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ABSTRACT

For an FEL operating in the exponential regime before saturation, we consider the

effect on the gain of longitudinal velocity variations arising from wiggler field errors. The

average gain reduction and the width of the output power distribution are expressed in

terms of the mean square average of the ponderomotive phase shift per gain length. A

scheme for correcting the electron trajectory using position monitors and dipole correctors

is analyzed. Analytic results are compared with numerical simulations. Our work is

directly applicable to the design of FEL amplifiers and the results are encouraging for the

feasibility of such devices.
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1. Introduction

Understanding the effects of wiggler errors[ 1-8] is of critical importance in the design

of free electron lasers, There has been recent work aimed at determining the tolerances

which must be imposed on the allowable field errors. Analytic results have been obtained

for the effect of wiggler errors on the electron trajectory[7], and for the gain reduction in

the low gain regime[5,6]. Computer simulations have been carried out both in the low[ 6,8]

and high gain[ 3,4] regimes. In a recent paper[9], we have developed an analytic description

of the effect of wiggler errors on the gain, for an FEL operating in the exponential regime

before saturation, using one-dimensional FEL equations[10-12]. In this paper, we discuss

the results of this work, and compare them with numerical simulations.

The effects of wiggler errors can be divided into two classes: (1) Longitudinal velocity

fluctuation and drift, which moves the electron beam away from resonance, and (2) trans-

verse trajectory wander which causes the centroid of the electron beam to move away from

the radiation beam. _Ve address the longitudinal effects and leave detailed consideration of

the mode overlap problem to future work based on a full three-dimensional computer sim-

ulation. The determination of the effect of longitudinal velocity variations is dominantly

a one-dimensional problem for which we have carried out a detailed analysis[9].

\¥e divide longitudinal velocity effects into two _ypes. The first type is wiggling

amplitude errors which are correlated over only a few wiggler periods and have no net

magnetic field integral. The second type is cumulative steering errors, which produce a

drift of the electron trajectory away from the wiggler axis.

For the case of amplitude errors, we find that the required tolerance on the mag-

netic field fluctuation is relaxed, since it turns out that rather than having to satisfy

(AB/B),.m_ << p, one only needs to meet (AB/B)_ms << P, where p is the Pierce

parameter[ 10] typically of magnitude 10-a.

Without correcting the electron trajectory periodically along the wiggler, achievable

steering errors will cause a cumulative angular deviation away from the wiggler axis, moving

the electron beam away from resonance and, eventually, completely killing the gain. We

have derived an expression for the gain reduction when there is trajectory correction and

we have found that by installing a sl,fficient number of correction and monitoring stations
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along the wiggler, the required tolerance on magnetic field steering errors can be relaxed

to an achievable limit. The results of our analysis on both type of longitudinal errors are

encouraging for the design of single pass FEL amplifiers utilizing long wiggler magnets.

For both types of longitudinal error we have found that the criterion for small gain

reduction is determined by keeping the ponderomotive phase shift due to wiggler errors

small in one gain length. The ponderomotive phase shift is

. 6 = k f __dz[Vll(,To,z ) -- ro], (1.1)•- ,00

for a monoenergetic electron beam of energy 3'0, where v0 is the average longitudinal

velocity in the ideal wiggler, k the radiation wavenumber, and o11(-/0, z) is the longitudinal

velocity in the presence of wiggler errors.

The importance of the ponderomotive phase shift in determining the gain reduction

due to wiggler errors has been discussed in refs. [5] and [6] for the low gain regime. In

recent work[9], we have considered the high gain regime and explicitly expressed the gain

reduction due to wiggler errors in terms of W, the average value of the square of the

ponderomotive phase shift per gain length which is defined by

1 [f0T d'(r) 2
w - T a --27- , (1.2)

where r = 2pkwz is the sealed longitudinal coordinate[ 10] which changes by 2/V_ in a gain

length, and the average is over an ensemble of wiggler errors. The power growth of the

radiation field is proportional to

- (1.3)

In the following sections, we first briefly describe the general results in Section 2.

describing the FEL gain equation with wiggler errors, expressing the output power and

the width of its distribution in terms of I'V. Next, in Section 3. we discuss the effect of

the wiggling amplitude errors. Then. in Section 4. we describe the effect of steering errors

when a scheme for correcting the electron trajectory using position monitors and dipole
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correctors is taken into account. Finally, in Section 5, we address the effect of steering

errors when there is no trajectory correction.

2. General Results on Gain Reduction due to Wiggler Errors

We will now present the FEL gain equation with wiggler errors. For a detailed deriva-

tion we refer to reference [9]. We consider a plane polarized radiation field

1E(z)e ik(z-c ) (2.1)E (z,t) = + c.c.

where k is the wavenumber of the input radiation. Then we define a modified electric field

amplitude y:

v(z) = (2.2)

where 6 is the ponderomotive phase shift due to wiggler errors, as defined by Eq. (1.1).

We assume a planar wiggler with the wiggler wavenumber kw = 2rr/kw and wiggler

parameter Ko = eAwBm,,,_/2rrrnc, where Bma= is the maximum magnetic field on axis. The

electron beam is assumed to be monoenergetic with energy 7o, and satisfies the resonance

condition k = kw(1 + I(2)/2702.

Now we introduce the Bonifacio's scaled wiggler distance[ 10] 7" = 2pkwz, where p is

the Pierce parameter defined by

(2p70) 3 = e2ZonoK2o[JJ]2/4mckw2, (2.3)

with no the electron density, Z0 = 377T/the vacuum impedance, and [JJ] the Bessel factor

given by

[J J] = Jo 4(1 + Iig/2) - J1 4(1 + Ii2o/2) " (2.4)

With these definitions, we have obtained the FEL equation with wiggler errors[9] •

dzg d 2

dr 3 iy = i(-_r2(f(r)g), (2.5)

where f = d_/d', is the phase changing rate due to wiggler errors. It is easy to verify that
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- 4 If = = - (2.6)
dr l+K02/2 2p'

where x' and x_ are the transverse velocities with and without wiggler errors respectively

and where the prime stands for the derivative with respect to z.

Solving Eq. (2.5) by perturbation theory and keeping terms up to second order in f,

we found that if the correlation length of the error function f is shorter than the gain

length, the power growth ratio can be explicitly expressed by the averaged square of the

phase shift per gain length W, defined by Eq. (1.2). If the wiggler steering error is not

corrected within a gain length, the angular kick produced at one position can influence

the phase shift rate at a later position farther away than a gain length. In this ca.se, the

correlation length of the function f is longer than the gain length. We will address this

situation in Section 5. Here we assume that the cc -relation length of f is shorter than the

gain length, then the power growth ratio at r = T is:

Po,_t _ le[v_+2K'_±26(_rg)lT+c+6c (2.7)
Pi, 9

where

2wv
c = _, (2.8)

27

6c=(V/3W) 1/2'9 (2.9)

W

_r9 = 9 ' (2.10)

6(Arg) (&ra)( 17x/_ 49 ) 1/2
= (2.11)

24T 144T 2

The fluctuations in the power come from two terms. The term 6c is the rms fluctuation

of the coefficient of the growth factor, and is independent of the wiggler length. \¥e found

this term is determined by the errors at the beginning and the end of the wiggler. The

term 6(hrg) is the rms fluctuation in the growth rate. Since 6c is proportional to v_.

and is independent of T. while the average reduction in gain is proportional to II'T. for

smaller wiggler error (and/or) shorter wiggler, the spread in the output power becomes

comparable or larger than the average reduction in power.
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3. Effect Due to Wiggling Amplitude Errors

For wiggling amplitude errors, we have considered[ 9] a model for which the two half

periods of every period have the same errors but with opposite signs, so that there is no

net steering effect, and there is only fluctuation in the wiggling amplitude. We have found:

i47 = 7rI(._ (AB/B)_m8 (3 1)
(1 + K02/2) 2 p

It follows that the criterion for small gain reduction is

2...._ K¢ (AB/B)_,.,.,s << I. (3.2)
(i+ K0/2) p

There is a simple physical interpretation of Eq. (3.1). Since the transverse wiggling

velocity is x' = (K0 + 5K)/7o, where 5K is the increment of K due to AB, using the

expression Eq. (2.6) for the phase shift rate, we get the change 5p in ponderomotive phase

per wiggler period due to wiggling amplitude errors

5p = 27rK°2 AB
1 + K2o/2 B " (3.3)

The number of periods per gain length is approximately Nc = 1/47rp, hence

- )rms, (3.4)W No(Sp 2

in agreement with Eq. (3.1).

We have carried out a co:nputer simulation of this model using the computer program

TDA[4'13]. The transverse electron beam size is taken to be large enough so that the

radiation field on axis evolves as in the one-dimensional limit. In particular, we considered

the parameters p = 1.29 × 10 -3, I(0 = 1.95, and (AB/Bma_:)r,_ = 2%. From Eq. (3.1) it

follows that W = 1.67 and hence the results of our analytic calculation [Eqs. (2.8-2.11)]

are:

2Arg =-0.37 , 26(Ar_)=0.41/v/T

c=0.11 . 5c= 0.40
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The computer simulation results are presented in Fig. I. The ratio of the output to input

power is shown as a function of distance for 16 sets of random wiggler errors, and good

agreement is found with the analytic estimate of Eq. (2.7). In particular the analytic

estimate of the average reduction in gain, 2/krg, agrees with the numerical results to a few

percent. As mentioned earlier, the spread in the exponent consists of two contributions.

One is the spread in the constant +6c and the other is the spread in the slope ±26(_rg).

The simulation is consistent with the width being dominated by the spread in the constant

±6c as predicted by the analytical theory taking into account the statistics of a limited

number (16) of samples.

A more accurate check on the spread of the output power isdone by directlycomparing

a numerical solution of Eq. (2.5) for 4000 sets of random wiggler errors with Eq. (2.9) and

Eq. (2.11), the agreement is good to within 10%[9].

4. Steering Errors with Trajectory Correction

To study the gain reduction due to wiggler steering errors when the trajectory is being

corrected, we assume the two half periods of every one period are uncorrelated, and there

is a net field error integral and an angular kick for every period. In addition, we assume

position monitors and trims are at the same locations spaced by Ns periods along the

wiggler. The spacing is assumed to be shorter than a gain length. Trim strength of a given

corrector is adjusted to center the beam at the following monitor. In this case we have

found[ 9] that the average value of the square of the ponderomotive phase shift per gain

length is given by

24 Nc )2
W _ 3-5N---s(Nspp (4.1)

with the rms phase shift per period _v in this case easily seen to be given by

2 t2
27T'_ Xrm s

*v = 1 + Ilo2' (4.2)

where the mean squared angular deviation x_m s for the trajectory corrected beam is

= _ Nc-_ (4 3)T'Tri ,_ "
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Here, Nc is the number of steering errors between correction stations and 82 is the mean

squared angular deviation introduced by a single error.
• .

The result of Eq. (4.1) also has a simple physical interpretation. One sees that Nsgp

is the ponderomotive phase shift between two correction stations, because the phase drift

is coherent between correctors. Since phase drifts for different sections are incoherent, the

total phase drift per gain length is equal to the square root of the number of correction

sections per gain length times NsSp.

As an example consider a wiggler with K0 = v/2. _Ve assume the number of periods

per gain length is NG = 100 (p _ 0.8 x 10-3), the number of periods between correction

stations is Ns = 50 and the number of steering error kicks between correction stations is

Nc = 100. We express the mean square angular deflection per kick as

720-_=4K02(AB/ 2B)rms. (4.4)

Taking the achievable tolerance (AB/B),.ms = 5 x 10 -3, we find W = 0.37 resulting in a

modest 5% reduction in the growth rate.

5. Steering Errors without Trajectory Correction

As pointed out in Section 2, when there is no orbit correction, or the correction

distance is longer than the gain length, the correlation length of the error phase shift is

long range, and we can not express the gain reduction in terms of W. However, we can

still find the averaged power growth ratio:

Pou,_ 1 r
p,. - . (5.1)

with a growt!, rate reduction[ 9]

: 2

,/5 */g.,vr0-z
Arg = (5.2)

18 2p(1 + I(2/2)

Notice that the growth rate reduction now depends on the wiggler distance through the

number of kicks NT, which is twice the number of periods for our model in Section 4. Thus.

tile gain reduction is a cubic function of the wiggler length. The physical interpretation ,)f
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Eq. (5.1) is simple and similar to the discussion of the interpretation of Eq. (4.1) in Section

4. In this case, the error phase drift is coherent throughout the entire wiggler, and hence

is Na6p where Na = 14rtp and 6p is given by Eq. (4.2) with now x'_2ms= NTO 2 .

Using the same example of Section 4, but reducing the rms wiggler error from 2% to

0.1% and assuming no orbit correction, we compared the theory with simulation. In Fig.

2, we show the result of an average of log(PoutPi,) over 30 samples, indicating a good

agreement for long wiggler length and before saturation. For short wiggler, the fluctuation

is larger, and the statistics of 30 samples is not sufficiently accurate. The result shows a

much more stringent tolerance requirement on wiggler errors without correction scheme.

Wo wish to thank D. Goodman and J. Wurtele for providing us with a version of the

computer code TDA including effects of wiggler error.
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Figure Captions

1. Tile ratio PoutPin as a function of wiggler length for 16 sets of random wiggling

amplitude errors.

2. Without trajectory correction, the average value of log(Pout/Pin) over 30 sets of ran-

dom wiggler steering errors as a function of wiggler length.






