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INTRODUCTION

In order to successfully design an airplane, the
stress analyst must have the shear and moment distributions
for each component of the airplane. Also, the dynamics
“engineer needs the distribution of inertial properties
of each component so that he may determine the aero-
elastic properties of the airplane,

In the past, the above datahave been computed manually.
This task 1s a long and tedious one. In addition, the
calculatlions have not been completed until well into the
design phase.

The purpose of this thesis is to provide a numerical
method for obtaining the above data that is applicable to
digital computers. It then willl be possible to obtain
the data soon after the beginning of deslign with a small

expenditure of manpower.



CHAPTER I
DEFINITION OF BASIC TERMS

Whenever the expression, i/f dv'" 1s used in this
paper, it will mean the triple, Riemann integral of the
function, f, over the volume under consideration. It
will be assumed that for any function, f, used in this
paper,)/‘f dv is meaningful and is equal to the iterated

integral over the same volume; that is,

b A /e
f dv f dx dy dz,
v a C e

where a, b, ¢, d, e, and g are the applicable limits of

integration of the volume V.

Weight
Weight, W, can be expressed
W= j/F) dv,
where f): density.
Centers of Gravity
The co-ordinates of the center of gravity, X, y, and z,

can be expressed
_ x dv
T Jpav
dv
/e dv, and



_. Jezav
2 /?>dv.

Define the X, ¥, z axis system to be respectively

parallel to the x, y, 2z axls system and have its origin
at (x,v,z).

Moments of Inertia
The moments of inertia, Ixx, Iyy, and Izz, about the
*x-X, V-y, and z-z axes respectively, can be expressed

— 2

Ixx = ‘/?o ry dv,

— : 2

Iyy = /PI’S; dv, and

1zz = /Przg dv,
where ry, Iy, and ry are the distances
of dv from the xX-x, y-y, and z-z axes

respectively.

Products of Inertia
The products of inertia, PXy, Pxz, and Pyz with respect
to the Xy, Xz, and yz planes respectively, can be expressed
Pﬁ:/PI’i'z'rfz—dv’

Pxz

1

j/f’r72 rgy dv, and
Pyz = /’f’PXE rgy dv,
where rxy’ e and nyz are the signed

distances of dv from the xy, xz, and yz

planes respectively.



CHAPTER II

STATEMENT OF BASIC ASSUMPTIONS

The following assumptions will be made in this paper:

1.

3.

The airplane is & rigid body composed of a finite

number of rigild parts.

The following data are known about each part:

a. Wp =

welght,

——

b. Ef, ?b, z, = co-ordinates of the center of

gravity,

c. Ly, Ly, L, = dimensions of the part as

measured parallel to the x, y, 2z axes respect-

ively,
d. Type of part:

(1) Puselage skin panel,

(2) Fuselage frame

(2) Fuselage bulkhead,

(4) Fuselage part other than one of above,

(5) Horizontal surface trapezohedron,

(6) Horizontal surface beam,

(7) Vertical surface trapezohedron,
Fuselage parts will be defined as follows:

a. Skin panels - hollow right cilrcular cylinders
+ L,
of dlameter Ex;ﬁ”“‘ with the symmetrical

axis

parallel to the x-x axis. This circular



cylinder will replace the actual right elliptical

cylinder with axes Ly and Lz for all computations,

b, frames and bulkheads-- solid right elliptical cylinders

with the symmetrical axis parallel to the x-x axis,

c, All other parts-- rectangular parallelepipeds with

sides parallel to the reference planes,

Horizontal surface parts will be defined to be one of the

following:

a, Trape-ohedron-- six sided solid with th. following

specifications:

(1)

(2)

(3)

(5)

Two faces are parallel to the Xz plane and are

rectangles,

The projections of two other faces on the yz plane

are 1ldentical parallegrams,

The projections of the two remaining surlfaces on

the xy plane are identical trapezoids,

A/B= 8/b, where A and B are the lengths of the

root and tip chords respectively of the surface

and & and b are the lengths of the root and tip

chords respectively of the trapezohed.:on,

¢/s = ¢/Ly,

D/S = d/Ly, and

t — E_EEQE, where

s ni O = the maximum depth of the surface at
root and tip respectively,

¢ and d = the depths of the part at the root and



(6)

(7)

(8)
(9)

O

tip resrectively,

t = average thickness, and

s = the distance, measured parallel to the y-y
axis, from the root to the tip of the surface,

The trapezohedron has dimensions 1x and ly as

measured parallel to the x-X and y-y axes respec-

tively,

In order to force the slope of the detail part to

have the same sign as the slope of the surface,

let f%l = ’% and é—?ﬁ - Egj, where

M and Iy = the slopes of the leading and trailing

edges respectively of the surface, and

m and my = the slopes of the leading and trailing

edges respectively of the trapezohedron,

A>3

B
If mz L then define m = ii.

i

Beam-vertical plane, perpendicular to the Xy plane, with

the following specifications:

()

(2)

The projection on the xy plane is one of the di-
agonal of the rectangle with sides lx and 1ly,

The projection on the yz plane will be a trapezoid,
The non-parallel sides of this tranezoid will coin-
cide with the non-parallel sides of the trapezoid
formed by the projection of the surface onto the

yz plane, The parallel sides of the trapezoid will
be parallel to the xz plane anld perpendicular to

the xy plazne,



5. Vertical surface parts are defined in the same manner
as horizontal surface parts if the y-y and z-2z axes are
interchanged,

6, Each part in the airplane is of uniform density,



CHAPTER III

BASIC CONCEZPT..

Matrix-Vector llotation
The matrix-vector notation developed by wood (1) will be
used in Chapter VI, Using this system of notation, a vector,

'E, with coniponents 81y 25y & 3has the following matrix repre-

sentations:
|22
if‘BJ
a‘:{%l 8, aj], and (2)
2= | o -ag an)
85 0 -39 (3)
""‘3.2 al OJ .

The following theorems are proven by Wood (1,2) for any

- -
vectors a, b, and c:

2a+-b=a'bz=bla, (4)
ax b= a'b = -b’a, (5)
a’b b c= -b'a c'b - btha'e, : (6)
a’b' b'a= -b'ava’b, and (7)

2"bYe = -a’cvb, (8)



Integration of a Matrix

The integration of a matrix is defined as

J/éi: B, (9)

J»
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CHAPTELt IV
DISTRIBUTION B UATIONS

General

Assume the following definitions:

Ry = the distance froa the forward most point of any part

to the yz plane,

wp=: welght of any part,

o, §p, fp = co-ordinates of the center of gravity of
any nart,

1x, 1y, lz = dimensions of the part as measured
parallel to the x-x, y-y, z-z aXes respectively,

wpi:: welcht of that portion of any item in I (See

definition of Iy under each subheading of this
chapter),

Xpis Ipi, Zpi= co-ordinates of the center of gravity of
that portion of any part in Ij.

1 length, measured parallel to interval length, of

pl =
that portion of any item contained in Ii’

I

‘Eipi:: tioments of inertias of that portion

Ixxp1r 15017
of any part in I; about axez parallel to x-x, y-y,
z-z with origin at (ipi"fpia fpi),

FX¥p10 PREpys P¥Ep1 = Products of inertia of that portion
of any part in Ij with respect to orthogonal axes
parzllel to x-x, y-y, z~z; with origin at (Xpi, Tois
-ZDi) ’



R, = the distance from the most inboard polnt of any

vart to the xz plane,

10

Rg — the distance from the lowest point at ¥ = Rp of any

part to the xy plane,

Fuselage

Pass a finite set of planes, X = Xy, X = X, ¥ = Xp, "°

.

’

X = x, through the fuselage. Now the fuselage may b2 thought

of as being partitioned into a set of intervals, Iy, Ip, °°°

I,, where Iy :(Xi_l, Xi],

’

Tow consider any interval Ij. If a part lies completely

within I, (that 1s, X3.1¢ R1<(Rl + 1x) € X4), then
lpi: 1.X‘

Now if Rpg ¥3.1< (Rl-l—lx)\( X4,
lp3 = (Ry + 1x ~£x-1).

If Ry< Xy_1< &4¢ (Ry + 1x),
1pg = (2 =)

Finally, if Rl = Ki or Xi—l = (Rl + 1x),

1= O.

Obviously in equations (10)-(14), Ry can be expressed as

Rl = ‘Xp - %lx.
Now,
Wy — ipiw
et el ~
Api = m ax [Rl, .?&1..1] + % lpi

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
(18)



11
Zpi = zp- (19)
It can be seen that a value= 0 may be obtained for equa=-
tions (17)-(19) even when a part does not extend into Iy  How-
ever, this is not important, since each of the forementioned
terms will always be multiplied by wpi = o before being used,
Now consider the following:
Theorem I: If a body is symmetrical about a plane, i,
then the product of inertia of the body with respect to
an axis,< -x, in Q and an axis,f -§, perpendicular to
both« ~-xXand Q is O,
Broof:
By definition,

Po= [p<pav.

also by definition, f)is a constant, so

Pug = P/O(ﬂdv.
Now define the surface of the body above ¢ as,
ﬁ%zrlf(*ly)'
where - is the third orthogonal axis, Then, by
hypotheses, the surface of the body below w is

By = — f ().

Therefore,
9. 3‘, f(_o\(.'()
P"‘»F:/O/// 0&,@ Jﬁp&a’%{,
s, /9 -l )
where gy and gy are the limits of integration on %,
and gy and g are the limits of integration on Y.
e (7
Then /343:6/2 /g,_‘r O(BZ ( s )Jf'ph(o
5 g1 /&3 -f(4,¥)
o

Fup = O
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Now since sach fuselage part 1s symmetrical about the
Xpr, X Zp, and Yézp plane., and since the planes X= X; ;
and X = Xji are perpendicular to the x-x axis, the portion of
any parbt in Ii will be symmetrical about each of the Xpi Ypi’
Xbi Epis and ?pi 7p1 planes, 30 by theorem I

Pi—ipi:.: Pﬁpi Pﬁpi: 0. (20)

From the SAWE Weight Handbook (2):
(1) for frames and bulkheads

1‘%—(12+12), (21)
Iyy = i 2L 3/ 1,4 1,,9), and (22)
= 'r5— (3/h 152+ 1 '>), (23)

(2) for skin panels,

2
Ixx; = jzi. (1, + 1y) (&)
2
pri _5__ rglz—k 13;-2 4+ 1 ], and (25)

Lymyy = Wpi (26)

(3) for all other fuselage parts,

v 2
Iﬁipi Zi (1y2'* 122)’ (27)
Lyygs = _%f P z .
Iﬁpi” U‘pi + 1.5, (29)

Horizontal Surfaces
Pass a finite set ol planes ¥=¥,, ¥Y=Y,, °*°, Y=Yn through
the surface, The surface now 1s partitioned into a set of
intervals Iy, Ip, e, I3, ..o
(739, Yi].
Consider a part that is a trapezohedron, It is obvious

that

s L3, "‘, I,, where any Ii::



Y, = Ro [@11 dv

P -+ ’
/e av

where Y1 = (Y-—RZ) YHow

/Pvl dv _.,C»//Mm‘r Y.tclxn’r
/k)Y dvﬂ.[—f(ml—m) —%-+-dt “1.] p-

ly ra+m.Y,
/{)dV” Pt// dx dz,

jysdv- Plt (ml-m) ~% + t-a-l Y)
3
a«t’"%

+
d—ft'a'_!.y

But

So,

>y

_ t(my-m)
Tp = R2t+ F(m-m) 1
and hence -
Ro= Yp~ 3(my=-m) 1y + ba .

=

1
Now, if H‘H’?“ 7y -

a= lx,

However, if =

y
Now, by dafini‘cion
t = .(.:...—5._@. = %% (¢ + D),

13

(30)

(31)
(32)
(33)
(3k)
(35)

(36)

(37)
(38)

(39)

(Lo)

(41)



1l

Also,
- a —
Wow consider any interval I,. If the trapeschedron lies

completely within Ij (that is, ¥y 1 < R2< (Rg+ Ly) € ¥i), then

lpi = ly. (43)
But, if Rp ¢ Y31 « (Rp + 1y) = ¥y,

Now, if ¥y 9 < Rp < ¥3 & (Ry + 1),

lpi = (Y3 -¥3-1). (L6)
Finally, if 22 » Yi or ¥i-1 7 (R2 + 1y),

1 0.

pi = (47)

Tow define a,, 2,, 4,5 s An ac the chord length of the
part at ¥ = Ry, Y = ¥, ***? ¥ = (Rp + 1y) respectively, low
if Yi.1 & Rp < (Ro+ly) & Y3,

aj_1 = @, and

If Ro< Y3y < (Ry +1y) & ¥y,
aj-1= a + (mp - m) (yg-1 - Rp) and (L9)
as = b,
Or 1f ¥4_j < Ry < ¥y € (Ry +1Ly),
aj;_1 = a, and
ag = a + (my - m) (¥y - Rp). (50)
But if R, < ¥y 9 < ¥3 < (Ry+ 1y),

A1 = a + (my - m) (Ys.1 - Rp), and



4= a+ (ml - m) (Yi - Hy). (51)
Finally, if R, 2 ¥; or ¥, ; 2 (R, + Ly), assume
8y.] = a, and
8.1 = b,
Define Vpi to be the volumn of that portion of any part

in I; and Vp to be the total volumn of the same part, Then
. Vs
Wog = vp"' Wy (53)

Define Iy as the slope of the plane of symmetry of the

surface with respect to the xy plane, Then from the SA#E Welsght

Handbock (2),
1 -1
Vpi: gi (al-l"‘ ai) t sec tan™ " M,, and
. 1 y “ -1 ‘
Vp = .2.‘£ (a + b )t sec tan 1Q. (54)

By substitution of (5l) in (53),
f 1ot (839 + 24)

In a manner similiar to that used in proving (30), it

can be proven that

(ml - m) lpig-*' 3 ag.1 1pi (56)
(my - m) l1og + 850

low, according to the SAWE 4eight Handbo.k (2), the center

Tpi = m ax Eig, Yi—}] + i

of gravity of a trapszoid lies on the line connecting the mid-
points of the parallel sides, so
.}-{'piz Ry + ‘('1'2:“' + (?pi - m ax E’Yi_l, Rz] ot
+Y4_1- min [REZ, Yi-—l—J m, (57)
Assuming the part to be symmetrical about the surface
plane of synmetry,
Toi = Tp + Mz (Tpi - Tp). (58)

The followins relationships are defined for later use:
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Ry = By + (Y35 — min [32, Yi-ﬂ ), and (59)
Rg = max [RZ - Yi-ﬂ . (60)
Now der'ine a set of orthogonal axes such that the p -8
axis lies in the plans of symmet y of the surface, the 87
plane is parallel to the Y2 plane and passes through X=Rh’
and the «Y plane passes through Y = Ry, Also define 1piﬁ
as the length, measured parallel to the #-/4 axis, of that
portion of the part being in Ij, Then,
L, (61)

1 1pi sec tan P
Assume that negligible error will result in the momsnts

nip =
and products of inertia if the projection of the part onto
the XZ plane is assumed to be a rectangle with sides t and
1 . Then the moment of inertia of the portion of the part

pi
in Ii about ¥ -¥ is

/fh/lpm TR (e pt) et i d
Ig’ypi: P Ly, Jp "

p
i 3 3
pri:pt[ﬂhﬁ )

(BLy DL-Wo_om,
3 12 I~ TIe fr
+(1 (L ;11-1 4 2i-1y

piﬂ)

3
- 2 2
m, c\i..l (lpig) (a-i___i3 (1piﬁ)] (62)
+ = + - .

2 3

Using the moment of inertia transfer formula from ilag-
gard (1),
< 380 (63)
I, = 1 - W o R 3
7rpi Yy pi TR

where<;pi, Epi’ and,;bi are the co~ordinates of the center of

gravity of the portion of the part in Ii. Iﬁhi is then the
i

moment of inertia of the part in Ii about the ?pi - ¥ni axis,

How obviously

olp1 = Ko1 = Ry,
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—

Tz “ -1 ..
’Bpi = (fpi - Rg) sec tan My and (6l)
{(-pi =0 .
Now the

noment of inertia of that portion of the part
in I about the «£-<axis is

loig M +ciny St N i o
Io('::(pi :/Oo/ /ﬂ ( @ -+ X ) c3 L4 o ol ﬁ 5
44

%
Wpi 3 5
QMpi:' 12(aj-1 + ai) {é(lpie) + (lpiﬁ) t ] (ml - )+
28.1-]_ [)4- (1piB )2 + tz]}, (65)

Again ap 1 /ing the moment of inertia transfer formula from

Haggard (1), the moment of inertla about the c;ZF‘. - °<a>~' axis is

Iz = Lux

2)
pi

- 2 - v
1T wpi (Xpi +4 1 (66)

low consider the moment of inertia of the part in Ij
about the B -f axis,

/J,‘;ﬁ/»v,pm,.q tsy \
= x“*’ ')(f J g [ o c';; ¢
Tee 1= % A (¥ Sy e G

7

— idpi 2 '
I pogiud t° (1pie) (1 -m)
Ffo112(a;-1 + a1) [ pie’ L

+2(lp15)3 (m13— mB) + 2 ai-1 tZ

2 2 2
+8 aj.l (ml lpig + a,;, )

+ 12 my (1}01?) 31_12 . (67)

Once apain ap lying the nmowent of ine-tia trancfer [ormula,

the moment of inertia about the B—pi ",[?E-Di axis is

- b 0 = v 2
166, = tpaor = el (K154 ¥ 015 (68)
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Now by theoren I, the products of inertia,});[; . and/Jo—(-?
ni

pi

—
—

with respect to the 5('91 —o(pi, Ypi - ?pi and ﬂpi -{%i, ;ﬂ —;;pi

axecs respectively are

-5 M R— —— O. (69)
P X .'5‘-91 = ( :’\\ypi -

Now the product of inertia with respect to the X-+, & - £

axes can be exXpressed as

mpr A S
Pe«,a';.,:/&"tlg / o(ﬂcl@ém’.)

¥
- Ip1 Lpig 3(1 i )2 (le - m2)
12(aj.1 + a1) pig

) (70)
+ Ai"’l (8 Iill lpiﬂ + 6 ai_l) .
Aoplying the transfer formula from dagmard (1) the product of

s

inertia with respect to the :(pi - °<"fi’ !,Z-Z?)i - goi axes is

)
.= T = (71)
P{.'?:P’- - OKpP‘. - \/\/P" (°<P" /“%F’t>" .
Obviously
I«g‘fpi = Ig@;pi. (72)

Now define

X1 =4 - Xpia
Y1z ¥ - Tpi,
71 = % o= Dpi,
°<1: < - DZpi, |
Bi=p- /o1,
¥Y1=Y~ ¥ei » 8nd
b =tan™ M,
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Then, by examlnation of the relationship between the two axis

systems,

Zq= [3, sin ¢ +Y, cosd,
I = @1 cos b= ¥ sin {f’,
A = (73)
Y].: Zlcos - Yy sin ¢),
(Fy =iy cospt 2y sin @ .
S0, .
o a2
= + z ‘
T¥5o1 = /x av +p f 2 av,
— = e 2 2
Iyypi = IWpi sin“ ¢ + Iﬁpi cos< ¢
. (
+2 Pys . sin ¢ cos ¢, (7h)
pi
2. 2
I-—— = Iwy  sin 4+ Izz  cos” ¢, (7ha)
‘yypi \Npi 4‘ ﬁe’pi
Al so,
I = /X ¢ av + .)/Y ¢ av
27,4 '/3 1 & 1 ’
P, 2
—— R c«d - 2 ’
Izzpi = pri cos® ¢ I-,g;gmi sin %
-2 fmpi sin 4) cos ¢, (75)
2 2 »
T = Igy . co Is7 . sian ¢. (75a)
zz,y = LV 08 &+ Tas, ¢
Then,

Pﬁypi:iﬂ;@—pi cos P - f:‘?pi sin ¢, (76)
P;g-ipi = Rg(gpi cos z}t. (76a)



Also,
Py = /°/X1 2, av,
Pes = Py sin ¢ + I
szi qﬁpi ¢ X
P - P sin{,
szl d‘ﬁpi
Finally,

J2n

7 = (I,ffpi - I'é_gpi) sind cos 4
2 2
-+Pg;pi (cos ¢ - sin ¢ ),

i ::(I;ypi - I;;pi) sin ¢ cos4,

20

(77)

(77a)

(78a)

Vext consider a nart that is considered to be a bean,

Define the fo

llowing:

¥ = angle that the beam makes with the yz plans,

c =
da =

n, =

m3::

By a proof similar to that used in (30),

Rop= ¥p - 3 (mu - m3) 1y + 6 ¢

depth of the beam at the inboard end,

depth of the beam at the outboard end,

slope of the upper edge of the beam with respect

to the xy plane, and

slope of the lower edge oi the beam with respect

to the xy plane,

2 (™ - ™) 19"+ 3¢ 1y




Now,
¢ -D
m3 = Mp +(=7—37)

- (9-21'—59) and (80)

my =
4.

c =C+ Rp (my - m3).
Simultaneous solution of (79) and (80) will now yield Rp,

M3y mu, and ¢, Obviously now

d=c +1ly (m - m3), (81)
- -1 1x
\{/ t'azl T&.’,
Ry = fp - (?b - Rp) tan i, and (63)
- — C
R3 = Zp = (¥p - Rp) M2 - 2 (8h)

Wow consider that portion of a beam contained in Ij.
Examination quickly shows that equations (43) through (L7)
also are valid for the beam, Now define Gg, Cq, Cp, ***, Cp
as the depth of the beam at ¥ Ry, ¥ Yq, °°°, ¥ (Rp 1ly)
respectively, Then:

(1) if ¥y € Ro < (Rp +1y)& Yy,

Ci1 = G, and

C; = d; (85)
(2) 4if Ry < Y3 7 < (Rp+1y) & ¥y,

Ci__l:— C -+ (mu - m3) (Yi-l - RZ), and (86)

Csy = d;

(3) If Y37 € Rp <Yy =<(Rp +1y),



C;j_1 = C and (87)

C; = C+(r.~1}4‘ — 1213) (Yi - Rg);
() if Rp = 3.9 < I3 < (Re + 1y),
Cip= C +luy - my) (Y307 - Rp), and

(03)
¢i = C +(my - m3) (Y3 - R2);
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(5) finally, if Ry 2 ¥y or Yy 2 (Rp + 1y), ascume

C;_1 =6, and
C; = b, (69)
Using the same tyoe of proof as used in (55),

ipy = —pi (i3 + C3) e (90)
1y (c+d)

In & manner similar to that used in (30),

2 (ry -m3) (159)°+ 3 Gy (154)

?pi: R2 -+ (91)
3 (my - m3) (Lpg) 46 Cig .
Also,
Xpi = Ry *’ﬁpi tan ¥, and (92)
7Zni = R3 + C/2 + (Ypi - R2) lig. (93)
Defins,
lo1y = lpi sec W (oL)

Now define a set of orthogonal axes such that the beam lies
in the /31 . plane, with C;_; also lying in the A, Y. plane
and (2 = R3 ﬁ*C/2 +~Yi_1 MZ) lying in the <<1/i,plane. 50,

g -

the co-ordinate: ol the centsr of gravity,‘{Zpi, ﬂ%pi’

s

X2pi,
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are deiined as Jollows:

A op1= O

é%ni - (?pi - max [Yi_l, RZ] ) sec q& and

szi = (Ypi - mall I-Yi"'l’ i{ZA] ) _i;12.

Let Iqqui, Igﬁzpi, ey, rg;zpi, be the morients and products
of inertia of that portion of the part in Ii witn respect to

the indicated centroidal axes,

Then, by a prool similar to that used in (02)

- (78),
2 vl [ 3 3 3
— = Zpi I _n
Io{d\l?‘l - Gi-l + Cj_ {(lpiv) (]rji; -+ ;}L lg
- M 2 m° By_q Gy
T+ oyl 3 t—3
m o C. - 14 (c 3
hp -1 PlV_+ i-1)
2 3
oy (B i) (95)
“pi ﬁ%i +¥pi '

I¥y = wpi
2pi 12( Ci.1 + C1

){ Es(lpiY)S (my, = 13)
+2 G5 Lu(lpiw)ej}

- iy [ (Uopy ) + (,§2pi>2], (96)

¥l
= pi 3 3 3
*201 71206, ; + ¢;) [2 (Lpgy)” by = m37)

2 2
+8 03 (% 1p1y® & 09%)



+12 mh' “‘pi?’) (Ci_l)g]

gy - 2 5 .2
- w‘pi [ (“(2131) + (szi) f;

oo Api (1piy)
P17 T2 (611 + Cq)

+Cq1 1 (8m{+ lpi‘f’"}' 6 Ci?l)]

2
sin ¥ + I—

P - P __ cosVﬁ
Y251 = Yiopt

P=— — P—_ . sin¥, and
XZDi YBEP‘ s {j’ n
P I— - I
Xypi = ( A 2pi Feopi

Vertical Surfeaces

B8 2pil

2
[3 (1piw) (mu

2
cos ',

2 2
ﬁbi = o 2pi cos kf‘/ T‘ PR 2pi sin (//’

) sin Ycos?

Consider a mapping, é', of a set, H, onto

defined belou,

H

IR, N
Ry
- S
fo

(97)

(98)

2 - m32)

(99)

(100)
(101)
(102)
(103)
(104)

(105)
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(Y09 Y]_: e Yi-—l: Yis tet Yr\) — (ZO’ Zl’ Tt Zi-—l’ Zi’
X > A
Y Y
7 — Y
KX - Ky
Y r
Ky K,

Think of removing all of the terms in equations (30) - (105)
that are elements of II and replacing them with their respcective
mates,dd, Irom V, It can be proven that the resulting equations

are valid for vertical surfaces,
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CHAVTER V
CiLCULATION Of IHaRTIA CHALACTHERISLICS
General

Define the following basic symbols:
W = welght,
X, 7, Z = co-ordinates of the center of gravity,
Iz, Igy, Iz = moments of inertia about the subscript
axls, and
97?, Pz P?E = nroducts of inertia about the sub-
script axes,
Followinr are definitions of subscripts to be used in conjunc-
tion with the above symbols:
I = the vortion of all parts contained in Ii’

C = a complete component, and

A = the complete airplane,
Intervals of a Component

Consider any interval, Iy, On any component of the air-
nlane, # finite number of parts extend through this interval,
The quantities J,3, Tpqs Togs zpi’ I%%,10 157010 TZ2pi P10

o nd J.. can be computed for the portion of each part
“xzpic ® YZpi * P P

in I4 by the equations of the previous cha-ter, The inertia
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cheracteristics of the portion of the total cowponent contained

in I; can then be written almost directly from definition:

Wy = //3 v = 2 Wog, (106)
T3

Xy /Ii Xp dv Zf(wpi Epi)

- - ; (107)
‘ W
/ 2 dv 1
s
- . (Wos Y.2)
T, = J/Y s dv ~ Z pi “pi , (108)
Ij_ - Wy
/ /oav
/’Ii
/Z;,;, av
"‘Z. = I ey
o 2 U Pad (109)
f" av - Wi
13
/ 2 B 2 2
I ./ (r ) dv= L(Y-Y ) (z2-2,) ] odv
« .i..\/ p "i i + i [)
Il Ii
- " 5 2 t —2
oz a2 i T+ £ s B

R S
~ (2w ;) (Zi°+ T,9), (110)



IS}':J;’ 5

ZZi

]
H
}-"\
ot
<f
N
[N
=
-

it

& .= 2y 5 2
4 Lﬁpi+i (WP; x”s_‘)i ) -+ Z(Wpi Zpi )

. 2, 5.2
- (Zgg) (G + %9,
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(111)
2
- ////) (rz) dv,
Iy
e : T 2 "t = 2
T2 Iy, +5 (g Xp1) + 2 (g Tp1©)
=2
- (fwoi) (X4~ + Yla), (112)
X7y /urﬁ s
13
:é(wpi Xoq fpi) Xy rfl Wy + 2 P'}'f;\?".)i’ (113)
p P dv,
Iy
"“4"/ - - 1 S—
oy %y 2 - %%y i1+ 5 Pxg ;, end (114
P Iy dv,
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Complete Component

2ach component may be thought of as being composed of a
finite nuuber of segments, a segment being that portion oi a
component within a given interval, The inertia characteristics
of eny component then can be nroven, DY methods similar to

those used above, to be

"dc = éc ‘W'i, (116)

Ko = Z (g X3) (117)
wcm

T = 7 (M1 Y1) (118)
W

- We 2

o= fc ( 1 i) (119)
We

’ T 2 4 1 '?.2 e
IE&'C: éc (4 T390+ 2, (Wy Z37) + 2*0 5%

—(To + Zg ) Ves (120)
Iﬁc: 20 (Ni X12)+ ic (W1 ziz) 4‘20 IWi

(T %2) g, (121)
BT T v (4374Z5) - X T We +£c Pz, s (122)

2 .2
ITZ . = Zr_ (Wg X3 ) + 2::_ (4g &1 )+ ic’, Izzi



s 2
- (X7 Ye) W,
‘%z, = %o (g Xy Zy) - XZAo+ £ | Pxg, and
PTZ — Z (Wy Y3 24) - YeZoWe t+ ic P?z-i'

Complete Airplane
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(123)

(124)

(125)

In the same manner as above, the inertia characteristics

of the total airplane may be expressed as

WA_‘_"{VJC’

X, =5 (We X.),

WA

Y, = € (W, T¢),

Wy

Zy = € (g Yo

-x":;iA: 5 (W, Tf(:
(1,5 + 2,2 iy,
o2 =2
IWA: g (g X Y+ Z (g 2.5+ 4 IWC
> >
- (Zy7+ X7 M,

, 2 5 2
I-Z.EA‘I.i Cig To J+ 2 g T+ iIzzc

(126)

(127)

(120)

(130)

(131)
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CHAPTER VI

CALCULAYION O UNIT INZRTIAL LOADs ON

AN AlnrDANS

Inertial Loads wWithin A Rigid Body
Consider a body that has been partitioned in the manner
specified in Chapter IV, Define the body reference axes to
be fixed relative to the body and have its origin at O, The
body and hence the body refercnce axes are moving with respect
to a set of fixed ground axes, Define the motion as follows:
?‘: linear acceleration of O,
W= ansular velocity of the body, and
= angular acccleration of the body,
llow consider any interval, Ip, of the body. Select finite
voints (n, n-1, **°, (p+ 2), (P+ 1), p, (p - 1), °**, 2, 1)'
in the intcrvals (I, I cee, I

n-1?

The portion of the body in interval Ipfl exerts a force Xp+1

pr1? Tpr Loy TTTs T2 Iyl

—

and a moment'ip+1 on interval I ~at the polnt (p+1). In like

manner, the portion of the body in interval I

i

p-1 exerts a force

_— Xp and a mcment "Zo on the interval Ip at the point (F),

e
The portion of the body contained in interval Ip exerts - Fm’
).

= . -
a force, and - Ii a moment, at some reference point (R

p!
Now define the f{ollowing,

P

i

X, = the vector from O to point (),
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= the vector from O to voint (Rp),
vl

3k

X = the vector from O to any point,

Z = the vector from point (Rp) to any
noint, and

= the vector from O to point (r+l),

Xor

Summing the forces and moment on the interval I, the

following 1s obtained:
-
X =2 -F, and (131)

+
)
o]
4
i
My
Bt
It

& ptl

- -~ = .
-(F - %) XF. (132)
by p p

The relationship between the Body Axes and Ground Aies
are defined as follows:
E% = the vector from the origin of the ground axes
to the origin of the body axes

the vector from the origin of the ground axes

H
i

to any point.
i time derivative with respect to the ground axes and

body axes will be indlcated by a small circle [O] and a dot L-J

resnectively.
For the remainder of the paper, define dm = fbdv. Then

-

- V] - a - 57
V and a, the true vsloclty and acceleravlion respectively of

dri may be sxvressed

P

=
v r, and
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Also

Jood (i) proves the following relationship for any vector,

-
h‘
’ - - w

/\' )
-~ h+ W X,

-
For W itsell,

- . - - i
. o c_’
Wz o+ W X =W,
Now consider,
- - -
r = 1"0 + X,
- e = I
T oryt X +w XX,
T': % c__) S - bl - P,
r-:roJ,» :E-;—w}(x]thx[ﬁ%-W)(x]

— —

‘e —5”- - Qo .Q’. N,
=ry + f-l—wa%—-wa-l-wl(x

-
+“V1x(§+§),

Then
- =
k \

— ,;" =N 'Jf -~
ToY e P2 a X Red Xx 4 X Ginx).

But sines tho body is rix:d relative to the body aXes,

S i
Oc

X = f( = 0,
Therefore, ;:-‘-:)? + :{ X % + h? X (W X 2) ,
or using the notation o Jood (3)
a=y+ x4V, (133)
Furthermore,
azY + (74 47 W) x
=Y (L a7 (e 2. (131)
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Let // indicats the integral over the intervil I
P .

Defins

/" .
m = / an, (135)

/

p
It follows that

n. z r‘//Z<hu,
2 p
p

whers Eﬁ is the vector from (Rp) to the center of gravity of

the portion of the body contalned in Ip.

Now define,
jP:* z" 2 am, (136)
e

From Newton's law,

:/," y + (Ve ) (rp-i— z)] dri, (137)

i(:«‘
and
M = 7Va d
ip... a m
J"}
:/ [z“)/+ AN CUESIRGTS (rp+ z) dm,
l‘)

By apolication of (6) and (0),

_ v v v v L
Mp—)// [ zv'Y - 4 (rp-# z2) A - W'z (rp'f z)
‘:‘
-t w (r_+ 2) | an. (138)
p v
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By examination of (131), (132), (137), and (138), equa-

tions (131) and (132) may be expressed in the forms

— vV oow .
_)_c_p: Sp (-¥) + (-« -¥ ") €., and

Vv
L =b (-9 +a oL+d'H
p s

p
where:

sp is a scalar,

Por Cps dy

LR 4p are 343 matrices,

d, are column matrices, and

WA wgdn ,

(139)

Wow define AD Sy AD ¢, AP, Ad, APH, and ApQ, as the

B D

differences in s, ¢, b, d, i, and § due to consideration of

the loads imooged by the body in Ip and the transfer of loads

to point (r).

From equation (139),

—_ v ‘ v
Xov1 = sg0 (-0 + (=" - Tu) ¢

Vo

I v
(Zpri= #p) X = [ 80 (Kpn - KP)] (-9
v v vV
+(Kp{_1 - Xp) (—b( - WW ) C
“lspr (Fpw -xp) | (-9

‘*WV[(KD+1 - Xp) (Cp +i) l

i

2
T [ (xp4 - %)

_ ) A
# | Gpm = ) Cpﬁﬂﬂ.

v

C

p+1’

pt+l

o
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Therefore, due to (Kpﬂ - Xp) Zp+le

b - X
Ap = Spr1 ( ptl P

Ap & = (Xpﬂ_ - Xp) (Cp l) s (141)

Ap H = (xp,1 - Xp) (le)', and

_ y
Ap d= (x5 - xp) ngl'
from equation (1397,

T oz (-M+ (- w) e,

=P p |%
and

b - v Wi

21T Sml (=Y) + (=" = W W) Cpﬂ,
but -F = X - X

b ~p Tp+l
VERNRVIRY
A s{=MN 4 (L -ww)Aa C (1h2)
p p

Now,

(r. - ::p) v(- Fp): Ap S(rp - xp)v (-Y)

v v vV
“’(rp - %) (ol = W W )Apc
- | ]
= APS(rp-xp) (=Y)

v [ )
+i L(rp - xp)(Ap cr)j\a/

\ _ v
+W —(rp xp) apc}

,-r[(rp - xp)\/a CV]O(‘.

&

is - -
llence due to (rp Kp)_ ( tp))
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Ap b :Ap s(r, - %) 5

Az (e - )" (A 1¢>", (143)
Ap 0= (rp - xp) (Apc) ',‘ and
Ay d= (ry - 57 (4,00,

From equation (137),

(- pp):/ am (<Y) + (-7 - 'cavvsrv)/ (rp+2) dm, (1))
p D

Examination of equations (13L), (142), and (1L)i) yields

Ap 8 :/dm:': M, s and
p

Ap c = / (r'p +7) dm = Ty, (I'p + —Z-p)' (145)
P

From equation (138),

- n_p:[ /0 Zvd.mJ ( -Y) +/y}[z"(-o("- w’w) (z, :z.)] dm,
v ’i . N v
= [/Z dmj(-y) -/[Z () (rp,*“ Z) dm
/p

D
- V__V,}V 7
- [[& W (rp+u) dm}
e
-+ [/Zvrpvdm
P

\V4 t
+/z"z"dm°{+ o [/er dm

i = ‘




+/ZVZV}GJ+ Ja
f}

From elementary considerations,

v v B T
ﬂz z” am = -jp,

RV
/Zvdmt
ID

|
e
:(mgzp)v,

v \4 V oV
L r dn < m. A
r 9 ) 9
Af D D TP ¢

! —
//2 T din = mp 4p rp: and
¢ p

—_—
2oy = om. 4 .
4(1 rp dn My Ly Ty

Therefore, due to (—FD) and (-siy),
A s= ms, end

D

d% C;= m, (rp-+ Zp):: mp'ip,

(-

Lo

(1L6)

(147)

wherelio is the vector from O to the centroid of the body in

the Ip interval, Also,
Ap b= my Zp,
——— 3 \/ V’
— -
finally,

(14 7a)

0? and
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2

Lp= b, (=N Qo+ W Wt We dp, (14.8)

where

by = bps + Ap by

Q‘p — ":“i\'tprl -+ Ap Q’

=
|

= Hp+1 + tﬂp

[o))
!

p = Y+ Ay ds

and where from equations (1Lh1), (143), and (147)

Ap 8 = I,

Apb——mpzp-i-mp (r_ - x )+ s

v
(2501 - Xp) Cpyas
T e v |- -
Ap = my Zp Ty S (rp xp) (r. + 2

+(xp+1 - Xp) Cp+i , and
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Formulation of the Matrix of Unit Inertial

Loads

If the subseript "p" is dropped, equations (14&) nmay

be written as

X=-8sIY¥+ ¢l + (~uu) C, and (149)
LT-b'Y + uo+wd+uvH w, (150)

where I is the unit matrix, DBguation (119) may be written in

the [orm

X = A3+ Ap + Ag, (151)

whers Ay, Ap, and 43 are column matrices, It follows that

-5 0 0] v
Ap= -sIV¥=]0 -5 0 Yo (152)
|0 0 -8 __XB, ,
I 0 -C3 Co °<l
Ap= GV = C3 0 -0y A 5
~C c - 0 e (153)
- - B 3_} , and
. i - -
0 W3 -2 i 0 -4d3 Wo:r Gl
|
v v - , .
xB:. (._': AW ) Cc= -WB 0 N’l kJ3 0 —nll 02
"JZ - ‘J‘Jl O | 3 - 1@2 b‘Jl O _z B 03




A= We Co Wat s Co 2
3= 'Cl Wiy .\{2 + Cp W3 + Op iy

Co

In like manner

Cqy
Co

Co

L-Cl W WB - G Wp W3 + C3 Wp

O "'CB "‘C2

L= B+ 52+83+Bl+,

where

B, = - bYY=

Bp = XY=

421

437

Q12 Q3

£ it

422

,

ks

e

o
——

S

932 433

i

2

OL W32 4 Cp Wp2 = Cp Wy Wip = C3 vy W3

-+ 03 W’l

w‘l WB

Wl W 2]

- C3 u‘Jz ’wg

2

L3

(155

—

(156)

(157)
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B3 = Wea= (w’lz W22 !J32) dy
d
dy
_ T s
dp  dy & i
d, d, 4 1,2 (158)
2 2 2 Wo 5
tﬂ. d d J VJ32 ’

0 =iy wp| [m1 hpp  hygl  [Wp

; — (V. . . '
Bu— WoHW NB 0 -1 hpy hpp h23 wp
_-Wg Wy 0 | _1:131 h32 h33~ W3

-

T 2 W g 2 . N
—WBNlhgl -9%’3%‘121'122 “v\l} h23 ~J2th31 v\]2 h32 ¥J2tV3hj3

N ; T i Y P R 2 : N ‘
J}Wlhll v]3\42h12 ”"321115-”1 h31 "N1W2h32 -WlWBhBS

I 7 3 N - 2 gl e
“"vvzdlhll -.'4221'112 -.fgW3h]_3 nl h.21 lev’vIZh.zz adlﬂ3h23

| 0 n3p-hpy hyjhpy  chpy by s
hy; O hyy hyp  Byp-hyy -hyo R 5o
_hzy =hjp O -hy3  hp3 hpo-hyy i3
] Wolly
WiW3
ol .

Equations (151) and (155) now may be combined to form the
complets mabrix solution of the inertial loads shown on the

following page.
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Zquation (160) may be written in the form

=D g, (161)

where
N = the 6 X 1 matrix,
D = the 6 X 12 matrix, and
G = the 12 X 1 matrix,

In actual applications, it will be more efficient to compute

D independent of G, Then ¥ can be determined for any maneuver

merely by selecting the proper G and performing the matrix

multiplication, O G,

Henceforth Il will be matrix of inertial loads, D the ma-

trix of unit inertlal loads, and G the matrix of accelerations

and velocities,

Transfer of the Unit Inertial Loads of an Attached
Component into the Unit Inertial Loads of

the Parent Component

Consider now the case where the inertial loads of a given
component are dependent not only on its own inertial proper-
ties but also on the inertial properties of attached components,
Such a component will bs called a parent component,

Define "matrix of effective unit inertial loads" as the
unit inertial loads introduced into point (P) of the parent
component by the entire attached component under consideration,

The inertial loads of the parent component nay be exXpressed
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in the form

where
N = the 6 X 1 matrix of inertial loads,
Dp= the 6 £ 12 matrix of unit inertial loads due
to the inertial properties oi the parent com-
nonent,
995 Doy ***, D, the 6 X 12 matrices of effective
unit inertial loads of components 1, 2, 3, sc+»
G = the 12 X 1 matrix of velocities and .uccelerations,
Define Fj as the matrix of unit inertial loads at point
(1) in I, of any component, J,
Now for a given interval, Ip, in the parent comoonent
and a2 ~iven att-ched component, j, it is reasonable to assume

that thers exists a matrix

ky, 0 0 0 0 O
0 k?_ 0O ¢ 0 O
0O 0O k., O 0 0
k.- 3
J
o 0 0 k, O ©
(163)
c 0 0 0 kg O
0 0 0 0 0 k6 ,
such that
Dy =Ky Iy (16L)

Substitution of (16l) into (162) yields
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N = (Dy + K3i'q + KpFp 4 vee +Kg'g + 200 + Kpfy) G (166)

Equation (106) shows that once the unit inertial loads Tfor the
parent component are computed, the inertial loads due to any
airoluane maneuver can be computed merely by multiplying by

the proper G,
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