi.E}. I] - m Bi, E), I]
and will be called the saltus of {{x) on I and denoted by s(I).

Remark. The saltus (s(D = the 1.u.b afft (xy) - fhxy)| for
all x), x, & EL | | :

1.81 Let {,E) be bounded on E and § & E. Then the
fallawmg gmia;tvprap«eruu are associated with {f, E).

() The maximum of (£,E) at ¢, dencted by M [ (¢, E), £]
= M(£), means the g.1.bof M [(£,E), 1] for all 1 D €.

The function thus defined will be denoted by (M, E). .

(1) The minimum of {f, E) at £+ denoted by
m [(L,E), £] = m($), means the Lu.bofm [(£,E), 1] for al1 D¢,

The function thus defined will be denoted by (m, E).

(1)) The galtus of (£, E) at ¢, denoted by s [(£, E), £ ]
= s(£), means thel.u.bof s [;z.;m. I] for1 >,

Remark. s(§) = M(£) - m(£) for € e E.

1.82 (f,F) is continuous at < if and only if s(£) = 0.

Proof. Assume that s{ ?)- = 0. Choose & > 0, then there
exists a neighborhood I = € such that s() £ £. Then for every
x < EI, |tz - £(£)| £ M(D - m(D = s(l) £ £. Hence, f(x) is

continuous at x = g .
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Suppose now, (f, E) is continuous at € - Choose € > (. There
exists a neighborhood I of £ , so that for x < EI [flx) -£(£)] < &
Then, s(£) £s(l = M(D - m() £ €. Hence, s(£) = 0.

1.83 L E is a closed and hounded set and if (£, F) is bounded
at every peint of E, then (f,E) is hounded on E.
= Proef. For every ; & E, there is a neighborhood N £ of €
and an Mg > O such that for every x < ENg, [#x)] £« Mg, The
open intervals N £ where £ < E, cover the closed and bounded set
E. By Theorem 1,71, a finite number of these open intervals, N, Np,
+ « +4 Ny covers E.

Let M = max EMI' M,, . . | .o Mn] ., where M, is an upper
bound of ] £ix) ’ on ENj. Every x & E is also in N; for some
integer i, ) 41i £n, sothat |f(x)| L My<M. It follows that (f, E)
is bounded on E,

1.84 A set of real numbers E is closed and bounded if and only
i svery sequence {x,} < E. contains a subsequence {x, Jcon-
verging to a point of E.

Proof. Assume that every { Xy } & E contains a convergent

subsequence { x“i} whose limit is, say g . where £ < E. Now, it
is to be shown that E is closed and bounded. If E were not bounded,
there would exist a sequence { xn} & E such that for every

n, ’ Xy ' > n and thus no subsequence could converge to any point.

If E were not closed, there would exist a sequence { xn} & E

converging to ; + wWhere 5 is not in E. Thus, every subsequence
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{ xm} would likewise converge to g , and no subsequence could
converge to a point in E. This contradiction shows that E must be
closed and bounded.

Assume E is closed and bounded, Choose a sequence
{ Jta} & E. B8ince E is bounded, { xﬂ)cmﬂam a convergent subse-
quence { x”i; » by Theorem 1,73, BSince E is closed, § & E.



CHAPTER Il
GCONTINUOUS FUNGTIONS

2.1 Iheorem. n{s,mmlg.wmm@ . then
(1 {f g E), (2) (f « g, E) and (3) {t.g,E) are continuous at ';. Alse,
.ﬁz(?ﬁ # O, then (4) %.E).il,mﬁmm“ K

m gz (1), G’%Mau € O. There éxistx a mtgkburhm

Ny of ¢ such that whenever x & ENy, then [f(x) - f{ g)[; <
There exists a mighbwhmd N, of ¢ such that wkumwr x 5 ENy,
then [ gt=) ?'3( £)| L %. ‘Let N = N;N,. Thmx N is a ;ngigkbarhwﬁ
of E, and for x & EN, o o
[ o + 6] - 51 +ats])] < |t - 205)] + |eta-ete)]
| - % | f %a €.
Ezoof of (3) &imzt {f, E} is continuous at ¢ , there exists a
Ny of ¢ such that whenever x éﬁ:ﬁl. thm [f(x? - !’(5:) ) < 1.
Hence, ,I_(x}' Z lt(élll + 1L |
MthWl[k(g}l\.‘lﬂg,}} +1). Choese ¢ > o. |
There exists g;émlzhhqﬂ;wd N, of g such that whmuwxf x k== EN,,
then | () - £L E) | « m Also, there exists a neighborhood Ny of
g, such that whamwr x C;m«&. then I glx) - g{ ;} [ £ iﬁ Let
N = NyN,Ny, then for x & EN,

13
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Jttgtx - ()6l | = Jtigta) - tixg(£) + 1xIglE) - £ )gl £)]
& Jttn) gl - sx)gl $) +frmglg) - 10 £)gl 5]
= Jtt=)] Ig(x) -elg) 4 }gc £)| )tta - 1o g;[
ct=] £+ [sts)] £
. Méﬁ + ME% E.
The proofs of (2) and {4) are omitted.
2.2 Theorem. .&((f.ﬁ)mtg.mmmmﬂam& then
(1) {£+g,E), (2) (£ - g, F) and (3) (£. g, E) axe
i for svery x & F, glo) # O, mm(z,m
This result follows immee!iately ’b’y Theorem 2.1 and

Atinuou e m 1‘3. Mﬁﬂ'

Definition 1.45,
2.3 Theorem. U E is a closed and bounded

is continuous on E, then (£, F) is bounded on E.
Eroof. Assume that (f, E) is not bounded. Then there exists

set, and Y (£, E)

a sequence of pointe 5:&:& } and a sequence of positive numbers
ky £ k; £ kp £. . . such that for every x & E,

£ , and lim ky = .
| #xa) | > kp and 1im ey = |
Since E is closed and bounded, { xa} maat be bounded. By Theorem
1.73, there exists a subsequence { x ¢ of { x } converging to a
limit in E, say ; Hence, !rm the mmxinuxty of {f, E) at €. it is
clear that { tlxp,) } must converge to {{ £). This cannot happen
since jzixm, ] > ky and *i% ]!lxni} I = oo, This contradicts the
assumption. Thus, (f, E) must be bounded on E.



2.4 Theorem. I E is a closed and bounded set. then {f, E)
Ergef. By Theorem 2.3 (f,E) is bounded above, and for
x ¢ E, fix) has a least upper bound, say M. Thus, f{x) <M.

Choose a sequence of positive numbers 1, %. %. v %. P
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From the sequence { xn} € E, choose points x3, X3, . . «y X . . .

such that respectively, ‘

flx)) >M - 1, £{mzi>M-%. voo oo Hxy) >M -,L
By Theorem 1.73 there exists a subsequence { x”i} of { "n)
which converges to some ¢ inE. Now f(x,,ii > M- 1 . 50 that
the lim :1::») > 1im ™ - u = M, By Definition 1.44, um ftxni) =

lim i(x,,} zﬂg). mmtﬂ;) 2 M. Butf(£) £ M, Gambmtng
ﬂ;)..é.- Mand f(£) =M, 1{£) = M.

2.5 Gorollary. I E is a closed and bounded set and if (f, E)
ie continuous on E, then there exists a point ¢ in F such that for
svery x < E, f(x) £ f{ £). |

This result follows immediately from Theorem 2. 4.

2.6 Corellary. U E is a closed and bounded set and if (£, E)
is continuous on F, then there are points x', x" < F where
fix') = the g.1.b of £(x) for x & E, and #{x") = the 1. u.b of #{x) for
x & E. . |

This result follows immediately from Theorem 2, 4.

2.7 Theorem. X (f,E) is continuous on ¥ and ¢ is a point
inE with f{ £) > O, then there exists a number p > Oand a N¢
such that for every x « EN¢ , f(x} ~ p.
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Proof. Choose p = L&é) N O, Bince {f,E) is continuous at £
there exists a ] > O such that whenever x & EN 3 and
[= - ;Jz. J . then |£€x}'~f’£(§ﬂ < p. For every such x, it follows
that,
flx) = £0x) ~ 2 £) + 4L €)
1) -t - £ 5)
> g v p
>2 -p=p. o
2.8 Theorem. I (. E) is continuous on E = (a,b] and if
(a) nnd {(b) have apposite signs, then there exists a point ¢ < [a.b]
for which t{ £) = O, ‘
Proof. Assume that f{a) £ O and f{b) > O. Let F be the
set of x's for which x < [#,b] andf(x) ~ O. ThenF C [a,b] .
a & F, and F is bounded. Let £ = the least upper bound of F.
Assume that £( £ ) > O. By Theorem 2, 6 there exists a Ng
such that for x < N¢ , f(x) > O. It follows that a number less than

; is an upper bound of F. This contradicts the definition of g as
the least upper bound of F,

, Assume that f( £ ) £ O. Then there exists a N £ such that
for x < m‘i; . flx) £ O. Since £ < b, then for some x > ¢,
f{x) £ ©O. This contradicts the fact that £ 1is an upper bound of F.
Hence, f{{ ;l must equal zero.

2.9 Theorem. X [ ab] isanintervel with ab & E and
shere exists apoint £ o [a,b ] . £ notinF, then there exists a
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function (1, E) continvous on F and such that for every x < [ab] ,
fix) % O. } , |
Consider the function f(x) = x - £ . for x & E. This function
is continuous on E and, in fact, is uniformly continuous on E, Yet,
for x < E, f(x) % O. o :
2.10 Theorem, U F is an isolated set, then every function
{{,E) is continuous on E.
Proof, Let ; & E. Then ; is an isolated point of E. By
Definition 1. 44, (£, E} is continucus at ; . By Definitions 1,36 and

1.46 {{,E) is continuous on E,

2.1 Theorem. If (£, E) is continuous on E snd ¥ is the
closure of F, and if there exists a continuous extension (F, ) of
{£,E), then the values of (F,F) are uniguely determinec

Broof. Let ¢ < T. By Definition 1.12, if £ = E, then
Flg)=%). It ¢ & E, then £ is alimit point of E. Hence,

there exists a sequence { X.“} of peints of E converging to ; .
Since (F,E) is continvous at ¢ , F(£) = Um Flxg) = lim  flc,).

Remark. As ap sxample, let F be the rational points in an
interyal 1= [ab). Thenl= E.

2,12 Corollary. nmmaamm&m
are known for a set ) of points everywhere dense in E, then the
value of (£, E) is deternained for all paints x < E, by (1, E;).

| Broof. The proof follows immediately by Theorem 2. 12
since ) S E.
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2.13 I (s,E) is the saltus of {f, E) and if k is a real numbez,
thea Fy = Ex [* < E, slx) 2k ] 1s closed relative to E.

214 AgetE; C Efsan¥ o zelativeto F, i By = F1+F, +
... +Fp+. .., whers Fy is closed relative fo E, for sveryn. UE
15 the linear continuum, then F is said o be an F |
15 Theorem. [ D is the set of points x at which (f, E) i
discontinuous, then D is an F o~ relative fo E.

. Proof. LetFp=E; [ x & E, six) g%] . and

DeFy+Fy+...+F 4. ... By Theorem 2.13, the points where

the saltus is >1, form a closed set relative to E. By Theorem 1, 82,
n
D is the set of points of discontinuity of ({,E). Since D is an Fo

relative to E, the theorem follows.



CHAPTER IIl

UNIFORM CONTINUITY

3.1 Theorem. X (1) E is a closed and bounded set, (2 Ey — E
is closed relative to ¥, and (3) (£, E) is continuous on E,, then (. E) is
uniformly sontinuous on E,.

Proof. Choose € > O. It is to be proved that there exists a

Jd > O such that whenever x' < Ejx< Eand |x -x l £ &, then
[tx) - 200 | £ €.
Assume that the conclusion does not follow, namely: there is
some & 1 > O such that for every 3> O there exists an x'< E;,
xe E, with [x'-x[ £ J such that ’ﬂx’} «g.f(x)’ = €.
Choose a null sequence { s n } of 5. 's. For every O o'
there exists points x; <~ E; and x, <~ F with | xpex | £ I,
such that |f(x'y) - flx,})| > €. Since E, is closed and bounded,
there exists a subsequence. { x"""i} of [ x‘a} s Ry L By Loy
and a £ & E, miif‘éa"% = £ . Slace £ < E| and E| is closed,
¢ & Ej. The corresponding subsequence [ x“i} of { x, } alse
converges to ; » due to the fact that M"i’ - x,,ik appwwms zero as i
“approaches . . o |
By hypothesis (3), {f, E) is continuous at_ g Hence, there
exists 2 J > Osothatif |x- 5 | £ J . | £ ~25) | £ %L

19
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Since lm x, = limx, = ¢, there exists a positive integer N such
that whenever i > N, ,x‘t ;l;{m’xn ;,LJ
Hence, for i 2 N, | txy,) - ﬁf"af} |
,f(x,,!?nzlﬁil + lf(xniiwfiﬁ)’

Z %l' + é&«l_eo .
This contradicts the fact that for every i, |[flx]) - txy) | = €,
Tim theorem follows. ‘

3.2 Theerem. amnammwmmnu.m is

15 on E, mu,m is uniformly continuous on E.

m Choose € N O. There is an open mmwd I £ hxvimg

; as center and m@h that whmw&: x & El £ then
fetx w253 | £ % Let x, x' < m;.m
Yot -1t | & [t -20£) ] + e - 08 )|

€ + £ = .

2 2 € S
o For £ ¢ E, letJ ¢ denote the interval of center & andof
length half of 1. & « The set of all intervals J 5 thus defined is
obviously a covering of E. Since E is closed and bounded, it gal}ma
by Theorem 1.71 that there exists a finite number of these intervals
Je thatcovers®E, say J . , J., .. ,, J .

Consider the set of open inim:va!t!; S I; . Let
2 n

J =min (&, 0,5, . .., d,), where §; is,hﬁ_l the length of Jg,.
Choose two points x, x' o~ E with ) X » x' / e dJ . Then x is con~
tained in some interval Jz,, and it follows that x' = I; Hence,

|t - tx0 [ < € .
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3.3 Remark. Infact Theorem 3.1 and Theorem 3.2 are

Proof. Theorem 3.2 can be obtained from Theorem 3.1 by
letting Ey = E, Conversely, by Definition 1.42, the set E; in
Theorem 3.1 is a closed bounded set, satisfying condition (2). By
 Definition 1,46, (¢, E) is continuous on E} satisfying condition (3), and
E = Ej, Thus, {{,E) is uniformly continuous on Ey. The proof of
Theorem 3. 2 hus been given merely to show a different method of the
proof of Theorem 3.1, using the Borel Covering Theorem,

3.4 Covollary, I, E) is continuous on [’inh] ¢ then {{, E)
is uniformly continuous on (a,b] .

Broof. The proof follows immediately from 'i‘kewm 3.2,

3.5 Theorem, I (. E) is uniformly continuous en F and U x,
and x are sequences of points in E m:umw | %, =%} | = O
then 1im |thx) - £x1) | = 0.

| M Choose & > O, then there exists a J > O guch that
whenever x, x' — E andjx - x' | £ J, then [f{x) - f(x") | « € .
For any two sequences of points x,, x;a in E with,
Hm |x, - x) | = O, there exists an N > O such that for
B> N, |xyex) |2 J. Hence forn >N, | flxy) ~flxt) | < €,
mdthu lim )ty - Hlxl) | | =0, ’
ded set E if and only if {f, E) is continuous on E and the
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i‘%‘mxn} ;zcxg | = O, for every pair of sequences {%} ' ("QJ
wmmmmmmg@ | %5 = % | = O.
Proof. One part of the theorem follows by 3. 5.
s@ymm (£, E) is not uniformly continuous on E. Then there
exists an c > O such that far every J > O, there are two points
x, ' Ewith |x-x |z J such that ’ﬂxi -ﬂk'}, Eg oy
Now, choose a null sequence of fr's. cﬁ > (fa > ... =0,
For every (p. there exists two points x,, x} & E with
| %n = % | £ Jq such that | £lxy) vﬂ#{,}l 2 €. By aproper
choice af_nn‘am xl. it follows that f(xy) > fix!) and hence,
flx) Atlx) + €, m=1, 2, .. ..
~ Since E is bounded, the séqumet { "n} is bounded. By
Theorem 1.73, there is a subsequence { x,,‘} of { xn} which con-
verges to some ; . The corresponding subsequence { ‘x;*i( of x‘,,}
must also converge to § due to the fact that "‘ni - x;,i) - 0O as
{ — oo, Since s: is closed, ? belongs to E. Hence, (f,E) is con-
tinuous at ¢ , and therefore ;i}:t fx) = £{£ ). Thus,
Hm f(xg) = £#$) and jim tap) = £(5 ). Hence, the
i*-f:a ]!igni’i - f{x;‘i) | = ©. But by the assumption,
im ﬂxai} > }‘j::, ﬁx,',i} + €, which ’i,s a contradiction of the fact that
m | flx,) - tixh) | = O, and the Theorem is proved.

3.7 Theerem. K E isa closed and bounded set and p > O and
if at every point £ of ¥, s(£) £ p, thenthere existan J > O such
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that whenever x, x' — E and [x x| « J , then
[t -t £ op.t
Proef. A.umé tl;k contrary, that for every Jd>o there
exists péizm xand x' & Ewith |x-x'| 2 J , such that
Iﬁx} - tlx) | 2p.
t:ihmm a null sequence of positive J 's. There exists for each
positive integer n two points x,, x; £ E such that whenever
J‘%,* x;[ z_ d;,« then ’ flxy,) - f(x&)l >p. By Thwrm 1. 71, the
aéq@mi { xm} has a limit peint, say g - Let I be an interval with
¢ as cemter. Then since ¢ is a limit point of ( Xy} and since
|%g - x} | > O as nieo, it follows that there are two points
n, xy & E which are interior to I and for which
‘Hxn) - z{w) | 2p. Since there is no restriction on the length of I,
it wﬁm M at £ , the saltus of !i, E) is not less than P, This is a
. amuﬁtatim. '
s Mm KL E is 8 closed and bounded set and if
s{c) F O fox every peint £ E, then. {f, E) is uniformly continuous
enE. ‘
Erool. Choose € > O. For every £ € E, s(¢) = O,
Hence, s{£) <« € for every ¢ < E. By 3.7, there exists a
Jd > O such that whenever x, x' < E and [%-x'| < J, then
[tx) - tx)| £ €, and the result -fwuém.

LR, L. Jefte .mmmamm & Real Yariahle.
({I‘ﬁl‘&ﬁ%. 1951): P g,;m M
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3.9 Theorem. I (f,E) is uniformly continuous on E) relative
{0 E, then {1, E) is continvous on E) zelative to E.

m Choose & > O. By Definition Laﬁ. there exists a
J > O such that whenever x < E;, x' & F and |x-x|2d
then |f{x) - tix) | £ €. Let £ be any fixed point contained in Ej.
Ghoose wmﬂtu&m&“&mmuxﬁkw [x- €]« J. Then
[t «#(£)| £ € and (1, E) is continuous atx = £. Since ¢ was
urbm-wy. {f,E) is continuous on E{. h

 3.10 Example. Consider the function (f, E), where

E = (0, 1) and f(x) = 1-

Let £ & m.n. Choose € > O andlet 3 = min
l%; "‘:T L&), Letx< (O,1) and |x- £]23 . Then
|#x) - #(£) | £ € . Thus, (£, F) ts continuous at each point
ocxn |

Let £ = 1. For 0 > O, there exists a positive number p
auﬁhthat}. £ J . Choose N N the max (1, p). ank ma
| x =g 'rlmxmwe:. (0, d) — (0,1), and |
| flx) - £lx) | = §N - 2N] = N' X 1. Hence, £, E) ts not uni-
farﬁily continuous on (O, 1) and the converse of Theorem 3,9 is not
true.

3.11 Theorxem. I (f,E)} is absolutely continuous on E, then
(t, E) is mniformly continucue on E.

Broof. This result follows immediately by Definitions 1. 64
and 1.58.
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3.12 Theorem. I {f,E) is unifermly continuous on E and

gof. Let x and x' be contained in Ej, then x and %' are con-

tained in E. Choose € > O, then there exisis a J > O such that
whenever x, x' & E and [x-x' |2 J , then [f(x) - flx) |« €.
Since E) 15 a subset of E, if x and x' are contained in E; and
|x-x'| £ J . then [tx) - tx) | £ € . Hence, !f. E) is uniformly
continuous on Eq.
3.13 Theorem. M E s § - isolated for at least one positive
'§ . then (f, ) is uniformly continuous en E.
Proof. Choose & > O, there exists a J>o0 iwzh that E is
§ - isolated. Letx, x' & E, and | xex' I d . Thenx=x', and
therefore [f(x) - flx)] =0 £ € .
3,14 Corollary, X E is a {inite set, then every function
{f, E) is uniformly continvous on E.
Proof. This result follows immediately by Theorem 3. 12,
‘xmet every finite set is J « isolated for some positive number J.
3.15 Cerollary, X E'= O and F {s hound
function (£, E) is uniformaly continuous on F.
Proof. Since E'= O and E is bounded, it follows by Theorem

1.71 that E is finite. Thus the proof is immediate.

3,16 Theorem. I E is closed and bounded, and if {f,E) and
(g, E) are both uniformly continvous on F then (1) {f+g, E}, (2)
(f - g, E) and (3) {f. g, E) are uniformly continuous on E. Also, i
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for every x < E, gix) # O, then (4) !%,E) is uniformly continuous on
E.

Broof. The result follows immediately by Theorems 2.2, 3.1,3>9

and definition 1.59.

3.17 Iheorem. If {f,E) and (g, E) are uniformly continuous on
E, then (1) (f 4 ¢, E) and (2) {f - g, E) are uniformly coatinuous on E.

Proof of (1), Choose & > O, Then there exists a 5; >0
such that whenever x, x' = Eand |x-x'| < 3, . then

| £t - thx) | £ €. There exists a d > O such that whenever
X, x' < FEand [xex' | £ J,, then [gtn) - glx") | £ %

Let § = min (J,, tfa). Then, for x, x' < E,

|4 + gl - £0x) 4 glx)| 2 [0 - 2x)] + | gl - gix) ]
% + -%

3.18 Theorem, If {f,E) and (g, E) are unifoxrmly continuous
and bounded on E, then (1) {f. g, E) is uniformly continuous and beunded
on E. Further, if (2 for every x < E, gix) nwsaﬁ%ummm
E, M%E@ is unifermly continuous and bounded on E.

Ercof of (1). I My, M, are bounds respectively of

[t | and |g(x) |, then let M = max (My M,). Choose & > O,
There exists a J; > Osuchthatif x, x' < Eand [x-x'| < J,,
then |[f{x) - f{x') | £ £ . There exists a J. 2 > O such that if

™M
| «x| £ J, then |glx) - glx) | £ 5 §emm(d, d).
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. Thenforx, x' < Eand |x-x' |« Jd,

| £ gl - £lx?) gixh] = li(xi gix) - f{x) glx") + flx) a(x') - flx") glx) |
£ |t gl - £l gl +}etd glaet) - 26x) gl |
L[] [gtx - x| + |glx)] |2l - 2lx ]

L'l!it){,%; | + |gtx| %@
E .+ ME = €.
Mm + ﬂm €

3.19 Theorem. I (f,Ey) is uniformly gontinuous and i
'Ey Ejisdense onE, then there exists a uniquely determined
‘function (F, E) which (1) coincides with ({, E1) on E; and (2) is uai-
‘formly continueus en E.
 Proof. For every  contained in E, F( ) is defined to be
the i&m f(x) where x  E;. The uniqueness of (F, E) is assured by

the uniqueness of the limit of a function at a point. To verify that

this limit always exists and is unique, take any sequence x, in
Eys converging to apeint  inE, f(x,) is a Canchy sequence since
f{x) is uniformly continuous on E;. Any Cauchy sequencefix,) is
convergent and thus by Theorem 1.78, i;.:hn f{x) will exist. Therefore,
if we define F{ ) = lim £(x), the condition (1) is satisfied.

To prove the second part, namely, (F,E) {s uniformly con-
tinuous on E, choose Q. Then there exists a O such that
‘whenever x - x' and x, x' are contained in E,, then

flx) « £lx') T
y-y 3 Since i.émyl{xi = Fly) if x is restricted to be in E,,

Consider twe points y and y' in E for which

there exists an x E, with y-x and Fly) «i{x) 5

i
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Likewise, there exists an x' & E; with , y -x)c gmd
Iﬁ‘(y') - iis’}’ ya %_ Hence, |x-x'| £ |y - x| + [y - y] +
,l y' - x‘, Z J. and therefore
[ F - Pyt | £ [F) - t] + |10 - ttx)] 4 JRGr - g0
/ §, + %_ + % = €.
3.20 Corollary, M (,E,) is uniformly continuous on an
sverywhere dense set By C E, then there exists & uniquely deter-
mined function (F, E) which (1) colncides with (f, E1) 9n Ey and (2) s
us on E zelative 1o Ey.
Proof. Since uniform continuity tmplies continuity, the proof

follows {mmediately from Theorem 3.19.
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