| LEGIBILITY NOTICE

A  major purpose of the
Technical Information Center is to
provide the broadest dissemination
possible of information contained in
DOE’s Research and Development
- Reports to business, industry, the

academic community, and federal,

state and local governments. -
Although portions of this report
.are not reproducible, it is being
made available in microfiche to
- facilitate the availability of those
parts of the document which are

legible.




O T SR SRS GRS

Printed in the United States of America. Available from
National Technical Infarmation Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A08; Microfiche AQ1

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government no- any agency
thereof, nor any of their employees, makes any warranty, e¥press or implied, or
assumes any legal liab.lit, or responsibility for the accur.cy, completeness, or
uselulness of any information, apparatus, product, or process disc.osed, or
represents that its use would notinfringe privately owned rights. Refercnce herein
1v any specific commercial product, process, or serviceby trade name, trademark,
manufacturer, or otherwise, docs not necessarily constitute or imply its
endorsement, recommendatior:, or fzvoring by the United States G overnment or
any agency therecf. The views and opinions of auth.rs expressed herein <o not
necessarily state or refiect those of the Un.c2 Siates Government or any agency
thereof.




DISCLAMER
Tha g’ mm CYVOMRC 3 &~ JCIDUCT ST OIS TDORRONC By o STy 07 T UMIC 5230wy Sower e,
T e e SO e et AL gy QU et MO sty 3P T aeTIoyen e
WETHTY. ot x T el Y sSEmwn e, e DRy M CeDners T, =

ORNL/CSD/TM-182

T Ty atw T T T ST e W e Gttt O e Gy T

ORNL/CSD/TM--182

DE82 018570
DEVELOPMENT OF A NEW TwWN-DIMENSIONAL

CARTESIAN CEOMETRY NODAL MULTIGROUP
DISCRETE-ORDINATES METHOD

Ronald Earl Pevey

Date Published: July 1982

Report Prepared by
University of Tennessee
Department of Nuclear Engineering
Knoxville, Tennessee
under
Subcontract Number 7685

for

COMPUTER SCIENCES
at
Oak Ridge National Laboratory
Post Office Box X
Oak Ridge, Tennessee 37830

vavice
PETTICNS AT THIS DAL AT L8E ILLESIBLE.

: han brea vepradsced from the ben”

avaliable copy to permit the broades.
nssibie availability.

’ i gy

Union Carbide Corporation-Nuclear Division
, operating the
Oak Ridge Gaseous Diffusion Plant - Oak Ridge Nationz! Laboratory

0ak Ridge Y-12 Plant « Paducah Gaseous Diffusion Plant
under Contract No. W-7405-eng-26
for the

Department of Energy

DISPUDITION F THL DOCIENT IS (M IMITS)
444




o vy

&/



CHAPTER

LIST OF TABLES. . . . . . . . e e e e e '

TABLE OF CONTENTS

LISTOF FIGURES . . . . . & . ¢ . o v e i i e e et et e e v e

ACKNOWLEDGMENTS . . . . . . . . . . . . . . o« v v o v o v v o

ABSTRACT. . . . . . . . . ... .. .. e e e e e e e e e e s

1.

5.

INTRODUCTION. . . . . . . . . . . . . . o . o o oo o ..

A.

BACKGROUND. . . . . . . . . . . . o i ettt h et e e e e

Pow>

Boltzmann Equation. . . . . . . . . . . . . .. .. ...
Multigroup Formalism. . . . . . . . . . . . .. .. ...
Angular Treatment . . . . . . . . . . .. .. .. .. ..
Spatial Considerations. . . . . . . . . . . .. .. ...
1. Fine-Mesh Spatial Schemes . . . . . . . . . . . . ..
2. Coarse-Mesh Schemes . . . . . . . .. e e e e e e e
3. Nodal Methods . . . . . . . .. ... .. ... ...

REVIEW OF THE LITERATURE. . . . . . . . . . . . . . .. ...

DERIVATION OF THE METHODS . . . . . . . . . . . . . . . . ..

A.

1. Flat Leakage, Coupled 1-D Flux Shapes
2. Calculated Leakage Shape, Separable !-D

Witnin-Node Fluxes. . . . . . . . . . . . . . . ...
3. calculated Leakage Shape, 2-D Within-Node

Flux Shape. . . . . . . . . . . ¢ v v« e v o o ..
Detailed Derivations of the Three Nodal Methods . . . . .
1. Method 1: Flat Leakage, Coupled 1-D Flux Shape . . .
2. Method 2: Calculated L2akage Shape, Separable

1-D Flux Shape . . . . . . .. . .. .. .

2. Method 3: Calculated Leakage Shape, 2-D Flux Shape .
. Iterative Solution for the Coefficients . . . . . . . . .
. Coarse-Mesh Acceleration. . . . . . . . . . ... . . ...

c
D
SAMPLE PROBLEMS . . . . . . . . . . .. .. . .. ... ...
A.
B8
c
D

Introduction. . . . . . . .. . .. .. ... ... ...
. Sample Problem 1: Shielding Benchmark Problem. . . . . .,
. Sample Problem 2: Simple Reactor Problem . . . . . . . .
. Sample Problem 3: BWR Lattice Eigenvalue Problem . . . .

iii

Project Objectives. . . . . . . . . . . . . ... .. .. '

General Description . . . . . . . . . . . ... .. ... '



e L e T L |

S I

6 . C';VZICLUSIONS ® ® @ ®» © & ® ® © 8 B 2 * O ¢ & o o o © & v

,1. '(ECOWDATT,O“S FOR FUTURE “ORK * s o e e o [ * e e o s o e

A.
Bu

—JIST' OF REFERE“-}CES e ® o @ o @ ¢ © s € @ ¢ O o € 5 0 O e T & -

APPENDICEE.;. - e e @ & @& ¢ ® e e @ © ¢ & & o © @ © o O » o o o

A,

'\
*

©

TABLE OF CONTENTS (continued)

PAGE

{wrple Problem hL: Two-Group Volumetric Source Borehole
Shieldirg Problem, . . . . . . ¢« =« « -« 59
Sample Problem 5: Five-Group Vol:metric Source Borehole
~ Shielding Problem. . . . « ¢ ¢« ¢« o o o 67
Sample Probiem 6: Realistic Boundary Source Shiclding
Problem, . . . &« ¢ ¢« ¢« ¢ ¢ s ¢ ¢« =« o « 13

- L] 81

. B3
Optimization of the Cartesian x-y Nodal Method. . . . . . 83
Extersion to Other Geometries and to Time Dependence. . . 85
1. Curvilinear Geometry. . . « v v ¢ ¢ « o ¢« s o« s o « « B5
2. Three~Dimensional Geometry. . . « « + « o« « o« s « - « 87
3. Time Dependence . o « o « « o « « « s« » ¢« s o o » « » 88

.. 8

e . o 9
DEVELCPMENT OF THE EXPONENTIAL EXPANSION METHOD IN

ONE DIMENSION ¢ . . ¢ ¢ ¢ o ¢ o o o o ¢ o s o o« o ¢ o « = 93
DEVTLOPMENT OF ANISOTROPIC SCATTERING TREATMENT . . . . . 97
CCYPARISGN OF EXPONENTIAL EXPANSIONS VERSUS LEGENDRE
FOLINOMIALS IN PEPRESENTING Exp(-ax),0<a<5. . «-v ¢ o » - 99
COHFARISON NF OPERATION COUNT FOR THE INNER ITERATION

#= A MODAL EXPANSION CHANNEL METHOD FOR EXPONENTIAL

VERSUS ORTHONORMAL BASIS FUNCTION SETS. . . « ¢ « « » « . 101
PROJECTION OF EXPONENTIAL FUNCTIONS ONTO THE EXPONENTIAL
BASIS PUNCTION SETS « ¢ « & ¢ o « o o ¢ ¢ o o o o o « o o 04
USER'S MANUAL POR EXTREME . . ©. . ¢ ¢ o o ¢ ¢ o ¢ s o o « 112
SAMPLE INPUT AND OUTPUT FOR EXTREME ., . . « « « ¢ » o . « 127
USE OF A Bm CALCULATION TO CHOOSZ MODES FOR EXTREME . . . 153

iv



LIST OF TABLES

e ® o o o o o o

Leakage

Various

Using

* e ®» © o & o o

Eigenvalue for

for Various

Eigenvalue for

Absorption in

Absorption in

L4 L4 L L4 L] L] L4 L4

Leakage out the

TABLE
1. Data for Sample Problem 1 . ¢« & « ¢ ¢ o o « &
2. Listing of Sg Quadrature . . ... ... ..
3. Results of DOT4.2 and EXTREME Calculations of
in Sample Problem 1 . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ & &
4. Total System Leakage for Sample Problem 1 for
Choices Ofain*)deseto, Uy 0 o ¢ o ¢ o o
5. EXTREME Method 3 Results for Sample Problem 1
N=1,3,5 Mode Sets Chosen by Bg Calculation. .
6. Data for Sample Problem 2 . . . ¢« « ¢ ¢« ¢« « &
7. Results of DOT4.2 and EXTREME Calculations of
Samp]eprﬁb]eﬂ\z..-...-........
8. Results for 16 Node Mode  of Sample Problem 2
Choices Mode Set 0, -a, a in EXTREME. . . . .
9, Data for Sample Problem 3 . . . ¢« ¢« ¢ o ¢« + &
13. Results of DOT4.2 and EXTREME Calculations of
Sample Prob]em 3. [ 2 L] * L d L - L d [ ] [ ] ® - * [ ] »
11. Data for Sample Problem 4 . . . . . . . « . &
12, Listing of S¢ Quadrature. . . . . ... ...
13. Results of DOT4.2 and EXTREME Calculations of
Detector Region of Sample Problem 4 . . . . .
14, 0Oata for Sample Problem 5. . . . . « + . .
15. Results of DOT4.2 and EXTREME Calculations of
Detector Region of Sample Problem 5 . . . . .
16, Data for Sample Problem 6 . . . « ¢« ¢ & o &« &
17. Results of DOT4.2 and EXTREME Calculations of
Top of Sample Problem 6 . . . . . « + ¢ o &+ &
A'lo Data fOf' 1"0 S]ab pf'Ob]em o o e e 9 9 e 9 @ o
A-2. Comparison of the 1-D Method with ANISN For the Sample

Shie]ding PrObIem . L L) [ L4 [ * L] Ld L4 L3 Ld [ ] L]

PAGE
37

39

43

45
49

50

54
57

63
64

65
69

71
76

77
95

96




LIST OF FIGURES

FIGURE
1. Boundary and Averaged Fluxes of Node i,j for y, n>0 . . . ..
2. Regions of Influence for Boundary Fluxes on “Upstream”™ Edges.
3. Geometry of Sample Problem 1. . & ¢« ¢ & ¢ ¢ ¢ ¢ o ¢ o ¢ o o &
4. Comparison of Percentage Error in Leakage for EXTREME versus
D0OT4.2 for Sample Problem 1 . . . . . . ¢« ¢ ¢ ¢ 0 v o o o o &
5. Plot of the Flux Shape on Right Edge of Sample Problem 1 as
Calculated by DOT4.2 and EXTREME. . . & ¢« ¢« ¢ ¢ o o ¢ « « & &
6. Plot of Total Leakage in Sample Problem 1 versus Choice of a
in Mode Set 0, -a, a for the Three Methods in EXTREME . . . .
7. Plot of Percentage Error in Sample Problem 1 versus Computing
Time for 1, 3, 5 0rder Mode Sets . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ &«
8. Geometry of Sample Problem 2. . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o « &
9, Comparison of Percentage Error in Eigenvalue for EXTREME
versus D0T4.2 for Sample Problem 2. . ¢« ¢« ¢ ¢« ¢ o ¢ o ¢ o & &
10. Ratios of the Group 2 Node Averaged Fluxes in Each Region of
Sample Problem 2 as Calculated by EXTREME and D0T4.2 . . . .
11. Comparison of Effect of Mode Chcice on Calculation of
Sample Problem 2 Eigenvalues using EXTREME. . . . . . . . . ,
12. Geometry of Sampie Problem 3, . . v ¢ v ¢ ¢ ¢ ¢ o o 0 o ¢ o &
13. Comparison of Percentage Error in Eigenvalue for DOT4,2
versus EXTREME in Sample Problem 3. . . . . . ¢« v ¢ ¢ ¢ & « &
14, Ratios of the Group 2 Node Averaged Fluxes in Each Region
of Sample Problem 3 as Calculated by EXTREMZ and DOT4.2 . . .
15. Geometry of Sample Problems 4 and 5 . . v ¢ ¢ ¢ ¢ o o « o o &
16, Comparison of Percentage Error in Detector Absorption for
EXTREME versus N0T4 2 in Sample Problem 4 . . . . . . . . . .
17, Plot of the Flux along the Longitudinal Axis of Detector
in Sample Problem 4 as Calculated by EXTREME and DOT4.2 . , .
18, Comparison of Percentage Error in Detector Absorption for

EXTREME versus D0T4,2 in Sample Problem 5. .. . .. . .

vi

PAGE
10
28
35

40

41

44

46
48

51

53

55
56

60

61
62

66

68

72



19.

20.
21.

22,

C-1.

E-1.

E-2.

G-1.

Plot of the Flux along the Longitudinal Axis of Detector
in Sample Problem 5 as Calculated by EXTREME and DOT4.2 . .

Geometry of Sample Problem 6. . . . . .

Comparison of Percentage Error in Top leakage for EXTREME

versus DOT4.2 in Sample Problem 6 . . .

Plot of the Flux along the Top Edge of Sample Problem 6

as Calculated by EXTREME and D0T4.2 . .

Comparison of Least Square Error Norm for Exponential
Expansions versus Algebraic Expansions in Representing

Exp(-ax) for OCACS, . . ¢ ¢ 0 v o v o

Approximation of a Continuous Exponential Function Using

an Exponential Expansion. . . . . . . .

Approximation of a Discontinous Exponential Function Using

an Exponential Expansion. . . . . . . .

Sample Input and Output from EXTREME. .

vii

. 80

. 100

. 169



ACKNOWLELGMENTS

The author wishes to express his sincere appreciation for the support
and encouragement of Dr. H. Lee Dodds, Jr., who suggested this project and
served as the author's major professor, and the University of Tennessee
staff members who served on the Graduaie Committee. The author is also
grateful for the many interesting discussions and suggestions contributed
by Dr. R. A. Little, Mr. W. A. Rhoades, ¢nd Dr. M. L. Williams of Qak Ridge
National Laboratory. Special thanks are extended to Mr. J. 0. Johnson
and Mr. B. L. Broadhead for many fruitful discussicns and for their Lelp
with the manuscript.

Appreciation is also expressed to the Computer Sciences and Engineering
Physics Divisions of the Oak Ridge National Laborato:y for providing partial

funding of this work.

ix



L A, < S 3 A



e i ]

ey

Pty

AR P TR~ <

ABSTRACT

The purpose of this work fs the development and testing of a new
family of methods for calculating the spatial dependence of the neu-
tron density in nuclear systems described in two-dimensional Cartesiar
geometry. The energy and angular dependence of the neutron density
is approximated using the muitigroup and discrete ordinates techniques,
respectively. The resulting FORTRAN compvter code is designed to
handle an arbitrary number of spatial, energy, and angle subdivisions.
Any degree of scattering anisotropy can be handled by the rode for
either external source or fission systems.

The basic approach is to (1) approximate the spatial variation of
the neutron source across each spatial subdivision as an expansion in
terms of a user-supplied set of exponential basis functions; (2) solve
analytically for the resulting neutron density inside each region; and
(3) approximate this density in the basis function space in order to
calculate the next iteration flux-dependent source terms. In the
general case the calculation is iterative due to neutron sources which
depend on t.e neutron density itself, such as scattering interactions.

The three methods which were developed differ in the detail of
the spatial description:

1. The first method expands the two-dimensional intranode neutron
flux a: two separable one-dimensional expansions in the »x-
and y-dimensions and represents the edge fluxes as constant;

2. The second method is the same as the first in the interior of
each node, but represents the edge fluxes as one-dimensional

expansions in the basis function set; and




3. The third method is the sam2 2s the second on the edges, but
represents the interior flux share in a full two-dimensional
expansion in the x- and y-dependent basis functions.

Ir order to test the accuracy versus computer time of the three
methods, five sample problems were run and the results coﬁpared with
those of the finite-difference code D0T4.2. Three shielding problems
were run: a simple "benchmark” calculation, a bore-hole geometry volu-
metric source problem solved with two and five energy groups, and a
bourdary source large void shieldiny problem. In addition, two eigen-
value problems,ia simple benchmark reactor calculation and a boiling
water reactor core latt“ce case, were run and again compared with
- DOT4.2. 1In al' of these cases, the first me-hod showed similar
accuracy/cost characteristics as N074.2, with the second and third
methods performing significantly better than the finite difference
code. .

The major conclusion of the study is thit the new exponential
expansion methods show promise ot reducing the cost of accurately
calculating the neutron density inside nucledr systems. Future re-
search work suggested by the present study include:

1. Ixtension to other geometric systems, such &s two-dimensional

curvilinear and three-dimensional Cartesian geometries,

2. Extension to handle time-dependent problems,

3. Optimization studies on the choice of oasis functions, and

4. Development of acceleration schemes tailored to nodal methods.



CHAPTER 1
INTRODUCTION

The central problem of nuclear reactor anilysis has been simply
<tated! as the determination of the density of the free neutron popu-
lation in an extended region of space containihg an arbitrary, but
known, mixture of materia}s. Once the neutron population density is
determined, 3 nuclear analyst can use it .iong with the basic data of
neutron physics to determine quantities of practical incerest to engi-
neers and scientists: reactor pover dehsities, energy deposition
rates in samples, secondary nuclide preduction rates, etc.

The primary tools of nuclear analysts are generalized computer
programsz'3 desicned to solve the basic neutron transport equation

for the neutron density as a function of space, energy, angle, and

time. Unfortunately, this complicated phase space dependeﬁce tends to

make the computer codes expensive to run for realistic reactor and
shielding problems even on the present generation of large, fast
digital computers. The large amount of time and money people spend on
such analyses justifies a considerable research effort to attempt to
reduce the costs of the various analysis methods without significantly
sacrificing accurazy.

The most successful effort to reduce the costs of nuclear analy-

sis has been in the area of diffusion theory methods. In diffusion

theory, the angular dependence of the neutron density is linearly
approximated and the angle-averaged density is determined. Diffusion

theory has proven to be very useful for analyzing systems for which



the angular variation of the neutron density is not very extreme (i.e.
the density is nearly isotropic in direction). Unfortunately, for a
large class of problems the directional variatior of the neutron den-
sity is not so smootﬁ (e.g., streaming problems, strong absorption
problems), and the angular dependence mst be retained. Such angle-

dependent methods are generally referred to as transport theory

methods to be distinguished from diffusion theory methods.

In the last decade or so some success has been reported in reduc-
ing costs of both diffusion theory and transport theory calculation
with new treatments of the spatial dependence of the neutron
density4'9. The basic idea in these treatments is to replace the very
fine finite-diffeience spatial meshes of most analysis methods with a
coarser mesh structure in which the spatial dependence inside each
mesh segment (“node") is approximated more accurately than in the fine
mesh methods., The use of this approach for diffusion theory has been
widely tested in the last fifteen years and has proven to reduce the
costs of calculations?»5+6, However, the application of the idea to
transport methods has only recently been attempted7-8’9. Although the
experience with transport nodal methods has been limited to geometri-
cally simple, isotropic scattering "benchmark" problems, the results
indicate that their use may result in substantial computing cost

savings.
A. Project Objectives

In summary, the objectives of the oresent work are to:
1. develop a family of nodal discrete ordinates transport

methods for Cartesian (x,y) geometry using a modal spatial

expansion on an exponential basis function set,




B as Lo

Sy e

AT e 3% Vi, v

extend the methods for use in multigroup and anisotropic
problems, and

evaluate the ~ew methods for realistic reactor eigenvalue
nroblems and fixed source shielding problems by comparing them
with the widely used conventional finite difference code

D0T4.2 and other recently developed nodal transport methods.




CHAPTER 2
BACKGROUND
A. Boltzmann Equation

Genzaralized neutron transport methods solve the Boltzmann trans-
port equation, which can be derived by conserving neutrons within a
differential volume of energy-angle-space-time phase space. This
derivation results in an integrodifferential equation of the neutron
angular flux density ¢(7,H,E,t) at a particular point ¥, as a function
of direction of travel &, particle energy E, and time t. In two-
dimensional Cartesiar geometry the equation is2

1 ag(x,y,E,8,t) . uy(x,y,E,ﬁ,t) + npv(x,y,E,ﬁ,Q), (2.1)
v(E) ot ax oy

+ aghx.y,E,t)9(x,y,E,@,t) = Q(x,y,E,8,t) +

Jdi' [dE* {ag(x,y,(E*,8")+(E,@),t) + v(E')af(x,y,E',t)x(x,y,E,t)}

“¥(x,y,E',2',t),
where
v(x,y,E,8,t) = v(E)-N(x,y,E,q,t),
v(E) = neutron velocity,
N(x,y,E,%,t) = neutron population density per unit
voluire per unit steradian per unit energy,
(u,n,E) = direction cosines for angle R,
ot(x,y,E,t) = total macroscopic cross section,
Q(x,y,E,f,t) = external source,

os(x,y ,(E',B')+(E,%),t) = differential scattering cross section,
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of(x,y,E.t) = fission cross sectiom,
v(E) = average number of neutron: emitted per fission,
and yx(x,y,E,t) = fission neutron spectrum.

The method is directed at the static (time-independent) Boltzmann

equation:
WRO0LE) | 2HGIED) g (x,y,E)¥(x,y,E.B) - (2.2)

x,y,E,0t) + [da'fdE' {ag(x,y,(E",0")+(E,R))

+ vof(x’y’f')X(X-YsE)}-V(xay’E.-ﬁ')

with the same definitions as above.
In order to solve for the flux on a digital computer, it is nec-
essary to reduce Eq. 2.2 to a set of coupled algebraic equations. For

this. the continuous dimensions of energy, angle, and space must be

represented in a discrete manner,
B. Multigroup Formalism

The energy variable of the Boltzmann equatiun is represented in a
straightforward manner using the multigroup approach. In this ap-
proach, Eq. 2.2 is integrated separately over a finite number of

energy bands ("groups"). For a particular group (Eg, Eg+1) this

gives

L] ’ﬁ L] ’ﬁ
y 2B, U,y gy ) - (2.3a)
Qg(xoY¢§) + é,[dﬁlfasg'yg(x-Y¢§"n)

+ Vg'Gfg'(X,ygﬁ')Xg(X,y)}-WQ'(X,ygﬁ'), ¢=1,2,...G;



where

vglx,y.8) = {Ev(X.y.ﬁ.E)dE. (2.3b)
. {Eot(x,y,E)f(x,y,ﬁ,E)dE (2.3c)
Utg(X,y,n) = 'g(x’y’n)
{ V(E)df(X,y,E)’(X,y,ﬁ,E)dE (2.3d)
vqofq(x,y,) = 2E .
919 » vg(X-.Y-ﬂ)
Qg(x’y!ﬁ) =! Q(K.Ysﬁ.E)dE. (2.36)
AE
ng'.,g(x’y:a."a) = {E {E.as(x’ya(s'oa')*(Eon)) (2'3f)

$(x,y,2",E*)dE'dE / og(x,y.ﬁ), and

xg(x¥) = [ox(x.y,E)¢E. (2.39)

O0f course the above definitions for these "average” parameters
are formally correct, but unattainable in practice without a priori
knowledge of ¢(x,y,?,E), which is not generally available. The deter-
mination of adequate data with the use of approximations to the shape
of v(x,y,q,E) across each energy group is a discipline in itself,
which will not be pursued here. For the purposes of this work, the
assumption will be that made that the multigroup data above havé beén

determined using one of the available methodsl3nl4.
C. Angular Treatment1l5,16

The treatment of the angular dependence of Eq. 2.3 involves
approximating the angular integral of ¢(x,y,2) (referred to as the
scalar flux, #(x,y)) as a weighted sum of the values of ¥(x,y,&;,) on
an angular quadrature set &,, w=1,2,...,M, f.e.

M
O(X,)') = ! W(X,y,ﬁ)dﬁ x z "l'n"m(x’Y) ’ (2.4)
Q m=1
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whe e : *m(st) = v(x’:'ﬁm) » and

M = number of directions in the quadrature,

wy = weight of angie m (associated with an

area on the angular unit sphere).

Usually the angular quadrature is chosen to cover the angqular
vnit sphere nearly evehly; in this case all of the weights, wy, are
approximately equal (i.e., the distribution is close to isotropic).
Also, the quadrature angles are usually chosen to be symmetrical about
the axes of the problem. It is not uncommon, however, for quadrature
sets tc be designed especially for a particular problem; in such cases
there sre more angles "representing” directions which are important
for that application (e.g., neutron streaming paths through holes in a
shield).

Regardless of how. an angular quadrature is chosen, the resulting
problem is the same; the values of yp(x,y) along the disirete ordi-
nates i, must be determined. The equation for the y(x,y) is, of

course, Eq. 2.3 evaluated for a particular direction ﬁn = (um,nm.sm):-

unf_'fﬂg;’_yl + nm_ahgé}_’_"_/l + otg(x,y,)wmg(x,y) (2.5)

= Ong(xsy) + 1 1 {osg’ag,m sm(*sy)
g'm

+ “g'“fg'(X-Y)Xg(X-Y)}-Wm'g'(X-Y); g=1,2,...G, and
m=1,2’ooaMc



After approximating the spatial variables in Eq. 2.5, which is
discussed in detail in the next section, Eq. 2.5 is solved using an

iterative procedure:

3vmg(%5Y) dupq(x,Y) |
'“’ln'g__"' * "m_g;';‘y‘_“ + °tg(x»¥)¢mg (x,y) = S:,‘,g (x,y) (2.6a)

“h'osg'+g,m'+m(st)‘£'g'(X,y) (2.6b)

Smg(X:¥) = Tng(xsy) + :
m

o~
o X

G M
n - -1
ng(X’.y) = Qng(X..Y) +g'£g+l 'fi wm'{dsg"g’m"m(x,y)'v::'lgl(x,y)]’ (2.6(:)

+ Z Vg'afg'(an)Xg(an) ¢ ' (x,y) o
g'=1
In this double iteration strategy, the vgg are determined by

| iterating on the within-group scattering using Eqs. 2.6a ana 2.6b

("inner iteration"). Then the *ag are used to determine the source
terms, ng} for the n+15t "outer" iteration, which includes fission
and upscatier sources. (The vaiue "n" here counts outer iterations.)

Also, the cross-section scattering data are usually not .jiven in
the form o5q'sqg,m'sm» DU s scattering Legendre coefficients, agg.,g,
where : K

- - k - .
Osg’»g,m'sm = "sg'og(ﬂm"“m) = E Osg'>g Py (2 Q)

Appendix A shows that using this relation in Eqs. 2.6 results in

(omitting the iteration index):

a*mg(xoy) +n angﬂx’Y)

m;, o M ay + Gtg(xty)ng(xoY) = Smg(an) (2'73)




R Y

where '
g K . k k' k*

Smg(x9Y) = Tﬁg(x'y) +§Z=1 E' 0§g'+g Z fﬁr.g'r(xsy)

G K L k' k' k'
ng(x:.Y) = Qng(x-.Y) + Z X 9sg’ +q ) I fmr Qgtr(xn.Y)
g'=g+1 k' r
G

_ 11020
+ glzlvg'dfg'(x’Y)Xg(XQY)} ’g'O(x)Y)

and
k* M
kl
’gr(st) = .20 “hfmrvmg(x-Y)
m =

£ = Perlng) if r=0, and otherwise
- 2(k'-r)! Y P>
Gty ™ s gdeos(ro),
e = tan'l(ﬂmlgm) .

N. Spatial Considerations

A1l that remains in reducing Eq. 2.3 to a form that can be

(2.7b)

(2.8)

programmed for a digital computer is to reduce the spatial dependence

of Eq. 2.5 as has been done for energy and angle. This can be

accomplished by returning to the idea of the multigroup energy reduc-

tion and integrating Eq. 2.5 over discrete regions of space.

regions ("nodes") are determined by laying an x-y grid over the

The

problem geometry, as shown in Fig. 1, integrating Eq. 2.5 over each

node 1:(x1.x1+1)*(yj,yj+1), and dividing by axay to obtain:
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Figure 1. Boundary and Averaged Fluxes of Node i,j for u,n>0
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1
u oy .m e
Al¥mg,i+1-vmg,i) * ﬁ‘*mgml ¥mg,j) * Otg¥gm = S (2.9)

where

¥mg = £x 1y0u9(¥s¥)dydxleAy s
Ymg,i = {,’mg("i ,y)dy/axay ,

¥mg,i+1 = [ yhg(xiu.y)dy/AxAy .
¥mg,j " {xv...g(x,yj)dmw ,
¥mg,j+1 = {x*m9(1-3j+1)dXIAXAy, and
mg = £x {ysmg(X-Y)dydx/AxAy.

It can be seen immediately that the derivatives of Eq. 2.5 have
introduced boundary values (by use of the divergence theorem) uhen
integrated; instead of one flux value, Eq. 2.9 has five unknowns:
¥mg> Vmg,i> VYmg,i+l> ¥mg,j’ and ¥mg,j+1°

These equations are solved by a "sweeping” algorithm in which,
for each energy group and angle, the spatial nodes are taken one at a
time in a particular order. The order is chosen tc follow the general
direction of neutron travel for that angle; i.e., +x for u>0, -x for
440, +y for n>0, and -y for n<0. In this sweeping procedure, when the
calculation gets to any node (i,j), the "incoming” boundary terms have
already been calculated as "outgoing” fluxes of the "upstream" neigh-
bor node; therefore, two of the five flux values in the node have
already been determined. This point is illustrated in Fig. 1 for the
case 1>0, n>0, for which the values ypg j and umg,j are known from

previous calculations for nodes (Xi-l-yj) and (x1-Yj-1)-
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Even with the number of unknowns reduced, there are still three
unknouns'with only one equation to relate them; two more equations are
needed. The differences between the many different spatial treatments
that have been developed over the years is in the determination of the

other two auxiliary relations.

1. Fine-Mesh Spatial Schemes?s3

The most commonly used spatial treatments fall into a category

called fine-mesh schemes. These methods use mathematical constraints

for the auxiliary relations; they are the simplest, fastest (per
node) and most flexible methods in use. They are also expensive, in
general, because they require many nodes to get accurate flux values.

The constraints which are most often used are of the form

¥mg,i * D¥mg,i+1  and
C¥mg,j * d¥mg,j+1,

¥img
¥mg

which is termed the “"weighted difference" formulation. The special
case of a=b=c=d=0.5 is referred to as the "diamond difference"
approximation; the case a=c=0, b=d=1 is the "step function”
approximation. The problem with this approach using pre-determined
values of a, b, ¢, and d is that there is no reason to think that the
constraint will be obeyed for finite nodes of a physical system., It
is true that any such constraint with a+b=c+d=1 will hold in the limit
of infinitely small nodes, but in practice the number of nodes needed
for an accurate determination of y is much greater than for methods

using more accurate auxiliary relations.
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2. Coarse-Mesh Schemesll,12

Transport theory procedures that use more accurate relations
between the flux values without performing intranode flux calculations
are referred to as “coarse-mesh” methods. The usual procedure is to

1. Assume a flux shape within each node based on the centered

and edge valuyes, e.g.,

vmg(X>y) = vmg (fiat)

or
= ymg + (¥mg,i+1-¥mg,i)(ax/2-x)
+ (¥mg, j+1-¥mg, j)(8y/2-y) - (linear),

2. Form the shaped sources from these fluxes, and

3. Solve for the outgoing fluxes with these sources.

The key word in the previous sentence was "solve”; since the
auxiliary relations are based on solutions to Eq. 2.5 rather than
constraints which are only true in the limit of zero width nodes,
these coarse-mesh methods have been able to obtain more accurate
fluxes with much larger nodes than are needed by the fine-mesh
methods. The successes of these coarse-mesh methods are rather
surprising given the fact that they use no more information than the
fine-mesh methods; they succeed by simply assuming flux and source

shapes based on the information at hand.

3. Nodal Methods’-10

The methods classed as nodal methods go one step beyond the

coarse-mesh methods and solve for the within-node flux shapes as sub-

problems introducing new unknowns. These within-node calculations are



14

performed with a different (usually simpler) spatia! treatment than
the problem as a whole. Although this extra trouble of solving
within-node calculations generally causes the nodal methods to require
much more computer work per spatial ncde, the increased accuracy of
tre auxiliary relation allows for fewer, larger nodes to be used in
the calculations.

The transport nodal methods which have been developed have shown
a considerable time saving relative to conventional finite difference
metrods. Unfortunately, their experience has been limited to
relatively simple_isotropic scattering “benchmark® problems. The
~development described herein extends the experience with transport
nodal methods by calculating “rea]isfic“ anisotropic problems as well

as benchmark probiems.
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CHAPTER 3
REVIEW OF THE LITERATURE

A]though there has been a considerable body of work in nodal
solutions to the diffusion equation4'6, transport nodal methods have
been developed only recently.

In 1979 Hagner7 reported a method which used two one-dimensional

calculations resulting from integrating Eq. 2.5 separately over

(xi’xi+1) and over (Yj»Yj+1)- The resulting “channel" equations for
the x- and y-averaged nadal fluxes were then averaged over the trans-

verse angle to obtain the equations:

dvyx(X) Otg"gm(x) = s;m(x) - Ly(x) and (3°1)
dy*
nm_ﬂ_(i)_ + otgbgn(y) = Sgn(¥) - L () (3.2)

where LY(u) is the u-dependent leakage through the transverse
v-direction boundaries.

By assuming isotropic current out of the "sides" of each node,
and a constant spatial shape for the transverse leakage, Wagner
obtained the coupling conditions:

W(x) = L(a*¥(ay) - 0-Y(ay) + 0°Y(0) - J*(0)) and (3.3)
Ay .

LX(y) = (J+X(Ax) - J7%(ax) + J7X(0) - J**(0)) , (3.4)

Dlh—-

where the J's denote the partial current out of the boundary faces;

15
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for example,

M
IVaY) = T Hpgha(ay) -
Nm>0

Wagner solved the above equations by using a 1-D “sub-grid* for
the within-node “"channel” calculations and utilizing his modified
block inversion rethod!’. The results of this method for several
sample isotropic scattering reactor {eigenvalue) problems showed a
considerable saving in computing time relative to TWOTRANS to obtain
answers accurate to about 1%. Wagner noted in the paper that
the most serious drawback of his method was the flat leakage
approximation; he tried to incorporate a leakage shape by fitting a
quadratic to the leakages of the nodé and its closest neighbors, but
the results of this improvement were inconciusive.

Lawrence and Dorning8 have developed a method whici. also uses
coupled one-dimensinnal calculations., By again integrating Eq. 2.5
over Ax and Ay, but keeping the full 2-D angular treatment, they
obtained:

umgfégiil + atgvgm(X)

Sgm(x) - I ggn (4,09)-4gn(:,0)) .+ (3.5)

X
" d*dq_mm + otgrgn(y) = Sgnly) - EBygn(ax,¥)-vgn(0,)) - (3.6)
y

By assuming a constant dependence of y,(y) and wy(x), i.e.

Yam{*+Yext) = Vgm(Yext) » Yext= 0s 8y and (3.7)



o Ygn(¥ext>Y) = ¥im(Xext) » Xext= 0, Ax (3.8)
they obtained the coupled set
umgfégifl'+ otg¥n(x) = Sgnlx) - 27 ¥om (8)-+5n(0)) (3.9)
d¢X (Y) X _ Cx Ym
“m__(;ﬂ'__. + dtg"g'n(.Y) = ng(.Y) ’l—x—(‘yg“(ﬁx)‘tygm(o)) . (3'10)
Yy

They solved the above equations by using Legendre function expan-
sions for the 1-D spatial dependence. They compared their method with
the fine-mesh transport code TWOTRAN for several simple isotropic
scattering reactor (eigenvalue) and shielding problems. Again the
nodal method showed a considerable cost savings relative to the fine-
mesh solution. Also, as in Wagner's paper, Lawrence and Dorning
point to the flat leakage shape approximation as the most serious
weakness of the method.

Walters and 0'Del1? have also developed a nodal method based on
algebraic (x") spatial expansions of the flux and source terms. In
their approach, nodal methods with various combinations of flat and
linear representations of the interior and edge fluxes were compared
with the diamond difference procedure in TWOTRAN for Cartesian
geometry systems.

For their linear interior flux treatment, for example, the source

was approximated by the relation

S(x,y) = Say + Sy*2(x-xj)/ax + Sy*2(y-y;)/sy
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with (xj,yj) = coordinates of the node center. As in Lawrence's
approach, Walters solves for the transverse integrated chénnel fluxes

within the node, e.q.
0 .
.ﬂ%ﬂ + op¥0(y) = Say + Sy*2(y-y;j)/ay - STelxp,y)-e(x ,¥)]
where 0(y) = -}—){ w(x,y)dx.

In addition, however, he solves for the transverse integrated first

moment , tl(v):

1
w0+ auwly) = s+ (B)*90(y)-0.50w(xgoy)+wlx ¥ |}
R
where v1l(y) =-;gz*] (x-x;)w(x,y)dx .
X
L

Evaluation of wl(y) gives the transverse flux slope and thus per-
mits a solution for the coefficients of the linear flux expansion with
the four coupled equations for v0(x), ¢1(x), ¥O(y), and yl(y).

Of the various combinations of constant and linear functions
Walters used for the edge and interior flux expansions, the techniques
which used a syzygy for the expansion consistently outperformed the
techniques which rely on a flat flux representaticen,

Larsen and Alcouffe10 have developed a method which also uses a
linear representation of the flux and source inside each spatial node.
This method is just one of the many so-called "characteristic methods"

18. Instead of

which are described by Alcoufte in a review paper
solving the transverse integrated channel equations, however, Larsen

and Alcouffe solve analytically for the flux in the node interior and
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on the outgoing edges, which are ther represented with linear func-
tions whose coefficients are determined by preserving the zero and
first moments of the analytical solution. Their method has been com-
par. with TWOTRAN for both shielding and eigenvalue problems and has
shown considerable time savings in cumputing eigenvalues and system
1eakages.

Finally, finite element methods were used by Lillie20 to solve
the two-dimensional transport equation in triangular geometry.
Although these techniques use flux expansions inside each spatial
node, the coefficients for the expansions are determined by minimizing
a global even-odd flux parity variational principle rather than by the
mesh sweep procedure previously described. The requirements of
inverting a large, relatively full banded matrix have thus far kept

such methods relatively slow and expensive to run.
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CHAPTER 4
DERIVATION OF THE METHODS
A. General Description

The work described in this thesis consisted of the development
and testing of three separate nodal 2-D Cartesian spatial methods.

The development in one-dimensional slab geometry is given in Appendix B.

1. Flat Leakage, Coupled 1-D Flux Shapes

This method follows Lawrence's structure, in which two coupled

one-dimensional "channel® calculations are solved wich the transverse

" leakage considered spatially flat. The only difference between this

approach and Lawrence's is that the spatial expansions use an exponen-
tial function basis set, exp(ajx) instead of the Legendre polynomial
set, P,(x). The use of exponential basis functions can be shown to
offer two advantages over the Legendre polynomials:

a. The exponential basis functions can more accurately represent
exponential functions. The spatial flux shape deep within homogeneous
non-multiplying media can de shown by B theory1 to approach an
exponential; thus, the use of exponential basis functions offers an
advantage for shielding calculations. This advantage is demonstrated
in Appendix C,

b. The use of exponential expansion functions reduces the
coupling between source modes and the resulting flux modes. Appendix
D demonstrates that the operation count for a given node calculation

2

with N spatial expansion modes is 5N compared to N+2N" when using an

orthonormal basis function set.

20
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2. Calculated Leakage Shape, Separable 1-D Within-Node Fluxes

In this refinement to the first method, the spatial shape of the
flux on the node boundaries is also represented as expansions in the
exponential basis function set. As before, the within-node flux shape
is represented by the 1-D "channel" fluxes. The procedure followed
consists of three distinct steps:

a. The characteristic problem of Eq. 2.5 is solved within
each spatial node for the shape of the flux on the out-
going faces given:

i. the known flux shape on the incoming faces and

ii. the source (assumed separable in x and y)
within the node obtained from previously calculated
1-D flux shapesi

b.‘ These fluxes on the outgoing faces are approximated by
expansions in‘the exponential basis functions; and

¢c. The expanded surface flux terms are used in the source
terms of Eqs. 2.5 to solve for th2 within-node separable

channel fluxes.

3. Calculated Leakage Shape, 2-D Within-Node Flux Shape

The refinement of the second method is carried one step further;
the within-node flux is approximated as a two-dimensional modal expan-
sion in the exponential basis function set. The procedure becomes:

a. The characteristic problem of Eq. 2.5 is solved for the
spatial shape everywhere within the node given:

1. the known flux shape on the incoming faces, and

21
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ii. the 2-0 ﬁodal expansion of the source within the
node.

b. The fluxes on the outgoing faces are approximated by
exponential expansions (for use as boundary values for
the neighboring nodes).

c. The flux shape within the node is approximated by the 2-D
exponential expansions and again used to determine the

subsequent source terms.
B. Detailed Derivations of the Three Nodal Methods

1. Method 1: Flat Leakage, Coupled 1-D Flux Shape

Because of the similarity to Lawrence's method, the de~ivation

begins with Eqs. 3.5 and 3.6:

d
) "’3.:"" + otghgnx) = Sga(x) - Mogu(x,a)-vgn(x,0)) »  (3.5)

dygm(¥)

x
nm_g,y_ + otg¥gn(y)

The solutions to the above equations are, respectively, for

Sp(s) - BB 4o (45,9 -4en(0,9)) - (3.6)

ums m0:

: -0¢qX
exp(—:) x

P (x') (4.1)

W (x) = ¢ (0)exp(—Ly 4
gm gm Um o

- %‘;‘-(W’g(m(A.Y)'tgm(O)) exp(a_ﬁ';%x_)} dx’ , and

i, ———

—
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m“ B o ia o SLCT L NP

rd
[AN}

-ag

¥ () = v (@exp(C2E) & BT ) e 0y (4.2)
gm gm W] m 0

at ' '
- %%(¢zm(Ax)-¢zm(0)) exp(—;ﬁ!-)} dy’,

in which the approximations of Eqs. 3.7 and 3.8 have again been used.
Expanding in the 1-D sources Szm(x) and S;m(y) as exponential

expansions; i.e.,

N
Szm( x) nzlsga exp(apX) » (4.3)
Sgm(¥) =n)=flS§,',‘. exp(BpY)» (4.4)

and substituting into Eqs. 4.1 and 4.2 gives:

S “O¢ g%
W) = [ (0)- g acran; o:gdy<wam(ay)-wam(0))1exp(——%§—) (4.5)
.y S

— 3 exp(asx) - _
n=1 Umen¥otg ! otg Ay(¢am(AY) Ugm(o))

xk

N S R s
bgn(y) = [wam(O)-kgl nmﬂfTotg + °tZA (vgn(8x)-93,(0)) je \___2~) (4.6)

xXn

N S
+ n)'-; Fnﬂg?t_exp(w) o Ax(wy (ax)- vym(ﬂ))-

Using the method outlined in Appendix E to project the functions

exp(-oggX/up) and exp(-opgy/ny) into the basis function set; i.e.,

- N
Gt X . Xn
exp(-]ﬁ%') Xl Egm exp(apx), and (4.7)
N
exp( nf,y) = [ By exp(Bey) (4.8)
n=i
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expressions for the flux coefficients 1;: and ¢z: are obtained:

N S'Yk ™,
" - wg,.m-k;l n_uf:,tg + dtguwa.(m-‘a.(o))lsﬁ (4.9)
o Sk1™m
e qtgu‘*"g'"“"'ﬁ“” , and
-
xn = 0)-7Y m - n
Y V(0 L worg * apgbx (Pim(4%) (O JER  (4.10)
Sem 5
nl¥m
e atgee R(80-#(0)),

where a,=8,=0.

The procedure for determining the flux shape within the node and
the flux values on the "outgoing” edges given the source expansion and
the flux values on the "incoming" boundaries is to:

1. Evaluate Eq. 4.5 and 4.6 at x=Ax and y=Ay, respectively, and
solve the resulting equations simultaneously for the outgoing
edge flux values ogm(nx) and v;m(Ay);

2. Use Eqs. 4.7 and 4.8 to evaluate the flux expansion

coefficients.

2. Method 2: Calculated Leakage Shape, Separable 1-D Flux Shape

The most serious drawback to the previous method is the assump-
tion of the flat transverse leakage shape. The second method remedies
this situation by solving for the spatial dependence of the fluxes on

the "outgoing” edges given:
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1. the spatial flux shape of the source within the node and
2. the spatial flux shape on the “incoming™ edges.
Equation 2.5 can be written for a particular node and a par-

ticular energy group and angle. For the case u,n>0, the equation is:

uﬁ!&!&!l + ni!i!;ll + agv(x,y) = S(x,y) (4.11)
3X 3y
with boundary conditions
X,
v y)[)(=0

v(X.y)LO

Equation 4.11 plus the boundary conditions may be restated as:

0(0,]):

¥(x,0).

La(x,y) = S(x,y) dm = v(x,0)Uy(0,y),

where ¥{0,y) and y(x,0) are known from previous calculations, and

L = ug; + n%y + op .

The operator notation is intrrduced to show that the complexity
of the problem can be reduced if a function y;(x,y) which obeys Eq.
4.11 inside the node (but not necessarily the boundary conditions)

can be found. If such a wl(x,y) can be determined, it immediately can

be seen that Eq. 4.11 can be written as the sum of:

Loy(x,y) = S0y} w06y = ¥ (x,0)U%,(0,y), (4.12a)

and

Lvy(x,y) 0.‘::2(x.y)|m= [¥(x,0)-v;(x,0)JU[6(0,y}-v;(0,y)]. (4.12b)
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Since the source is of the form:

S(x,y) = .Z n§1 San €xP(agX+BpY),
N N

the function vl(x,y) { ) -——EE!L———— exp(ag,+Byy) satisfies (4.12a).

=1 n=1 pagninBp*o

Therefore, since the coefficients ¢"0 and ¢“0 in the expansions
X Yy

N
¥(x,0) ) .20 exp(agx) and
=1

¥(0,y) = Z *jo exp(8nY)

are known from previous node calculations, the problem is reduced to

solving:
Lr;wzé:“d) . "avg)(!x,y) + ag¥plxsy) = O (4.13)
with boundary conditions
M N S L
v2(x,0) = I ["xo ZW] exp (apx) =m£l¢'2,exp(qnx)
M N
v2(0,y) = Z lvyo Z;m—,,s'-,':—%a ] exp(8py) =n£10'2'yexp(s,.y).

The partial differential equation Eq. 4.13 can be written in
terms of a parameter, s, as the following system of ordinary differen-

tial equationslsg

dx(s) . "
ds ’
gﬁﬁil = n, and

Q%éil = -otW(S)-

ik



R

27
This system has the solution:

02(5) = bz(O)exP(-ots), with

M n

S =

There will be two distinct "regions of influence” (shown in

Fig. 2 as Region 1 and Recion 2) in the node depending on which boun-

e B st v

dary is intersected by the characteristic lines in that region:

-o’tx
1]

nx i n
va(x.y) = ¥,(0,y- =expl—=) , if  y>x (4.14)

iy oty n
vo(x- =5.0)exp(—) , iF yex .

Recalling that (x,y) = ¢l(x,y) + wz(x,y), evaluating the

resulting functions on the outgoing edges (ax,y) and (x,ay) gives:

N M S explagat
boxy) = 1 ) —amaroy ) exp(BnY) (4.15)
N [ n -Bpr.ix ot . AX
+ E Lppexp(——) ] exp{(Bn- )Y} » if y>=
M m apl -9t : nAX
+ % [szeXP(amAx” exp{(—x—)y} , if y5=
M N g nexp(Bpay)
- ex
v(x,8y) % [g SaTBtor ] exp(agx) (4.16)
-aﬂ‘u

By ot . I
m -
[wzxexp( . )] exp{{ag u)X} , if X>E;1

+
= el 4

Bnn'dt
1]

[w;xexp(snAy)l exp{ ( )x} , if x<£%l ’

+
S 62
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R
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Influenced by ,"
Boundary Source ,,"
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Edge 1 o
," kegion 2
," - Influenced by
," Boundary Source
/” on Edge 2
,’, Edge 2
Node i,J
(u,n>0)

Figure 2. Kegions of Influence for Boundary Fluxes on "Upstream"
Edges
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The procedure outlined in Appendix E can be used to approximate

these fluxes in the form

N .

v(ax,y) = § ¥px,yexp(By) and (4.17)
n
|

v(x,ay) =§ o pyexplagx) . (4.18)
n

With these shaped boundary values, the shaped transverse leakage
“sources” can be determined; therefore the channel flux coefficients

wsa‘and vég are given by shaped ieakage ~nalogues to Eq. 4.9 and 4.10:

N sYK (vk gk n
m + A Ax, 0 .
o - [dn(0)- [ 23+ Ctg j AT (4.19)
n U@kt ot r
n m n
+ gm + UtgAy(wao.y-WO’y) , and
Umantotg
Ym o,k
N sk (vk =¥ 0)  xn
VD = [¥in(0)- § 29m * otghxTTX.AY X,00)h (4.20)
k mBk*otg
xn m n n
. Sgm + 9;9Ax(¢* Ay'wx,o) .
nmBntotg

3. Method 3: Calculated Leakage Shape, 2-D Flux Shape

The final improvement eliminates the flux separability assumption

by representing the flux as a full 2-D expansion in x and y:

MoN
¥(x,y) ;1 ! wmnexp(apX+Bpy) (4.21)

n=1

wl(X.y) +vw2(X.y).

where ¢1(X.Y) and wz(x,y) arc the two solutions introduced in

Section B.2.
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As before:

N N
’I(X:Y) =1 1 S

—————— exp(apy*ByY) -
m=1 n=1 WoytnBptoy

The corresponding expansion of vz(x,y) can be found by projecting
¢2(x,y) (given in Eq. 4.14) onto the exponential basis function set
(see Appendix E):
M N , '
¥o(x,y) = mzl nzlv';"exp(qux“ﬂn!!) . (4.22)

In terms of Eq. 4.21, the expansion coefficients are:

o Sm (4.23)
"IM llam"‘nﬂn"'otg 2 °

As in the previous method, the outflow boundary flux expansion
given by Eqs. 4.17 and 4.18 is calculated to be used for initial con-

ditions for "downstream® nodes.
C. Iterative Solution for the Coefficients

With the values of the flux expansion coefficients given as a
function of the source expansion coefficients for the three versions,
the calculational procedure follows the form outlined in Section 2.C.
Using the third version of the new method as an example, the equations

which are used for angle a and group g are:

1
*:m =_Sm___ o+ 0'3"1 (4.24)
ua +nB,+oy ’

I I g k kl k' kl kll
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G K , k*
k Ko kL I-1
" Gon * —g+1 k'Xl 059'*9r21 sg*+g%g* rmn (4.26)
. 3 2 I
V.0 ' '
where
A .
¢g£mn = ,{1 wif:rv;;g and A=number of angles (4.27)
]:

with J;"l and fgr given by Eq. 4.22 and Eq. 2.8, respectively.
As outlined in Section 2,C, the values of v;n are found by

iterating on the within group scattering using Eqs. 4.24 and 4.25, are

kI : kI

used to calculate the ’grmn using Eq. 4.27. After the ’gnn aure found

for each group, Eq. 4.26 is used to calculate the outer iteratior

I

values of Tmn for each energy group.

D. Coarse-Mesh Acceleration

The iterative procedure described in the previous section is

accelerated using the commonly utilized “coarse-mesh acceleration."20

This procedure can be derived by integrating Eq. 2.6 over angle and
space within a given mesh segment ij, resulting in:

| I+ gl gt (4.28)

Jg.i+1,J gij g,i-1,j = Yqij g1

b t _ P 3. o)
“Yg,4,541 * Y,1,5-1 ~ Ygij*o "g 3
where
91J = Z umwx(O)/Ax
m(O



M
AL ) m
g1) mgl'humtx(bx)/Axi
um>o
M
b m
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Igij mgl"h“m*y(Ay)/ij
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¢;’ ={ ¢;J(x.y)dydx/AxAy
Axi ij
sij = J Sij(x,y)dxdy

AX Ay g
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where S;J(x,y) includes external sources, fission sources,6 and scat-

tering from other energy groups to group g.

Defining a set of constants ai. j=r,1,t,b, as ratios of partial

currents J and averages fluxes ¢, i.e.

1,
I, e,
i ij

bg

equation 4.28 can be written as

gr j-1,3

gl i+l,]
ai'lpj¢g

gt
* 9441,5%

* aioj'1¢g

LI PR RN

i3 r ]
* lap”- “?J l “?j T %5 T %4509 9

i,j-1

gb  i,§41

+ Gi’j+1¢g (4.29)



At the completion of each inner iteration, Eq. 4.29 is solved

using the newly calculated values of J and ¢ for a corrected set ygj

The flux coefficients are then corrected using

. A R
old i
mng  Yang

g

1
9
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CHAPTER 5
SAHPLE PROBLEMS

A. Introduction

In order to test the accuracy and speed of the methods that were

developed, several reactor eigenvalue and shielding problems were

calculated on the IBM 3033 at Oak Ridge National Laboratory:

1.

3.

A simple “"source in the corner"™ shielding benchmark problem21
previously calculated by Lawrencea.

A éimple reactor cell eigenvalue problem, obtained from
Wagner's work’, consisting of fuel and absorber regions,

A more geometrically complex reactor lattice problem?l
consisting of a 12x12 boilino water reactor fuel bundle,

A fixed source two energy group shielding problem which
models a borehole source-detector configurationzz,

Problem 4 repeated uﬁing five energy groups,

A more realistic boundary source shielding problem which

models a sodium-steel-concrete voided shield?3.

A user's manual for EXTREME is given as Appendix F; a typical

sample problem computer output listing is given in Appendix G,

Fof the first sample problem, Benchmark problem BSS-5

B. Sample Problem 1: Shielding Benchmark Problem

21. shown in

Fig. 3, was calculated. This is a two energy group, homogeneous

material, fsotropic scattering calculation with a spatially constant

source in the lower left-hand corner, which was previously calculated

34
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by LawrenceB. The problem data are given in Table 1. For this study
the problem was solved using the three new nodal methods and also
with DOT4.22, a conventional finite difference code developed at Oak
Ridge National Laboratory. The calculations were performed with the
Sa angular quadrature given in Table 2; the spatial mesh was varied
from 4 to 64 nodes for the new methods and from 4 to 9216 for DOT4.2.
The flux cbnvergence criterion was set at 10-%, the valve used for all
six sample problems; this value was chosen because this was near the
1imit of accuracy for the single precision D0T4.2 code. (The new
nodal methods use double precision real variables.)

The results are given in Table 3 and shown in Fig. 4, which com-
pare the error in the total calculated leakage for the various
methods. The "correct” answer of 5.827x10-3, which was obtained from
an extrapolation of the Benchmark solutions given in Reference 22, was
used as the standard of comparison. The new nodal methods used
three spatial mod2s in the expansions; the moces themselves were cho-
sen from a material buckling (Bm) spectrum calculation described in
Appendix H. The comparisons of accuracy versus cost seem to indicaté
that all of the versions of the new development calculated the system
leakage (to within 1% error) from 40 to 100 times faster DOT4.2 on this
problem, and that the flat leakage version is the best of all methods.

This result, obtained also by Laurence8

for his flat leakage
method in 25.1 seconds on the CYBER 175 for a convergence criterion of
10'5. is surprising in light of Fig. 5, wnich shows the flux shape for
the first energy group along the right edge for the most accurate

solutions of the four methods. Specifically, the flux shapes from the
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Table 1. Data for Sample Problem 1

Energy Source

Group oy 02*9 og-l’g Density
1 0.921039-? 0.6947-2 o 0.6546-2
2 0.10088 0.485-2 0.23434-1 0.17701-1

Note: 0.921039-1 = 0.921039 x 10~}
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Table 2, Listing of S8 Quadrature

Angle u n Weight

1 0.272000 0.962300 0

2 0.192327 0.962300 0.0291971
3 0.608542 0.793522 )

4 0.577350 0.793522 0.0233138
5 0.192327 0.793522 0.0233138
6 0.816496 0.577350 )

7 0.793522 0.577350 0.0233138 -
8 0.577350 0.577350 0.0225258
9 0.192167 0.577350 0.0233138
10 0.981330 0.192327 0
11 0.962299 0.192327 0.0291971
12 0.793522 0.192327 0.0233138
13 0.577350 0.192327 0.0233138
14 0.192327 0.192327 0.0291971
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Table 3. Results of DOT4.2 and EXTREME Calculations of Leakage in
Sample Problem 1

Method Number of Number of Leakage x 10 % Error CPU Time

Nodes Modes (Seconds)
DIT 2%6 - 4.55507 21.83 5.42
Lot 1024 - 5.40426 7.2% 22.07
DOT 4096 - 5.71621 1.90 79.03
DOT 9216 - 5.78403 0.74 173.11
EXTREME
Method 1 4 3 5.79674 0.52 0.75
Method 1 16 3 5.81270 0.25 2.85
Method 1 64 3 5.82718 <0.01 6.55
EXTREME
Method 2 4 3 9.84535 68.96 1.66
Method 2 16 3 5.86870 0.72 4,51
Method 2 64 3 5.82930 0.04 17.29
EXTREME
Method 3 4 3 9.80770 68.31 2.01
Method 3 16 3 5.86390 0.63 4.51
Method 3 64 3 5.8278 0.01 15.77

The Standard equals 5.827 x 10-4 from the extrapolated results in
Reference 21.
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DOT4.2 and shaped leakage version calculations agree fairly well while
the flat leakage version gives an entirely different shape. This abil-
ity of the flat leakage version to deliver an accurate total leakage
despite a poor spatial flux shape was also reported by Walters?,

For this problem the Bm method of choosing the EXTREME modes was
tested by resubmitting the 16-node problem for the three exponential
methods with various values for the non-zero modes. Table 4 and Fig. 6
show the results using the function set 1, exp(-ax/ax), exp(ax/ax)
for various values of a. It is interesting to note that the total
teakage values calculated by each method as a function of a has a
minimum near a=4.5, the mode value chosen a priori by the B calcu-
lation. For the shaped leakage methods (Methods 2 and 3), this mini-
mum value seems to be the mode that yields the most accurate solutior
for the flat leakage method, however, the minimum Gips below the
correct answer. It can be seen from these results that {1) the
accuracy of the EXTREME code for this problem is very sensitive to the
choice of modes and (2) the mode chosen by the B, calculation fof this
problem was close to the optimum choice.

Also, the effect of various orders of expansion was tested by
running a series of calculations with the third method using 1, 3, and
5 modes in the expansion and the non-zero modes recommended by the
Bm calculation. (The use of paired modes offers an advantage in
EXTREME because of the symmetry; also, including a zero mode is
necessary to specify spatially flat eaternal sources. Therefore, it
is recommended that the mode set chosen by the user be of the form

a=0, tap, tap, etc.,) The results are given in Table 5 and Fig. 7;



Table 4,

Total System Leakage for Sample Problem 1 for Various
Choices of a in Mode Set 0, -a, a
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Method 1 (% Error)

Method 2 (% Error)

Method 3 (% Error)

4.2
4.4
4.6
4.8

5.2
5.4
5.6
5.8

5.9074
5.8738
5.8474
5.8227
5.8193
5.8165
5.8145
5.8132
5.8127
5.8129
5.8139
5.8156
5.8181
5.8213
5.8468
5.8853
5.9323

(1.38)
(0.79)
(0.35)
(-.07)
(-.13)
(-.18)
(-.21)
(-.24)
(-.24)
(-.24)
(-.22)
(-.20)
(-.15)
(-.10)
(0.34)
(1.00)
(1.81)

6.4279
6.2356
6.0233
5.8841
5.8704
5.8619
5.8588
5.8611
5.8687
5.8816
5.8995
5,9224
5.9500
5.9821
6.2018
6.4970
6.8399

(10.31)
7.01)
3.37;
0.98)
0.74)
0.60)

0.55)

(

(

.

(

(

(

( 0.59)
( 0.72)
( 0.94)
( 1.24)
( 1.64)
( 2.11)
( 2.67)
( 6.43)
(11.50)

(17.38)

6.3914
6.2044
6.0001
5.8701
5.8583
5.8517
5.8505
5.8546
5.8640
5.8786
5.8983
5.9229
5.9521
5.9858
6.2128
6.5144
6.8627

( 9.69)
( 6.48)
( 2.97)
( 0.74)
( 0.54)
( 0.42)
( 0.40)

0.47)

0.64)

0.87)

(
(
(
( 1.22)
( 1.65)
( 2.15)
( 2.73)
( 6.72)
(11.80)

(17.78)
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Table 5. EXTREME Method 3 Results for Sample Problem 1 Using
N=1,3,5 Mode Sets Chosen by Bo Calculation

System 4 )
No.of Modes No. of Nodes Leakagexl0O % Error CPU time(sec.)
1 4 121.33 1982.2 0.62
1 16 23.11 396.60 1.42
1 64 9.9602 70.93 5.79
3 4 9.8077 68.31 2,21
3 16 5.8640 0.63 5.16
3 64 5.8279 0.02 19.08
5 4 8.4613 45.21 7.07
5 16 5.8279 0.02 15,38
5 64 5.8274 0.01 54,09

¢
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they indicate that the flat {one mode) approximation is not very
accurate and that the use of tirce miydes seems to converge to accu-
rate (about 1%) answers sooner than the five-mode calculations, al-
though the five-mode convergence rate is at least as fast as for
three modes. Based on this study the remaining sample EXTREME cal-
cuvlations have beer. restricted to the three modes 0, -a, and a with

a chosen by the B calculation.
C. Sample Problem 2: Simple Reactor Problem

Although the primary usage of transport theory methods is for
deep-penetration shielding and streaming problems, they are also used
for multiplying systems, i.e., reactor design and criticality studies.
For the first reactor eigenvalue problem, a cell problem (shown in
Fig. 8) defined by Hagner7 was calculated. The problem data are
given in Table 6. Configuration consists of fuel regions surrounding
a fuel plus absorber region in the lower left-hand corner. The re-
flective boundary conditions on all sides simulate an infinite array
of these cells.

The eigenvalues determined by S8 calculations of DOT4.2 and
EXTREME are listed in Table 7, with the correct answer taken from
Wagner's TWOTRAMN calculation. The eigenvalue errors are plotted ver-
sus computer time in Fig, 9. As hefore, the shaped leakage versions
of EXTREME spatially converge (to about 0,01% error) about 10 times
faster than D0T4,2. The advantage of this rapid convergence, however,
is offset by the fact that the EXTREME and D0T4.2 codes seem to be
converging to different answers. However, the DOT4,2 and EXTREME

results are within 1% even for the coarsest grid. Wagner's nodal
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Table 6. Data for Sample Problem 2
. Energy g+g g-1sg
Material Group 9, of o o o
Fuel 1 0.13-1 0.5-2 0.22 0.19 0.
2 0.5 0.25-1 0.1+1 0.5 0.17-1
Fuel + 1 0.1 0.6-2 0.22 0.193 0
Absorber
2 0.7-1 0.1 0.8 0.73 0.17-1
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Table 7. Results of DOT4.2 and EXTREME Calculations of Eigenvalue for
Sample Problem 2

Method Number of Number of  Eigenvalue « Error CPU Time

Nodes Modes (Seconds)
DoT 4 - 0.770318 -0.317  0.94
DOT 16 - 0.771523 -0.161  2.26
DOT 64 - 0.772313 -0.051  4.85
DOT 256 - 0.772586 -0.024 14,14
Dot 1024 - 0.772654 -0.015 58,23
EXTREME
Method 1 4 3 0.775374 0.337 1.75
Method 1 16 3 0.773703 0.121 5,52
Method 1 64 3 0.773578 0.104 26.86
EXTREME
Method 2 4 3 0.772564 -0.027  3.35
Method 2 16 3 0.772837 0.009 12,40
EXTREME
Method 3 4 3 0.772816 0.006  3.54
Method 3 16 3 0.772885 0.015 11.47
Method 3 64 3 0.772903 0.017  63.59

Standard is 0.77277 from Reference 7
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method calculated this eigenvalue within 0.1% in less than a second
on the CYBER 176. Figure 10 gives a map of the ratios of the group 2
flux in each region as calculated by the three versions of EXTREME
using 64 nodes to the flux calculated by the most accurate DOT4.2 case.
For materials with k,>1, By theory predicts a cosire spatial
shape rather than an exponential shape; therefore, one of the basic
advantages of the exponential basis functions is lost. Thus the
Bm calculation should be no help in choosing modes for eigenvalue
problems. In order to test the effect of different choices of the
non-zero mode for the problem, the 16-node EXTREME model was run for
various values of a in the mode set 0, -a, a. The results are given
in Table 8 and the percentage errors are plotted in Fig. 11. These
results do not indicate any particular sensitivity to the choice of
the non-zero mode, although the fact that the errors are of the same

order as the convergence criterion may be clouding this test.

D. Sample Problem 3: BWR Lattice Eigenvalue Problem

For a "realistic" reactor cell problem, the benchmark problem21

shown in Fig. 12, was calculated. The data for this problem are given
in Table 9. This is a rather severe test for the nodal code EXTREME
due to the fact that the geometry cannot be represented in fewer than
144 rectangular regions,

As before, the D0T4.2 code was run on several mesh structures;
the three versions of EXTREME, however, calculated the eigenvalue for
only the basic 144-node mesh. The reason for this, as can be seen

from the results given in Table 10, is that the errors for the EXTREME
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Note: The three values are the node averaged fluxes from
Methods 1, 2, and 3, respectively,divided by those

from DOT4.2.
1.0033 1.0005
1.0001 1.0004
1.0002 1.0004
0.9975 1.0033
1.0000 1.0001
0.9999 1.0002

Figure 10. Ratios of the Group 2 Node Averaged Fluxes in Each Region
of Sample Problem 2 as Calculated by EXTREME and DOT4.2



Table 8.

Results for 16 Node Model of Sample Problem 2 for Various
Choices Mode Set 0, -a, a in EXTREME

a

Method 1 (% Error)

Method 2 (% Error)

Method 3 (% Error)

0.5

0.773993 (0.158)
0.773703 (0.121)
0.773604 (0.108)
0.773583 (0.105)
0.773525 (0.098)

0.772721 (-0.006)
0.772837 ( 0.009)
0.772723 (-0.006)
0.772737 (-0.004)
0.772705 (-0.008)

0.772660 (-0.014)
0.772885 ( 0.015)
0.772785 ( 0.002)
0.772785 ( 0.002)
0.772745 (-0.003)
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Table 9. Data for Sample Problem 3
Enerqy

Material Group o, of o 02*9 02-1*9

1 1 0.8983-2 0.5925-2 0.2531 0.233427 0
2 0.5892-1 0.9817-1 0.5732 0.514280 0.1069-1

2 1 0.8726-2 0.5242-2 0.2536 0.233924 0
2 0.5174-1 0.8228-1 0.5767 0.524960 0.1095-1

3 1 0.8587-2 0.4820-2 0.2535 0.233793 0
2 0.4717-1 0.7200-1 0,5797 0.532530 0.1112-1

4 1 0.8480-z 0.4337-2 0,2533 0.236900 0
2 0.4140-1 0.5900-1 0.5837 0.542300 0.1113-1

5 1 0.9593-2 0.5605-2 0.2506 0.230847 0
2 0.1626 0.2424-1  0.5853 0.422700 0.1016-1

6 1 0.1043-2 0 0.2172 0.207062 0
2 0.4394-2 0 0.4748 0.470406 0.9095-2

7 1 0.1983-3 0 0.2476 0.210582 0
2 0.7796-2 0 0.1123+1 0,1152+1 0.3682-1




Table 10. Results of DOT4.2 and EXTREME Calculations of Eigenvalu2 for
Sample Problem 3 '

Method Number of Number of tigenvalue % Error CPU Time

Nodes Modes (Seconds)

DoT 144 - 1.08487 -0.221 7.84

DOT 576 - 1.08676 -0.047 89.4

DOT 2304 - 1.08707 -0.018 472.8
EXTREME

Method 1 144 3 1.08741 0.013 83.34
EXTREME
~ Method 2 144 3 1.08719 -0.007 192.36
EXTREME

Method 3 144 3 1.08728 0.001 178.18

Standard is 1,08727 from Reference 21
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calculations on this coarse mesh are already of the same order of
magnitude as the problem convergence criterion of 0.01%. (The most accu-
rate TWOTRAN answer of Reference 21 was used as the standard.) The per-
centage errors in the eigenvalues are plotted in Figure 13, Figure 14

gives a map of the ratios of the group 2 flux in each region as calcu-

" lated by the most accurate EXTREME case to the flux calculated by the

most accurate DOT4.2 case.

For this problem, the shaped leakage versions of EXTREME calcu-
lated the eigenvalue with at least five times less error than DOT4.2
for three minutes of computer time. But, again, all of the methods

were able to calculate the eigenvalue within 0.1% fairly quickly.

E. Sample Problem 4: Two-group Volumetric Source Borehole

Shielding Problem

For the second shielding problem, a realistic two-group, isotro-
pic scattering model of a borehole source-detector configuration shawn
in Figure 15 was calculated with D0T4.2 and the three versions of
EXTREME. The problem data are given in Table 11: the Sg quadrature
listed in Table 12 was used. Although such problems are most often
modelled in cylindrical geometry, the dominant characteristic of this
problem, reflection from a large "rock” region competing with
streaming through "mud" filler, is present in the x-y model.

The comparison, shown in Table 13 and plotted in Fig. 16, is
based on the absorption in the gas region, which is proportional to
the neutron detector response. For this case the correct answer was

taken from a 1/h2 extrapolation of the most accurate D0T4,2 results, h
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Note: The three values are the node averaged fluxes from
Methods 1, 2, and 3, respectively, divided by those
from DOT4.2. (Symmetric about the diagonal.)
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Figure 14. Ratios of the Group 2 Node Averaged Fluxes in Fach Region

of Sample Problem 3 as Calculated Sy EXTREME and D0T4.2



63
61

41

Reflected
Boundary

1x1 Unit
Isotropic
Source

0

ORNL-DWG 82-13819
Yoid

SS

el ium

Stain-
less

Steel
(ss)

Water

Limestone

Void

Figure i5.

Reflected Boundary

30

Geometry of Sample Problems 4 and 5

62



Table 11. Data for Sample Problem 4

Energy g+g g-1sg
Material Group g, o g o
Water 1 0.447196-3 0.694676 0.634883 0
2 0.186552-2 0.149414+1 0.124404-!' 0.59107-1
Helium 1 0.202081-2 0.248635-2 0.449312-3 0
2 0.119939-1 0.120208 0.242964-3 (.622984-5
Limestone 1 0.271963-2 0.330263 0.314419 0
2 0.884484-3 0.542416 0.486617 0.130742-1
Steel 1 0.330796-2 0.499122 0.49446 0
2 0.219522-1 0.910098 0.882483 0.136134-2

Note: Unit isotropic source in group 1
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Table 12. Listing of Ssrouadratuhe é

Angle u n Weight

1 .36515 .93095 0

2 .25820 ' .93095 0.041667

3 .73030 .68313 0

4 .68313 .68313 0.041667

5 .25820 .68313 0.041667
.96609 .25820 0

7 .93095 .25820 0.041667

8 .68313 .25820 0.041667

9 .25820 .25820 0.041667
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Table 15.  Results of DOT4.2 and EXTREME Calculations of Absorption in

Detector Region of Sample Problem 4

Method t‘mber of Modes Used Absorptionxl0% % Error CPU Time

Nodes (Seconds)
DoT 1860 3.25391 -1.28 44.26
DoOT 3960 3.35682 1.84 129.4
pDoT 7440 3.32847 0.98 422.95
- 3.2962
EXTREME
Method 1 70 2.82521 -14.29 - 23,97
Method 1 140 3.07345 6.76 35.82
Method 1 507 3.22124 2.31 95.21
EXTREME
Method 2 70 3.38252 2.62 67.86
Method 2 140 3.33113 1.45 109,75
EXTREME
Method 3 70 3.30255 0.19 61.47
Method 3 140 3.30264 0.95 95.16
Method 3 507 3.29267 -0.11 241,
Standard is 3,2962 x 10-% from 1/hZ gx¢rapolation of the DOT results
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being the average mesh spacing. As for the previous problem, the
EXTREME calculations using method 3 shows a considerable advantage
for calculations more accurate than about 1%; the first two EXTREME
versions and DOT4.2 converge slowly as the mesh spacing becomes
finer, whereas the full expansion shaped leakage version settles

down faster. In fact, the third version calculates the detector
absorption almost ten times movre accurately than D0T4.2 for the

same computing time. As a test of the sensitivity of the third ver-
sion results to the choice of modes, the third version calculations
were repeated with a starting mode choice of seven rather than the
value of one suggested by the Bm calculation. The results are also
shown on Fig. 14. Again, the third version results are more accurate
than DOT4.2, even with an incorrect mode choice. Fig. 17 gives a plot
of the second group flux shapes from each of the four methods along
the longitudinal axis of the detector for the most accurate runs of
each version. All four methods generate similar exponentially
decaying flux shapes. As before, the shaped leakage results agree

more closely with the D0OT4.2 results.

F. Sample Problem 5: Five Group Volumetric Source Borehole

Shielding Problem

The third problem was repeated using the five group data shown in
Table 14, The results are shown in Table 15 and Figure 18, again
using a l/h2 extrapolation of the D0T4.2 results as a standard. As in
the previous problem, the D0T4.2 series of calculations did not con-

verge uniformly, However, as before, the third version of the new
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Table 14. Data for Sample Problem 5
Water
Energy Group
1 2 3 A 5
o, 0.204221-2  0.232815-5  0.370946-5 0.89033-4  0.186552-2
o 0.166371  0.319627  0.706306  0.13691+1  0.149414+1
o9 0.827352-1 0.184114  0.41781 0.118938+1 0.124404+1
o319 0 0.666382-1 0.1084402  0.288236  0.178904
o329 0 0.1226-1  0.22089-1 0.255367-3
o339 0 0 0 0.269274-2 0,200773-4
o349 0 0 0 0 0.243368-5
Steel
o, 0.554473-2  0.596984-3 0.490902-3 0.58045-2  0.219522-1
o 0.30321 0.263967  0.327932  0.920694  0.910098
o9 0.198691  0.248275  0.32223 0.910767  0.882483
o319 0 0.807918-1 0,139007-1  0.521149-2 0,412322-2
og'z’g 0 0 0.165872-1  0.11944-2  0,111508-7
0339 0 0 0 0.163365-2 0.203146-7
o3-H9 0 0 0 0 0.917713-6
Helium
o 0.111353-3  0.223702-3  0.326084-3  0.568677-2 0.119939
o 0.635097-3 0.812467-3 0.82901-3  0.598435-2 0.120208
oJ’9  0.343178-3  0.411409-3  0,367448-3  0.278721-3 0.242964-3
o3-1*9 0 0.180565-3 0,177358-3  0.135808-3 0,188716-4



Table 14,

(continded)
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rete

Conc

Energy Group

1 2 3 4 5
o 0.120437-1 0,705338-3  0.546143-4  0,121401-3 0.884483-3
o, 0.163225  0.215332  0.392019  0.509037  0.542416
039  0.114487  0.178828  0.321350  0.469195  0.486617
o319 0 0.325458-1 0.313744-1  0.705603-1 0,395757-1
0329 0 0 0.353284-2  0.441935-2 0.510733-4
o3~ >9 0 0 0 0.604909-3 0.401545-5
02'4’9' 0 0 0 0 0.497439-6
Source
Density 0.6261 0.2832 0.745-1 0.14-1 0
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Table 15, Results of DOT4.2 and EXTREME Calculations of Absorption in
: Detector Region of Sample Problem 5

Method Number of Modes Used A‘)sorptionxlo4 % Error CPU Time

Nodes (Minutes)
DOT 1860 - 4,5058 -2.17 2.09
DOT 3960 - 4,6554 1.08 4.37
DOT 7440 - 4,6322 0.57 8.90
) - 4 6057
EXTREME
Method 1 25 3 2.8642 -37.8 0.52
Method 1 72 3 4,0178 -12.8 1.06
EXTREME
Method 2 25 3 3.7246 -19.1 1.31
Method 2 72 3 4,7423 2.97 2.19
EXTREME
Method 3 25 3 3.9082 -14.0 1.23
Method 3 12 3 4.6641 1.26 1.97
Method 3 200 3 4.6481 0.92 4.88

Standard is 4.6057 x 10"% from 1/hZ oytrapolation of the DOT results



Percentage Error

72

ORNL-DWG 82-13822

A
i E;REHE, Method 1
— " +
Y
- )
22&)§ \
10 — “‘
] \ \\
— ‘ \‘
] \EXTREME, Method 2
— \
\
5 ] ‘\
\
] Vo
. 3
] \
1 — EXTREME, Method 3-P‘~\\\\\ DOT4.2
—
_.+
——tf
0.5
T 711 ] | } T T 1T 1T]
0.5 1 5 10
CPU Time (minutes)
Figure 18. Comparison of Percentage Error in Detector Absorption

for EXTREME versus DOT4.2 in Sample Problem 5


file:///EXTREME

13

method shows a calculational advantage over the other meth:zds,
although the advantage is slight for this problem. Again, the D0T4.2
result does not seem to be converging to the same result as the
EXTREME runs. The flux along the detector centerline for energy group
5 is shown for the four methods in Fig. 19. Again, the D0T4.2 and the
shaped leakage results are similar. The flat leakage shape, however,

is quite different from 00T4.2.
G. Sample Problem 6: Realistic Boundary Source Shielding Problem

The final sample problem was a calculation of a two-group, ani-
sotropic scattering Cartesian geometry version of a previously calcu-
lated r-z scattering problem20 (See Fig. 20 for geometry and Table 16
for problem data). The source for this shielding problem was spec-
ified along the bottom edge as boundary flux sources; the same S8
quadrature used in Sample Problem 1 was used 2g9ain. In addition to
the challenge of deep-penetration shielding, this problem contained
void regions, which are often difficult for discrete ordinate methods
to calculate. In fact, the first two EXTREME versions failed in the
void region due to division by zero (otg) in Egs. 4.10 and 4.19,
respectively.

The leakage out of the top edge of the system was compared from
calculations using DOT4.2 and the third version of EXTREME, using the
extrapolated DOT4.2 results as the correct answer. The results, which
are shown in Table 17 and illustrated in Fig. 21, indicate that the
full expansion version of the new method performed somewhat better

than the finite difference code, calculating the leakage with an error



74

ORNL-DMG 82-13823

20 —1
.__+
"
—— I’ '
’ )
’ ]
] FA S
Il '
R I’I I‘
. , \
]5 - 1I ‘\
l’ '
—— ’ ‘\
A \ EXTREME, Method 1
- I/’ ‘\
- A
' \
—_— ’ \
I’ \‘
0 _| A \
‘\
— '
—— ‘\
‘\
5 —_ \“
] b
\\
— ' A
\ ,’
—— \ ]
EXTREME, Method 2 N
— —— — EXTREME, Method 3 \
0 T T T ‘T
40 45 50 55 o0
Distance along Left Edge of Problem (cm)
Figure 19. Plot of the Flux along the Longitudinal Axis of Detectcr

in Sample Problem 5 as Calculated by EXTREME and D0T4.2



ORNL-DWG 82-13824

0 50 cm 80 cm
260 cm
Steel Concrete
200 cm
Void
Reflected
Boundary
120 ¢m
Sodium
0

fTriryrrrrry g

Unit Tsotropic Source

Figure 20, Geometry of Sample Problem 6

75




Table 16. Data for Sample Problem 6

16

Energy
g+q g-1+g g-2+9
Material Group Pn o o o o
Sodium 1 0 0.43137584-1 0.26473090-1 0 0
1 0 0.37911385-1 0 0
2 0 0.35527978-1 0 0
3 0 0.2792589G-1 0 0
2 0 0.88249624-1 0.65755069-1 0.13400991-1 0
1 0 0.86740136-1 -0.96387594-4 0
2 0 0.51053967-1 -0.44981577-3 0
3 0 0.17441791-1 -0.83661382-3 0
3 0 0.89246333-1 0.73297560-1 0.22483591-1 0.21863093-2
1 0 0.35939686-1 -0.34310389-2 0
2 0 0.69684274-2 -0,51349252-2 0
3 0 0.13753897-3 -0.62880255-2 0
Steel 1 0 0.30138278 0.19000387 0 0
1 0 0.34245878 0 0
2 0 0.43545473 0 0
3 0 0.41211671 n 0
2 0 0,24521184 0.20927387 0.75049460-1 0
1 0 0.18235999 -0.48843361-2 0
2 0 0.20093083 0.37485985-2 0
3 0 0.70490658-1 0.10296197-2 0
3 0 0.27366883 0.24890482 0.30904386-1 0.2691919-1
1 0 0.12005287 -0.20314790-1 )
2 0 0.73446751-1 0,76499656-2 0
3 0 0.17678391-1 -0,79512261-2 0
Concrete 1 0 0,15216088 0.10326391 0 0
1 0 0.15365785 0 0
2 0 0.1699329 0 0
3 0 0.1394459 0 0
2 0 0.24736381 0.16833687 0.39397683-1 0
1 0 0.14726287 -0.79861768 0
2 0 0.15240687 0.22006292-1 0
3 0 0.37392784-1 -0.64892247-2 0
3 0 0.37129378 0.24303782 0.72304130-1 0n,31531390-2
1 0 0.10104793 0.8108/486-3 0,19144095-2
2 0 0.69319725-1 0.1369259¢-1 -0,29986990-2
3 0 0.60740877-1 -0,71794577-2 -0,52304268-2
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Table 17. Results of DOT4.2 and EXTREME Calculations of Leakage out
the Top of Sample Problem 6

Method  Number of Modes Used Leakagex10® < Error CPU Time

Nodes ~ (Minutes)
Dot 1300 - 2.9908 -8.34 1.34
DoT 3328 - 3.2053 -1.76 3.30
pDoT 5200 - 3.2506 -0.37 5.09
w - 3.2627
EXTREME
Method 3 8 3 3.2367 -0.80 0.46
Method 3 32 3 3.2991 1.10 1.26
Method 3 128 3 3.2659 -0,10 2.38

Standard is 3.2627 x 10-% from exirapolation of the 00T results,
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less than 1% three to five times faster than DOT4.2. Figure 22 shows
the flux shape along the top edge of the system as calculated by the
two methods. Again, the shapes agree very ciosely. (The difference
in magnitude can be explained by the fact that the DOT4.2 values are
the average fluxes for the top mesh row, whereas_the EXTREME values

are actually on the top edge.)
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CHAPTER 6
CONCLUSIONS

This research project has consisted of the development and eval-
uation of a new modal expansion treatment of the spatial variation of
the neutron flux within the framework of a two-dimensional Cartesian
geometry, mulitigroup, discrete ordirates computer code. The code
EXTREME, which implements this new spatial treatment, was compared
with the code D0T4.2, which uses a finite difference spatial treatment
and is in general use throughout the world. The sample problems cho-
sen for comparison spanned a range of calculations commonly encoun-
tered in the nuclear analysis field--reactor eigenvalue cell and lat-
tice problems and also fixed source and boundary sourcz shielding
problems.

The fuli expansion, shaped leakage version of EXTREME (Method 3)
was consistently able to deliver very accurate solutions of both types
of >roblems using up to 40 times less computer time than D0T4.2
for the same accuracy (e.g., within 1% error). The results for the
separable interior flux, shaped leakage version (Method 2) were nearly
as good as the third method for the eigenvalue problems (Sample
Problems 2 and 3) and the simple shielding problem (Sample Problem 1),
but did not calculate the realistic shielding problems well, The flat
leakage version (Method 1) showed no advantage ovcr ND0T4.2 except for
the total leakage (but not the edge flux shape) of the simple
shielding problem. The results for all of the prcblems considered

indicate that the use of exponential modal interior and edge spatial
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expansions (Methkod 3) is a more efficient method of calculating very
accurate spatial neutron flux variations than the traditional use of
fine-mesh spatial schemes. It is recommended, of course, that the
method be tested further by calculating an even wider range of
problems, including detailed streaming calculations and very finely
resolved energy spectrum calculations involving many energy groups.
Additional recommendations for future work are presented in the next

chapter.
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CHAPTER 7
RECOMMENDATIONS FOR FUTURE WORK

This study has demonstrated the effectiveness of the use of expo-
nential modal expansions in a prototype two-dimensional Cartésian
multigroup discrete ordinates computer code. The possibly fruitful
areas of research that are suggested by the results of this study fall
into two major categories: (1) optimization of the new method and

(2) extension to other geomet “ies and to time-dependent problems.
A. Optimization of the Cartesian x-y Nodal Method

As was stated in Chapter 1, the FORTRAN code which implemented
the exponential spatial expansion discrete ordinates treatment is only
a prototype, not a production code., The current version of EXTREME
could most likely be improved along several lines within the present
scope of Cartesian geometry static neutron flux calculations:

1. Most obvious is the fact that the programming itself could be
improved through the use of more efficient algorithms, ASSEMBLER
language streamlining of the most often used subroutines, etc.

2. A second pressing need is for improved data management of the
fairly large number of precalculated expansion coefficients, in order
for the code to handle larger problems,

3. The many particular options which have evolved over the years
of practical experience with codes like D0T4.? could be added to
EXTREME., These include the use of variable mesh spacing, different
quadratures in different spatial regions, and incorporation of the

many improvements in coarse nesh rebalance techniques.

83
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4, Several types of improveﬁents are suggested by the unique
structure of the exponential expansion methods.

One of these is the possibility of allowing each repeating node
type to'have its own set of expansion modes rather than specifying a
single mode set for the problem. Implementing this idea would involve
the use of transfer matrices to convert expansion coefficients from
each individual mode set to those of all neighbors which share a bound-
ary with the node in question. This would add to fhe storage reguire-
ments and computing time of EXTREME, but would allow the spatial
expansions to be more closely tailored to the problem.

Once the use of many mode sets is introduced, the actual choice
of the mode sets, which was shown in Sample Problems 1 and 4 to
strongly influence the accuracy of shielding calculations, would
become even more crucial. A second possible improvement, therefore,
is the implementation of iterative updates to the mode sets. In such
an approach, the calculation could begin with a preselected set of
modes and proceed to a relaxed convergence criterion (possibly 1%).

At this point, the ;alculated flux variation across the spatial

nodes could be used to calculate more appropriate choices of the
modes. This technique would also prqbably use more computer time than
the present version of EXTREME because the calculation would have to,
in effect, start over with the new mode sets, (Of course, the par-
tially converged results in the criginal expansions could be used to
generate a flux guess in the new mode sets,)

A third possible improvement suggested by the structure of the

nodal treatment is the development of acceleration techniques
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appropriate to nodal methods. For example, although it is true that
the coarse mesh rebalance method does not work very well for large
variations of the flux, conventional finite difference methods can
effectively accelerate by rebalancing on the fine mesh. However, this
cannot be done by nodal methods in which the fine spatial variatien
is givenAin a moaal expansion rather than a fine mesh. Nodal methods
would be accelerated more effectively by a rebalaﬁce technique in
which the flux corrections on the coarse mesh were also given as a
modal expansions. Unfortunately, 1o such method is currently

available,
B. Extension to Other Geometries and to Time Dependence

Unfortunately for the current development, not all nuclear analy-
sis protlems fit in the framework of static two-dimensional Cartesian
geometry calculations. It would be very useful to be able to calcu-

late other problem configurations with exponential spatial expansions.

1. Curvilinear Geometry

Calculations of the neutron flux in geometry systems other than
Cartesian introduce additional terms in the basic equation due to the
fact that the directional parameters p, n, and £ change as a neutron

travels between collision sites. This extra angular transfer term cin

be seen in the cylindrical (r,z) geometry analogue to £q. 4.11:

aplr,z r
F Wl s AUTZ) 4 g y(r,2) = S(r,2), (7.1)
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whera for this system:

- L
B =02.1,

n=.k,

0 is the azimuthal cngle of {i about the z-axis,
and ? and ? are the unit vectors in the r and z directions,
respectively.

In the DOT4.2 code, this extra angular complexity is handled by

rewriting Eg. 7.1 in conservative form:

b R R (7.2)

integrating over 0 for a particular discrete ordinate segment of the
unit angular sphere, and applying a constraint similaf to the spatial
constraints to relate the angular average to the angular endpoint
values. (This procedure causes neighboring angular segments to be
coupled in the same way as neighboring spatial segments.) B8efore the

spatial variables are dealt with, the use of a sten approximation:

e (ro2) =y (r,z;
where m represents the discrete ordinate direction and M+l denotes the

angular boundary between angles m and m+1l, results in the equation:

3(;:’m) l_ra(er/ ( ot - Ae) ("Wm) PSS - 5._ ¥m-1 * (7.3)

When the spatial treatment is added to this structure, the term
is, in erfect, treated as a change in the total cross-sectivn.
ising the same approach in the exponential expansion nodal

methods would pose a problem because the constantly changing value of
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ot would cause the precalculated exnansion cocfficients E;: to change
also. This problem could be avoided by using the previous iteration

value of yps1(r,z), i.e.,
n+l n+l +1
2Rt e o258 ronle o™ 5 R - ) (7.8

in which n is used as an inner iteration counter, Switching the angular
transfer terms from the left side to the right side of the equation
would most likely effect the rate of convergence, however, so the
stability of the resulting iterative procedure would need to be
studied.

In principle, however, the same approach could be used for the
angular transfer terms of the other orthogonal curvilinear geometry

systems (e.g., cylindrical r-o, spherical, toroidal, etc.).

2  Three-Dimensional Geometry

The éxponential expansion methods described in Chapter 4 could
also be applied to three-dimensional Cartesian geometry configura-
tions. T1ihe shaped leakage approaches, however, would become corre-
spondingly more complicated, as it would be necessary o generate and
store transfer matrices from two-dimensional surfaces to other sur-
faces and possibly to thc three-dimensional interior of the node. The
number of combinations of flat, separable, or full expansion represen-
tations of the edge and interior fluxes would make such a study a rich
research project.

The simplest case, the flat leakage, separable one-dimensional
interior flux approximation, could be developed fairly easily from the

current versions of EXTREME.
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Also, the curviiinear considerations discussed in the previous
section could be anplied to the three-dimensional case if they work
for the two-dimensional case, allowing geometric systems such as

cylindrical (r-8-z) or spherical (r-e-4).

3. Time Dependence

The introduction of time as the third (or fourth) dimension poses
the same mathematical problem, in principle, as the addition of another
spatial dimension. For example, for the full expansion interior flux
treatment (Method 3), the flux can be found as:

v(x,y,t) = ¥ (x,y,t) + 9y(x,y,t)

where
N N T Smng

w{xy,t,) =1 I 1
1 m=1 n=1 p=1 WHop*nBa*Yp+or
v

exp (qu+8n_y+ypt )

and
vo(s) = ¥,(0) exp(-g;s), with

X-4Q _ Y-¥0 _

2 vit-t
r n (t-tg)
v = neutron speed
T = number of time expansion modes.

The transfer matrices would be more complicated than in the static
case, but for many cases of interest @.g., time-dependent shielding)
the cross-section data would be independent of time, Aiso, it is
interesting to note that for computations in which delayed neutrons
are important, tre time-dependence of the resulting "source” at time t
is generally exponential in time, which would allow the wethod the

advantages discussed in Appendix C,
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APPENDIX A

DEVELOPMENT OF THE EXPONENTIAL EXPANSION METHOD
IN ONE DIMENSION

The exponential expansion method can be derived for the Boltzmann
transport equation for one-dimensional slab geometry, discrete angle i,

and particular energy group g,

dwi(x) , 9.9, _
¥ dx o5 vV ) Z HJOS g " (x) + Q (x), (A.1)
where o = oJ i+

i % " 9%,q"
Equation A.l1 has the solution

9
‘1’?(’()=¢?(XO)9XP[G?(X0-X)/ui] oploopi/uy) (5.2)

'|

f dx'| E 5 o) g 4 Ix*)+d(x*) Jexp(afx’ /)
Xg 3%
#ith known value w?(xo),

Approximating w?(x) and Q?(x) in terms of the exponential expan-

sion set exp[an(x-xl)], n=1,2,3,...,N, gives

9 N n
(x) = ll p gexp[an(x-xl)!, (A.3)
where
jei m m
N L w0 bi o*Q;
£ J°s J»9 )
¥i g = [63(xg)- ) J | (A.4)
m-l . *09
i%m’ %5
3*1 mom
) | +0.
J 9% J q 1,9
. g m j#i
explof(xg-xy)/u JE5 + N .
Wi%m™74
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This expression provides a relationship between the source and
angular flux expansion coefficients, allowing the system flux ccef-
ficients to be sclved iteratively. The integers between -(N-1)/2 and
{N-1)/2 have been successfully used for the values of @ys Apseeesray.

The method was used to solve a deep-penetration shielding
problem using the data in Table A-1. The results were compared with
the results using the ANISN one-dimensional discrete ordinates
code.23 The problem employed two energy groups, Sq quadrature, and a
convergence criterion of 10'4. The weighted difference option was
used on the ANISN runs. The current was calculated by both ANISN and
1-D EXTREME exiting out of a 100-cm slab (~40 mean-free-paths) of a
concrete-like homogeneous medium from a unit incident current.

Comparisons of the results of EXTREME-1D and AMISN for the sample
problem are shown in Table A-2. For an error of ~0.1%, EXTREME-D ran
over four times faster than ANISN, These results indicate that the
exponential expansion method should be able to solve other deep-
penetration shielding problems similar to this one with a considerable

time savings relative to ANISN.



Table A-1. Data for 1-D Slab Problem

95

Enerqy . .
Group oy o9 Og-l 9
s S
9
1 0.364750 0.350790 0.013366
2 0.436903 0.426550 0
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Table A-2. Comparison of the 1-D Method with ANISN
For the Sample Shielding Problem

Space Expansion oot . 6 CPY Time
Code Paints Modes J”“"x10 % Error (seconds)
ANISN 50 - 7.49192 -4.,230 0.48
ANISN 100 - 7.73695 -1.100 0.62
ALISN 200 - 7.79783 -0.35¢ 1.02
ANISN 400 - 7.81226 -0.137 1.80
ANISN 800 - 7.81763 -0.068 3.36
ANISN o - 7.823 0 -
EEN 20 3 7.77193 -0.652 0.30
EEM 20 5 7.83397 0.140 0.40
EEM 20 7 7.82411 -0.014 0.50
EEM 20 9 7.822%7 -0.005 0.69
EEM 20 13 7.82254 -0.005 0.76

Standard taken from extrapolated ANISN values



APPENDIX B
DEVELOPMENT OF ANISOTROPIC SCATTERInG TREATMENT

As mentioned in Chapter 2, the anjular dependence of the scat-

tering cross-section is given i ierms of a Legendre expansion in
angle, i.e.
g v (Ql"ﬂ) = E Gk 3 P (:l..g) .
$:9'+9 k=g S°9*9 'k

Substituting this into the angle-integrated scattering source relation:

G .
Sg Y =——1 ' Y9’ ' Q' dg’
s (x5,2) = = g. é. vge (Xuy 9.) Og,g'>g? *R)d0
gives:
g 1G 2n 1 o K
2J9lly = — dG' dl ' ’s". ] P R-
Ss(xa¥yma0) = - E- é {1n kéowg (x2yn"s0") o geugfilug)  (3:1)

where d»' has been divided into its components dn' and de'and ug =
ug = 2'°9.

Evaluation of this integral requires that the scattering cross-
section be described in terms of the variables n, n', 6, and 8’
instead of Ho- From the addition theorem for Legendre polynomials,

this is:

k m )
Pelug) = Pe(n) P(n') + 23 (kB)t pl (n) PP (n')cos m(o-0') .
m=1"(y+m)!

The cosine terms can be expanded to give:
k 1 ,M m
Pelug) = Py(n) P(n') + 2y Leemt Bl () B0 (n')
m=1 (k+m)!

* (cos mo cos mp' + sin me sin ma') .
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Using this expression, Eq. B.1 becomes:

G 2x 1 ™

k
Sg (x,y.n.e) = 2 Ide. Id“'z v .(X,y,n',C') Ocq? (B'Z)
s g0 -1 k=0 9 59+

g

k
* [P (n) P(n') + ﬁnzlpg(n) #f(n-)(cos me cos me'

+ sin mo sin mo')] .
Due to symmetry of x-y geometry,'the flux is an even function of
6'; therefore, all terms with sin mo' vanish under integration over

8'. Equation B.2 can be rewritten as:

6 = ko 0
Sg(x,¥:n,0) = é' kzo mEO % g'+ghk(ng) cos mo, (B.3)
1 2x m
. _{ dn' é do' wg.(x,y,n',e') Ak("é) cos mhy
where
AQ(nd) cos mo, = P, (ny) if m=0

-m)! .1
= {2 k+$ T ] 2 ﬂ?(nd) cos moy if m 20
In terms of discrete ordinates, if angle d corresponds to direc-
tion (n,d) and d' to (n',8') and the angular integration is replaced

by a weighted quadrature sum, the approximation to Eq. B.3 is:

6 = k
. - k’ k ]’

docy) = 18 AT e e M(xy)

° g' k=0ms0 9 5:9°+9°9
where

K, ,
Aq m o P (n,d) if m=0
- ]
= [2 k+m i]LQ Pf(nd) cos moy if me0,

and

k,m ) Ak,m d’
0g (¥) = Lwgs Agr ()



APPENDIX C

COMPARISON OF EXPONENTIAL EXPANSIONS VERSUS LEGENDRE
POLYNOMIALS Id REPRESENTING EXP(-AX), O<A<S

To compare the effectiveness of the function set exp(apx) versus
the Legenidre polynomial set P,(x) in approximating functions of the
form:

f(x) = exp(-ax) , 0<x<1 ,

the function was approximated in the two function sets; i.e.,

N-1
exp (-ax) = nzo Ln Pn(x)

\ |
= | Eexplax) , ag0,-1,1,-2,2,... .
n=1

The coefficients of the exponential expansion were calculated by
using the procedure of Appendix D to minimize the least-squares norm:
207 ! 2
L[f(x)] = é [f(x) - f(x)]%dx .
(The Legendre expansion minimizes the same norm for the x" basis func-
tion set.)

The value of this norm for the two expansions were compared as a
function of a for values ranging from O to 5. Fig. C-1 shows the com-
parisons for N=3, As can be seen in this figure, the exponential
expansion.set can represent this type of function slightly better than

the Legendre polynomials for values of greater than 1. Below 1, both

expansions can represert the function within about 1%.
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Figure C-1. Comparison of Least Square Error Norm for Exponential

Expansions versus Algebraic Expansions in Representing
Exp(-ax) for 0<A<S



APPENDIX D

COMPARISON OF OPERATION COUNT FOR THE INNER ITERATION
OF A MDDAL EXPANSION CHANNEL METHOD FOR
EXPONENTIAL VERSUS ORTHONORMAL BASIS FUNCTION SETS

The relationship between the inner iteration source and the
neutron flux for a given x-dimension channel calculation is given by a

simplified version of Eq. 4.1:
X
¥(x) = 9(0) exp(-ax) + ZLL2X) 17 5(x') explaxt)ax’ (0-1)
0

where the source S(x) is taken to include all sources external to
¢v(x), including transverse leakage and a = cpfu. If S{x) is expanded
in a basis function set fn(x), n=1,2,...,N:

S =)S f
CEPESXE

and this expansion is substituted into Eq. D.1, the equation becomes:

p(0)exp(-ax) + § Snexp(-ax) éxfn(x')exp(ax')dx' (0.2)
n

w(x)

) ¥y Tulx) -
m

For the case in which f,(x) is a function set orthonormal over
the range (0,ax) with a unit weight function, the coefficients can
be found from the relation:

AX
é fm(x')w(x')dx'

"’m
!

B g A% X
v(0)f fm(x')exp(-ax')dx + ) ;ﬂ é o x")exp(-ax)/ fn(x')exp(ax')dx'dx"
0

3
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v(0) 6 + ]S H_ (0.3)

m

where

G

AX
J fm(x')exp(-ax)dx'
0

and

X

A
Hon = J xfm(x')exp(-ax')j fn(x‘)exp(ax')dx'dx' .
0 (]

3 |

The operation count for this equation is 1+2N; therefore, the
inner iteration count for all N modes would be N+2NZ.
For the case in which the f,(x) are exponential functions,

exp(apx), Eq. D.2 becomes:
v(0)exp(-ax) + % ;1§§:37[exp(anx) - exp(-ax)]

Sk S
[v(0) - g ;ng;gylexp(-ax) + % ;ng:zjexp(anx)

v(x)

% ¥pexp(a x) .

If the procedure in Appendix E is used to find the coefficients
of the expansion:

exp(-ax) = § E, exp(a x),
m

the yq can be found from the relation:

by = [v(0) - E PeSKIE, + PoS (n.4)

m-m

where
Pn = ﬁTElTET .
m
The operation count for finding the gy for all N values is 5SN.

(Note that the term in brackets in Eq. N.4 is independent of m and

need be calculated only once.)



103
Thereforé, use of orthonormal expansionsrfunctions requires a
factor of 0.2+0.4N times the operations and a factor of 1+N times the
storage requirement of the exponential functions.
Although this comparison would indicate that there is an opera-
tion count advantage for the orthonormal algebraic set if N=1 or 2,

Eq. C.3 can be reformulated as:

bo = $(0)EG + T Oy S,
where

an = (Gmn’Em)Pm ’

eliminating the difference in operation count and storage requirements.



APPENDIX E

PROJECTION OF EXPONENTIAL FUNCTIONS ONTO THE EXPONENTIAL
BASIS FUNCTION SETS

In order to set up the iterative procedure of determining the
flux expansion coefficients of kqs. 4.7, 4.8, 4.17, 4.18, and 4.22,
several types of functions must be expressed in terms of our exponen-
tial basis functions. The procedure for each of the cases is the
same:

1. Find a set of functions, gy(x), orthonormal over the range
0<x<1 which are linear combinations of the basis function sets

exp(apx), i.e.

an(x) = T gnexplanx);
n=1

2. Approximate the given function, f(x), as a linear combination

of the orthonormal functions:

M
f(x) = § fnom(x)
m=1

where
~ 1
fy = jof(x)gk(x)dx ; and
3. Find the coefficients to the related expansion:

M
f(x) =] fpexp(agx)
n-1

O (%)

N~
—t

m
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n

J Fron explagx) -

N
=]
n=1 m=1

Therefore,
n
n
fn= 1 fagm -
m=1
The set of orthonormal functions gy{x) can be found by applying

the Gram-Schmidt19

procedure to the basis function set exp(anpx),
n=1,2,...N. The Gram-Schmidt procedure allows one to start with a
basis function set ep(x), m=1,2,...M and determine a set of functions:
n m
“up(x) =1 ugeq(x)
m=1
which are orthonormal over a given range with respect to some inner

product <,,.>, i.e.

<u,—(x),uj(x)> = Gij .

The functions uy(x), n=1,2,... N are found to be:

un(x) = CGp(x)s0n(x)>"2-5,(x) , (E.1)
where
- n-1
tn(x) = e (x) - §1<um(x),en(x)>'um(x) .
m=

Equation E.1 can be evaluated in terms of the basis functions
en(x). To do this, one begins by simplifying the norm of the
equation:

~ ~ n-1 n-1
U, (x),u (y)> = <e (x) - Zl<um(x),en(x)>,en(x) -mzl(um(x),en(x)>>

m



n-1 2
<e,(x) e, (x » - ngl(um(x) ,en(x)>

n-1 n-1

106

-3y 3 (um(x),en(x)><uk(x),en(x)><;@(x).;;(x)>

m=1 k=1

n-1 2
<e,(x),e,(x)> - m£1<um(x),en(x)>

(e X 'e X - E ' E u <e X ’e X ) I -

Using this result in Eq. E.1 gives:

1

n-
u (x) = u:'[en(x) - {l<um(x),en(x)>un(x)]

<
|

m=

]

n n-1 m oy -
uq.le, (x) :“Zl{kglum (ek(x),en(x)>}]£lume](x,J

?oj
jzl Un en(x) ’

n-1 m

= e (x),e (x)> - Zl{kzlu: (ek(x),e"(x)>}2'.r2
m: =

n g im™ ok .
Uy ° uy Z u <ek(x),en(x)> , for j<n .

m=1 k=1 ™

For our application,

en(x) = eXp(anX),

up(x) = g.(x) = § g, exp(ax),

(ek(x),e](x)>

m=1

1 1
[ e (xle(x)0x = [ expl(ay oy )xJex = By
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_ exp(aytaj) -1

if a, t-a »
= l if nk=—a] »
g} = h]l-z, and
j g n-1 n
9 = L1 v, Z U M3 = Dhan- l (E hkn)
m=1 k-

The choice of the mode set, ags ®js -eo QN are restricted to the
family O, ta;, taz, ... ta(N+1)/2, N odd.

In the derivation of the method, there are only two types of
functions which must be represented in the basis function set. The
first is the approximation:

f(x)

exp(ax),x]<x(xu or

0, 0(x<x] or xu(x(l,

! Eexplayx) .
n

The coefficients E, can be found from:

D

1
f(x) =1 [ [ f(x)gy(x)dxTg,(x)
m=1 0

n m K 1 m ;
=3 03 9] f(x)exp(ayx)dx] | g7 expla x)
m=] k=1 0 n=1

N on m exp({ak+a}xu)-exp({ak=a}x]

=1 I(1lg,

n=1 m=1 k=1 " ay +a

n
) 9 exp(a,x)

Therefore,

n o m exp({ak+a}xu)-exp({qk+a})x]

mll(kzlgm

Gk+a



108
The second type of function which must be approximated is:
f(x,y) = eax+by’ 0<x<xu, kx<y<1

= 0 , otherwise

{ { an€XP (e x+8,Y)

m=1 n=1
The coefficients Gy, can be found from:
1
F(x,y) = Z Z [! dx ! dy f(x.y)gn(x)h (y)1g (x)h, (y)

m=1 n=1

N m n K 1 1 1

"ok ngl[kgl (L SP) dxf arF(xylexp(ayx+ayy)]

m n
* 7 ¥ &®nYexp(a x+5_ y)
R N 4
N M m N khl eb+s

M
- q
( A {
Z1 q%l mgp nzq kzl 1{1 b+8y  a+ay

1 (e(a+qk)xu_1)

e(a+ak+kb+k3])xu _ 1) q
a+a, *KBVKA } ) gohgexplayx+8.y)
Therefore,
M N m n b+e
X
G Z 2 ( 2 2 Em—- (e(a+°k) u -1)
PA gp n=q k=1 1=1 °*
elaragrkbrkay)x, o1
- } ) anha
a+ak+kb+k8]

where h,(y) is the orthonormal set based on exp(B,y), n=1,2,...,H.
Two examples of the results of this procedure are shown in

Figures E-1 and E-2. In both examples the basis function modes
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Figure E-1. Approximation of a Continuous Exponential Functicn
Using an Exponential Expansion



ORNL-DMG 82-13829

0.3

1.0 —7
\
0.9 — ‘\‘
0.8 —
0.7 —
0.6 -—
0.5 —
=
T 0.4 —]
-..894 + 3.026e”% -,
0.3 — + 0.508e* ™,
0.2 |
0.1 —]
0.0 __|
B B
0.

1 0.2

Figure E-Z.

0.4

X

T
0.8

0.5

0.6 0.7

no

,T_““m
0.9

1

Approximation of a Discontinuous Exponential Function
Using an Exponential Expansion



111

an = 0, -1, 1 are used to represent f(x). In Fig. E-1, the continuous

function:
£r(x) = e 1°%%, texel
is represented. In Fig. E-2, the discontinuous function:
fo(x) = e 1+3% | 0¢x<0.5
= 0, 0.,5¢x<1

is approximated. As expected, the continuous function can be repre-

sented more accurately than the discontinuous function.



APPENDIX F
USER'S MANUAL FOR EXTREME
A. Introduction

The primary objective of the development of the code EXTREME was
to implement and test the use of a new spatial treatment in the static
multigroup discrete ordinates calculation procedure. This version of
the code cannot really be classified as a "productior”" code. Its
main shortcomings are in the areas of programming efficiency, solution
acceleration, and data management. The first two of these will most
likely only be a headache for the user; the last limits the size
problem that can be accommodated.

The code can calculate the neutron fluxes with any consistent
units of length and time. The directional fluxes are normelized such
that, if the flux ic isotropic, then the scalar and directional fluxes
are equal in measure. This means, of course, that the angular quadra
ture weights must sum to 1. The specification of anisotropic scat-

tering cross-sections follow the D0T4.2 convention; i.e.,
ogift'+fl) = E ogk Px(f'.3) .

Therefore, some standard cross-section files such as ISOTXS and MATXS
must be multiplied by 21+1 for use in EXTREME.

Since the code is only designed to handle Cartesian x-y geometry,
there are few restrictions on the quadrature sets. The only require-
ments are that the weights sum to one and that the necessary reflec-

tion angles are present at reflection boundaries; if either of these
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is not met, the code will say so and stop. Quadrature directions
with zero weights serve no purpose in Cartesian geometry and are not

used in the calculation.
B. Functional Flowchart of EXTREME

The following is a functional logic flow chart of EXTREME. The
subroutines which implement each step are given in parentheses. Each
subroutine mentioned in the outline calls subroutines below it in
structure. (The subroutines listed in the Roman numeral headings are
called by subroutine CONTRL.)

I. Read problem input (INPUT1, INPUT2).

I1. Calculate materials buckling, if desired (BL).
I1I. Calculate anisotropic scattering weights (PCON).
IV. Calculate necessary constants for first method, if
necessary (EXPAND).
A. Orthonormalize the user-supplied exponential basis
function set (ORNORM).
B. Expand characteristic one-dimensional exponentials in
the basis function exponentials (COEF).

V. Calculate necessary constants for second and third methods,
if necessary, by solving the two-dimensional characteristic
problems within each node type (CFCALC).

A. Expand the edge fluxes into the basis functions (PEXP).
B. Expand ‘he interior flux into the basis functions
(PEXP2).
V1. Perform iterative calculation (RUN).

A. Calculate fission source and check outer iteration

convergence (OUTER),
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B. Calculate scattering source for particular group from
all other groups (SOURCE).

€. Perform inner iteration calculation on the inscatter
source for three versions (CALCO, CALC1, CALC2).
i. Compute shaped leakage sources, if necessary

(LEAK1, LEAK2?).

D. Accelerate the inner iteration using coarse-mesh rebal-
ance (ACCEL).

E. Determine whether the inner iteration has converged
(CONVER).

VII. Print flux results, balance tables, etc. (PRINT).

C. Input Data Format (This section is taken almost verbatim from

Reference 2. It is included herein for completeness.)

With the exception of the title card, all data are read with the
FIDO system also used in DOT4.2. The FIDO input method is especially
devised to allow the entering or modifying of large data arrays with
minimum effort, Special advantage is taken of patterns of repetition
or symmetry wherever possible. The FIDO system was patterned after
the input method used with the FLOCO coding system at Los Alamos, and
was first Applied by Atomics International to the DTF-II code. Since
that time, numerous features requested by users have been added, a
free-field option has been developed, and the application of FIDO has
spread to innumerable codes.

The data are entered in units called "arrays". An array com-

prises a group of contiguous storage locations which are to be filled
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with data at one time. These arrays usually correspond on a one-to-
one basis with FORTRAN arrays used in the program. A group of one or
more arrays read with a single call to the FIDO package forms a
"block", and a special delimiter is required to signify the end of
each block. Arrays within a block may be read in any order with
respect to each other, but an array belonging to one block must not be
shifted to another. The same array can be entered repeatedly within
the same block. For example, an array could be filled with "0" using
a special option, and then a few scattered locaticns could be changed
by reading in a new set of data for that array. If no entries to the
arrays in a block are required but the condition requiring the block
is met, the delimiter alone satisfies the input requirement.

Three major types of input are available: fixed-field input,
free-field input, and user-field input.

Fixed Field Input--Each card is divided into six 12-column data

fields, each of which is divided into three subfields., The three sub-
fields always comprise 2, 1, and 9 columns, respectively.

To begin the first array of a block, an array originator field is

placed in any field on a card:

Subfield 1: An integer array identified < 100 specifying the

data array to read.

Subfield 2: An array-type indicator:

"$" if the array is integer data,
"*" if the array is single-precision real data, or
"#" if the array is double-precision real data.
Subfield 3: Blank.
Data are then placed in successive fields until the required

number of entries has been accounted for.
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In entering data, it is convenient to think of an “index™ or
“pointer” which is under control of the user, and which specifies the
position in the array into which the next data entry is to go. The
pointer is always positioned at array locatioﬁ #1 by entering the
array originator field. The pointer subsequently moves according to
the data operator chosen. Blank fields are a special case in that
they do not cause any data modification and do not move the pointer.

A data field has the following form:

Subfield 1: The data numerator, an integer < 100. We refer to

this entry as N; in the following discussion.

Subfield 2: One of the special data operators listed below.

Subfield 3: A nine-character data entry, to be read in F9.0
format. It will be converted to an integer if the
array is a "$" array or if a special array operator
such as "Q" is being used. Note that an exponent is
permissible but not required. If no decimal is
supplied, it is assumed to be immediately to the
left of the oxponent, if any; and otherwise to the
right of the last column. This entry is referred to
as Ny in the following discussion,

A list of data operators and their effect on the array being input
follows:
"Blank" indicates a single entry of data. The data entry in
the third subfield is entered in the location indicated by the
pointer, and th: pointer is advanced by 1. However, an entirely

blank field is ignorred.
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"+" or "-" indicates exponentiation. The data entry in the
third field is entered and multiplied by 10"1, where Ny is the
data numerator in the first subfield, given the sign indicated by
the data operator itself. The pointer is advanced by 1. In cases
where exponent is needed, this option allows the entering of more
significant figures than the blank option.

"&" has the same effect as "+" on IBM systems.

“R" jindicates that the data entry is to be repeated
N; times. The pointer is advanced by Nj.

“I" indicates linear interpolation. The data numerator, Nj,
indicates the number of interpolated points to be supplied. The
data entry in the third subfield is entered, followed by N;
interpolated éntries equally spaced between that value and the
data entry found in the third subfield of the next nontlank field.
The pointer is advanced by Ny + 1. The field following an "I" field
is then processed normally, according to its own data operator. The
"I" entry is especially valuable for specifying a spatial mesh. In
"$" arrays, interpolated values will be rounded to the nearest
integer.

"L" indicates logarithmic interpolation. The effect is the
same as that of "I" except that the resulting data are evenly
separated in log-space. This is especially convenient for speci-
fying an energy mesh.

"Q" is used to repeat sequences of numbers. The length of

the sequence is given by the third subfield, N3. The sequence of
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Nj entries is to be repeated “1 times. The pointer is advanced
by Nj*N3. If either Ny or N3 is 0, then a sequence of N) +N3 is
repeated one time only, and the pointer is advanced by Ny + N3.
This feature is especiaily valuable for geometry specification.

"G" has the same effect as "Q", except that the sign of the
sequence is changed each time it is entered.

The “N* bption has the same effect as “Q“, except that the
order of the sequence is reversed each time it is entered. This
is valuable for the type of symmetry possessed by quadrature
coefficients.

"M" has the same effect as "N", except that the sign of each
entry in the sequence is reversed each time the sequence is
entered. Fof example, the entries:

123 2M2
would be equivalent to:
123-3-223 .
This option is also useful in entering quadrature coefficients.

"2" causes Ny + N3 locations to be set to 0. The pointer is
acvanced by Ny + N3.

"C" causes the position of the last array item entered to be
printed. This is the position of the pointer, less 1. The
pointer is not moved.

"0" causes the point trigger to be turned on. The trigger
is originally off, When the trigger is on, each card image is
listed as it is read.

"P" causes the print trigger to be turned off.

JUUGIPUNT—-——
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*S$" indicates that the pointer is to skip N;j positions
leaving those array positions unchanged. If the third subfield
is nonblank, that data entry is entered following the skip, and
the pointer is advanced by N] + 1.

"A" moves the pointer to the position N3, specified in the
third subfield.

“F" fills the remainder of the array with the datum entered
in the third subfield.

"E" skips over the remainder of the array. The array length
criterion is always satisfied by an "t", no matter how meny
entries have been specified. No more entries to an array may be
given following an "E", except that data entry may be restarted
with an "A."

The reading of data to an array is terminated when a new array
origin field is supplied, or when the block is terminated. If an
incorrect number of positions has been filled, an error edit is given,
and a flag is set which will later abort execution of the prablem.
FIDO then continues with the next array if an array origin was read.
Otherwise, it returns control to the calling program,

A block termination consists of a field having "T" in the second

subfield. A1l entries following "T" on a card are ignored, and
control is returned from FIDO to the calling prngram.

Comment cards can be entered within a block hy placing a slash

(/) in column 1. Then columns 2-80 will be listed, with column 2
being used for printer carriage control. Such cards have no effect on

the data array or pointer.
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With free-field input, data are written without fixed restric-
tions as to field and subfield size and positioning on the card. The
options used with fixed-field input are available, although some are
slightly restricted in form. In gercial, fewer data cards are
required for a problem, the interpreting print is easier to read, a
card listing is more intelligible, the cards are easier to keypunch,
and certain common keypunch errors are tolerated without affecting the
problem. Data arrays using fixed- and free-field input can be inter-
mingled at will within a given block.

The concept of three subfields per field is still applicable to
free-field input, but if no entry for a field is required, no space
for it need be left. O0Only columns 1-72 may be used, as with fixed-
field input.

The array originator field can begin in any position. The array

identifiers and type indicators are used as in fixed-field input. The
type indicator is entered twice, to designate free-field input (i.e.,
“$$" or “**")_ The blank third subfield required in fixed-field input
is not required. For example: 31** indicates that array 31, a

real -data array, will follow in free-field format.

Data fields may follow the array origin field immediately. The
data field entries are identical to the fixed-field entries with the
following restrictions:

1. Any number of blanks may separate fields, but at least one

blank must follow a third subfield entry if one is used.

2. If both first and second subfield entries are used, no

blanks may separate them; i.e., 24S, but not 24 S.
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3. Numbers written with exponents must not have imbedded blanks,
j.e., 1.0E+4, 1.0E4, 1.0+4, or even 1+4, but not 1.0 E4.

4. In third-subfield data entries, only nine digits, including the
decimal but not including the exponent field, can e used,
i.e., 123456.89E07, but not 123456.789£07.

5. The Z entry must be of the form: 738Z, not 2738 or 738 1.

6. The + or - data operators are not needed and are not
available.

7. The Q, N, and M entries are restricted: 304, IN4, or M4,
but not 4Q, 4N, or 4M. G is similarly restricted.

8. A field must not span two cards.

9. All items on a card entered after a slash in any column
except the first are ignored.

User-field input: If the user follows the array identifier in

the array originator field with the character "U" or "V", the input
format is to be specified by the use~. If "U" is specified, the
FORTRAN format to be used must be supplied in columns 1-72 of the next
card. The format must be enclosed by the usual parentheses. Then the
data for the entire input as to exponents, blanks, etc., apply. If
the array data do not fill the last card, the remainder must be lert
blank.

“V* has the sane effect as "U" except that the format read “n the

last preceding "U" array is used,



Title Card (20A4)
BLOCK 1

1$3

12.
13.

14.

15.

16.

17.

NEG
NANG
NX

NY
NZX
NZY
NREP
INMAX
IMAX
IBL

[EIG
ISOUR

IMETH

IACC

IPRT

ISCT

122
D. Input for EXTREME

No. of Materials

No. of Energy groups

No. of Angles

No. of X intervals for fine mesh

No. of Y intervals for fine mesh

No. of X intervals for coarse mesh

No. of Y intervals for coarse mesh

No. of expansion modes [3]

Maximum no. of inners /outer

Maximum no. of outers

0/1/2/3 = None/Print Recom'd modes & stop/Same
but continue/Same and use (See Note 1)

0/1 = Source/Eigenvalue

0/1/2/3 = No source/Bound srce/Vol srce/Both
(See Note 2)

0/1/2 = Flat leakage/Calc'd lkge/Same & 2D flux
[2]

0/1 = No accel/Coarse mesh rebal
(1]

0/1/2 = None/Print flux for all nodes/Print for

edge nodes only

Order of scattering
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18. IHT = Position of atgtay /3]
19. IHS = Position of self-scatter ¢ [4]
20. THL = Length of XS5 table
21. NXS = O/NXS = XS in 4%##/XS read from Logical unit NXS
Assumed double precision if <0. (See Note 3)
22. NACT = No. of Activities
2
1. EPS = Convergence criterion [.0001]
2. EST = Estimate of K-eff (for By calculation) [1.]
3. WLT =  Factor used in rebalance [1.] (See Note 4)
T
BLOCK 2
33%
1. IBC(1) = Boundary condition for left boundary of system
0/1 = vacuum/reflected
2. IBC(2) = Same for bottom
3. 1BC(3) = Same for right
4. 18C(4) = Same for top
444 Cross sections if NXS=0 (NMAT*NEG*HL)
S## X boundaries of mesh (NX+1)
G## Y boundaries of mesh (NY+1)
T## py values in angular quadrature (NANG)
ki n values in quadrature (NANG)
9## Aangle weights (NANG)
10## x values--fission spectrum (NEG)
11$$ Material no. for each mesh pt. (NX*NY)
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1342

14#¢

154%

16##

17¢#

18%$

19$$
2044

T

Notes:

1.

124
External boundary source along y-axis (ISOUR=1 or 3)
(NANG*NY) Enter by angle for each y spacing. The sign
of p will determine whether the value is on the right
or left,
External boundary source along x-axis (ISOUR=1 or 3)
(NANG*NX) tnter by angle for each x spacing. The

sign of n will determine whether the value is on the top

or bottom.
X boundaries of coarse mesh (NZX+1)
Y boundaries of coarse mesh (NZY+1)

Volumetric external source (scalar only) (ISOUR=2 or 3 )
(NX*NY*NEG) For each group, each y spacing enter the x
spacing value.

Modes for the problem (NREP)

Must be of form 315 =3y, 3y, ... 9, -1, 1, ...}

Material no. for each activity desired (NACT)

(See Note 5).

Cross section position for each activity (NACT)

Flux guess [0.] (NX*NY*NEG)

For each group, for each y spacing, enter value for each

X spacing.

The code has the capability of helping the user choose the expan-

sion modes with a By calculation. (See Appendix H.) The choices

open to the user are:
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(0) Ignore this availability and choose the modes in the 17##
array (or default to «=0, *1, *2, ...);

(1) Let the B, calcu’ation run, make its recommendations and
stop, so that the user can make a mode choice and resub-
mit the problem;

(2) Let the By calculation run, but proceed with the 17##
array modes anyway; or

(3) Let the By calculation choose the modes.

The 8, calculation has a different recommendation for each mode
type and dimnension; if the last option 1s chcsen, the values cho-
sen will span all of t.e recommended mode choices. This option
seems to work satisfactorily for large (>3 mean free path) homoge-
neous regions in the problem, but not so well for thin material
regions. 1se the default for eigenvalue problems.

This option is the heart of the code. Our experience to date
indicates that

a. Method 2 is the best choice for most shielding problems
in terms of accuracy versus cost;

b. Method 0 has a strange and unexplained ability to calcu-
late total leakages for some problems;

¢. For eigenvalue problems Method 2 is also best for deliv-
ering very accurate answers (0.01% errors), but Method
0 can calculate answers to about 1% accuracy much faster;
and

d. Method 1 is included for completeness; it dia not surpass

Method 2 in any of the sample problems.
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3. The standard GIP format for the cross-sections is used in EXTREME
as well as DOT.

The user's choices are:

(0) The 4## array is used to input the cross-sections. Note
that there will be only one 4## array per problem, not
one per material type as in DOT;

(>0) Logical unit NXS will be assumed tc hold a single-
precision GIP cross-section file;

(<0) Logical unit NXS will be assumed to contain a double-
precision GIP cross-section file. (There is currently
no code which will create this -ind of file.)

4. This value MULT is the rebalance constant for the ¢-method coarse-
mesh rebalance stabilization schemeZZ, It corresponds to DOT4.2's
parameter WSOLCN. This stabilization is necessary for stabilizing
the rebalance acceleration for some problems. The default is 1;
the normal range for this parameter when needed is about 1 to 50.

5. The code can calculate any number of "activities” or total, volume-
integrated reaction rates for user-supplied cross-section posi-

tions and materials. The equation is:

Ann = 2 z ¢IJ*om*Volume”*w(n)
1J

where W(n) = 1 if node 1,J is made of material n.

0 otherwise.



APPENDIX G
SAMPLE INPUT AND OUTPUT FOR EXTREME

As an example of the input and output of EXTREME, the 2x8 mesh
calculation of Sample Problem 6 for Method 2 is included in the
following pages. The first page contains the input to the code for

this problem, and the remaining pages constitute the printed output.
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Figure G-1.
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Figure G-1.
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Figure G-1.
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APPENDIX H
USE OF A B CALCULATION TO CHOOSE MODES FOR ©XTREME

The choice of a mode set for the exponential spatial expansion of
the nevtron flux inside each spatial node can be made easier if an
approximation of this flux shape is available. Such an approximate
shape is determined at problem set-up in EXTPEME using a material
buckling (Bm) calculatign for each problem material,

This B, calculation utilizes the static diffusion equation
1

approximation- to the transport equation:

=9-D(F,E)9y(F,E) + o (F,E)6(F,E) = g”da'[x(F,t)v(F,E)af(F,E) (H.1)

+ aS(F,E'+E)]¢(F,E')
whe. e

FE) =Y
D(r.E) 3 0, (F,E)

and the other variables are as defined for the transport equation in
Eqs. 2.1 and 2.4.

A further approximation used in the Bm calculation (shared by the
analogous BL transport theory approximation) is . hat deep within a
given scurceless material region the neutron sources will come from
scattering and fission interactions within the material region itselfl.
Therefora, the neutron energy spectrum can be approximated by the
spectrum from a single materjal calculation. For such a single
material calculation, the cross-section data are independent of r and

Eq. H.1 becomes
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$uw%ﬁ£)+%ﬁhﬁ£)={ﬁTﬂHMPhAP) (H.2)
+ o (E">E)Jo(T,E)

If the neutron flux is separated into the product of two terms,

¢(F,E) = F(F)S(E)

Eq. H.2 becomes
D(E)S(E)F(F) + o, (E)S(E)F(7) = F(F) [T T(E)(E) + a(EENIS(E).

Dividing by F(r)S(E) and rearranging produces

VEF(E) s otlE) |1 gy (e)(E" oy (E" E)IS(E"
- gl
E q“

Equation H.3 states that a function of r equals a function of E.
fFor this‘to be true, both sides of the equation must equal a constant,
here denoted as Bg, the materials buckling.

The constant 8: is determined by solving the "energy side" of
Equation H.3:

ot(E)S(E) - [OE IX(ED(E Jor(E') + og(E'-E)] = D(E)8ZS(E)

In multigroup form, this is

6 D gt
o3, - .zlnxgvg.ag v ol "915y = BDS, erli2,..6 5 (H.4)
g:

where

S, = J S(E)d(E) ,
g ™ [ SEN(E)
Dg = ‘{ED(E)S(F)d(E)/Sg ,

and the other multigroup constants are the same as in Eq. 2.3a (with

S(E) weighting function and no space dependence.)
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Equation 4.4 can be written in matrix form as
858, S

where
T
_S_ = [Sl' Sz, ...SG]

ana A is a GxG matrix with elemeuts

| i j+i
A.ij = Ot5.ij - xivjof - Os

There will be G values of the eigenvalue Bi; the one needed for
this study is the smallest one as this will correspond to the eigen-
mode of $ which decays slowest and therefore “"survives" deeper inside

the node.

This eigenvalue is determined by solving for S iteratively using

is a full matrix, the actual procedure followed by EXTREME is

the iterative process:

§v+1= E-l y E?
2 n+l
(Bm)n = ﬂénn / '!Sm'ln

n+l _ [n2,n+1 cn+l
$7 = (BT S

where rSi = § Sg and S = 1 11 ...1]T
g9

Once the smallest Bg is known, the "space side" of Eq. H.3 can bhe
solved for Cartesian geometry to get:
Fxay) = FyeBux FZeByy

where 82 + 82 = 2

X y Bm .
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In choosing the modes, EXTREME assumes

Cn . a2 1/2
B, = 8, = (8/2)

If the resulting value B is real (82>0), it is used with the geometric
information Ax and Ay for each node containing this material to obtain
"recommended modes". If the value B is imaginary (Bﬁ(O), the
"recommended mode" for the nodes containing the material is set to 1.
Once the recommended modes have been determined for all of the

node types, the largest value is used for the problem mode set.



