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We consider the low-frequency limit (homogenization) for propagation of sound waves in periodic
elastic medium (phononic crystals). Exact analytical formulas for the speed of sound propagating in a
three-dimensional periodic arrangement of liquid and gas or in a two-dimensional arrangement of
solids are derived. We apply our formulas to the well-known phenomenon of the drop of the speed
of sound in mixtures. For air bubbles in water we obtain a perfect agreement with the recent re-
sults of coherent potential approximation obtained by M. Kafesaki, R.S. Penciu, and E. N. Economou
[Phys. Rev. Lett. 84, 6050 (2000)] if the filling of air bubbles is far from close packing. When air
spheres almost touch each other, the approximation gives 10 times lower speed of sound than the exact

theory does.
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Acoustic waves play an important role in our life, being
a universal carrier of information in vivid nature. In most
cases, the media where the acoustic waves propagate are
inhomogeneous. A common example is a mixture of
water and air. During the past century the problem of
propagation of sound in heterogeneous media has been
extensively studied [1]. In the last few years artificial
periodic elastic structures, phononic crystals, have been
successfully fabricated [2]. Because of the presence of
acoustic gaps — regions of frequencies where sound does
not propagate [3] — phononic crystals can be used as
soundless background for many technological devices.
Phononic crystal with point, linear, and surface defects
permit manipulation of sound: they guide the acoustic
waves, split, and bend them [4]. At low frequencies pho-
nonic crystals possess a property to focus a sound beam
[5] and thus may find numerous applications in acoustic
surgery [6]. To design an acoustic lens one needs to know
the refractive index of the material or the effective speed
of sound. At low frequencies (well below the band gap)
the dispersion relation is linear, w = cqk, since one
wavelength covers many periods of the structure, thus
averaging the inhomogeneous medium. Calculation of the
effective parameters of the uniform medium (effective
speed of sound, c.¢, and the effective elastic moduli) is a
long-standing problem of the mathematical theory of
homogenization [7]. Although the theory itself is well
developed and predicts that different media homogenize
at low frequencies, there are no explicit formulas that can
be used for calculation of the effective parameters (see
recent review [8] on homogenization for different types
of the wave equations). There are also approximate meth-
ods that allow calculations of the effective parameters for
particular structures [9-11]. Sometimes the effective
elastic moduli can be evaluated from the exact upper
and lower bounds [12].
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In this Letter we develop an exact analytical theory of
homogenization of periodic elastic structures. Our ap-
proach is based on the plane wave method that has been
successfully used for homogenization of periodic dielec-
tric medium (photonic crystals) [13]. We obtain compact
formulas for c.y that take into account the multiple
scattering and the microstructure of the periodic medium.

We start by considering a periodic arrangement of gas
bubbles in a liquid. In the liquid-gas mixture the propa-
gating mode is a longitudinal one, and it is characterized
by a scalar parameter, e.g., pressure, p(r), that satisfies
the wave equation

L ap_ o (Vr
ORI Quﬂ’

where p(r) and A(r) are the density and the local com-
pressibility coefficient. In a periodic structure 1/A(r),
1/p(r), and p(r) can be expanded in a basis of plane
waves,

(D

ﬁ = Zy(G) exp(iG - r),
G
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p(r, 1) = exp(ik - r — iwt)Zpk(G) exp(iG - r),
G

where k and G are the Bloch vector and the reciprocal
lattice vectors, respectively. Substituting Eq. (2) into
Eq. (1) we get a generalized eigenvalue problem in G
space,

> (G -Gk +G) - (k + G)p(G')
G/

=0’ ¥(G-Gp(G). ()
G!
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The dispersion relation w = w,(K) (n = 1,2,...) is ob-
tained from the condition that the set of Egs. (3) has a
nontrivial solution.

It is easy to get from Eq. (3) that in the static limit,
® = k=0, all Fourier coefficients p,(G # 0) vanish.
The only nonvanishing component p,(G = 0) = p, de-
termines the uniform static pressure py. Then the term
with G = 0 gives the principal contribution to the Fourier
expansion (2) of p(r) in the long-wavelength limit,

p(r) = poexp(ik 1) + > pi(G)exp(iG - ).  (4)
G#0

Equation (4) means that the medium homogenizes; i.e.,
the solution of the wave Eq. (1) approaches the plane wave
when k£ — 0. The sum over G vanishes linearly with k.

The effective speed of sound is obtained from Egs. (3)
and (4) by taking the limit

Cerr(k) = %Lmo (w/k). (5)

It turns out to be dependent not only on the average
characteristics of the periodic structure but on the details
and geometry of the unit cell and on the direction of
propagation k = k/k. Equation (5) determines the phase
velocity, which in the long-wavelength limit coincides
with the group velocity since the dispersion is linear. We
substitute now Eq. (4) into Eq. (3) and obtain two equa-
tions for the terms of the order of k and k2, respectively,

k -Gr(G)py+ > G- G'v(G —G)p(G) =0, (6)
G'#0

(K7 = ’P)po+ D k- Gw(=G)p(G)=0. (7
G'#0

Here 7 = »(G = 0) and ¥ = y(G = 0) are the bulk aver-
age of 1/p(r) and 1/A(r), respectively. For a binary
composite 7 = f/p, + (1 — f)/p,, where f is the filling
fraction of the inclusions (material a). Note that the
quadratic approximation, Eq. (7), involves only the terms
with G = 0. Eliminating p, from Egs. (6) and (7) and
using the definition (5) we come to a homogenized set of
equations valid in the limit k, ® — 0

(7 — 7 D G- G'v(G — G)py(G) +
G'#0
> (k- G)k - G)r(G)(=Gp(G) = 0. (8)
G'#0

The set of Egs. (8) has nonzero solution if its determinant
vanishes,

det [(c%y — 7)G - G'v(G —

G') +
G.G'#0

(k - G)(k - G)v(G)v(—G)] = 0. 9)

Although Eq. (9) is an infinite-order polynomial equa-
tion with respect to A = (c%;¥ — ), it turns out that it
has only a single nonzero solution. To obtain this solution
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we reduce Eq. (9) to a standard eigenvalue problem by
multiplying it by the determinant of the inverse matrix,

det{{G - G'v(G — G/)]'}.
Gcée/:t [B(G,G') — Adgg] = 0. (10)
Here
B(G,G') = —k -Gv(G) ) k- G"v(-G")
G"#0
X [G// . G/V(G// _ G/)]_l.
(11

The matrix B(G, G') is written as a product of two factors,
one of which depends only on G and the other only on G'.
Then this matrix corresponds to a projection operator that
has an eigenvalue A = TrB(G, G'). This results in the
final formula for the effective speed of sound,

(k) =

C

Z k - G)(k - Gv(G)v(—G')
GG’ #

~<||w
~<||—~

X [G-G'»(G -G (12)

The effective speed of sound depends on the direction
of propagation, and is valid for an arbitrary form of the
unit cell, geometry of the inclusions, and material com-
position of the (liquid) phononic crystal. Equation (12)
can be rewritten in the form

Cgff(l/i) A klkj’ l:J =Xy (13)
where
v
Ajj 2551'; 2y Z (GG} + G;,G))v(G)v(—G')
Y6G6+0

X [G-G'»(G — G\, (14)

It follows from Eq. (13) that radius vector 1/ces(K)
sweeps an ellipsoid with semiaxes 1/A,, 1/A,, and
1/A,, where A; are the principal values of the tensor A,;.
Thus, the three constants, A,, A,, and A,, determine
completely the acoustic properties of a phononic crystal
in the long-wavelength limit. The crystal is isotropic only
if A, = A, = A_; otherwise it exhibits anisotropy.

For the case of binary composites Eq. (12) supports
the widely used Wood’s law [9] cepr = (Aegr/ pegr)'/? since
the dependence on the bulk moduli of the materials en-
ters only through the parameter 1/Age = ¥ = f/A, +
(1 = f)/Ap. All the details about the microstructure en-
ter through p.;. Recently an excellent approxima-
tion for p.s was obtained in Ref. [14] for a random
distribution of air bubbles in water. In order to compare
the results for regular and random distribution of spheri-
cal bubbles we plot in Fig. 1 ¢ vs f in a simple cubic
lattice (solid dots). This phononic crystal is isotropic. The
solid line shows the dependence obtained in Ref. [14] in
the coherent potential approximation [15]. One can see
that for small and moderate filling fractions (f << 0.3) the
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FIG. 1 (color online). Effective speed of sound calculated
from Eq. (12) in a simple cubic lattice of air bubbles, ¢, =
330 m/s, in water, ¢, = 1500 m/s, (circles) and in a conjugate
lattice of water drops in air (squares) vs filling fraction of the
air. The number of G values (plane waves) involved in these
calculations is N = 800 that guarantees a good convergence of
the numerical results. Solid line shows the speed of sound
obtained in Ref. [14]. Insert shows blowup of a region of low
concentrations of the air.

coherent potential approximation gives the results that are
very close to the exact formula (12). In particular, the fast
drop of speed of sound for dilute mixtures (f < 0.02) is
equally described by the two approaches. Direct numeri-
cal solution of the wave equation also gives similar results
[16]. For f > 0.3 the curve obtained from Eq. (12) grows
up rapidly, and at the filling fraction f, = 7/6 when
spheres touch each other c.; reaches the value of
0.18¢y. It exceeds by almost ten times the value of c ¢y =
0.02¢, obtained from the coherent potential approxima-
tion [14]. This rapid growth is due to an open air channel
in a phononic crystal with overlapping spheres (f > f.)
where sound propagates mostly through air. Therefore in a
lattice of overlapping spheres c.; is close to the speed of
sound in pure air, ¢, = 0.22¢,. Since for a given structure
ces(f) is a continuous function, there is a transition region
from a low-speed region at small filling fractions (f <
0.3) to a high-speed region at f close to f.. Approximate
theories fail to explain the region close to f.. Here the
interaction between bubbles becomes very strong, giving
rise to a fast increase of the speed of sound.

In a conjugate lattice — water drops in air — the pres-
ence of water inclusions does not play a significant role.
Squares in Fig. 1 show the effective speed of sound in a
conjugate lattice. Water drops in air can be considered as
rigid spheres where sound does not penetrate. It was
demonstrated in Ref. [10] that the presence of rigid
spheres decreases slightly the speed of sound in a ma-
trix material. This tendency is clearly seen in Fig. 1. Note
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that the curves for the two lattices never meet each other
because these two structures are not equivalent. However,
for a special case of cubic inclusions the two lattices
become geometrically equivalent at f = 0.5. Therefore
at this point the two curves meet each other; see Fig. 2.
Note that for cubic atoms the transition region starts
earlier, at f = 0.12, and at f = 0.2 the effective speed
of sound practically saturates, reaching the value of c,.
Although the structure with cubic inclusions is not of a
real situation, it helps to clarify that the fast increase
of the speed of sound in the transition region for the case
of noncubic inclusions is a manifestation of the continu-
ity of the curve in Fig. 2. The latter is due to an additional
symmetry between the direct and conjugate lattices.

Now we proceed with homogenization of solid two-
dimensional phononic crystals. We consider a uniform
along z elastic material with periodic (in the x-y plane)
dependence of the elastic moduli. Two elastic eigenmodes
with transverse and mixed polarization can propagate in
this system [3]. Here we consider only the transverse
mode when the Bloch vector is in the x-y plane and the
displacement vector u = (0, 0, u) is parallel to axis z. The
dynamical equation for this polarization has the follow-
ing form (see, e.g., [3]):

Pu

3=V OV, (1)

p(r)

Here V, = (9/dx, 9/9y, 0) is two-dimensional gradient.
Since the vibrations are transversal, only the shear modu-
lus 7 enters in the wave Eq. (15). A comparison with
Eq. (1) shows that Eq. (15) is a two-dimensional version
of Eq. (1) provided that 1/p = v is replaced by 7 and
1/A = v is replaced by p. After these substitutions we
can write the formula for the speed of transversal sound
directly from Eq. (12),

10 —————
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FIG. 2. Same as in Fig. 1 but for cubic form of inclusions.
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FIG. 3. Circles represent the speed of sound calculated for
acoustic lens of Ref. [5]. Because of the presence of the third-
order rotational axis of symmetry this phononic crystal is
isotropic.

N T 1
k) =1 - = Z (k - G)(k - G)7(G)r(—G)
P PE
X [G-G'7(G —G)H] L (16)
Here G = (G,, G, 0) are two-dimensional reciprocal lat-

tice vectors. For transversal vibrations the Wood’s law is
not applicable. One can see from Eq. (16) that the effec-
tive speed of sound is determined by the average density
p and the effective shear modulus depends on the details
of the microstructure.

In the experiment [5] with focusing an acoustic beam
by a phononic crystal of aluminum cylinders the trans-
versal vibrations were not excited since between the cyl-
inders sound propagates through the air. Because of very
high contrast between the acoustic impedances of alumi-
num and air, the cylinders can be considered as rigid. In
this case, a two-dimensional version of Eq. (12) is appli-
cable with v,; = y4; = 0. The results of calculations for a
hexagonal lattice are shown in Fig. 3. They are in reason-
able agreement with experimental data [5] and with a
simple model c.¢s = ¢,/+/T + f proposed there (solid line
in Fig. 3). Unlike this, the approximation ¢, = c44/1 — f
proposed in Ref. [17] (dashed line in Fig. 3) strongly
deviates from the exact result.

In conclusion, we report exact analytical results for the
speed of longitudinal sound in 3D periodic gas-liquid
mixtures and for the speed of transversal sound in a
periodic arrangement of solid cylinders in a solid matrix
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(2D phononic crystal). Our formulas reproduce the dras-
tic drop of the speed of sound in water with air bubbles.
We demonstrate that the phenomenological Wood’s law
holds for the longitudinal sound but it fails for the trans-
versal modes.
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