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ABSTRACT 

Utilizing a Galerkin procedure to calculate the vacuum 
contribution to the ideal MHD Lagrangian, we describe the 
implementation of realistic boundary conditions in a linear 
stability code. The procedure permits calculation of the effect 
of arbitrary conducting structure on ideal MHD instabilities, as 
opposed to the prior use of an encircling shell. The passive 
stabilization of conducting coils on the tokamak vertical 
instability is calculated within the PEST code and gives excellent 
agreement with 2-D time dependent simulations of PDX. 
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Introduction 

The structure and growth rates of ideal MHD instabilities 
are strongly dependent on the imposed boundary conditions. This 
Is particularly true of the vertical instability in tokamaks, 
where flux compression against a perfectly conducting shell in the 
vacuum region can provide significant stabilisation of the mode, 
even when the shell is far from the plasma. Lust and Martensonl 
have shown that expressing the perturbed vacuum magnetic field in 
terms of the gradient of a single-valued scalar potential aione, 
cannot describe this effect. In addition, Jardin^ has shown that 
flux compression against coils embedded in the vacuum results in 
induced currents whose effect on the stability of this mode is 
critically dependent on the external circuitry of the coil system. 

For nonaxisymmetric modes, existing linear stability codes 
such as PEST^ can only surround a plasma with an encircling wall 
in the vacuum on which the normal component of the perturbation i<? 
sero. In practice, the conducting structure in a tokamak may be 
more irregular and topologically complicated, as in a double-null 
divertor configuration. 

Since time-dependent MHD calculations are comparatively 
expensive, it is desirable to include such effects in a linear 
stability code. Dewar^ has recently reformulated the energy 
principle in a manner which makes the inclusion of the appropriate 
boundary conditions straight-forward. In the following sections 
we describe the formulation and numerical implementation of this 
procedure for calculating the vacuum energy, various verifications 
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that have been performed, and finally a comparison with 2-D time 
dependent simulations of PDX. 

Formulation 
Consider N conducting elements of arbitrary cross section 

that can carry induced toroidal currents, embedded in a vacuum 
region V and surrounded by an encircling wall that may be removed 
to infinity. As is shown in Pig. 1, the plasma is the N +lst 
conducting element, the wall is the N +2nd element with respect to 
induced poloidal currents, and unit normals ti point into V. 

Dewar4 has shown that the vacuum energy contribution to 
the Lagrangian for a perturbation 5 can be written as 

1 .* . vo f * 
= 2 - ^ + T J 'X -VX dT , 

6 W v = 2 - hi + "T / 'X -Vx dT , (l) 

where x is the usual sca la r po ten t i a l for the perturbed vacuum 

f i e l d ; L i s the inductance mat r ix , and i i s the vector of 

perturbed cu r ren t s i : , i 2 , . . i n + 2 induced in the N + 2 

conduc to r s . 3 The f i r s t term in Eq. (1) i s the s tored energy in 

the conductors . The cu r ren t s are defined by Faraday 's law 

^ (Li - e) = 0 ( 2 ) 

(a) 

We will use complex expansion functions rather than sine and cosine components; hence the use of * to denote the complex conjugate transpose, despite the fact that many quantities such as i are real. 
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where ^ is the vector of induced fluxes linking the circuits. 
The high frequency inductance matrix is defined by 

-if * dT , (3) 

where Y_^X*' * s "^e one-dimensional column (row) matrix of magnetic 
intensities generated by unit currents in the N + 2 elements, that 
satisfies 

n-Y = 0 on S„f £ = 1, 2...N + 2 . (4) 

Our Galerkin procedure exp-indss the scalar potential 

+ X = u w (5) 

in terms of functions u that satisfy Laplace's equation in V, and 
hence Maxwell's equations for the perturbed field V/. By 
extremizing the perturbed field energy in the vacuum with respect 
to v*, we obtain the coefficients v from 

-x f 
where § is the unperturbed magnetic field, and 

Av = ±- J n«C(5-V)u dS , (6) 

N+2 
1* dS . (7) 

N+2 r 
A = ~ D / u(n-V)u* 

1=1 JS„ 
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A simi lar expansion for 

5 = K + V(X*u) (8) 

in terms of the same functions u as are used for axisymmetric 
modes, must also satisfy Maxwell's equations in V, the additional 
vector K being introduced for the unit current requirement 

/ $k-et£ = &kl k, I = 1, 2...N + 2 
Jr. 

(9) 

In this case, extremizing the induced energy in the conductors 
with respect to * yields the coefficient matrix 

A = A _ 1 C , (10) 

where 

N+2 r ys +% 
£ / u(n-K ) dS . (11) 
N+Z f ^ -• 
£ / u(n-K 
t-i Jst 

This has been shown^ to correspond to satisfying the boundary 
conditions of Eq. (4) for Y. In a (I|I, e, <p) flux coordinate 
system of Jacobian J, we decompose the perturbation into a finite 
number of poloidal harmonics H, and from axisymmetry a single 
toroidal harmonic n, 

+ + M 
5*dS = ^ 5 expCKiae - n8)3J dedtji , <12) 

m=l 
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and introduce the integrals 

A(m) = y expCi(ra6 - mj>) ][B-V)u J dad* , 
SN+1 

fi(m) =j expCi(m8 - mfc) ]<B'K) J d.ed<(> . 
SW+1 

(13) 

(14) 

Then using Green's theorem and the Hermitian nature of A, together 
with Eqs. (6) and (13), we can express the perturbed vacuum field 
energy 

TT / 7***V* d T " W- ̂  , , C A V J A " 1 / ^ ) ^ • (15) 
o m,m =1 

In order to calculate the induced currents, we utilize the fact 
that in our linear problem, the currents and fluxes are in phase 
with the perturbation. We can then write Eq. (2) as 

Li - f n.|(B.?) dS = e , (16) 
&N+1 

where the second term r e s u l t s from the time r a t e of change of 

inductance due to the p e r t u r b a t i o n . However, before we can solve 

t h i s equa t i on , we must apply Kirchhoff ' s laws to the ex te rna l 
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circuitry linking the N + 2 conductors and construct constraints 
for the currents and fluxes in some form 

Pi + Qe = 0 . (17) 

Now combining Eqs. (16) and (17) yields 

DJ = F , (18) 

where 

\P 0 / 

* - ( * ) 

fM 
I m=l 

(19) 

(20) 

Zjt£(m)\ > (21) 

I is the unit matrix, and 

T(m) = £(m) + X A(m) . (22) 

Then the stored energy 

| i*M - | a* ? £ = | fi^^ £ T*< m.)rt ( r a, ? m . ( 2 3 ) 
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2. Radiative Processes in the Soft X-ray Regime 

A fairly complete description of the x-ray emission from 
hydrogen ions and impurities in the plasma may be found else
where in the literature. Here we summarize conclusions of 
that discussion. 

We first consider bremsstrahlung. For a Maxwellian plasma 
the power dW emitted per photon energy interval dk by bremsstrah
lung is given by 

„ En, Z? . --V2 

( d k L l . i.M«--»W g f f(T ,k)exp(-k/Te>sec~ 

where n and n are the electron and ion densities, respectively, e p 
T the electron temperature, Z. the positive ion charge, k the 
photon energy, and g, f the temperature-averaged Gaunt factor, 
normally taken equal to unity. The electron temperature is then 
found as the inverse of the slope in a semilogarithmic plot of 
the intensity dW/dk vs. photon energy. Stiictly speaking, this 
procedure is valid only when applied to the Abel inverted spec
tra. One may nonetheless obtain a good approximation to the 
electron temperature directly from the raw spectra if one consi
ders only the high energy region of the continuum where so-called 
"profile effects" are less important. 

Next we consider x-ray radiation that results when free 
electrons recombine into unoccupied energy levels of impurity 
ions. Again, for a Maxwellian plasma with ion density n. of 
charge Z^ - 1, ground state ionization potential \ . r and prin
cipal quantum number n, the x-ray intensity is given by 
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satisfies Eq. (9) but also the boundary condition Eq. M ) 
exactly. For all other k = 1, 2,... N + 1, we choose K k to be 
the poloidal field intensity generated by two sets of toroidal 
hoop current sources. The first set is located within C k and sums 
to unity to satisfy Eq. (9); the locations being chosen so as to 
generate poloidal field lines that closely conform to the shape of 
C k. Thus a circular coil is well represented by a single unit 
source at its center/ whereas a thin conducting plate may require 
several sources (L) whose sun is unity, in a line along the 
midplane. The second set consists of image sources outside the 
wall whose function is to ensure that the normal component of the 
poloidal field at the wall is zero. In practice, we choose the 
positions and strengths of the first set, and the L' positions for 
the image sources. The required image source strengths for each 
k = 1,. • . N + l a t these same L' positions are then 
calculated using the procedure described in Johnson et al.,5 
whereby an MHD equilibrium solution is forced to conform to a 
given plasma shape. Thus 

L+L' 
V ? ) = £ x

 akjZkjV* * 'V^kjJ (2« 

where Gkj is the Green's function for a toroidal hoop at radius 
a kj carrying a current I k j . The dominant contribution to the 
inductance matrix is thus provided by 

r * +* i N + 2 c oh+L' L + L ' ae,„ 
z.. = / K.^K. dT = ~Ay y. I v<ry; JT I, I . a. a. G, -J9. as , 

(27) 
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where the inductance matrix 

L *= U Q(Z - C A) . (28) 

The second term in Eq. (28) is the correction supplied by the 
expansion functions u to the boundary condition requirement of Eq. 
(4). These functions need only satisfy Laplace's Equation in V. 
We therefore, choose to expand in a toroidal harmonics^ 

Vi-1 = < c o s h v ~ c o s •n> 1 / 2exptHM + fcT|>>£_1/2U0 . W) 

Here y, 1, $ are the toroidal coordinates based on some toroidal 
axis, PjJ^L/2 a r e Legendre polynomials of order n and degree k 
-1/2. Several degrees of polynomials for the appropriate toroidal 
mode numbers n, centered at various axes are used. We choose one 
axis for' each current source point (internal and image), except 
for the plasma sources k = N + 1. In this latter case, adequate 
modeling of X has been shown to require many axes on some flux 
surface within the plasma, spaced in equal increments of the 
poloidal angle ft. While it is not clear that this is the best 
choice, satisfactory results have been obtained. 

Comparison tests with other methods for calculating <$WV
7 

have shown that using three degrees of harmonics (k = -1, 1, 2) is 
optimal. Further, with a single current source at the magnetic 
axis and sixteen toroidal axes on s flux surface at approximately 
0.8 of the minor radius to model the plasma, and eight image 
sources and harmonic axes to model the wall; agreement of oWy to 
within 1% can be obtained for many plasma shapes and a wide range 
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of wall positions. The corresponding differences in growth rate 
as calculated with PEST, are of the same order. The addition of 
coils and other conducting members in V requires additional 
sources and harmonics, usually one per member unless the shape is 
complex. The vector of expansion functions u_ is then composed of 
all the degrees of harmonies at all the axes used in the problem. 

Numerical Procedure 
We adopt the convention of Jardin2 to identify the 

conductor circuitry. Prom this convention, an algorithm 
identifies the Kirchhoff constraints and loads the f* arid Q 
matrices of Eq. (17) by equating the appropriate currents and 
fluxes for multiple turn coils. Positive turns imply connections 
where the induced current flows in the $ direction. 

Then, given the parameters of so<ae plasma equilibrium 
configuration we construct the expansion function K and u, and 
evaluate the surface integrals Z, A, C, A, fi in Eqs. (27), (7), 
(11), (13), and (14) respectively. Clearly only A and A a r e 

relevant for n / 0. Equation (10) is solved for X to calculate 
the inductance matrix L from Eq. (28) and hence the augmented 
matrix p. Finally, the vacuum energy is calculated fcom Eq. (24) 
and stored for the eigenmode analysis of PEST. 

Code Testing 
Using a single central source and three harmonics at the 

same axis, comparison of the high-frequency inductance of a torus 
was made with the analytic calculations of Malmberg and 



-12-
Rosenbluth.8 Except at aspect ratios which are less than 2.0, and 
hence rare for our purposes, the agreement is better than 1%. For 
an extremely tight torous of aspect ratio 1.2, the agreement is 
within 30%; this compares with the standard zero skin depth limit 

of the low-frequency value which is a factor of five higher. 
Equivalent analytic results for other shapes are scarce. However, 
comparisons with other zero skin depth limit low-frequency self 
and mutual inductances for square cross section tori and 
concentric toroidal shells show reasonable agreement at large 
aspect ratios, where the differences due to nonuniformity of the 
skin current should be small. 

We next compared the Lust-Martenson corrections to 
cylindrical analytic results. Given a zero beta equilibrium 
solution for an elliptic plasma, the contributions to 6W V due to 
poloidal and toroidal flux compression against a coufocal wall can 
be calculated analytically.9 Numerical calculation of such 
equilibria, but at aspect ratio 100, and subsequent numerical 
evaluation of 6 w v were found t.> agree for a variety of confocal 
walls to within 0.1%. The relative vcight of the poloidal and 
toroidal contributions were widely varied in these tests 
suggesting accurate calculation of both components. The addition 
of other conducting elements in the vacuum is just a 
generalization o£ such a Lust-Martenson calculation. 

Finally, to check that the perturbed field energy 
contribution is also handled correctly, comparisons have been made 
with other numerical methods.7 We have previously alluded to such 
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calculations and show in Table I the excellent agreement with the 
current PEST vacuum calculation. 

Finally, we have compared the results of the linear qrowth 
rate of the vertical instability for several PDX equilibria with 
the 2-D time-dependent code of Jardin.2 Table II shows a 

i comparsion of the growth rates for the case with no conductors, 
and with the two circuits shown in Fig. 2*. The importance of 
the external circuitry is clear. Additional calculations for this 
case show that flux compression results in stability for a wall 
one minor radius from the plasma, and for the two rectangular 
plates shown in Fig. 2b. Each linear stability run with all 14 
coils requires less than 10 minutes on a CDv. 7600, compared with 
approximately ."0 minutes for the corresponding tine-dependent 
calculation. 

Conclusions 
We have implemented a new method for c a l c u l a t i n g the 

vacuum con t r ibu t ion to the Lagrangian within PEST. Tests show we 

can now c a l c u l a t e the important e f fec t of pass ive s t a b i l i z a t i o n on 

the aKisynrtftettic i n s t a b i l i t y . In a d d i t i o n , vie can t r e a t the 

e f fec t of r e a l i s t i c s t r u c t u r e on a l l t o r o i d a l mode numbers. 
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TABtB 1 

METHOD I 
• - 4 ? 

M - 2 - 1 0 1 2 3 4 5 6 

- 2 5 . 4 0 1 0 .717 - 0 . 8 6 2 - 0 . 5 1 8 - 0 . 0 1 5 0 .000 o.ooo -0.003 -0.005 

- 1 0 .718 1 2 . 8 6 8 - 0 . 8 1 1 - 1 . 5 3 8 - 0 . 2 0 9 - 0 . 0 0 1 0.027 0.021 0.011 

0 - 0 . 8 6 8 - 0 . 8 2 6 48 .343 - 0 . 4 1 4 - 0 . 1 7 6 - 0 . 0 0 1 0.051 0.061 0.055 

1/ - 0 . 5 1 8 - 1 . 5 3 8 - 0 . 4 0 7 3 .240 0 .073 0 .002 -0.054 -0.039 -0.025 

2 - 0 . 0 1 5 - 0 . 2 0 9 - 0 . 1 7 4 0 .073 0 .221 0 .000 -0.025 -0.025 -0.015 

3 0 . 0 0 0 - 0 . 0 0 1 - 0 . 0 0 1 0 .002 0 .000 0 .000 0.003 0.000 0.000 

4 0 . 0 0 0 0 . 0 2 7 0 .050 - 0 . 0 5 4 - 0 . 0 2 5 0 . 0 0 0 0.058 0.011 0.027 

5 - 0 . 0 0 3 0 .020 0.058 - 0 . 0 3 9 - 0 . 0 2 5 0 .000 0.011 0.153 0.022 
6 - 0 . 0 0 5 0 . 0 1 0 0 .051 - 0 . 0 2 5 - 0 . 0 1 5 0 .000 0.027 0.022 0.246 

METHOD j.j 
1 

H 
<n 
1 

0 
M - 2 - 1 0 1 2 3 4 5 6 

- 2 5 .402 0 .719 - 0 . 8 6 2 - 0 . 5 1 7 - 0 . 0 1 5 0 .000 0.000 -0.003 -0.005 
- 1 0 .719 12 .J72 - 0 . 8 1 1 - 1 . 5 3 6 - 0 . 2 0 9 - 0 . 0 0 1 0.027 0.020 0.010 

0 - 0 . 8 6 2 - 0 . 8 1 1 48 .341 - 0 . 4 0 7 - 0 . 1 7 4 - 0 . 0 0 1 0.050 0.058 0.051 
1 - 0 . 5 1 7 - 1 . 5 3 6 -0 .407 3 .241 0 .073 0 .002 -0.054 -0.039 -0.025 
2 - 0 . 0 1 5 - 0 . 2 0 9 - 0 . 1 7 4 0 .073 0 .221 0 .000 -0.025 -0 .025 -0.015 

3 0 .000 - 0 . 0 0 1 - 0 . 0 0 1 0 .002 0 .000 0.000 0.000 0.000 0.000 

4 O.OUu 0 .027 0 .050 - 0 . 0 5 4 - 0 . 0 2 5 0 .000 0.058 0.011 0.027 
5 - 0 . 0 0 3 0 .020 0.058 - 0 . 0 3 9 - 0 . 0 2 5 0.000 0.011 0.153 0.022 
6 - 0 . 0 0 5 0 . 0 1 0 0 .051 - 0 . 0 2 5 -0.U15 0.000 0.027 0.022 0.246 

Comparison of two methods for calculating the vacuum energy for a toroidal mode number n = 1, poloidal 
™ode numbers m =•= -2 to 6,with a waLl 0-1 minor radii from the plasma. Method I is the version of this 
paper, and Method II is the current PEST G.-een*s Function version. The plasma equilibrium is dee shaped, 

with an elongation of 1,65 at an aspect ratio of 3.0 
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1ABLE II 

CODE CASE I CASE II CASE III 

Time Dependent 

PEST 

0.542 

0.565 

0.542 

0.551 

0.0 

0.0 

A comparison of 5W (PEST) and tine dependent calculations for the 
linear growth rate. Case I is for a vail at infinity. Cases 
II and III are for the unconnected and connected circuits of 
Fig. 2a respectively. 
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Fig. 1. Schematic diagram of solution domain showing typical conducting elements 

and source locations. 



UNCONNECTED CIRCUIT 
Top Coils 
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® ® ® ® ® © ® 
Bottom Coifs 

CONNECTED CIRCUIT •. 
Top Coils " 

Bottom Coils 
792660 

Fig. 2a. PDX external circuit connections considered. 



792634 
Pig. 2b. Schematic diagram of PDX geometry showing plasma, coil, 

and plate locations. Turns ara noted on the upper coils. 


