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ABSTRACT

This talk has three distinct parts, The first two pnarls are on vector and parallel
processing and their success, or lack thereof for HEP. The third part is an analysis
on the software situation in HEP. These topics have been chosen hecause of the
frequency with which they are discussed in the hallways of onr Iahoratories and
institutions. This review looks at the ficld from a particular point of view: that
of an experimental physicist working with a large detector at a collider and, in
addition, only considers tho offline processing aspects of the field.

1. VECTOR PROCESSING

1.1  WHAT 18 VECTOR PROCESSING?

The term veclor processor and the allied term array processor are somewhat
misnomers for 2 style of computer architecture thal is based on a simple fact:
there is no way with a given technology that floating point arithmetic is going to
be as fast as a binary add. Also, there is no practical way that random memary
access time is going to be as fast as a binary add. Thus, in any computer, a
single floating point cperation is going to take multiple CPU cycles. For example,
a floating point add may be divided inte a number of cycles as shown in Fig. 1.
The operations performed in each cycle are as follows:

1. Fetch operands from memory and/or register files.

2. Prenormalize the mantissa with the smallest exponent.

3. Add the mantissi.

4, Postnormalize the resulting mantissa and correct the exponent if necessary,
3

. Store the results in inemory or register file.
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With an appropriate computer architecture, this operation over a number of
operand pairs can be made {aster by overlapping the steps or pipelining them,
Thus, as shown in Fig. 2, one can do three foating point adds in enly seven cycles
instead of the fifteen it would take if done sequentially.

Fetch
Cytle 1 Mem.
Cycle 2 Pre-Norm.

Add
Cycle 3 Mant.
Cycle 4 Past-Norm.
Store
Cycle 5 Morm.
3-88 LS8BA1

Fig. 1. Example of multiple cycles of floating point add.

Feich
Cycle 1 Mem-
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Cycle 2 Mem. Prae-Norm.
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Cycie 3 Menm. re-Norm Mant.
. Add Post-Norm
Cycle 4 Pre-Norm., Mant.
Add |} post.Ngrm]  Store
Cycle 5 Mant. Mam.
Post-Norm] Slore
Cycle 6 0st-Nor Mom.
Cycle 7 Store
Mem.
3-88 5988A2

Fig. 2. Example of pipelined cyeles of fioating point add.
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This pipelining only works well if the data operands are in an orderly pattern,
which the FORTRAN programmer knows as a vector or an array; thus, the term
vector or array processor is used for a processor that can perform in this manner.

1.2 HEP UskE oF VECTOR PROCESSING COMPUTERS

All modern supercomputers have vector processing capabilities from which a
lot of their processing speed depends. However, for the HEP experimentalist, carly
atterapts to use these new machines have been disappointing. An example of what
happens was given by Kenichi Miura.'

Miura worked with the fOWL Monte Carlo tracking code he obtaincd from
CERN. He first compiled the code, with all vectorization in the compiler turned
off, and ran it on the FACOM VP-200. With veclorization turned off, the coriiler
does nol generale any veclor machine instructions, thus measuring the spred of
the scalar processor, A run lasted 105.9 scconds instead of 753.6 seconds on an
IBM 370/1068; a speedup of about a factor of seven. Then, withoul changing the
code, he turned on the vectorization in the compiler and found that the code ran
slower (111.9 scconds)!

Not surprisingly, there was no speedup since this type of code does not deal
much with vectors. It scems a bit strange that the code was slower with vector-
ir."tion turned on until one thinks about it. The ouly vectors in the code are the
three-vectors of the particle momentum; but the vector pipelines of the maching,
althaugh fast, are relatively long, so there is a startup titme penalty, Thus, opera-
tion of three-vectors using Lhe vector pineline instructions takes longer then doing
three sequential scalar operations, and the full potential of the vector machine
is not realized. This result is Lypical of all supercomputers, nol just the FAGOM
VI'-200,

1.3  Neeb ror NeEw MeTHODS 10 UskE VECTOR MACHINES

To realize the Tull potential of vector machines, so that the compiler will el-
ficiently handle vector lengths in the hundreds, one needs Lo use new methods of
propriunming. There are two approaches to the problem. The first is the micro ap-
proach in which one re-codes Lhe problem so that the inner do-loop will have long
veclars. The ather is the macro approach in which one brings an outer do-loop
{say, over particles) inlo an inner do-loop.

Micro Approach to Recading

An example of re-coding NEF code with the .nicro approach comes from
the track reconstruction code of the Mark I1l detector.” The innermost time-
copsuming de-loops arc in the basic pattern matching ler finding tracks. The



technique, described below, was also applied to track finding for a Fermilab fixed
target experiment by the Florida State group.a

The first step is to generate a track dictionary by a “geometry” program which
draws circles from the beam line through the detector in the r — ¢ plane and notes
which zets of drift chamber cells lie on each, This method is illustrated in Fig. 3.
Each dictionary entry is one distinct set of these cells. To keep the dictionary
small, only circles which correspoand to transverse momenta of greater than 50
MecV are drawn. Because the data from the detector is unpacked cell-by-cell, it
is natural to structure the dictionary nat, anly as a list of cells on cach track, but
also inversely as a list of tracks that pass through each cell.
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Fig. 3. Schematic representation of dictionary generation.



Having set up these tables once, the pattern recogaition is ready to begin on
events. During this phase, as each cell is unpacked and identified, the program
sets bits in a two-dimensional bit array called PATARY with one row for each layer
in the drilt chamber and one column for cach track in the dictionary. For cach hit
cell, one bit is set for cach track that might have caused the hit. These bits then
indicate which of the drift chamber layers on any given track are actually hit, as
shown in Fig. 4.

Palary: Track:
12 . i 32 ... j 8465 6 97 128 .
8 X i X
7 X X X
[} X X X
Layer 5 X
4 3 X X
3 X X i X
2 X X X X
1 X X X L/, X
a-88 X Denotes a bil that is sol. ’ 5580 Ad4

Fig. 4. PATARY table gencration.

Note that, al this lowest level of reconstruction, the code is already amenable
to exploiting the vector instructions of some supercomputers. This is so because
one can iake as onc long vector the list of all hit cells, and operate on that vector
to fill the PATARY array.

Thesc ideas may seem trivial, but they are critical te exploiting vectorization.
Rather than doing pattern recognition serially (track-te-track), information is de-
veloped and stored from primitive operations on all cells (as deseribed above), then
all clusters of cells in layers (named objects), then all clusters of cbjects over layers
(named bundles of track candidates), and finally the jsolated tracks themselves.
At cach step, long vectors can be tnade up of ebjects, bundles, or tracks.

Of course, the real-life situation isn’L thal simple. Tor example, the actual
code i5s more complex in order to allow for cell inefliciencies which leads to tracks
without the full complement of hit cells. Also, unlike the Florida State Group,



the Mark 111 group never had a chance to actually run this vectorizable code on a
computer with vector capabilities. Nevertheless, they predicted that such methods
could save up to a factor of five in the track finding and fitting time. As othurs
have found, the code ran faster on sealar processors as well, with a e wured
three-fold increase in speed over o conventional approach.

In surmnmary, with the micro approach, one can find tremendous speed gains
for the inner do-loops by restructuring the code to deal with a large number of
iterns at a time. However, Lo find a speedup in the overall code, onc must do such
restructuring for all such do-loops in the code.

Macro Approach to Re-coding

The basic strategy of the macro approach is to process many events or tracks
in one pass; that is, to bring the event or track loop to the innermost po-loop
instead of the cutermost one. An excellent example of this approach is work dune
by Kcenichi Miura of Fuiitsu Limited to vectorize the EGS4 shower prop-,ram.4

The standard EGS4 program works from a stack initially Joaded with the one
incident particle as illusirated in Fig. 5. One particle [rom the stack is processed at
a time. The shower subroutine decides which of the many physical processes will
be in effect, calls that subroutine, calculates it and stores the results, rearranging
the new particles on the stack so that the particle with the lovest energy is at the
top of the stack. This is equivalent to tracing the shower tree in Fig. 6 toward
the shortest path until all particles are absorbed. In this form, the program has
almost no vecturization potential.

To achieve vectorization, Miura changed the whole program flow so that in-
stead of a stack, there are queues of particles waiting to be processed by some
physical process as shown in Fig. 7. With cach step, the queue with the largest
number of particles ia chosen and these particles are taken as a vector. The re-
sulting particles are put back into their appropriate queues. To make the vector
lengih even longer, the initial particle siack is changed Lo a queue of particles from
multiple events,

For a simple case of 1 GeV clectrons incident on an infinite lead brick, the
vectorized version of EGS4 achieved a speed up of a factor of 8 over the scalar
version. The size of the code increased about 30% due to the extra bookkerping
involved and, since most of the scalar variables in the physics routines had Lo be
changed to array variables, the size of the memory space required went from 1/2
Megallyte Lo § MegaBytes.

[n summary, with the macro approach, one can achieve a significant spcedup
of the code ab the cost of more complex control strueture and significantly more
memory usage. Memory usage should not be a problem as vector processors come
with very large memories. Time will well if the control structure will be tolerated
by ou: HEP users.
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Fig. 5. Control flow in standard EGS4 program.
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Fig. 6. An electromagnetic cascade shower.

I.4 SUMMARY ON VECTOR PROCESSING

It is clear that experimentalists will need to take new approachesin structuring
their code to make good use of vector processors. Bven with this restructuring,
there remain some questions, however, For example, is the speedup one obtains
greater than the increased cost of the vector machine? A speedup of a factor of
three, say, on a machine that costs three times as much is no net gain. Then
there are other operational considerations; for example, one usually needs to learn
ancther operating system to use the vector machine and may also need to export
the raw data tapes to another site where a vector machine is located. Nevertheless,
we are in the early stages of experimenting wilth vector processors and no final
conctusions on their usefulness to the HEP community can be made yeu.
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I1. Parallel Processing

The other methed of getting more petformance is to try to exploit the inherent
parallelism of workload and have these parts run in parallel on separate processors.
These processors can be either tightly coupled ar loogely coupled; in many cases

it doesn't matter. They don’t even have to be complete computers as long as they
are cost-effective processors.

For experimental HEF offline processing, the main workload is event process-
ing, either raw data or Monte Carlo generation, Three methods of using parallel
processing have been and continue to be thought about.

Within an event, there are many parts of the program which are independent
of the results from all other parts. This leads to the idea of running these paris
on parallel processars, thus reducing to the total time Lo process an event. There
have even been ideas to make specialized processors with some of the algorithms
in hardware, to speed up the parallel parta even further. One problem with this
methed is there remains large parts of the code that can not be run in paraliel. Not
only does this limit the overall speed but, because the parallel parts will probably
not take an equal amount of time, there is a loss of efficiency due to idle processors.
There ins also a loss of efficiency as data is moved around among the processers,

Another method of parallel processing is to move events through a pipeline
of processors, each processor doing one part of the overall job. Again, specialized
processors with algorithms in hardware aze frequently mentioned. One lundamen-
tal flaw in this acheme is that not all events take the same amount of processing
time, so there will always be a “longest event” that will clog the pipeline. In addi-
tion, the time spent passing data down the pipeline can be quite serious, because
the temporary data set generated and used during the processing of an internal

program is generally much larger than either the initial raw data or the final DST
output data.

To date, the only successful way to introduce parallelism for event processing
is feed an event to one processor and let that processor work on that event alone,
white the next and subsequent events are fed to additional processors. This methad
keeps cach processor fully occupied except for the minimal communications time
inputting the raw data and outputting the results. This method of parallelism is
popularly called the méeroprocessor farm,

The method of having one event processed by one processor works as was
clearly demonstrated as far back as 1979 by users of the 168/ E.° It has also been
shown that this method is not sensitive to the methed of coupling. 1L is working
equally well with tightly coupled processors such as the Elxsi computers or loosely
coupled processors such as the FPs-164.° Trying to exploit parallelism within one
event, however, has 5o far been less eflective because the overall execution L.ne can
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easily be slowed down by the nonparallel part of the program, even with tightly
coupled processors.

II.1 PARALLEL PROCESSORS IN THE SSC ERA

The question has been frequently raised of whether the parallel processing
technique will continue to be valid in the 55C era where a single detector will
require 1000-2000 VAX 11/780 equivalent processing power. The answer seems to
be affirmative and can be understood from the following simple arguments:

» A data acquisition computer with a certain 1/0 bandwidth recorded the data
at the detector.

= Whatever the power of the parallel processors (as long as they can run the
complete program), one will add enough of them to obtain the required total
CPU power.

e As long as ratc of cvent processing is not greatly different from the original
data acquisition rate, then the host computer with 1/0 capacity at least
equal to Lthe data acquisition computer wiil be sufficient to run = processor
Jarm.

IT1. SOFTWARE [SSUES

Today, in high encrgy physics, software is generally a “mess.” That is to say,
most experimentasl groups, especially the new large detector groups, are having a
diflicult time developing and managing their software. As cach new large detector
comes onling, the sofltware efflort becomes increasingly more diflicult. This leads
1o the conclusion that we will have a major problem with the software for the
Superconducting Super Coliider (ssc). Although not explicitly staled, there also
seem to be many in our community that believe the reason soltware will be a
prablem at the S5C is that “we need to develop large (200-500K lines of FORTRAN)
complex code for the detector, with 400 physicists at 530 institutions.”’ We first
rxplore whether the above reasoning is facl or fiction.

First of all, let's look at the size and complexity of the code for a very large
detector. The size and contplexity of the code should scale with some aspects of
the detector. )T we can find the scaling laws, we should he able to estimate the size
of the problem for an S5C detector by extrapolation from cur current detectors.

The size and complexity of the cade should scale, for example, with number of
different kinds of detector elements in the detector. This is because each detector
type will need s own pattern recognition code and there will be some code that
links tracks between the detector clements. For an 88¢C detector, however, there
is no reason, necessarily, that there should be inore different kinds of detector
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elerments than a large Tevatron or SLC detector. Therefore, this scaling law would
say that an $sC detector would not be a more difficult problem.

Another scaling law is the size and complexity of the code scales with the numn-
ber of boundaries in the detector. This is because each irregular houndary takes
additional code to culculate the position of the boundaries, cross the boundary
and, in general, makes for a lot of exceptional case handling in the cade. There is
no reason that an 55C detector should have more boundaries than existing large

detectors, so the software problem for an ss¢ deteetor may not be more complex
because of this scaling law.

The size and complexity of the code should scale with the track density, due
to the many aliernative possibilities a pattern recognition program must try to
resolve. However, these problems are in a limited area of the detector code and
the effect is not very atrong. Thus, we would not expect a great deal of size and
complexity from this effect alone.

So far, we have scen arcas where an S5C detector is not necessarily very dif-
ferent from our present day detectars. However, there is sti}l a feeling shared by
many that the large physical size of an Ss¢ detector is going to lead to a larger
soltware code problem. For example, an $5C detector will have many more detee-
tor channels, But the size and complexity of the caile should not scale with the
number of channels; only the size of the arrays should grow, not the size of the
code. The same could be said about the number of tracks in the deteclor, vxcept
for the accond order effect that with a large number of tracks one expects to have
areag of higher track density. The change in scale of the energy of the particles in
the detector should also not have a strong cffect on the cade. And cerlainly, the
iotal amount of iron in the detector doesn’t affect the size and complexity of the
code.

Thus, we sce that, because an $5C detector is very large compared to our
current detectors, there is na inherent reason that the code for the detector be
any larger than current detecters. The first part of the above reason to worry
about 8SC detector code seoms to be moustly fiction. The second part of the reason
is the people lactor, which we now explore a bil further.

Qver 400 physicists are expected to be collaborating an a large 53¢ detector,
Gutling so many praple working on a software project is elearly a problem. Bt
in our modern era, it seems that only about 10% of them actually work on the
Monte Carlo and event reconstruction code. This meany a software teaw of abont
40 software people; a much more manageable number. OF these -0, we might
expect them to split up among four to six detector types. That is, fur example, the
vertex detector, tentral drify detector, particle 1d device [if one exists), calorhinetry
detector, and muon chambers. If equally divided, there would be seven to ten
software people per detector type, People in industry experienced with managing
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large softwarc projects tell us that this is about the right size for a software team,
In fact, today’s large detectors are usually undermanned in software develapment
cfforts, leading to sofiware teams which are too small.

Thus, it appears that the second part of the above reason {or major software
problems with 55C detectors seems to be also mostly fiction. And yet we know
it is a fact that with each generation of large deteclors, the software problem is
growing. The discrepancy betwecn what we have concluded is fiction and the fact
that software is an increasing problem lies in correctly identifying the causes of
our software problems, which we explore in the next section.

111.1 CAUSES OF OUR SOFTWARE PRODLEMS

1 do not profess 1o understand all the causes Lo the sofiware problem. Never-
theless, I will discuss some causes | have identified. 1 do not pretend to understand
their relative importance. With different large collaborations, in fact, their relative
importance may be different.

The first cause is the some physicists in a collaborations don’t take software
seriously enough. The software system is a very important part of & modern
detector and yet there is not enough effort put into the software at an early enough
stage in the detector development, constructing and commissioning. There is, in
general, little menitoring of the progress that is being made in the software effort
compared to monitoring of the progress in building the detector itself, There is
sometimes also an attitude of many of the key potential software writera that “I'm
toc busy now io worry about software,” or “A software error now is not serious,
we can fix it later.” Sometimes younger, less experienced physicists are the only
ones writing the code at an carly stage, with little gunidance, monitoring, or control
by more cxperienced physicists. This leads to Jarge, important parts of the ceding
being rewritten after the first real data is taken.

Another cause is that some physicists in a collaboration lake software too seri-
ously. By this 1 mean that some collaborations spend an excessive amount of time
discussing what sofiware tools and methadologies are thought 1o be necessary for
the success of the software effort. Frequently, religious wars break out between pro-
ponents of competing techniques. ‘The excessive time spent on discussing whether
to use FORTRAN or another more modern language, or Lhe discussions on the best
operating system to use, or which code managementi system to use are all symp-
toms of this problem, Frequently, when software is taken too seriously, a group
builds an overly complex andfor fancy foundalion on which to build their physics
code. This is caused by allowing an abundant amount of creativity to run free in
the tools and utilities, This ¢reativity doesn’y always seem Lo be aware of making
normal engineering tradeofls. That is, lrequently, worrying about what the system
should do in some 5% detail effect rather than what users need 95% of the Lime,
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There are other areas which may be the cause of the software mess. One of
them is how software develaprment teams are organized. Ideally, one wauld like
to see a clear chain of command from top level manager to individual software
writers. Frequently, however, one finds a set of people from the various collabo-
rating institutions, and at various stages in their professional career. The software
manager, thus, doesn't necessarily have the same level of control, authority, or
influence over the software team as, say, a head of an engineering department,

This structure leads to another area. One might like to see the software man-
ager provide strong leadership in order that Lhe software efforts lead to a coher-
cnt, well-engineered whole. However, one might find that the sofiware manager
is acting only as a coordinator between development teams with different sty les,
methodologies, and preferences, leading to an overall package that barely works
together. Even with an attempt of strong leadership, one still needs to realize that
these large software aystems are never built from scratch. This leads Lo code in
different areas that could have quite different styles, internal rules, and methods.
Temporary interfaces are made between these dilferont areas which may never
be climinated. In praclice, one may never be able to achieve a desired level of
uniformity of the code.

In general, there is little professionalism in managing the software effort, com-
pared to that found in the building of the hardware. All of the Tactors mentioned
above, plus a tendency on the part of most HEP software wrilers Lo work very
independently, contribute Lo this lack of professionalism.

111.2 SOME BETTER WAYS TO MANAGE SOFTWARE ISSUE

The question is, then, what de we need to do and what tools to we need to
keep our software efforts from being such a mess? I don’t pretend to know all the
answers, but will mention two possibilities below.

First, a large software effort needs a good design. Good design comes with
the proper modularity, which may not be as simple as division by detector type.
Between the modules, there should be well-designed interfaces, which usually come
in the form of COMMON blocks and for data banks. A good design of a large project
cannot be laid down correctly from the start; a certain amount of protolyping
needs to be done. When a saftware team knows it is building a protolype, the
whole attitude of approaching decisions change for the better.

Second, in any large project one needs 1o have progress and qualily controls.
Unlike hardware, it is much harder to quantify progress or qualily with software.
Although difficult, it is not impossible to invent some measurement tools, with
which a software manager can judge the rate of progress. At the very least, peer
review of software modules should be done systematically to judge progress and
quality.
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¥11.3 CONCLUSION OF TH? SOFTWARE SITUATION

It is generally felt in our community that, with each generation of large de-
lector, software is becoming a bigger and bigger problem. If we extrapolate this
irend to the S5C era, software would be a very big problem indeed. However,
software, even for an $5C detector, should nel be such a big problem. But we need
to understand the fundamentel causes of our current problems, before we can find

the solutions.
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