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ABSTRACT 

Cont inu i ty  o f  sandstone reservo i rs  i s  con t ro l led  by various factors  includ- 

i n g  s t ruc tu ra l  trend, sand-body geometry, and the  d i s t r i b u t i o n  o f  framework 

grains, matr ix,  and i n t e r s t i c e s  w i t h i n  the sand body. Except f o r  the l i m i t s  

imposed by fau l ts ,  these fac to rs  are l a rge ly  i nhe r i t ed  from the deposi t ional  

environment and modif ied dur ing sandstone compaction and cementation. Regional 

and loca l  con t i nu i t y  o f  sandstone reservo i rs  depends on a deposi t ional  and 

s t ruc tu ra l  h ierarchy o f  four leve ls :  (1) genet ica l l y  re la ted  sandstones com- 

monly associated w i th  a s ing le  deposi t ional  system, (2) a rea l l y  extensive f a u l t  

blocks, (3) ind iv idua l  sandstones w i t h i n  a f a u l t  block, and (4)  i so la ted  reser- 

vo i rs  w i t h i n  a fault-bounded sandstone. 

Compilation o f  published and unpublished data f o r  Te r t i a ry  and l a t e  Quater- 

nary Gulf Coast sandstones of f l u v i a l ,  de l ta ic ,  barr ier -s t randpla in ,  and subma- 

r i n e  fan o r ig ins  suggests t h a t  volumes o f  sand systems ( f i r s t  h ie rarch ica l  

l e v e l )  range from 10l1 t o  1013 ft3, whereas volumes o f  ind iv idua l  sand 

bodies range from l o 9  t o  10l1 ft3. The con t inu i t y  and product ive l i m i t s  

o f  t he  ancient sandstones are subs tan t i a l l y  reduced by f a u l t s  and in te rna l  

heterogeneity t h a t  f u r the r  subdivide the sand body i n t o  ind iv idua l  compartments. 

For the  Wilcox and F r i o  trends of Texas, f a u l t  blocks (second h ie rarch ica l  lev -  

e l )  vary g rea t l y  i n  size, most being between 0.3 and 52 mi2 i n  area; however, 

t he  d i s t r i b u t i o n  i s  s t rong ly  skewed toward small areas. Volumes o f  i nd i v idua l  

reservo i rs  ( f o u r t h  h ie rarch ica l  l e v e l )  determined from engineering product ion 

data are 50 percent less  t o  290 percent more than estimates obtained from geo- 

l o g i c  mapping. I n  general, mapped volumes underestimate actual volumes where 

f a u l t s  are nonsealing and overestimate actual  volumes where l a t e r a l l y  continuous 

shale breaks cause reductions i n  poros i ty  and permeabil i ty. 
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Gross var ia t ions  i n  pore proper t ies (poros i ty  and permeabi l i ty)  can be pre- 

d ic ted  on the  basis o f  i n te rna l  s t r a t i f i c a t i o n  and sandstone fac ies  where or ig -  3 
i n a l  sedimentological proper t ies are not masked by diagenet ic a l terat ions.  Six 

basic patterns are recognized t h a t  genera l ly  describe the  v e r t i c a l  va r ia t i ons  i n  

pore propert ies w i t h i n  a sand body a t  a we l l  s i te .  Whole-core analyses show 

(1) upward increases, (2) upward decreases, (3)  cent ra l  increases, (4) cen t ra l  

decreases, and (5)  un i formly low, and (6) i r r egu la r  changes i n  poros i ty  and 

i 

4 

permeabi l i ty  w i th  depth. Within these trends, poros i ty  and permeabi l i ty  are 

genera l ly  highest i n  large-scale crossbedded i n t e r v a l s  and lowest i n  contorted, 

bioturbated, and small-scale r i p p l e  cross-laminated in te rva ls .  

Sandstone fac ies models and regional s t ruc tu ra l  f a b r i c  of the  Gu l f  Coast 

Basin suggest t h a t  la rge  and r e l a t i v e l y  continuous reservo i rs  should be found 

where ba r r i e r  and s t randpla in  sandstones para1 le1  regional  f au l t s .  These condi- 

t i o n s  should optimize the  magnitude and r a t e  o f  f l u i d  production from geopres- 

sured geothermal aqui fers and maximize the e f f i c i e n c y  o f  primary and enhanced 

recovery o f  conventional hydrocarbons. F1 uv ia l  sandstones deposited by major 

streams t h a t  t rend roughly normal t o  regional f a u l t s  a re  probably l e s s  continu- 

ous than ba r r i e r  sandstones, but together they serve as substant ia l  t a rge ts  f o r  

explorat ion and product on o f  unconventional as wel l  as conventional energy 

resources. 

INTRODUCTION 

Sandstone reservo i rs  are s p a t i a l l y  confined by l a t e r a l  and v e r t i c a l  changes 

i n  primary rock propert ies,  such as g ra in  s i ze  and poros i ty  and permeabil ity, 

t h a t  are l a rge ly  i n h e r i t e d  from the  deposi t ional  environment. Equal ly important 

i n r eservoi r charac ter iza t ion  are postdeposi t i ona l  events inc lud ing  s t r  uctur a1 

deformation and diagenetic a l t e r a t i o n  t h a t  cause major reduct ions i n  t h e  
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t r a n s m i s s i b i l i t y  of f lu ids.  Studies o f  modern c l a s t i c  environments and t h e i r  

ancient counterparts have l e d  t o  conceptual models o f  t he  most common sandstone 

facies. These models have establ ished c r i t e r i a  f o r  i n t e r p r e t i n g  genetic deposi- 

t i o n a l  systems from wel l  cut t ings,  cores, and geophysical l ogs  (Fisher and 

Brown, 1972; Fisher and others, 1969) and subsequently f o r  p red ic t ing  the  geom- 

e t r y  and c o n t i n u i t y  o f  many sandstone reservo i rs  (LeBlanc, 1977; Sneider and 

others, 1977) . 
I n  t h e  Gulf Coast Basin, the  common sandstone fac ies are products o f  depo- 

s i t  on i n  f l u v i a l ,  de l ta i c ,  barr ier -s t randpla in ,  t ransgressive marine, and she l f  

and slope systems. 

the  geopressured zone, e x h i b i t  c e r t a i n  predic tab le properties. Accordingly, 

studies o f  reservo i r  con t i nu i t y  t h a t  combine sediment01 ogical  cha rac te r i s t i cs  

w i t h  reservo i r  engineering data f o r  sandstone aqui fers should improve those pre- 

d i c t i v e  capab i l i t ies .  This repor t  provides a systematic inves t iga t ion ,  c lass i -  

f i ca t i on ,  and d i f f e r e n t i a t i o n  o f  the  i n t r i n s i c  proper t ies o f  genetic sandstone 

u n i t s  t h a t  t y p i f y  many geopressured geothermal aqui fers  and hydrocarbon reser-  

vo i r s  o f  the Gu l f  Coast region. 

These sandstone types, which commonly occur as aqui fers  i n  

I 
I 

Quanti f i cat  i on  o f  Inhomogeneities 
* , > < >  ~ 

I d e n t i f y i n g  geological fac to rs  su i tab le  fo r  reservo i r  d isc r im ina t ion  r e -  

qu i res two p r inc ipa l  e f f o r t s :  (1) compi lat ion o f  selected geologic data f o r  

ancient sandstones and modern analogs and (2) analys is  and synthesis o f  pro- 

duc t ion  data f o r  selected reservoirs.  ' 

An example o f  the  f i r s t  type o f  data was reported by Pryor (1973), who 

analyzed near ly  1,000 sediment samples taken from three  

vironments. 

e rn  deposi t ional  en- 

From h i s  work, Pryor concluded' t h a t  point-bar and beach sands have 

d i rec t i ona l  permeabi l i t ies,  whereas poros i ty  and permeabi l i ty  i n  eol5an dunes 

have low v a r i a b i l i t y  and no d iscern ib le  trends. 
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f 
t Inves t iga t ions  of in te rna l  proper t ies  of sandstones from cores  and outcrops i 

make possible  a r e l a t i v e  ranking of potent ia l  sandstone r e se rvo i r s  s u i t a b l e  f o r  

primary or  enhanced recovery. Qual t a t i v e  r e s u l t s  i n d i c a t e  which sandstone fa -  

cies a r e  l i k e l y  t o  e x h i b i t  less var a b i l i t y  owing t o  t h e i r  in te rna l  s t r a t i f i c a -  

t i o n  and other  physical q u a l i t i e s  (pore  space d i s t r i b u t i o n ,  frequency and posi- 

t i o n  of sha le  breaks).  Most studies based on outcrop samples and subsurface 

cores  recognize reservoi r  heterogeneity re1 ated t o  in te rna l  s t r a t i f i c a t i o n  ( f o r  

example, Polasek and Hutchinson, 1967), b u t  the broader issue of improved pre- 

dictive c a p a b i l i t i e s  achieved by applying this knowledge t o  sandstone models has 

not been widely reported.  

Attempts t o  quant i fy  sand-body geometry and reservoir  inhomogeneities have 

been l a rge ly  unsuccessful owing t o  the inherent  difficult ies assoc ia ted  w i t h  

subsurface co r re l a t ions ,  lack of precise geological boundaries and s p a t i a l l y  

discontinuous data.  

pressions f o r  reservoi r  cont inui ty  and in te rna l  heterogenei ty  have been pro- 

In spite of these l i m i t a t i o n s ,  a t  l e a s t  two numerical ex- 

posed. , -  

Fulton (1975) used a cont inui ty  index t o  descr ibe s p a t i a l  va r i a t ions  i n  

sandstones of the ances t ra l  Rio Grande de l ta .  He defined horizontal  con t inu i ty  

as  the r a t i o  o'f sand-body length t o  cross-sect ion l e n g t h  and ve r t i ca l  cont inui ty  

a s  the r a t i o  of maximum thickness of continuous sand t o  t o t a l  sand thickness .  

The accuracy of numerical values reported by Fulton (1975) i s  questionable 

because the boundaries and dimensions used t o  c a l c u l a t e  the index were con- 

s t r a ined  by the c ross  sections themselves. 

s t r a t e s ,  a s  do many o thers ,  t h a t  (1) f luv ia l  sands a r e  more continuous i n  d i rec-  

t i o n s  para1 le1 t o  progradation than i n  d i r ec t ions  perpendicular t o  progradation, 

( 2 )  de l ta - f ront  sands a r e  widely d i s t r i b u t e d  and are 'near ly  continuous both 

along s t r i k e  and i n  u p d i p  and downdip d i r e c t i o n s ,  and (3)  prodel ta  sands a r e  

Nevertheless, Ful ton 's  s tudy demon- 
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t h i n  and h i g h l y  discontinuous w i t h  greatest con t inu i t y  i n  d i rec t i ons  para1 le1 t o  

bs progradation. Although not evaluated by Fulton, the transgressive marine sand 

underlying the progradational sequence ( f i g .  1) represents the most continuous 

and a r e a l l y  extensive sand w i t h i n  h i s  study area. 

Polasek and Hutchinson (1967) used a heterogeneity fac to r  (HF) t o  quant i fy  

t h e  layer ing or abundance o f  shaly mater ia l  i n  sand sequences. 

factors were determined emp i r i ca l l y  f o r  several producing reservoirs, but they 

were not r e l a t e d  t o  sandstone fac ies or deposit ional environment. 

l o g i c a l  f ac to rs  were not included, the p red ic t i ve  c a p a b i l i t i e s  o f  t h i s  method 

Heterogeneity 

Because geo- 

are unknown. The q u a n t i f i c a t i o n  techniques o f  Ful ton (1975) and of Polasek and 

Hutchinson (1967) requ i re  a r t i f i c i a l  boundaries t h a t  severely l i m i t  the useful- 

ness o f  t he  data. 

sandstone inhomogeneities has not been devel oped. 

Hence, an accurate and reproducible method o f  quan t i f y i ng  

Reservoir heterogenei t ies have also been s t a t i s t i c a l l y  t reated t o  accommo- 

date the high v a r i a b i l i t y  i n  numerical evaluations. The normal and log-normal 

d i s t r i b u t i o n s  t h a t  character ize poros i ty  and permeabi l i ty  measurements grouped 

by depth (Law, 1944; Polasek and Hutchinson, 1967) are adequate f o r  summarizing 

general reservo i r  propert ies, but  they are poorer predic tors  than geological 

models t h a t  expla in  the v a r i a b i l i t y  o f  pore space propert ies w i t h i n  and among 

sandstone uni ts.  

STRUCTURAL AND STRATIGRAPH I C  LIMITS OF SANDSTONE RESERVOIRS 

1 Sand-Body and Reservoir Hierarchy 

Deposit ional 'and s t ruc tu ra l  condit ions a t  var ious l e v e l s  w i t h i n  a hierarchy 

contro l  t he  volume and areal-  extent o f  sandstone reservoirs. The f i r s t  l eve l  

includes the e n t i r e  reservo l r  i n te rva l ,  or  aqui fer  system, t h a t  spans several 
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hundred t o  several thousand fee t  o f  interbedded sand and shale. Sandstones 

k.’ wi th in  the  reservo i r  i n t e r v a l  are canmonly genet ica l l y  re la ted  and associated 

J 

w i t h  a s ing le deposit ional system. Large f a u l t  blocks encompassing the reser- 

vo i r  i n t e r v a l  comprise the second h ierarch ica l  level .  Th i rd  and fou r th  l eve l s  

respect ive ly  include ind iv idua l  sandstones w i th in  a f a u l t  block and iso la ted 

reservo i rs  w i t h i n  an ind iv idua l  fault-bounded sandstone. 

Both modern and ancient sandstones can be grouped and measured according t o  

the f i r s t  and t h i r d  l eve l s  o f  the hierarchy (genet ica l l y  re la ted  sequences and 

ind iv idua l  sandstones). For t h i s  reason, the d i s t i n c t i o n  between sand trends o f  

regional  or cont inental  proport ion and loca l  sand features i s  important f o r  pre- 

d i c t i n g  the s ize and arrangement o f  attendant sand bodies. The fou r th  h ierar-  

ch ica l  leve l  represents those condi t ions i n  which interbedded shales or other 

permeabi l i ty  ba r r i e rs  w i t h i n  the sandstones reduce the e f f e c t i v e  reservo i r  vol- 

ume, but  t h i s  l eve l  does not include potent ia l  increases i n  reservo i r  capaci ty 

owing t o  external cont r ibut ions such as shale dewatering or nonsealing fau l ts .  

Possible External Contr ibutions 

Marked decreases i n  permeabi l i ty  define the  reservo i r  boundaries and l i m i t  

the volume o f  sediment from which f l u i d s  can be produced. These permeabi l i ty  

changes usua l ly  occur along the  margins o f  a sand body and, therefore, t he  

extent o f  f l u i d  withdrawal i s  c h i e f l y  from a s ing le  sand w i t h i n  a f a u l t  block. 

F lu ids  might enter producing reservo i rs  across f a u l t s  or from surrounding 

shales; however, these in f luxes  are general ly regarded as minor or ascribed t o  

ra re  and unique circumstances tha t  would not a f fect  t he  cumulative production. 

frun most reservoirs.  A t  present, the importance o f  nonsealing f a u l t s  and the 

magnitude of  shale dewatering are unknown; hence f a u l t s  and shales cannot be 

el iminated as po ten t ia l  sources o f  addi t ional  fluid. 
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Theoretical considerations and f i e 1  d observations have been used t o  demon- 

L J  s t r a t e  t h a t  some f a u l t s  do not prevent l a t e r a l  migrat ion o f  f l u i d s ,  espec ia l l y  

when c o r r e l a t i v e  sand bodies are juxtaposed across a f a u l t  (Smith, 1980). A l -  

though much o f  the  theory deals w i th  entrapment o f  hydrocarbons i n  the hydro- 

pressured zone, the governing p r inc ip les  apply equal ly  t o  water movement i n  the 

geopressured zone. 

St ructure maps f o r  several T e r t i a r y  sandstone reservo i rs  i n  Louisiana 

(Smith, 1980) suggest t h a t  minor f a u l t s  may not be complete ba r r i e rs  t o  f l ow  be- 

cause l i t h o l o g i e s  and c a p i l l a r y  proper t ies across these f a u l t s  a re  very s imi la r .  

These observations suggest t h a t  drainage areas o f  geopressured aqui fers  may not 

be l i m i t e d  by minor f a u l t s  where sand thickness exceeds f a u l t  displacement. 

The areal extent o f  water production from geopressured aqui fers  i s  uncer- 

ta in .  A s i g n i f i c a n t  reduct ion i n  reservo i r  pressure dur ing product ion might 

cause an i n f l u x  o f  water from shales surrounding the  aqui fer .  I n  add i t ion  t o  

minimizing pressure dec l ine  i n  the reservoir ,  shale recharging could substan- 

t i a l l y  increase t h e  e f f e c t i v e  reservo i r  volume beyond the  sand-body l i m i t s .  

Theoret ical ly,  the vast surface area along sand margins and along interbedded 

shales would provide m u l t i p l e  pathways for f l u i d  invasion despi te the  low per- 

meab i l i t i es  a t  these boundaries. 

reservo i r  s imulat ions (Ch ie r i c i  and others, 1978; Garg, 1980) i nd i ca te  t h a t  on ly  

reservo i rs  w i th  long l i f e  expectancies would be not iceably  enhanced by shale 

Published f i e l d  data (Wallace, 1969) and 

compaction and f l u i d  expulsion. Even under ideal  circumstances, i t  appears 

doubt fu l  t h a t  substant ia l  volumes o f  shale water would f low t o  the we l l  bore 

geopressured given the  an t ic ipa ted  h igh 

r eservoi r s . 
The v e r t i c a l  permeabi 

f low rates and rap id  drawdown o f  most 

i t y  o f  shale i s  a prime fac to r  cont ro l i n g  the i n f l ux .  

of shale-derived water (Garg, 1980). Because i n  s i t u  shale permeabi l i t ies  are 
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poor ly documented and production data are scant, the re1 i a b i l i t y  o f  dewatering 

cc-d predicted by model studies i s  uncertain. Undoubtedly, new knowledge w i l l  be 

,, 

i 

i 
j 

1 

gained during and fo l lowing production o f  several design wells. A major objec- 

t i v e  o f  t h e  Dow-DOE Sweezy No. 1 i n  the Parcperdue f i e l d  i s  t o  determine the  

magnitude o f  shale dewatering i n  an a r e a l l y  l i m i t e d  geopressured reservoir.  

CHARACTERISTICS AND DIMENSIONS OF GULF COAST SANDSTONES 

The northwest margin of the Gul f  o f  Mexico has been an area o f  ac t i ve  sedi- 

mentation fo r  m i l l i o n s  o f  years; i t  has also been the s i t e  o f  extensive explora- 

t i o n  f o r  and production o f  hydrocarbons contained i n  the t h i c k  c l a s t i c  sequences 

o f  t h e  Gulf Coast Basin. The geology o f  the Gulf  Coast has been recorded i n  de- 

t a i l  because the area i s  accessible, the depositional enviroments are diverse, 

and the geology i s  appl icable t o  energy resource explorat ion elsewhere. Studies 

o f  modern and ancient deposit ional systems along the Gulf  Coast have resul ted i n  

improved c a p a b i l i t i e s  f o r  p red ic t i ng  the  external geometry and in te rna l  proper- 

t i e s  o f  sandstone reservoirs.  

L imi ta t ions of Data 

There .are many 

ures, e l e c t r i c  logs 

data base i s  i n c l u s  

advantages t o  reservoir  studies t h a t  u t i 1  

seismic sections, and subsurface cores. 

surface expos- 

Because no s ing le 

ve, t h e i r  i n t e g r a t i o n  provides a more complete p i c t u r e  of 

rock propert ies i nhe r i t ed  from the o r i g i n a l  deposit ional environment and subse- 

quent diagenetic modif icat ions. 

I n  the Gu l f  Coast region, modern sand-rich environments are canmonly anal- 

ogous t o  ancient sedimentary deposits. 

provide excel lent  cont ro l  on textures, d i rec t i ona l  propert ies, bed cont inui ty,  

S u r f i c i a l  exposures o f  sand bodies 
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& r  spat ia l  re la t ionsh ips  w i t h  surrounding sediments, and the l i k e .  On the other 
i 
i 

L 
hand, modern sand bodies tend t o  overestimate c e r t a i n  reservo i r  proper t ies 

(volume, porosity, permeabir i ty) because compaction, cementation, and s t ruc tu ra l  

deformation have not reached advanced stages i n  modern sediments. 

ancient sandstones are more r e a l i s t i c  approximations- o f  reservo i r  condi t ions 

I n  contrast ,  

because they represent what i s  ac tua l l y  preserved over broad areas. Common d is -  

advantages o f  subsurface studies are (1) the lack  o f  dense and deep subsurface 

cont ro l  , (2) the necessity of i n d i r e c t l y  measuring geological parameters, and 

(3) the uncertainty o f  l o g  cor re la t ions  i n  s t r u c t u r a l l y  complex areas. These 

fac to rs  g rea t ly  in f luence s t ra t i g raph ic  in te rpre ta t ions  and paleogeographic 

reconstructions, which i n  t u r n  a f f e c t  general character izat ions and volumetric 

estimates o f  pa r t i cu la r  sand bodies ( tab les 1 t o  3). The volumetric estimates 

are only  accurate w i t h i n  an order o f  magnitude because sand-body dimensions are 

averaged, and a t  l eas t  one dimension i s  usual ly  an a r b i t r a r y  t runcat ion  { d i p  

d i r e c t i o n  f o r  channels, s t r i k e  d i r e c t i o n  f o r  ba r r i e rs )  or  represents the l i m i t  

o f  avai lab le data. However, even w i th  these discrepancies, t he  data show t h a t  

ind iv idua l  sand bodies ( t h i r d  h ierarch ica l  l e v e l )  contain frm lo9 t o  1011 f t 3  

of sand, whereas sand systems ( f i r s t  h ie rarch ica l  l e v e l )  are on the order o f  

10l1 t o  1013 ft3 i n  volume ( tab les 1 t o  3) .  

Late Quaternary Sediments 

Most sands deposited dur ing the  l a t e  Quaternary Period remain unconsolidat- 

ed and e x h i b i t  charac ter is t i cs  establ ished when they were i n i t i a l l y  deposited. 

These geol ogical  l y  young sand bodies serve as a base1 i n e  for understandi ng phys- 

i c a l  and chemical changes t h a t  occur dur ing bu r ia l  . It should be noted, however, 

t h a t  Holocene sand systems ( tab le  1) are general ly less  voluminous than t h e i r  

ancient counterparts ( tab le  2) because r e l a t i v e  sea-level changes have been 

minor and v e r t i c a l  stacking o f  mu l t i p le  sand bodies has been minimized. L 
I 
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Table 1. Dimensions o f  l a t e  Qua te rna ry  G u l f  Coast sand bodies. Q 
Th 1 Ck. 

F e a t u r e  Sand Age f t  

M l s s l s s l p p l  p o i n t  bar H 75 
R i v e r  

M l s s l s s l p p l  d l  s t r  t b u t a r y -  H 100 
de I t a  mouth bar 

Miss I ss l p p l  d e l t a - f r o n t  H 40 
d e l t a  . system 

R l o  Grande f l u v i a l  channel H 15 

R l o  Grande f l u v i a l  system H 65 

R l o  Grande d e l t a  f r o n t  P 10 
d e l t a  

R l o  Grande t ransg ress  i ve H 30 
d e l t a  mar i ne 

Brazos R i v e r  p o i n t  ba r  H 55 

Brazos R i v e r  f l u v i a l  channel ii 40 

Brazos R i v e r  f l u v i a l  system H 40 

Brazos R i v e  f l u v i a l  system P 25 

Brazos D e l t a  d e l t a  system H 25 

Padre I s l a n d  b a r r l e r  H 40 

Ga I ves t o n  b a r r l e r  H 30 
I s  land 

Grand I s l e  b a r r l  e r  H 20 

South Padre b a r r i e r  H 12 
I s  land 

Texas b a r r l e r  b a r r i e r  system H 40 
I s l a n d s  

I ng l e s  I d s  s t randp l a  I n  P 60  

w 
w 

system 

'system sca le  

Length Width Sand vol.  
f t  x 103 f t  103 to9 f t 3  Reference 

26 I 21 41 F r a z f e r  and Osanik, 1961 

21 5 

317 80 

- 

40 10 

237 53 

17 15 

53 16 

6 3 

53 8 

264 63 

316 158 

8 10 

105 26 

137 13 

20 4 

105 5 

1,056 15 

52 8 53 

H - Holocene 

1 1  Ffsk, 1961 

1 ,Of4* Fisk,  1955 

6 Ful ton,  1975 

81 6' Brown and others,  1980 

3 F l g u r e  1, and Fu i ton ,  1975 

25 Ful ton,  1975 

1 Bernard and others,  1970 

17 Bernard and others,  1970 

665" Bernard and others,  1970 

1,248" Wlnker, 1979 

2" F i g u r e  2, and 
Bernard and others, 1970 

109 Fisk,  1959 

53 Bernard and others,  1970 

2 Conatser, 1971 

6 Morton and McGowen, 1980 

633' Morton and McGowen, 1980 

1,679* Winker, 1979 

P - P l e i s t o c e n e  



Table 2. Olmenslotas of Tertiary Gulf Coast sand bodies. 

Poros. Perm Thlck. Length Wldth Sand Vole 
Area F o m  x nd ft tt 103 ft 103 109 f t 3  Reference 

East Texas Wilcoc -- -- 300 106 53 1,685" Fisher and McGowen, 1967 
Seellgson, TX Fr io -- -- 40 40 13 21 Nanz, 1954 
Central Texas Coast Miocene -- -- 200 106 185 3,922* Solis, 1980 
Central Texas Coast  M locene -- -- 150 21 1 37 1,171* Doyle, 1979 
Austln Bayou, TX Fr io  21 21 1 60 26 26 42 Morton and others, 1980 
Central Louisiana w I lcox -- -- 130 32 8 33 Galloway, 1968 
Main Pass, LA Miocene 34 3,000 35 16 2 1 ttartman, 1972 

~ ~~~~ 

South Cook, TX 
Austln Bayou, TX 
Austln Bayou, TX 
Central Texas Coast 
Central Texas Coast 
South Texas 
E. White Polnt, TX 
Upper Texas Coast 
Loulsiana Onshore 

w I lcox 25 
Frlo 20 
Fr lo -- 
Miocene - 
M looene -- 
Wllcoc -- 
F r  lo -- 
Vicksburg -- 
M looene -- 

60 
60 
400 
500 
300 
100 
300 
30 
300 

74 
106 
106 
317 
686 
21 1 
20 
700 
370 

16 
37 
53 
79 
105 
79 
15 
150 
105 

71 
235 

2,247" 
12,52P 
21,609* 
1,667' 

3,15W 
1 1,655* 

90 

Bebout and others, 1979 
Bebout and others, 1978 
Bebout and others, 1978 

Doyle, 1979 
Edwards, 1980 
Martyn and Sample, 1941 

CurtIs, 1970 

Solls, 1980 

*egorY, 1966 

~~~~ 

S.W. Lake Arthur, LA 
Chandeleur Sound, LA 
M i l b u r ,  TX 
Hardln, TX 
J i m  Hogg, TX 
Central Texas Coast 
Central Texas Coast 
Central Texas Coast 
N.E. ThompsonvII le, TX 

Fr io 
M Iocene 
w i  Icrx 
Yegm 
Jackson 
Wllcox 
Fr lo 
M locene 
w i  Icoc 

2,000 
1,680 
600 

2,200 -- -- -- -- 
140 

15 40 
60 7 
15 35 
35 10 
35 158 
400 400 

1,000 317 

75 32 
450 21.1 . . 

8 
5 
10 
1 
53 
158 
68 
.53 

4 

5 
2 
5 

<1 
292 

25,280" 
21,556" 
5,032" 

10 

Gotautas and others, 1972 
Woltz, 1980 
Chuber, 1972 
Casey and Cantrel I, 1941 
Freeman, 1949 
Fisher and McGaen, 1967 
Boyd and Dyer, 1%6 

Young, 1966 
S o l l S ,  1980 

Wilcox 12 -1 100 32 25 80 Oe Paul, 1980 ktv, TX 
McAl len Ranch, TX Vicksburg 15 -1 60 30 15 27 Berg and others, 1979 
Port Arthur-Port Acres, TX Hackberry 29 
N.E. Thompsonvl I le, TX Wilcrx 15 28 50 22 15 17 Berg and Tedford, 1977 

105" Welse and &hers, 1981 

275 450 23 16 165" Halbouty and Barber, 1961 

Port Arthur-Port Acres, TX Hackberry -- -- 300 32 1 1  

c *system scale 
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Area 

Table 3. Dlmenslons of non-Gulf Coast sand bodfes. 

Poros. Perm. Thlck. Length Wldth Sand Vol. 
Reference md f t  ft 103 ft 103 x 109 ft3 b e  % 

Elk Clty fleld, Okla. Pennsylvanfan 10-15 751,500 50 , 10 4 2 Snefder and others, 1977 

Rhone Rlver, France Holocene - --.. 7 10 8 <1 ownkens, 1970 

Cllnton delta, Ohlo SI  lurlan -- -- 20 16 2 <1 Overby and Hennfger, 1971 

Coyqte Creek fleld, Wyo. crertaceous 15 200 50 20 4 4 Berg and Davles, 1968' 

Fry area, I I  I.  Penmylvanlan 14-25 10-1,200 30 12 3 1 Hewltt and Morgan, 1965 

Clinton delta, Ohio S I  lurfan -- I 35 64 11 25 Overby and Hennfger, 1971 

Rhone delta, France Holocene -- - 33 1 63 65 35W Oornkem, 1970 

Bartlesvll le Sandstone, &la. Pennsylvanfan -- - 50 475 158 3,75F Vfsher and athers, 1971 

Elk C f t y  ffeld, Okla. Penmylvanfan 16-24 10-1,000 40 8 7 2 Snefder and uthers, 1977 

Bel I Creek ff el d, Mont. - -- -- 20 60 7 8 Berg and Davfes, 1968 



F1 uv ia l  Sandstones 

Along the  Gulf  Coastal Plain, f l u v i a l  channels d i f f e r  from d i s t r i b u t a r y  6*, i 
i 
$ 

channels i n  t h a t  the former commonly meander, whereas the  l a t t e r  a re  r e l a t i v e l y  

s tab le owing t o  lower gradients and the  mud-rich de l ta -p la in  deposits t h a t  i n -  

h i b i t  l a t e r a l  m igra t ion  o f  the  channels. E i ther  channel type may contain c lay  

plugs as abandoned channel fill. The loca t ions  o f  such major d i scon t inu i t i es  are 

l a r g e l y  unpredictable unless wel l  con t ro l  i s  f a i r l y  dense. However, as shown by 

Galloway (1968) and others, c lay  plugs are wel l  documented and e a s i l y  d i s t i n -  

guished on e l e c t r i c  logs. Within a f l u v i a l  system, g ra in  s ize  genera l ly  de- 

creases downstream, but a t  the scale o f  most reservoirs,  v e r t i c a l  

channel changes i n  g ra in  s ize are more important t o  reservo i r  performance. 

Miss iss ipp i  River, 

Point-bar deposits o f  t h i s  major r i v e r  were described by Fraz ie r  and Osanik 

They reported t h a t  sedimentary s t ructures fo r  t he  middle and lower (1961). 

point-bar deposits o f  the Miss iss ipp i  River were mainly festoon crossbeds or  

large-scale scour and f i l l  features. Moreover, t h e i r  diagrams show rap id  l a t -  

era l  th inn ing o f  f l u v i a l  sands and replacement by s i l t s  and clays deposited as 

natura l  levees and abandoned-channel fill . These f ine-grained d i scon t inu i t i es  

would d is rup t  f l u i d  f l ow  across the sand body but would not necessar i ly  i n t e r -  

fe re  w i th  f l u i d  movement p a r a l l e l  t o  the  channel axis. 

The M i  ss i  ss i  ppi  River poi  nt-bar deposit described by Frazi  er and Osani k 

(1961) i s  75 ft th ick,  about 5 m i  wide, and contains approximately 40 b i l -  

l i o n  ft3 (Bcf) o f  sand. As expected, the  dimensions and volume are l a rge  by 

comparison i n  other i nd i v idua l  f l u v i a l  sands ( tab le  1). 

Rio Grande 

Frequent d i scon t inu i t i es  i n  f l u v i a l  sands were also recognized by Fu l ton  

(1975), who u t i l i z e d  numerous borings and e l e c t r i c  logs t o  de l ineate the geome- 

try o f  sandstone fac ies of t he  Rio Grande f l u v i a l  system. A cross sect ion L 
14 



( f i g .  1) through the  same s t ra t ig raph ic  i n te rva l  studied by Fu l ton  (1975) i l l u s -  

t r a t e s  the  thickness and con t inu i t y  o f  Holocene and Pleistocene f l u v i a l  sands i n  

a downstream (d ip)  d i rec t ion .  
dJ 

Channels o f  t h e  Holocene Rio Grande average 15 t o  30 ft t h i c k  ( tab le  l), 

progressively younger channels being thinner. Such chronological re la t ionsh ips  

are common where t h i n  but a r e a l l y  extensive a l l u v i a l  p l a i n  and upper de l ta -p la in  

sediments were deposited over older and more s tab le f l u v i a l  deposits. Channel 

sands o f  l a t e  Pleistocene age vary widely i n  thickness owing t o  the  abundance o f  

c lay  plugs t h a t  separate t h i c k  f l u v i a l  sands ( f i g .  1). Channel sands up t o  

65 ft t h i c k  and containing about 800 Bcf o f  sand represent a major r i v e r  system 

t h a t  b u i l t  a r e l a t i v e l y  la rge  d e l t a  (70 t o  160 ft th i ck )  t h a t  extended more than 

50 m i  along s t r i k e  and more than 20 m i  across the inner shelf. Because o f  t h e i r  

deposi t ional  set t ing,  the  l a t e  Pleistocene channels are probably good analogs 

fo r  many o f  t he  Te r t i a ry  f l u v i a l  sandstones associated w i th  s tab le  p la t fo rm 

deposits. 

Brazos River 

The Blasdel po in t  bar o f  the  Brazos River (Bernard and others, 1970) dis-  

plays an upward-fining sequence accompanied by an upward decrease i n  scale of 

primary sedimentary structures.  The v e r t i c a l  succession o f  s t ructures from 

lower point-bar t o  f loodbasin deposits i s  as follows: (1) large-scale trough 

c ross -s t ra t i f i ed  sand w i t h  some minor c lay  par t ings separating foreset  un i ts ,  

(2) ho r i zon ta l l y  s t r a t i f i e d  sand w i th  inter laminated s i l t  and clay, (3) small- 

scale trough c ross -s t ra t i f i ed  sand and s i l t  w i t h  c lay  drapes, and (4) laminated 

sandy c lay  and s i l t .  The Blasdel po in t  bar and the  Wal l is  po in t  bar, described 

by Morton and McGowen (1980), show t h a t  the thickness and frequency o f  mud part-  

ase toward the  top  o f  the deposit, and the propor t ion o f  mud t o  sand 

increases i n  a downstream di rect ion.  Corre la t ion o f  the  SP responses i n  these 

deposits (Bernard and others, 1970) ind icates t h a t  most o f  the shale breaks are 
U 



i 
I 
i discontinuous, but a few extend as much as several thousand f e e t  normal t o  the 

channel axis . 6 . j  
Although ind iv idua l  point-bar deposits contain l ess  than one Bcf o f  sand, 

t he  channel segments o f  which they are a par t  contain considerably more sand ow- 

i n g  p r imar i l y  t o  the  greater leng th  o f  the  channel segment. One channel segment 

o f  t h e  Modern Brazos River contains about 17 Bcf o f  sand, whereas the  f l u v i a l  

system contains about 600 Bcf  o f  sand ( tab le  1). By comparison, a par t  o f  the  

Pleistocene Brazos River system contains near ly  twice as much sand (1,200 Bcf) 

because o f  greater meanderbelt width and s l i g h t l y  greater l eng th  ( tab le  1). 

De l ta ic  Sandstones 

Sediment dispersal w i t h i n  a d e l t a  system i s  con t ro l led  l a r g e l y  by the  in-  

t e rac t i on  o f  astronomical t ides,  f l u v i a l  processes, oceanic waves, and l i t t o r a l  

currents. I n  add i t ion  t o  these physical processes, the  depth o f  water and the  

nature o f  underlying sediments also contro l  the  l a t e r a l  extent o f  d e l t a i c  sand 

bodies. 

(Fisk, 1955) deposited on she l f  platforms w i t h  r e l a t i v e l y  s tab le substrates. 

Shal low-water de l tas are also characterized by t h i n  prodel ta  muds and r e l a t i v e l y  

For example, sheet l ike sand bodies are t y p i c a l  o f  shallow-water de l tas 

t h i c k  de l ta-p la in  sequences t h a t  contain numerous a l l u v i a l  and d i s t r i b u t a r y  

channels. 

preserved i n  shallow-water de l tas  (Morton and Donaldson, 1978). 

These f l u v i a l  fac ies commonly account f o r  the  greatest  volume o f  sand 

I n  contrast, sandstones deposited by deep-water de l tas t y p i c a l  l y  par a1 le1 

Thick bar- f inger sands (Fisk, 1961) the  f l u v i a l  axes and are h igh l y  elongate. 

a r e  protected from later-a1 reworking as they subside i n t o  the under ly ing 

prodel ta/shel f  and slope muds, which are unstable because o f  t h e i r  great t h i ck -  

ness, h igh  water content, and r e l a t i v e l y  steep gradient. Under these condit ions, 

sandstone con t inu i t y  i s  disrupted by slumping, growth fau l t i ng ,  shale diapir ism, 

and sediment deformation w i t h i n  the  sand i t s e l f  (Coleman and Garrison, 1977). 
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Patterns of sedimentation and t h e i r  control  on the d i s t r i b u t i o n  o f  sandy 

sediments w i t h i n  modern del tas are well  known. 'Periods o f  ac t i ve  de l ta  growth 

are in ter rupted by i n t e r v a l s  o f  nondeposition or l oca l  mud deposi t ion as d i s t r i -  

butar i es become i nact i ve and m i  nor r ewor k i  ng o f  abandoned 1 obes begi ns . Subse- 

quent r e a c t i v a t i o n  o f  d i s t r i b u t a r i e s  or renewed outbui ld ing marks the beginning 

o f  another de l ta  const ruct ion cycle. 

o f  Mexico (Mississippi ,  Brazos-Colorado, Rio Grande) are lobate t o  elongate, a t -  

t e s t i n g  t o  f l u v i a l  dominance, abundant sediment supply, and r e l a t i v e l y  low wave 

energy. 

deep water near the  s h e l f  edge, these del tas were deposited i n  shallow water 

fo l lowing the Holocene transgression. 

fed by a large drainage area. 

const ruct ive del tas t h a t  prograded basinward throughout the T e r t i a r y  period. 

They are also subs tan t i a l l y  larger than the coastal p l a i n  r i v e r s  and del tas 

1 ocated between major depocenters. 

The largest  de l tas o f  the northwest Gul f  

Except f o r  the Mississippi  b i rd ' s - foo t  delta, which i s  bu i l d ing  i n t o  

Each o f  these f l u v i a l - d e l t a i c  systems i s  

These systems are analogous t o  the high- 

Miss iss ipp i  d e l t a  

The primary subdeltas o f  the Mississippi  River are some o f  the most inten- 

s i v e l y  studied d e l t a i c  deposits i n  the world. 

spaced borings (Fisk, 1955, 1961; Scruton, 1960; Frazier,  1967, 1974) provide 

abundant contro l  on the thickness, l a t e r a l  extent, and textures o f  major d e l t a i c  

sand bodies. Del ta- f ront  sands o f  the shoal-water Lafourche subdelta are re la -  

t i v e l y  t h i n  (25 t o  50 ft) but widespread (>15 m i )  along deposit ional s t r i k e  and 

contain about 1 t r i l l i o n  f t 3  o f  sand ( tab le  1). 

ward from prodel ta clayey s i l t s  w i th  sand laminae t o  wel l -sorted sands. 

are t y p i c a l l y  crossbedded, bioturbated, and inter laminated w i t h  t h i n  layers o f  

organic d e t r i t u s  as wel l  as s i l t  and c l a y  (Gould, 1970). 

Areal ly  extensive and c lose ly  
i .  

be l ta - f ron t  sands grade up- 

They 

I 
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I n  contrast, d istr ibutary-mouth bars o f  the b i rd 's- foot  d e l t a  a r e  r e l a t i v e -  

l y  t h i c k  (100 t o  200 ft) but narrow (1 mi) ribbons o f  sand t h a t  p a r a l l e l  t h e  hi 
d i s t r i b u t a r y  channel 

ward decrease i n  thickness and frequency o f  s i l t  and c l a y  interbeds. Bar sands 

D i  s t r  ibutary-mouth bars coarsen upward and e x h i b i t  an up- 

grade f r a n  inter laminated s i l t s  and sands w i t h  organic d e t r i t u s  t o  c lean cross- 

bedded sand near t h e  bar c r e s t  (Gould, 1970). As shown by Fraz ier  (1967, 1974), 

the o f f lapp ing  arrangement o f  d e l t a i c  fac ies causes physical d isrupt ions i n  sand 

con t inu i t y  even though del t a - f r o n t  and d i  s t r  ibutary-mouth bar sands appear a t  

the same s t ra t ig raph ic  horizon. 

Rio Grande de l ta  

Simi lar  d isrupt ions i n  sand con t inu i t y  occur i n  the ancestral Rio Grande 

de l ta  complex. 

i n  the elongate-lobate Rio Grande d e l t a  are th inner and less  extensive. The 

largest  de l ta - f ron t  sands are 5 t o  15 ft t h i c k  and 2,500 t o  4,500 ft wide, 

However, i n  contrast  t o  the  Miss iss ipp i  del ta,  sand bodies wi th- 

whereas other l e n t i c u l a r  sands are l e s s  than 5 f t  t h i c k  and 500 ft wide 

( f i g .  1). 

The underlying t ransgressive marine sand i s  t h i cke r  and l a t e r a l  

It extends a minimum of 3 m i  t inuous than any o f  the  d e l t a i c  sands. 

y more con- 

i n  a d i p  

d i r e c t i o n  ( f i g .  1) and 10 m i  along s t r i k e  and contains about 25 Bcf o f  sand 

( tab le  1). This widespread u n i t  may be p a r t l y  a marine deposi t  and p a r t l y  a 

reworking o f  the sandy f l u v i a l  fac ies o f  the  preceding progradational cycle. 

Regardless o f  i t s  o r ig in ,  t h i s  sand body exh ib i t s  the greatest  c o n t i n u i t y  o f  any 

ind iv idua l  sandstone w i t h i n  the Rio Grande system. 

Brazos de l ta  

Although natural  l y  occurr ing wave-dominated del tas a re  absent i n  the north- 

western Gulf o f  Mexico, t he  new Brazos de l ta  ( f i g .  2) embodies many o f  t he  prop- 

e r t i e s  t h a t  are a t t r i b u t e d  t o  in tens ive marine reworking. The d e l t a  e x h i b i t s  an 

upward-coarsening sequence of textures beginning w i th  she l f  and prodel ta  muds 
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Figure  2. 
t i o n  o f  sediment types i n  the  new Bratos del ta ,  
locations from Bernard and others (1970). 

Subaerial d i s t r i b u t i o n  o f  subenvironments and subsurface d ist r ibu-  
SP patterns and boring 
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and ending w i t h  shoreface and beach r idge  sands t h a t 1 4 r e  products of winnowing 

by waves. 

and o thers ,  1970) show upward coarsening i n  the lower progradational f a c i e s  fo l -  

On c lose r  examination the SP curves and grain-s ize  analyses  (Bernard 

lowed by upward-fining aggradational sediments deposited i n  natural  levee, 

marsh, and back-bar subenvironments. Ponds and swales between the beach r idges  

a l so  t r a p  mud t h a t  covers the d e l t a  p la in  during coas ta l  flooding. 

segments of the d e l t a  margin a t h i n ,  upward-coarsening sequence ove r l i e s  the 

fine-grained de l ta -p la in  depos i t s  where t r ansg res s ive  beach and washover sands 

were l a i d  down during shore l ine  r e t r e a t .  In plan view, the de l ta -p la in  environ- 

ments occur i n  para1 le1 and broadly arcuate-to-cuspate pa t te rns  t h a t  a r e  charac- 

t e r  i st ic o f  wave-domi nated del t a s  ( F i  sher and o thers  , 1969) . 

Along some 

Successive periods o f  rap id  sediment in f lux  followed by wave reworking and 

sediment so r t ing  give r i s e  t o  c lean ,  well-sorted sands t h a t  a r e  inter laminated 

and interbedded w i t h  muds t h a t  d i s rup t  the overal l  sand cont inui ty .  

t he  order ly  arrangement of beach r idges  and intervening swales, these zones of 

lower permeabili ty may be l a t e r a l l y  p e r s i s t e n t ,  e spec ia l ly  near the r i v e r  mouth. 

The influence o f  h i g h  s i l t  and c lay  concentrat ions introduced by r i v e r i n e  flood- 

i n g  progressively d iminish  away from the r ive r  mouth, where marine processes 

dominate over f l  u v i  a1 processes. 

Because of 

The new Brazos d e l t a  is  a small geological f ea tu re ,  and y e t  i t  con ta ins  

near ly  2 Bcf o f  sand. 

t i a l l y  la rger  and have sand volumes which a r e  several  o rders  o f  magnitude great-  

Natural ly  occurring wave-dominated d e l t a s  a r e  substan- 

about 350 Bcf of sand ( t a b l e  3). e r .  

Barr ier  and Strandplain Sandstones 

The Rhone d e l t a ,  f o r  example, contains  

Barr ie rs  and s t randpla ins  a r e  s imi la r  

lagoons separa te  b a r r i e r s  from the mainland 

n environmental setting except t h a t  

shore1 ine. These de l ta - f lank  or i n -  

t e rde l  t a i c  depos i t s  a r e  composed of sediments reworked from a c t i v e  and abandoned 
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d e l t a s  and t ranspor ted  away from the d e l t a  headlands and d i s t r i b u t a r y  mouths by 

w l i t t o r a l  cur ren ts .  Hence, ba r r i e r  and s t randpla in  sands a r e  composed of well- 

sor ted  sands t h a t  grade seaward i n t o  shoreface sands and muds and landward i n t o  

(1) washover sands and lagoonal muds ( b a r r i e r s )  o r  ( 2 )  de l ta -p la in  sands and 

muds ( s t randpla ins) .  ’ A f e a t u r e  common t o  ba r r i e r s ,  s t randpla ins ,  and wave- 

dominated d e l t a s  i s  the upward-coarsening shoreface p r o f i l e  of t e x t u r e s  and 

sedimentary s t ruc tu res .  

s t r andp la ins  a r e  morphologically d i f f e r e n t  landforms although one may grade i n t o  

another.  

Apart from this shared c h a r a c t e r i s t i c ,  b a r r i e r s  and 

Barr ier  and s t r andp la in  sediments w i t h  the g rea t e s t  po ten t ia l  for preserva- 

t i o n  a r e  deposited on the shoreface t h a t  extends from submarine depths  o f  30 t o  

45 f t  t o  the i n t e r t i d a l  tone. Landward increases  i n  physical energy across  the 

shoreface a r e  reflected i n  s lope,  morphology, and sediment tex tures .  

f l o o r  of the lower shoreface i s  composed of muds and sandy muds t h a t  a r e  fea- 

t u r e l e s s  and merge seaward w i t h  muddy s lopes of the inner cont inental  shelf. The 

upper shoreface,  however, is  a dynamic area where bars a r e  constructed and de- 

s t royed or dr iven  landward by wave processes i n  conjunction w i t h  t i d a l  and wind- 

driven cur ren ts .  

very f ine sand w i t h  loca l  she1 1 concentrations.  I f  preserved, the sedimentary 

s t r u c t u r e s  a r e  1 ow-angle, par a1 1 e l - inc l  ined 1 aminat ions,  i r r egu la r  scour and 

f i l l ,  and s t r a t i f i c a t i o n  types  formed by ve r t i ca l  accre t ion  and migration of 

breaker bars  and troughs. These include horizontal  pa ra l l e l  laminations of the 

bar c r e s t  as well a s  r i p p l e  cross-laminations and fo rese t s .  

coas t s  t h a t  experience seasonal changes, physical s t r u c t u r e s  a r e  canmonly 

preserved; however, on low-energy coas ts ,  such a s  the G u l f  Coast, abundant 

nearshore infauna e f f e c t i v e l y  rework the sediments and des t roy  much of the 

s t r a t i f i c a t i o n .  

The sea- 

Upper shoreface sediments a r e  t y p i c a l l y  composed of fine t o  

On high-energy 
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i Along many coastal areas, erosional ( t ransgressive) and accret ionary (re- 

gressive) ba r r i e rs  occupy o rde r l y  pos i t ions r e l a t i v e  t o  ac t i ve  and abandoned L i j  
d e l t a  lobes. More o f ten  than not, d e l t a  headlands grade l a t e r a l l y  i n t o  t rans- 

gressive barr iers ,  which i n  t u r n  grade fn to  regressive barr iers .  The t r a n s i t i o n  

from transgressive t o  regressive landforms can cover a shore l ine distance from a 

few thousand fee t  t o  tens o f  miles. 

be dist inguished on the basis o f  geologic h is tory ,  s u r f i c i a l  morphology, and 

l a t e r a l  fac ies re la t ionships.  

sedimentary proper t ies and in fe r red  reservoir  charac ter is t i cs  o f  preserved 

ba r r i e r  deposits. The spectrum o f  ba r r i e r  se t t ings  and associated sand fac ies i s  

represented by Padre Island, Galveston Island, and South Padre Is land i n  Texas 

and Grand I s l e  i n  Louisiana. 

Transgressive and regressive b a r r i e r s  can 

This d i s t i n c t i o n  i s  important f o r  p red ic t ing  t h e  

Padre Is land 

Bar r ie r  sands o f  Padre Is land s t re t ch  unbroken from t h e  Rio Grande t o  t h e  

centra l  Texas coast, a distance o f  over 100 m i .  The centra l  and northern par ts  

o f  t h e  ba r r i e r  are 3 t o  10 m i  wide. Sand thicknesses o f  35 t o  60 ft have been 

reported (Fisk, 1959; Dickinson and others, 1972) from areas where the b a r r i e r  

has been stab le fo r  the past few thousand years. 

Padre Is land grew v e r t i c a l l y  as sea leve l  rose, and grew seaward a f t e r  sea leve l  

s tab i l ized.  Regardless o f  t he  v e r t i c a l  aggradation, t o t a l  thickness o f  the  bar- 

r i e r  sands i s  s im i la r  t o  t h a t  o f  other Gul f  Coast ba r r i e rs  t h a t  accreted seaward 

much greater distances than d i d  Padre Island. 

According t o  F isk  (1959), 

A l a rge  volume o f  l a t e r a l l y  continuous sand composes Padre Is land and the 

other ba r r i e r  is lands between t h e  Holocene Brazos-Colorado and Rio Grande de l tas  

( tab le  1). 

ba r r i e rs  are probably unsurpassed i n  content o f  clean, wel l -sorted sand. Recur- 

rence o f  t h i s  ba r r i e r  system i n  the same geographic area throughout the T e r t i a r y  

Bar r ie r  chains o f  comparable length occur, elsewhere, but  the  Texas 

22 
L 



i s  a t t r i b u t e d  t o  the San Marcos k c h ,  an area of lesser subsidence between the  

Rio Grande and Houston Embayments. 

Galveston I s land  

Borings and SP l ogs  through Galveston Is land (Bernard and others, 1970) 

show d i s t i n c t l y  d i f f e r e n t  v e r t i c a l  sequences f o r  eastern (regressive) and west- 

e r n  (transgressive) segments. A c lass ica l  o f f l a p  sequence i s  preserved on east 

Galveston Is land where accret ion r idges are prominent. Along t h i s  segment, low- 

er shoreface and she l f  deposits o f  b ioturbated and in ter laminated she l l y  sand 

and mud grade l a t e r a l l y  and upward i n t o  hor izonta l  and low-angle cross- 

s t r a t i f i e d  ba r r i e r  and upper shoreface sand containing t h i n  she l l  beds. On 

west Galveston Island, the Pleistocene-Holocene unconformity i s  over la in  by 

Bratos River prodel ta  mud which, i n  turn, i s  over la in  by a t h i n  i n t e r v a l  o f  

bar r ie r - i s land and shoreface sands and muds. 

I Barr ie r  sands beneath Galveston Is land range i n  thickness from 15 t o  50 ft. 

Sand thickness progressively increases eastward from the Brazos del ta.  The len- 

t i c u l a r  sand body i s  1 t o  2.5 m i  wide and about 26 m i  long (Bernard and others, 

1970). O f  t he  t o t a l  volume of sand i n  the bar r ie r ,  Bernard and others (1970) 

estimated about 50 Bcf i s  c lean sand. 

The deposi t ional  model o f  Galveston Is land suggests t h a t  b a r r i e r  sands a re  

best developed progressively fa r ther  away from the de l ta  w i t h  which they are 

associated. This appears t o  be supported by f i e l d  evidence along the  Texas 

coast and e l  sewhere. 

Grand I s l e  

L ike  Galveston Island, Grand I s l e  I s  a delta-margin ba r r i e r  w i th  both 

t ransgressive and regressive features. Moreover, t he  lens o f  f ine-grained sand 

beneath Grand I s l e  th ickens eastward from 10 ft t o  near ly  60 ft (Fisk, 1955) i n  

a patter.n remarkably s im i la r  t o  t h a t  seen a t  Galveston Is land (Bernard and 

others, 1970). However, t he  greatest thicknesses o f  sand beneath Grand I s l e  are 
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ac tua l l y  a composite o f  ind iv idua l  sand lenses, each between 20 and 30 ft t h i c k  

(Conatser, 1971). 

whereas the aggregate volume o f  sand f o r  the v e r t i c a l l y  stacked lenses includes 

about 8 Bcf. 

i 
Ind iv idua l  sand lenses each conta in  about 2 Bcf o f  sand, 

I 

South Padre I s land  

Bar r ie r  is lands f r o n t i n g  t h e  Rio Grande de l ta  represent de l ta  des t ruc t ion  

and transgressive marine deposi t ion t h a t  followed d e l t a  abandonment.. On South 

Padre Island, ba r r i e r  sands 10 t o  15 ft t h i c k  o v e r l i e  de l ta -p la in  deposits 

( f i g .  1). 

extends a minimum o f  20 m i  along deposi t ional  s t r i ke .  

The subaerial par t  o f  the  ba r r i e r  i s  2,000 t o  15,000 ft wide and 

Typical sedimentary s t ructures o f  the  ba r r i e r  sands are  hor izonta l  and low- 

angle para l le l - laminat ions w i th  subordinate scour and f i l l  and ra re  foresets, 

and small-scale r i p p l e  cross-laminations. Sands are mainly f i n e  t o  very f i n e  

grained, and t e x t u r a l  changes w i t h i n  the  sands are p r i m a r i l y  re la ted  t o  t h e  

presence or absence o f  s h e l l  fragments. The t h i n  sand fac ies i n t e r f i n g e r s  w i t h  

and over l ies  lagoon muds and interbedded algal-bound sands and muds deposited on 

wind-t idal  f l a t s  and washover fans. 

I n g l  eside S t r  andpl a i n  

During the l a t e  Quaternary Period, abundant sand was supplied t o  the Texas i 
coast by coalescing del tas w i th  broad sand-rich meandering streams. Accumula- 

t i o n  o f  the  sand along a s tab le aggrading coas t l ine  formed a I O - m i  wide strand- 

p l a i n  system t h a t  extended more than 100 m i  along s t r i k e  and contained s l i g h t l y  

more than 1.5 t r i l l i o n  ft3 o f  sand ( tab le  1). The Ing les ide s t randpla in  occu- 

pied an area tha t  i s  cu r ren t l y  the s i t e  o f  several modern ba r r i e r  is lands t h a t  

are separated from the Pleistocene st randpla in  by lagoons. 

example o f  s t r a t i g r a p h i c a l l y  juxtaposed or stacked ba r r i e r  sequences produces a 

sand body greater than 60 ft t h i c k  beneath San Jos6 and Padre Islands. The 

Ing les ide s t randpla in  i s  o f  comparable thickness where i t  i s  bur ied and 

This present-day 

i 
i 

CI 
L 
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unmodified by surficial erosion. 

a composite of vertically aggraded and laterally accreted barrier-strandplain 

T h i s  suggests t h a t  the Ingleside i tself  may be 
l 

deposits (Winker, 1979). 

She1 f-S1 ope Sandstones 

Unlike those of the other sandstone facies, sedimentary models of shelf and 

slope sandstones were not developed from the northwestern Gul f  Coast region 

mainly because submarine canyons and fans are not presently active along the 

continental margin of the area. 

Shor t  cores from the Mississippi fan and deeper parts of the central G u l f  

of Mexico contain mostly mud; the few sands present exhibit turbidite character- 

is t ics  (Bouma, 1968). 

interpreted by Walker (1979) as being outer suprafan deposits. 

quences are usually widespread but  t h i n  bedded (1 t o  3 f t )  and fine upward. 

'sands themselves can be either well sorted by h i g h  velocity t u r b i d i t y  currents 

Classical turbidites described by Bouma (1962) have been 

The sand se- 

The 

or contain considerable mud owing t o  gravity-induced slumping and h i g h  concen- 

t r a t i o n  of suspended sediment. Thick sand sequences deposited by coalescing and 

aggrading submarine channels provide the best reservoirs i n  deep-water sedi- 

ments. 

sands have not been cored i n  Quaternary sediments of the G u l f  of Mexico. 

Although they are well documented i n  the rock record, these channel 

Tertiary Sediments 

Direct comparison of modern sand bodies h ancient examples i s  difficult  

owing t o  a paucity of detailed core descriptio 

properties for the Tertiary sandstones. 

principally on stratigraphic cross sectio 

i ncl ude fence d i  agr ams r grain-size analyses. Remarkably few include core 

descriptions or plots of sedimentary structures and pore properties. 

and other sediment01 ogical 

he publ i shed  studies rely 

h maps or both;  some also 
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i 
i The environmental groupings o f  T e r t i a r y  sandstones ( tab le  2) are ten ta t i ve .  

L f j  For example, Wilcox sands i n  t h e  Katy f i e l d  have been in te rpre ted  as de l ta  

f ronts  (Fisher and McGowen, 1967; Will iams and others, 1974) and as t u r b i d i t e s  

t 

(Berg and Findley, 1973; DePaul, 1980), whereas Wilcox sands i n  the  Northeast 

Thompsonville f i e l d  have been in te rpre ted  as ba r r i e rs  (Young, 1966) and as sub- 

marine fans (Berg and Tedford, 1977). Furthermore, Hackberry sands i n  the  Por t  

Acres-Port Arthur area have been in te rpre ted  as d e l t a i c  deposi ts (Hal bouty and 

Barber, 1961) and as submarine channels (Berg and Powers, 1980). The in te rpre ted  

deep-water o r i g i n  o f  the Hackberry sandstones appears v a l i d  on the  basis o f  re- 

gional deposi t ional  s e t t i n g  (Paine, 1971); however, recent work (Edwards, 1980, 

1981) confirms t h a t  sandstones o f  the Wilcox Group were deposited p r i m a r i l y  i n  

sha l l  ow water. 

Although the deposi t ional  environment o f  the  Te r t i a ry  sandstones i s  uncer- 

ta in ,  t a b l e  2 provides reasonable estimates o f  ancient sandstone dimensions and 

volumes. The volumetric estimates agree w i th  estimates f o r  modern analogs a t  the 

same h ie rarch ica l  level .  Ind iv idua l  sand bodies ( t h i r d  l e v e l )  conta in  from 

lo9  t o  1011 ft3 o f  sand, whereas sand systems ( f i r s t  l e v e l )  contain from 

1011 t o  1013 f t 3  o f  sand. 

F1 uv i  a1 Sands tones 

Te r t i a ry  sandstones in te rpre ted  as f l u v i a l  deposits c h a r a c t e r i s t i c a l l y  have 

dendr i t i c  and elongate isopach patterns or iented normal t o  deposi t ional  s t r i ke .  

Many o f  these sand bodies e x h i b i t  upward-fining textures and upward increases i n  

shaliness as shown by SP l o g  patterns. 

decrease toward the channel ax i s  (Nanz, 1954), probably r e f l e c t i n g  the  presence 

o f  f ine-grained abandoned channel f ill. 

I n  p lan view, g ra in  s i z e  a lso tends t o  

Ind iv idua l  f l u v i a l  channels are a few thousand f e e t  t o  a few mi les wide, 3 

Greater thicknesses may develop t o  8 m i  long, and 35 t o 6 0  ft t h i c k  ( tab le  2). 
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near d i s t r i b u t a r y  mouths where unstable prodel t a  muds promote sandstone subsi- 

u d e n c e  and v e r t i c a l  aggradation (Fisk, 1961). Apparently, sand volumes of 20 t o  

d 
40 Bcf are t y p i c a l  o f  meandering a l l u v i a l  channels, whereas smaller coastal 

p l a i n  streams or minor, l a t e r a l l y  r e s t r i c t e d  d i s t r i b u t a r y  channels are an order 

of magnitude smaller. The few dimensional data f o r  f l u v i a l  systems suggest t h a t  

differences i n  volume (1 t o  4 t r i l l i o n  f t 3 )  r e s u l t  mainly from di f ferences i n  

meanderbelt width, which may vary from 7 t o  16 miles. 

De l ta i c  Sandstones 

Despite t h e i r  importance i n  the  Gulf  Coast Basin, on ly  a few ind i v idua l  

T e r t i a r y  sandstones o f  d e l t a i c  o r i g i n  have been described i n  the  l i t e r a t u r e ,  

none i n  de ta i l .  

canplete d e l t a  systems ( tab le  2) ra ther  than ind iv idua l  sandstones. Prograda- 

t i o n a l  sequences recorded on e l e c t r i c  logs  contain 10 t o  40 percent sandstone. 

The sandstones are arranged i n  elongate t o  lobate patterns t h a t  r e f l e c t  sediment 

dispersal  by f l u v i a l  and marine processes. 

e r a l l y  i n t o  shales and t h i n  sandstones deposited i n  de l ta -p la in  and i n t e r d i s -  

t r i b u t a r y  bay environments. They also grade downdip i n t o  prodel ta shales. 

Most published examples o f  d e l t a i c  sandstones are p a r t i a l  or 

The sandstones grade updip and l a t -  

Upward increases i n  sand-bed thickness and upward decreases i n  shaliness 

are t y p i c a l  o f  these regressive deposits. The sandstones are laminated and 

crossbedded, and carbonaceous mater ia l  i s  common. 

Ind iv idua l  sandstones deposited i n  de l ta - f ron t  and de l ta - f r inge  environ- 

ments are t y p i c a l l y  3 t o  7 m i  wide, and 14 t o  20 m i  long ( tab le  2) w i t h  corre- 

sponding sand volumes o f  100 t o  200 Bcf. I n  contrast ,  d e l t a i c  systems are 100 

t o  500 ft th ick ,  10 t o  30 m i  wide, and 20 t o  130 m i  long. 

these d e l t a i c  systems range from 2 t o  20 t r i l l i o n  f t 3 ,  a range s im i la r  t o  t h a t  

of the bar r ie r -s t randp la in  systems. The s i m i l a r i t y  i n  range may be explained by 

Sand volumes f o r  
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the deposit ional s i m i l a r i t i e s  between ba r r i e r - s t r  andplain systems and wave- i 
! 

dominated del tas . 
Barr ier  and Strandplain Sandstones 

T e r t i a r y  b a r r i e r  and strandplain sandstones are i d e n t i f i e d  mainly by elon- 

gate and l e n t i c u l a r  isopach patterns t h a t  p a r a l l e l  deposit ional s t r ike.  Other 

corroborating evidence includes we1 l -sor ted sands w i t h  uniform or upward- 

coarsening textures and concomitant upward or cent ra l  increases i n  permeabil ity. 

Some sand bodies in terpreted as ba r r i e rs  grade landward i n t o  f ine-grained sand- 

stones and carbonaceous mudstones and shales t h a t  probably represent marsh de- 

posi ts.  These same sand bodies grade seaward i n t o  f ine-grained s h e l f  deposits. 

The dimensions o f  i nd i v idua l  ba r r i e r  and strandplain sands cover a broad 

range, even though the volumes o f  both sand types are 10 Bcf or  l ess  ( tab le  2). 

Barr ier  sands are 15 t o  75 ft th i ck ,  a few thousand f e e t  t o  a few mi les wide, 

and 2 t o  8 m i  long, although the l a t t e r  dimension i s  a r b i t r a r y  because o f  map 

boundaries. Barr ier  systems are 450 t o  1,000 ft th i ck ,  about 10 m i  wide, 40 t o  

60 m i  long, and contain from 5 t o  25 t r i l l i o n  ft3 of sand. Variable th i ck -  

nesses o f  the ba r r i e r  system are l a r g e l y  responsible for  t he  di f ferences i n  

sandstone volume. 

She1 f-S1 ope Sandstones 

Outer s h e l f  and upper slope sediments formed by t u r b i d i t y  currents are 

widely recognized i n  deep-water deposits such as the Hackberry sandstones. 

These submarine channel and fan deposits t y p i c a l l y  have narrow, dip-trendi  ng, 

elongate t o  d i g i t a t e  patterns i n  areas of maximum net sandstone. Considering 

the e n t i r e  deposit ional i n te rva l ,  sandstone thickness diminishes upward and 

shale bed frequency and thickness increase upward. The sandstones also grade 

l a t e r a l l y  i n t o  shale w i th  t h i n  interbedded sandstones and s i l t s t o n e s  t h a t  
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comprise the fan  deposits. 

sandstones show t e x t u r a l  gradations. 

average g ra in  s ize i s  f ine-grained sand. In ternal  s t r a t i f i c a t i o n  var ies great- 

ly, and t h e  sandstones are t y p i c a l l y  laminated, r ipp led,  or contorted and occa- 

sional l y  bioturbated. 

deposits; hence, t u r b i d i t e  i n te rp re ta t i ons  should a1 so be supported by faunal 

evidence. 

Both massive sands w i t h  abrupt bases and thin-bedded 

Grain sizes range from coarse t o  f ine;  t he  

2 

These sedimentary structures are not unique t o  deep-water 

Avai lable data suggest t h a t  t he  outer-shel f  and upper-sl ope sandstones are 

remarkably uniform i n  s i ze  considering the l i m i t e d  number o f  examples ( tab le  2). 

The ind i v idua l  sandstones are 3 t o  5 m i  wide, 4 t o  6 m i  long, and 50 t o  100 ft 

th i ck ;  corresponding sand volumes are 30 t o  80 b i l l i o n  ft3. The dimension 

t h a t  dist inguishes she l f / s l  ope systems from ind iv idua l  sandstone u n i t s  i s  t h i ck -  1 

ness. Genet ica l ly  r e l a t e d  t u r b i d i t e  systems are 300 t o  450 ft t h i c k  and contain 

about 100 t o  150 b i l l  ion f t 3  o f  sand-size sediment. These volumes are 2 t o  3 

orders o f  magnitude l e s s  than sand volumes estimated f o r  other deposi t ional  

systems ( tab le  2). 

Sediments o f  Other Ages 

A b r i e f  examination o f  the l i t e r a t u r e  ind icates t h a t  some sandstones from 

t h e  Appalachian, Rocky Mountain, and mid-continent regions o f  t h e  United States 

a r e  not u n l i k e  T e r t i a r y  Gul f  Coast sandstones. I n  fact ,  sandstones o f  Paleozoic 

and Mesozoic age have dimensions ( t a b l e  3) and sedimentary propert ies t h a t  are 

s im i la r  t o  Cenozoic sandstones o f  comparable o r i g i n  ( tab les 1 and 2). 

umes o f  i nd i v idua l  sandstones and sandstone systems are w i t h i n  the  same ranges 

as T e r t i a r y  examples, a1 be i  

bodies; however, t he  number o f  examples i s  too small t o  be concl usive. 

Sand vol- 

low end, suggesting somewhat smaller sand 
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FAULT COMPARTMENT AREAS 

The volumes o f  Gul f  Coast reservo i rs  are, as mentioned above, determined by 

depositional sand-body geometries, the areas o f  f a u l t  compartments, and by i n -  

ternal  permeabi l i ty  bar r ie rs .  The second o f  these factors,  the s ize  and geom- 

e t r y  o f  f a u l t  compartments, can be fu r ther  examined as a func t ion  o f  pos i t i on  

j 
i L i j  

w i t h i n  the Gul f  Coast geopressure trends. 

To examine data for  the  second h ie rarch ica l  l eve l  ( f a u l t  area), published 

and unpublished regional s t ruc tu re  maps a t  depths o f  i n t e r e s t  f o r  geopressured 

sediments were assembled. For t h e  Wilcox fairways o f  South and Central Texas, 

the s t ruc tu re  maps presented by Bebout and others (1979) f o r  top  o f  Wilcox ( f o r  

Zapata, Duval, and L ive  Oak fairways) and top  o f  lower Wilcox ( f o r  De W i t t  and 

Colorado fairways) were used w i t h  s l i g h t  modif icat ion.  A structure,map f o r  the  

Bee de l ta  system ( top o f  Wilcox) was taken from Weise and others (1981). For 

the  F r i o  fairways o f  the centra l  Gu l f  Coast (Nueces, Matagorda, and Brazor ia  

fairways), commercial s t ruc tu re  maps (Geomaps) o f  the  top  o f  t h e  F r i o  were used 

i n  conjunct ion w i t h  published s t ruc tu re  mapping o f  Bebout and others (1978) i n  

t h e  Brazoria fairway. 

On each o f  these regional s t ruc tu re  maps, f a u l t  compartment areas were 

measured by planimeter for a l l  the f a u l t  compartments shown. 

90 compartments i n  the Wilcox fairways and 116 Compartments 

ways . 
The Wilcox data are presented i n  tab le  4 and f i g u r e  3a. 

compartment areas i s  represented, ranging from 0.4 m i 2  t o  52 

This amounted t o  

r -  n the F r i o  fa 

A wide range 

mi*. Seventy 

o f  

percent of a l l  the compartments l i e  between 1.5 mi2 and 29 mi2. The d i s t r i -  

bu t ion  of areas i s  h igh l y  skewed toward small areas, but the  d i s t r i b u t i o n  o f  l o g  

area i s  near ly  uniform. The median area i s  9.3 mi2 and the mean i s  15 mi2. 
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Table 4. Areas o f  f a u l t  compartments i n  Wilcox geopressured fairways. 

Zapata fwy. Duval fwy. .Live Oak fwy. Bee d e l t a  DeWitt fwy. Colorado fwy. 

Small - 
Number 
Percent o f  a l l  
Mean area 

Medi um 
N u m 6 e r  

Percent o f  a l l  
Mean area 

Percent o f  a l l  
Mean area W 

CL 

Mean area 
Median area 
84% greater than 
84% l e s s  than 

3 
21 
2.0 

6 
43 

9.7 

5 
36 
43.8 

14 
20.2 
13.0 
2.5 

44.0 

2 
11 
1.7 

7 
39 

8.6 

9 
50 
28.3 

18 
17.6 
18.1 
3.7 

32.3 

8 
42 
1.5 

8 
42 
10.4 

3 
16 
26.4 

19 
24.1 

6.1 
1 .2 

17.5 

2 
18 
3.1 

4 
36 
13.1 

5 
45 
38.8 

11 
23.0 
16.7 
3 03 

29.2 

13 
59 
1.5 

7 
32 

7.0 

2 
9 

29.0 

22 
5.8 
2.6 
0.8 
7.8 

1 
17 
0.8 

5 
83 
16.5 

0 
0 -- 

6 
13.9 
16.3 
0.8 

18.5 

c 

Overall 

29 
32 

1.7 

37 
41 
10.4 

24 
27 
36.9 

90 
14.7 

9.3 
1.5 

28.6 

A l l  areas i n  mi2. Small blocks are l ess  than 4 m i 2  (10 k d ) ;  medium blocks are 4 t o  20 m i 2 ,  and 
l a r g e  blocks are more than 20 mi2 (50 km2). 
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40 !50 

Figure 3. 
but ion o f  ( a )  Wilcox compartments, Lower and Middle Texas Gul f  Coast, and 
(b )  F r i o  compartments, Middle Texas Gul f  Coast (between Corpus C h r i s t i  and 
Brazor ia  fa irways) .  Area i n  m i * .  

Histograms of f a u l t  compartment areas, showing t h e  lognormal d i s t r i -  
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The d i s t r i b u t i o n  o f  f a u l t  compartment areas along the growth f a u l t  t rend 

shows no d i s t i n c t  var ia t ions*  

greater south o f  the Bee d e l t a  than i n  the De W i t t  and Colorado fairways, but 

t h i s  may be due t o  the smaller scale and the d i f f e r e n t  datum o f  t he  s t ruc tu ra l  

maps i n  South Texas. The d i s t r i b u t i o n  o f  areas i n  each Wilcox fairway i s  skewed 

The percentage o f  large compartments seems t o  be 

toward small areas, t he  mean being greater than the  median i n  a l l  except t h e  

Duval and Colorado fairways. The range o f  areas i s  general ly s im i la r ;  the higher 

l i m i t  i s  g rea t l y  dependent on d e f i n i t i o n  o f  the closure o f  large f a u l t  blocks. 

Again, t he re  i s  a The F r i o  data are presented i n  tab le  5 and f i g u r e  3b. 

wide range o f  values from 0.3 mi2 t o  52 mi2. 

skewed toward small areas, and the mean area o f  12 mi2 i s  s i g n i f i c a n t l y  

greater than t h e  median area of 5.8 mi2. The histogram o f  areas p lo t ted  as l o g  

area ( f i g .  3) shows t h a t  the d i s t r i b u t i o n  i s  close t o  lognormal. 

The overa l l  d i s t r i b u t i o n  i s  

The F r i o  data, l i k e  the  Wilcox data, show no d i s t i n c t  var ia t ions w i th  re-  

Percent- spect t o  p o s i t i o n  on the growth f a u l t  trend w i t h i n  the area studied. 

ages o f  large f a u l t  compartments f luctuate widely, owing l a r g e l y  t o  the problems 

o f  de f i n ing  c losure o f  l a rge  compartments. The area d i s t r i b u t i o n  i n  each par t  

o f  the t rend i s  skewed toward small areas and i s  probably lognormal. 

The ove ra l l  values for Wilcox and F r i o  f a u l t  compartment areas are s im i la r ,  

w i th  a median of 9.3 m i 2  for t he  Wilcox, as compared t o  5.7 mi2 for t he  

Frio. 

smaller scale o f  most Wilcox s t ruc tu re  maps used. The i r r e g u l a r  d i s t r i b u t i o n  o f  

Wilcox areas d i f f e rs  from the lognormal F r i o  d i s t r i b u t i o n  only by the lesser 

occurrence o f  areas o f  about 4 mi2. 

The somewhat smaller s i ze  o f  F r i o  compartments i s  i n  pa r t  due t o  the 

There a re  1imitat iodS t o  est imat ing the area d i s t r i b u t i o n  by the means used 

F i r s t ,  t he  compartment areas measured are the r e s u l t  o f  t he  const ruct ion here. 

o f  the s t ruc tu re  maps. This i s  an uncertain process whose accuracy i s  dependent 
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Small 
Number 
Percent o f  a l l  
Mean area 

Med i um 
Number 
Percent o f  a l l  
Mean area 

Percent o f  a l l  
Flean area 

w 
P 

Mean area 
Median area 
84%. greater than 
84% less  than 

Table 5. 

K1 eberg 

3 
30 

3.0 

b 
60 
11.1 

1 
10 
40.0 

10 
11.5 
10.6 
2.9 

15.6 

A l l  areas i n  mi2. Small blocks 
la rge  blocks are more than 20 m 

Areas o f  f a u l t  compartments i n  F r i o  geopressured fairways. 

Ref ugio Cal houn 
Nueces San P a t r i c i o  Aransas Jackson Matagorda Bra to r ia  

5 5 8 0 3 8 
33 62 50 0 10 27 

2.2 1.2 2.0 -0 2.6 2.2 

7 3 8 7 19 17 
47 38 50 86 66 56 

9.3 4.9 5.9 11.2 9.7 9.0 

3 0 0 1 7 5 
20 0 0 13 24 17 
41.5 -- -- 64.9 34.7 42.1 

15 8 16 8 29 30 
13.4 2.6 3.9 18.0 15.6 12.7 
6.5 1.5 3.9 12.8 10.9 6.3 
1.4 0.7 1.1 4.5 4.1 2.3 

21.9 4.5 6.7 18.9 27.7 20.7 

r e  l ess  than 4 m i 2  (10 km2); medium blocks are  4 t o  20 mi2,  and 
(50 k 9 ) .  

Over a1 1 
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28 
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58 

9.3 

17 
15 
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11.9 
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1.5 
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on adequate wel l  control .  Further, the  degree t o  which f a u l t  blocks are d i f f e r -  

en t ia ted  ( tha t  i s ,  which f a u l t s  are considered s i g n i f i c a n t )  depends on the  scale 

of mapping; smaller k a l e  maps y i e l d  larger  f a u l t  blocks. F ina l ly ,  the  l a rges t  

f a u l t  blocks are not closed but are par t  o f  la rge  indeterminate areas o f  un- 

fau l ted  te r ra in .  I n  general, however, the mean and median values derived here 

are approximations o f  t he  most probable s ize  o f  f a u l t  compartment t o  be found i n  

the Texas Gul f  Coast geopressure trends. Note the order-of-magnitude s i m i l a r i t y  

t o  the  areas covered by t y p i c a l  sand bodies. 

COMPARISON OF PRODUCTION AND GEOLOGIC ESTIMATES OF AQUIFER VOLUME 

Nine geopressured gas f i e l d s  were studied i n  d e t a i l  t o  obta in  volumetr ic 

estimates o f  reservo i rs  w i t h i n  a fault-bounded sandstone ( f o u r t h  h ie rarch ica l  

l e v e l )  and t o  gain addi t ional  i ns igh t  i n t o  reservoir  con t i nu i t y  i n  the geopres- 

sured zone. E ight  o f  these f i e l d s  were selected and analyzed by C. K. GeoEnergy 

(Boardman, 1980) t o  give estimates o f  aqui fer  volume and area from gas produc- 

t i o n  and pressure data ( f i g .  4). Simi lar  ca lcu lat ions were made f o r  a n i n t h  

f i e l d  (Mobil David "L" block, Nueces County). The f i e l d s  represent th ree  water- 

d r i v e  and four pressure-depletion reservo i rs  i n  the Wilcax Group and two 

deplet ion-dr ive reservo i rs  i n  t h e  F r i o  Formation. 

The d i s t r i b u t i o n  o f  these n ine  reservo i rs  ( f i g .  5) i s  l ess  than ideal  f o r  a 

regional  study o f  reservo i r  parameters. They were chosen l a r g e l y  because they: 

(1) contained a small number o f  producing we l ls  and (2) are c lose t o  geothermal 

prospect areas. F ive  o f  t h e  nine are from a s ing le  Wilcox fairway, t h e  De W i t t  

fairway. Given t h i s  e r r a t i c  d i s t r i b u t i o n ,  the studies presented here should be 

considered as case h is to r ies .  They serve l a r g e l y  t o  provide i ns igh t  i n t o  possi- 

b l e  factors  a f f e c t i n g  reservo i r  con t i nu i t y  and as a check on the accuracy o f  

geologic 'estimates o f  reservoir volume. 
# 
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WATER-DRIVE RESERVOIRS 
AQUIFER VOLUME FROM GAS PRODUCTION 

vg,  STP produced 7 v:: iroduced 

I 
p, T, AP, Cw, I Cr 

I I  
assume I- assume 

P T  
- vg: produced g - 25cf 

t$ = 20% --- 
c w  + Cr) AP w bbl vaq - ( 

PRESSURE-DEPLETION RESERVOIRS 
AQUIFER VOLUME FROM GAS PRODUCTION 

Find'from 
pressure vs. production graph 

Figure 4. 
data for (a)  water-dri ve reservoirs, and (b)  pressure-depletion reservoirs. 

Calculation procedures for estimating aquifer volume from production 
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Figure 5. 
studied for this report, Texas Gulf  Coast. 

Location of geopressured trends, geothermal test wells, and areas 

Ls 
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i i 
1 
i Calcu lat ion o f  Aquifer Volume from Production Data 

6.; 
The procedures f o r  ca l cu la t i on  o f  aqui fer  volume from production data have 

been b r i e f l y  summarized by Boardman (1980). Informat ion for  t ha t  study was ob- 

ta ined from semiannual 24-hour shut- in wellhead pressures reported t o  the Texas 

Rai l road Commission; on ly  annual readings were used. Af ter  t h e  data were ob- 

tained, i t  was decided whether the  reservoir  i s  d r iven  by water or  pressure de- 

plet ion.  This was done l a r g e l y  on the  basis o f  consu l ta t ion  w i th  t h e  companies 

concerned. 

For water-drive reservo i rs  ( t h a t  i s ,  la rge  reservo i rs  with a gas/water 

contact), the  technique developed by Stuart  (1970) was used t o  ca lcu la te  water 

volume (Vaq) ( f i g .  4a). 

verted t o  gas i n  place. Then, assuming a gas sa tura t ion  o f  25 f t 3 / b b l  o f  water 

a t  a standard temperature and pressure and a poros i ty  o f  about 20 percent 

(needed t o  determi ne the rock cmpr  essi  b i  1 i ty , Cr ) , the aqui fer  vol ume i s  

estimated by a simple equation. 

I n  t h i s  method the produced gas volume i s  f i r s t  con- 

For pressure-depletion reservo i rs  ( t h a t  i s ,  smal l e r  reservo i rs  w i t h  no wa- 

t e r  cantact which are produced by gas pressure only, f i g u r e  4b), the  dec l ine i n  

bottom-hole pressure as corrected f o r  compress ib i l i ty  (BHPlz) w i t h  gas produc- 

t i o n  should be l inear .  An ext rapolat ion t o  zero pressure gives an estimate of 

t o t a l  gas volume i n  the reservoir .  

Then, assuming a water sa tura t ion  o f  25 percent, the  aqui fer  volume i s  obtained 

( C r a f t  and Hawkins, 1959, p. 40-43). 

This volume i s  corrected t o  gas i n  place. 

The estimates obtained by these methods ( tab le  6) are sens i t i ve  t o  the  as- 

sumptions and values used. 

magnitude d i f ference i n  aqui fer  volume can resul t .  

t i ons  are u n l i k e l y  i n  the cases presented here. Other var ia t ions  t h a t  could 

a f f e c t  production estimates are inaccuracies i n  pressure and temperature o f  t h e  

If a reservoir  i s  misc lass i f ied,  an order-of- 

However, such misc lass i f i ca-  
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Table 6. Volume estlmates fo r  geopressured gas raservolrs, Texas Gulf Coast. 

Production ests. Compar I son Name, catnty P r i m r y  gao logic estlmbtes 
Area (mi2) Vr,(Bcf 1 Drlve E f f ,  2 Rwlsion: 

Pettus SED Bee CO. 2.044.26 
F l m t  MssslW, 9,000' Vwq=60.1XMNbbl 

Braslau S, L l ~ e  Oak Ca. 2.82-3.92 5.15-6.99 139-212 165 61214 Pd 71-27 t h i n  shale breaks 
F l r s t  Tom Lyne, 9,000' 

9.84-32.14 351-794 588 w 168-74 none S. Cask, De H l t t  Ca. 7.3514.71 
*Br sand, 10,850' 

s. cook, De H l t t  ca. a 75-26.01 
'Ct sand, 10,#)0' 

W m Yorktown, De H i i t  Co. 3. 71 
Mlgura, 11,000' 

Yorktown S, De W l t t  CO. 1.96-2.87 
Migura, 10,800' 

Christmas, De H l t t  Ca 2.35 
Mlgura, 10,800' 

Peach Point S, Brazoria Cb. 0.61 
F r i o  'A', 11,250' 

207 w 17.9-58.0 32-10 t h l n  shale break 638-2066 

284-302 14% 

14% 

576 W 

82214 Pd 

4 e l  Pd 

3E3  Pd 

203-191 connection to  S 
Vw365606 MPtbbl 

9.8-1 0.5 

42-50 0 151-180 56-47 bredts? 

4.0-8.0 '50-19 poor control 100-250 

472 15% 175 connection to  S 19 

Pd none MobII-DsVId "Lw, NWC- COO 1.22 4.25-4.75 242 185-290 182-203 
Anderson, 1 I, 100' 

Production estimates f o r  uater-drlVe reservblrs f ran C. Boardman (1980), uslng the method of Stuart (19701. 
Area i s  area of fault  canpartment or equivalent. 
Drives: pd i s  pressure dspletkn, w Is water. 
Ef f .  Is ratlo of productlon e s t l m t e  t o  geologlc estimate o f  Vw, and Is a measure of t ha t  pa r t  

Vra i s  sand volume; Vw i s  aquifer volume. 

of the sand connected with the we1 Is. 



i reservoir  (af fect ing the conversion t o  gas i n  place), scat ter  o f  po ints  on a i 

(ei 1 B H P I t  versus production graph, changes i n  the gas/water r a t i o  or water satura- 

t i on ,  and poros i ty  var ia t ion.  

The production estimates reported by Boardman (1980) fo r  pressure-depletion 

reservo i rs  ( t h a t  i s ,  f o r  s i x  o f  the nine reservo i rs  studied) were recalcu lated 

for  several reasons: 

(1) t o  incorporate a l l  o f  the semiannual shut- in data since 1972, thus 

providing a more accurate p i c t u r e  o f  pressure decl ine; 

t o  study the  behavior o f  i nd i v idua l  wel ls  i n  the f i e lds ;  

t o  use po ros i t y  values more appropriate t o  the  reservo i rs  considered; 

(2) 

(3)  

L 

and 

t o  provide e r ro r  l i m i t s  on the projected t o t a l  gas i n  the reservo i r ,  

as derived from a least-squares l i nea r  regression on the  data points. 

(4) 

A l l  o f  t he  r e s u l t s  presented i n  t h i s  repo r t  for  pressure-depletion reservo i rs  

( t ab le  6 )  are recalculated values. 

South Cook F i e l d  

The South Cook f i e l d  contains the type well  o f  the Cuero study area of 

Bebout and others (1979). 

i n t e r v a l s  o f  the lower Wilcox Group. 

275OF. 

0.65 p s i / f t .  

A t l a n t i c  #1 Schorre wel l  (Bebout and others, 1979). 

The producing sands are the B and C c o r r e l a t i o n  

Temperatures i n  the reservo i rs  are about 

Shut-in pressure was o r i g i n a l l y  7,100 ps i ,  g i v i n g  a pressure gradient o f  

Poros i ty  i n  the reservoir  i s  about 20 percent, as measured i n  t h e  

Strat igraphy o f  Produci ng Sands 

The B and C (10,850 f t  and 10,900 ft) sands occur a t  the top o f  the lower 

Wilcox Group and form the  upper u n i t s  o f  t h e  Rockdale d e l t a  system i n  the  area. 

The geometry o f  the sand facies i s  inf luenced by syndepositional f au l t i ng .  I n  
L, 
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I 

the f a u l t  block o f  i n te res t ,  the sands are dip-oriented and were deposited by 

d i s t r i b u t a r y  channels extending southeast from the de l ta  plain. These channels 

I may or may not have been interconnected. 

Four dip-oriented sand t h i c k s  i n  the B sand can be i d e n t i f i e d  ( f i g .  6). 

The westernmost, the producing sand i n  the South Cook f i e l d ,  runs near ly north- 

south across the  southwestern pa r t  o f  the f a u l t  block. I n te rp re ta t i on  o f  whole 

core from the A t l a n t i c  #1 Schorre wel l  suggests t h a t  the sand formed i n  a 

d i  s t r  ibutary-channel s e t t i  ng (Winker and others, 1981). 

There are two dip-or iented depocenters i n  the C sand ( f i g .  7); on ly  the 

western one i s  under South Cook f i e l d .  I n te rp re ta t i on  o f  core from the A t l a n t i c  

#1 Schorre wel l  suggests t h a t  the lower par t  o f  the sand formed i n  a 

distr ibutary-channel s e t t i n g  and the upper par t  i n  a channel- and d i s t r i b u t a r y -  

mouth-bar s e t t i n g  (Winker and others, 1981). The two pa r t s  are separated by a 

t h i n  (2 t o  3 ft) shale break. The E-log characters o f  t h e  B and C i n t e r v a l s  a t  

the A t l a n t i c  #1 Schorre wel l  are shown i n  f i g u r e  9. 

Structure o f  t h e  South Cook Area 

The South Cook area l i e s  w i t h i n  the trend o f  lower Wilcox growth fau l t i ng .  

The f i e l d  i s  located on a s l i g h t  r o l l o v e r  a n t i c l i n e  w i t h i n  an elongate f a u l t  

compartment up t o  25 mi2 i n  area. 

west, south, and southeast i s o l a t e  the compartment. The northeastern boundary 

of the f a u l t  compartment i 

compartment shown on f i gu res  6 and 7 may be separated by a smaller f a u l t  (not  

shown) from the South Cook compartment proper. More informat ion on the s t ruc tu re  

o f  the area i s ' g i v e n  i n  Bebout and others (1979) and Winker and others (1981). 

Reservoir Volume - B Sand 

Large, well-defined f a u l t s  t o  the north- 

l ess  wel l  determined. The eastern extremity of the 

The sand volumes fo r  each channel ( f i g .  6 )  a r e  (from west t o  east)  5.05 

ft3 (Bcf), 4.8 Bcf, 12.5 Bcf, and 15.8 Bcf. Estimated aqui fer  volume W 
4 1  
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Figure 6. 
From Bebout and others (1979). 

Net-sand map, "B" sand, South Cook field. Channel axes shown. 
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Figure  7. 
From Bebout and others (1979). Channel axes shown. 

Net-sand map, "C" sand, South Cook f i e l d .  Channel axes shown. 

U 
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( a t  20 percent porosi ty)  f o r  these channels i s  180, 170, 440, and 560 m i l l i o n  

barrels, respectively. The q v i f e r  volume estimate from gas production from t h  & 
B sand i n  t h i s  water-drive reservoir  i s  588 m i l l i o n  barrels. This value i s  

w i t h i n  the range o f  values o f  geologic estimates. 

The production estimate, i f  correct ,  requires t h a t  several o f  the B sand 

The western channel, i n  which South Cook f i e l d  i s  t h i c k s  are being produced. 

located, must be connected w i t h  a t  l e a s t  the next channel t o  the east and proba- 

b l y  t h e  next, as well. I n  the  l a t t e r  case the r a t i o  for production estimate to- 

geologic estimate would be 75 percent. 

are not connected t o  the  main sand body. 

Possibly, t h i n  sands i n  the B i n t e r v a l  

Reservoir Volume - C Sand 

Sand volumes measured fo r  each channel ( f i g .  7 )  show t h a t  the western 

(South Cook) channel contains about 18 Bcf o f  sand, g i v ing  an aqui fer  volume o f  

638 m i l l i o n  barrels. The eastern channel contains 40 Bcf o f  sand, g i v ing  an 

aquifer volume o f  1,430 m i l l i o n  barrels.  The production estimate o f  aqui fer  

volume for  t h i s  water-drive reservo i r  i s  207 m i l l i o n  barrels. 

i s  l e s s  than one-third o f  the geologic estimate f o r  t h i s  sand, even i f  only the 

western channel i s  considered. 

Production volume 

The discrepancy can be explained by the t h i n  shale break noted above i n  the 

A t l a n t i c  81 Schorre well. 

the western channel. The three producing wel ls  from t h i s  i n t e r v a l  tap only  the 

distr ibutary-channel sand below the shale break. This lower sand pinches out 

w i t h i n  a short distance northeast o f  the f i e l d ;  i t s  volume i s  about one-third of 

t he  western channel sand volume taken from f i g u r e  7. 

therefore, indicates that  the upper and lower parts o f  the C sand are not 

connected. 

This break can be corre la ted throughout the area of 

The production estimate, 
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Summary 

hi The B and C sands a t  South Cook represent distr ibutary-channel  and r e l a t e d  

sands t h a t  prograded across a growth-faulted zone. The B sand has good l a t e r a l  

c o n t i n u i t y  between channels, whi le the C sand shows poor l a t e r a l  cont inu i ty ,  and 

v e r t i c a l  con t i nu i t y  l i m i t e d  by a t h i n  shale. 

Yor ktown and South Yor ktown F i  e l  ds 

The Yorktown and South Yorktown f i e l d s  ( f i g .  5) are located southeast o f  

Yorktown i n  De W i t t  County. Production i n  the f i e l d s  (and from two other wel ls  

i n  the  immediate v i c i n i t y )  s from the  "11,000 ft" or IIMiguratl sand o f  t h e  lower 

Wilcox Group. Temperatures i n  the Migura sand range from 245' t o  260OF. Orig- 

i n a l  shut- in pressures were 8,316 ps i  i n  t h e  South Yorktown f i e l d  and 9,272 p s i  

for the Yorktown f i e l d ,  g i v i n g  pressure gradients o f  0.75 and 0.83 p s i / f t ,  

respect i vel y. 

Strat igraphy o f  the Migura Sand 

The Migura sand l i e s  about 700 ft below the top o f  the lower Wilcox Rock- 

dale d e l t a  system o f  Fisher and McGowen (1967). 

150 ft t o  400 ft t h i c k  w i t h  sandstone percentage varying from over 90 percent t o  

l ess  than 10 percent. 

or iented sand w i th  a maximum thickness o f  over 300 ft. 

t h i c k  shale sequence t o  t southwest w i t h i n  1.3 m i  o f  the channel ax i s  ( f i g .  9) 

and pinches out northeastward i n  an area o f  poor wel l  control .  To the  northeast, 

i n  the South Cook f i e l d ,  the Migura i n te rva l  (H) i s  composed o f  shaly sand 

( f i g .  9), which i s  pa r t  o f  a larger interbedded sand and shale sequence. Updip, 

the Migura sand appears t o  become one, o f  several upward quences. The 

sand has not been penetrated downdip of t h e  Yorktown area. 

The Migura i n t e r v a l  i s  from 

The sand i s o l i t h  contours ( f i g .  8) o u t l i n e  a l a rge  dip- 

The sand grades i n t o  a 
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Figure 8. 
s t ruc ture  on t h e  Migura sand; l i g h t  contours a re  net-sand i s o l i t h s  o f  t h e  Migura 
sand. 

Structure and net-sand map, Yorktown area. Heavy contours a r e  

Shading ind ica tes  sand grea ter  than 200 ft. 
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The Yorktown field i s  located on the main axis of the Migura channel. The 

sand i n  this area i s  150 t o  240 f t  thick and contains three upward-coarsening c, 
sequences, as  seen i n  the Monsanto #1 Kulawik well (fig. 9). 

a h i g h ,  sawtooth SP response, suggesting numerous t h i n  intervals o f  less perme- 

able sand or s i l t .  

The interval gives 

The South Yorktown field is located on the northeastern edge of the Migura 

channel; sand thickness i n  the Mosbacher e t  a l .  #1 Spies and #2 Spies is 95 f t  

and 130 f t ,  respectively. The character of the sand is  similar t o  t h a t  i n  the 

c 

Yorktown field w i t h  l i t t l e  increase i n  shale content. 

Structure of the Yorktown Area 

The structure of the Yorktown area is  a complex of strike-oriented normal 

faults (fig. 8). 

of m a l  1 displacement a r e  postulated. 

t i l t ed ,  and small rollover anticlines are developed. 

occurred dur ing  lower Wilcox deposition, although upper Wilcox s t r a t a  thicken 

over the souther nmost faults . 

Most faults are downthrown t o  the G u l f ;  two antithetic f a u l t s  

Indiv idua l  f a u l t  blocks a r e  s l i g h t l y  

Most of the faulting 

The shape of the Yorktown f a u l t  compartment i s  fa i r ly  well determined. I t  

i s  open t o  the southwest, al though small cross-faults may be present. 

thetic block mapped t o  the nor th  of the field i s  displaced only s l i g h t l y  from 

the main block. The South  Yorktown f a u l t  compartment, on the other hand,  i s  

poorly delineated. 

the Mosbacher #1 Spies well. 

of the fault block i s  therefore speculative, constrained by the known northern 

growth f a u l t  and the low elevation of the lower Wilcox horizon i n  the Broseco 

(La G1 o r ia )  #1 Ferguson we1 1 . 
ment were therefore chosen i n  this direction. 

the field is  questionable; Geomap places a small antithetic fault just  west of 

The a n t i -  

No wells have penetrated the Migura sand east and nor th  of 

The shape of the eastern and northeastern margins 

Minimum and maximum extents of the fault compart- 

The compartment boundary west o f  

I 
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the f i e l d .  

d i rect ion.  I 

Such a f a u l t  might be s u f f i c i e n t  t o  break con t inu i t y  i n  t h i s  

d Reservoir Volume - Yorktown Fie1 d 

The volume of t he  Yorktown reservo i r  was calculated by using a c u t o f f  i n  

the southwestern d i r e c t i o n  o f  50 ft o f  net sand f o r  the minimum case and 25 ft 

o f  net sand for  t h e  maximum case. The sand volume calculated i s  9.8 Bcf for  the 

minimum case and 10.5 Bcf f o r  the maximum case. 

block has a volume of 1.8 t o  2.3 Bcf. 

a t  South Cook, pore water volumes o f  350 m i l l i o n  barrels,  375 m i l l i o n  barrels,  

I n  addit ion, the a n t i t h e t i c  

I f  we assume a poros i ty  o f  20 percent as 
*.a 

and 65 t o  85 m i l l i o n  barrels,  respect ively,  are calculated. However, 20 percent 

poros i ty  i s  probably t o o  high f o r  t h i s  depth; i n  the De W i t t  fairway, poros i ty  

a t  11,000 ft i s  t y p i c a l l y  about 14 percent (Bebout and others, 1979). 

t h i s  more r e a l i s t i c  porosity, volumes are 245 t o  260 m i l l i o n  ba r re l s  plus about 

35 t o  40 m i l l i o n  ba r re l s  for  t he  a n t i t h e t i c  block. 

Using 

, I 

The estimate o f  pore water 

volume i n  t h i s  water-drive reservoir  i s  576 m i l l i o n  barrels.  Thus, i f  these 

estimates are correct ,  more water dr ives t h i s  gas f i e l d  than i s  contained i n  the  

: Yorktown block. 

This discrepancy may  be due t o  nonsealing f a u l t s  ( f i g .  loa).  Along t h e  

main ax i s  o f  the. Migura channel, sand thickness i s  250 t o  300 ft. 

t h a t  bound t h e  Yorktown f i e l d  on the  south, however, have only  150 t o  250 ft of 

throw. 

block Y i s  continuous w i t h  the  Yorktown f i e l d .  Reservoir rock volumes for t h e  

two blocks mapped south o f  the f i e l d  are 2.85 Bcf  f o r  the smaller b lock A and 

8.4 Bcf for  the larger  block B. Pore water volumes a t  14 percent poros i ty  are 

70 m i l l i o n  ba r re l s  and 210 m i l l i o n  barrels, respectively. The production volume 

estimate could then be matched (with the  assumptions ou t l i ned  previously) i f  a l l  

The f a u l t s  

It i s  therefore p laus ib le  t h a t  the sand t o  the south o f  the Yorktown 

o f  the above-mentioned blocks are connected along the Migura channel axis.  

w 
I 
I 
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Figure 10. Structure sections, Yorktown area: (a) through Yorktown f i e l d ,  
showing sand connections; (b) through South Yorktown f i e l d ,  showing sand iso-  
la t ion .  Migura sand i s  st ippled; l i n e s  o f  sect ion are shown i n  f i g u r e  8. 
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Block B contains gas. I f t h i s  block i s  connected w i t h  the Yorktown block Y, 

both blocks should show s i m i l a r  pressure h is to r ies .  

ava i lab le  support t h i s  hypothesis. 

Yorktown f i e l d  i s  nonsealing, as i t  has small displacement; ye t  t he  South York- 

town f i e l d  i s  separated from the Yorktown f i e l d ,  poss ib ly  because the sand th ins  

t o  t h e  east. 

The l i m i t e d  pressure data 

It would seem t h a t  the f a u l t  east o f  the  

Reservoir Volume - South Yorktown F i e l d  

The volume o f  t h e  South Yorktown block was ca lcu lated for  several cases. 

For the  minimum northeastern extent o f  the  block, sand th inn ing  t o  the northeast 

and an a n t i t h e t i c  f a u l t  j u s t  west o f  the f i e l d ,  sand volume i s  4.24 Bcf and 

water volume ( a t  14 percent poros i ty )  i s  150 m i l l i o n  barrels.  

extent o f  the  block, rock volume i s  5.0 Bcf and water volume i s  180 m i l l i o n  bar- 

re l s .  

8.3 Bcf and 205 m i l l i o n  ba r re l s  for  the  minimum case, and 10.1 Bcf and 250 m i l -  

l i o n  ba r re l s  f o r  the maximum case. The water volume estimated from production 

f igures  i s  82 + 14 m i l l i o n  bar re ls  fo r  t h i s  pressure-depletion reservo i r .  A l l  

the geo log ica l l y  estimated volumes are much higher. 

For the maximum 

If there  i s  no a n t i t h e t i c  f a u l t  west o f  the f i e l d ,  these f igures are 

This discrepancy may be resolved i n  several ways. Possibly the  poor we l l  

con t ro l  i n  t h i s  block has allowed some f a u l t s  t o  go unrecognized; o r  the th in -  

n ing assumption may be too  generous. A rev ised minimum f i g u r e  i s  106 m i l l i o n  

barre ls ,  which i s  s im i la r  t o  the production estimate. A l te rna t ive ly ,  current  

production i s  coming from only  pa r t  o f  t he  sand. Production e f f i c i e n c y  (assum- 

i n g  14 percent poros i ty)  i s  80 percent f o r  the  minimum case. Perforat ions i n  

t h e  two producing wel ls  are i n  the  top t h i r d  o f  the sand. As mentioned before, 

area. One or  more o f  reaks are abundant i n  the sand throughout 

these breaks may be continuous throughout the block, thus seal ing o f f  par t  o f  

the sand. Other possibilities are that the poros i ty  i s  markedly lower, br the 
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water saturat ion markedly higher, than the assumed values o f  14 percent and 25 

percent. The present data do not al low a decis ion between these p o s s i b i l i t i e s .  

Figure 10b shows t h a t  the thinner sand o f  the South Yorktown area i s  not 

continuous across the growth f a u l t s  south o f  the f i e l d .  The gas production from 

the wel l  t o  the south i s  therefore from a separate reservoir .  

i s  supported by pressure data. 

This conclusion 

Summary 

The Yorktown and South Yorktown f i e l d s  produce from the  dip-or iented Migura 

sand. 

sand allows f l u i d  f low between several blocks and production from a large reser- 

vo i r  volume. The South Yorktown f i e l d  l i e s  on the northeastern side o f  the 

channel; production i s  r e s t r i c t e d  t o  the block and may not be from the  e n t i r e  

sand in te rva l .  

The Yorktown wel ls  penetrate the channel axis where more than 250 ft o f  

Christmas F i e l d  

The Christmas f i e l d  i s  located 7.6 m i  (12 km) southwest o f  Yorktown i n  

De W i t t  County ( f i g .  5). 

sand o f  the lower Wilcox Group, which i s  equivalent t o  the  Migura sand o f  t he  

Yorktown area. The 

o r i g i n a l  shut- in pressure fo r  the f i e l d  was 8,201 ps i  a t  t he  Hanson e t  a l .  

if1 F. L. Altman, g i v ing  a pressure gradient o f  0.76 p s i / f t .  

Production i n  the f i e l d  i s  mainly from the 10,800-ft 

Temperatures i n  the Migura sand are approximately 27OOF. 

Strat igraphy o f  t he  Migura Sand 

The Migura sand i n  the Christmas area ( f i g .  11) ranges i n  thickne s from 

zero t o  165 ft. The sand t h i n s  abrupt ly t o  the northeast; i t s  southwestern l i m i t  

i s  gradual w i t h  a strong s t r ike-or iented component. Downdip t o  the 'southeast, 

sand percentage and net-sand thickness decrease rap id l y ;  updip the sand i s  not 

* .  
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Figure  11. 
Match l i n e  i s  t o  f ig’ure 8. 
f a u l t s  downthrown t o  southeast unless indicated.  

S t ruc ture  and net-sand map, Christmas area. Datum i s  Migura sand. 
Shading ind ica tes  sand grea ter  than .100  ft. - A l l  

I .  
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correlatable.  The Migura sand o f  the Christmas area i s  separated from t h a t  i n  

the  Yorktown area by about 3 m i  o f  s i l t  and clay. LJ 
From the wel l - log patterns ( f i g .  12), the  Migura sand i n  t h i s  area can be 

d iv ided i n t o  three facies. I n  the  northern and northeastern pa r t  o f  the f i e l d ,  

a la rge  upward-fining sequence (seen i n  the Cox e t  a l .  #1 Kle ine on f i g .  12) 

suggests a t h i c k  sand and shale channel sequence. 

d iv ided i n t o  several par ts  by t h i n  but corre la tab le shale breaks. 

sands i n  t h i s  fac ies show SP patterns t y p i c a l  o f  de l ta - f ron t  sands. 

To the southwest the  sand i s  

Most o f  the 

The lower 

par t  o f  the upper sand i n  Hanson e t  a l .  #1 Altman, however, shows an upzrard- 

f i n i n g  sequence possibly represent ing a th inner channel deposit. The sands o f  

t h i s  fac ies t h i n  and grade i n t o  shale t o  the southwest. 

t h e  Nordheim f i e l d ,  fa i r ly  th i ck ,  blocky sands are found i n  t h e  Getty #16 Nord- 

heim and #13 Nordheim ( f i g .  12). 

r epr esent bar sands . 

Below these sands i n  

These pinch out updip and are i n fe r red  t o  

The f i v e  we l ls  of the  Christmas f i e l d  penetrate the channel and de l ta - f ron t  

fac ies o f  t h e  Migura sand. 

from the base o f  the channel sequence. Three wel ls  produce from the upper sand 

One wel l  (Cox e t  a l .  #1 Kleine, f i g .  12) produces 

o f  the  de l ta - f ron t  facies; o f  these, one i s  perforated below a t h i n  break, one 

above the break, and one straddles the break. 

deeper sand. 

The f i f t h  we l l  produces from a 

Structure o f  the Christmas Area 

The s t ruc tu re  o f  t he  Christmas area i s  complex and not wel l  determined 

( f i g .  11). A network o f  normal f a u l t s  d iv ides the area i n t o  small f a u l t  com- 

partments. The rap id  fac ies changes i n  the  Migura and over ly ing  Korth i n t e r -  

vals, together w i t h  the intense f a u l t i n g  make cor re la t ions  unsure, espec ia l l y  t o  

the  southwest and northwest o f  the  Christmas f i e l d .  

L 
t 
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The Christmas f a u l t  compartment i s  poor ly defined. I t s  southeastern f a u l t  i 
i s  found i n  four o f  t he  producing wel ls and i s  adequately located. The north- 

eastern l i m i t  i s  i n d e f i n i t e ,  but  t h i s  does not a f f e c t  the volume calcu lat ion,  as 

the sand i s  not present i n  t h i s  d i rect ion.  The southwestern boundary i s  i n f e r r e d  

from the di f ference i n  e leva t i on  o f  the Migura sand t o  the southwest. The north- 

western and northern boundaries are indeterminate. A small f a u l t  crosses be- 

tween four Christmas wel ls  and the Hanson #1 Buesing wel l  t o  the northwest. The 

large northwestern f a u l t  has been t e n t a t i v e l y  i d e n t i f i e d  below the  Migura sand 

i n  the Buesing well .  

i t s  l o c a t i o n  uncertain. 

Reservoir Volume - Christmas F i e l d  

The lack  o f  deep wel l  cont ro l  i n  the upthrown block makes 

The t o t a l  volume o f  Migura sand i n  the  Christmas f a u l t  compartment i s  ca l -  

culated t o  be 6.3 b i l l i o n  ft3 (Bcf), w i t h  an estimated uncertainty o f  about 

30 percent. Assuming a reasonable poros i ty  of 14 percent (as used. for t he  York- 

town f i e l d ) ,  the aqui fer  volume i s  160 m i l l i o n  barrels.  The volume estimate from 

production and pressure data fo r  t h i s  pressure-depletion reservo i r  i s  49 - + 1.2 

m i l l i o n  barrels.  The ove ra l l  production ef f ic iency,  therefore,  i s  25 percent. 

Several f ac to rs  may account for t h i s  low ef f ic iency.  The Hanson #1 Buesing 

does not produce from the Migura sand but has an i d e n t i c a l  pressure history.  

This suggests t h a t  t he  small f a u l t s  between Buesing and the other wel ls  are 

nonsealing. If so, the th inner  sub-Migura sand should be used instead o f  the 

Migura i t s e l f ;  t h i s  would tend t o  reduce reservoir  volume. The Cox e t  a l .  #l 

Kle ine produces a small amount of gas from the base o f  the t h i c k  channel se- 

quence ( f i g .  12). 

t ioned above, t he  remaining t h r e e  wel ls  produce from only the upper sand o f  the 

de l ta - f ron t  facies. 

Migura, which reduces the reservo i r  volume considerably. 

I t s  connection t o  the other wel ls i s  doubtful. Also, as men- 

The sand probably i s  separated from the  lower u n i t  o f  t h e  

The th in  shale break 
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w i t h i n  the upper sand may fu r the r  fragment the reservoir.  F ina l ly ,  the indeter- 

6, minate s i ze  of the f a u l t  compartment may lead t o  an i n f l a t e d  geologic estimate. 

Some combination o f  these factors, or dev iat ion from the porosi ty and saturat ion 2 
assumptions, could g ive a geologic estimate more i n  l i n e  w i th  the product on 

estimate. 

Pettus SE F i e l d  

The Pettus SE f i e l d  i s  located 2 m i  southeast o f  Pettus i n  Bee County 

( f i g .  5). Gas production i n  the f i e l d  i s  from the "Massive" or " F i r s t  Massive" 

sand o f  the upper Wilcox Group. Temperatures i n  the F i r s t  Massive sand average 

about 23OOF. The bottom-hole shut- in pressure f o r  the Hughes and Hughes 

#1 J. E. McKinney well  i n  the f i e l d  i s  5,666 psi ,  g i v ing  a pressure gradient of 

0.64 p s i / f t .  

Strat igraphy o f  t h e  F i r s t  Massive Sand 

The F i r s t  Massive sand l i e s  w i t h i n  the Bee d e l t a  o f  the upper Wilcox Group, 

t par t  o f  t h e  Rosita de l ta  system (Edwards, 1981). 

sand-rich sect ion of the Wilcox known c o l l e c t i v e l y  as the "Massive" sands about 

200 ft below t h e  Mackhank sand, which i s  t he  topmost u n i t  o f  t he  Bee delta. 

It occurs a t  the top o f  a 

The area i s  transected by a l a rge  growth fau l t ,  Northwest o f  the f a u l t  the 

Massive sands are th in ,  and the F i r s t  Massive sand i s  inseparable from lower 

sands. 

100 ft immediately south o f  t he  Pettus SE f i e l d  ( f ig .  13), but t h i n s  t o  t h e  

east, south, and southwest* Sand percentage i s  highest and the sand cleanest i n  

t h e  Pettus SE f i e l d .  Downdip the shale content increases. Several shale breaks 

w i t h i n  the sand and over ly ing sands can be corre la ted throughout much o f  the 

area ( f i g .  14). 

Downdip o f  the f a u l t ,  the sand reaches a maximum thickness o f  over 
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Figure 13. 
sand. 
southeast unless i ndi cated . 

Structure and net-sand map, Pettus area. Datum i s  F i r s t  Massive 
Al l  f a u l t s  down t o  Shading when sand i s  grea ter  than 100 ft th ick .  
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From the net-sand map and the e l e c t r i c  l o g  character o f  the sand, the F i r s t  

Massive sand i s  i n f e r r e d  t o  represent a de l ta  lobe of t he  Bee delta. 

northwest o f  the growth f a u l t  represents a condensed del ta-p la in  facies. 

blocky sands o f  t he  Pettus SE f i e l d  area represent e i t he r  de l ta-p la in  t o  del ta-  

The area b 
The 

f r o n t  sands or reworking o f  these sands i n t o  b a r r i e r  bars. 

upward-coarsening sequences are recognized i n  the  F i r s t  Massive sand i n t e r v a l  , 
suggesting del ta- f ront conditl’ons. The r e l a t i v e l y  continuous shale breaks may 

represent shor t - l ived lobe abandonments, preserved from l a t e r  reworking by r a p i d  

subsidence along the growth fau l t .  

Downdip o f  Point  8, 

Structure o f  the Pettus Area 

The st ructure o f  the Pettus area ( f ig.  13) i s  marked by a uniform southeast 

d i p  i n  the northwest, broken only by minor fau l t s ,  and a zone o f  c losely  spaced 

syndepositional normal f a u l t s  t o  the southeast. The major growth f a u l t s  dur ing 

the deposit ion o f  t h e  Massive sand occur i n  a b e l t  t rending northwest-southeast 

through the Pettus SE f i e l d  area. The more southeastern f a u l t s  a lso af fected 

Massive deposit ion but  appear t o  have experienced t h e i r  greatest movement dur ing 

Mackhank time. 

The f a u l t  compartment w i t h i n  which the  Pettus SE f i e l d  i s  located i s  bound- 

ed by the major growth f a u l t  t o  the northwest and west. A f a u l t  o f  lesser d is-  

placement separates it from the  Tuleta E f i e l d  t o  the south. This small f a u l t  

j o i n s  t o  the east w i t h  a larger  growth f a u l t ,  which continues beyond wel l  con- 

t r o l  t o  the  northeast. The northeastern l i m i t  o f  the f a u l t  compartment i s  not  

defined by e x i s t i n g  wel l  control .  

Reservoir Volume - F i r s t  Massive Sand 

A volume f o r  the F i r s t  Massive sand reservoir  a t  the Pettus SE f i e l d  was 

calculated for two cases, a minimum area for  the f a u l t  compartment, which in- 

cludes only the producing area, and a maximum area ( f i g .  13). These two cases s 
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y i e l d  reservoir  areas of 2.0 and 4.3 mi2, respectively. Combining these w i t h  

an average sand thickness of 80 ft and a poros i ty  o f  16 percent derived from the 

regional study i n  the L i v e  Oak fairway t o  the southwest (Bebout and others, 

1979), t h e  sand volume ranges from 4.6 Bcf t o  9.5 Bcf, and aqui fer  volume i n  

t h i s  pressure-depletion reservo i r  i s  28 - + 2 m i l l i o n  barrels.  Thus, the produc- 

i b l e  volume i s  on ly  10 percent t o  23 percent o f  t he  geologica l ly  estimated vol-  

ume. This discrepancy may be ascribed t o  the presence o f  t h in ,  l a t e r a l l y  con- 

t inuous shale breaks. 

upper par t  o f  the F i r s t  Massive sand. 

sand i s  not i n  canmunication w i th  the upper par t  w i t h i n  t h i s  small f a u l t  com- 

partment. I n  support o f  t h i s ,  r e s i s t i v i t y  logs from the Pettus SE f i e l d  show 

two h i g h - r e s i s t i v i t y  zones, i n d i c a t i n g  g a s - f i l l e d  sand w i t h i n  the  F i r s t  Massive. 

The lower gas zone i s  not being produced by the e x i s t i n g  wells. 

A l l  the producing wel ls i n  t h i s  f i e l d  produce from t h e  

It i s  l i k e l y  t h a t  the lower pa r t  o f  the 

A rev ised geologic c a l c u l a t i o n  o f  sand volume y i e l d s  aqui fer  volume o f  60 . -  - v  

t o  120 m i l l i o n  

known; possibly the assumed poros i ty  i s  too high. 

r r e l s .  The minimum f i g u r e  i s  s t i l l  t oo  high f o r  reasons un- 

Braslau South F i e l d  

The Braslau South f i e l d  i s  located 3.8 m i  southwest o f  George West, L i ve  

Oak County (fig. 5). Four wel ls  produce gas from t h e  F i r s t  Tom Lyne sand o f  t h e  

Group. Reservoir temperature s approximately 24OOF. The f i e l d  

nal  shut- in pressure o f  6,652 i, g i v i n g  a pressure gradient o f  

0.73 p s i / f t .  

Strat igraphy o f  t h e  F i r s t  Tom Lyne Sand 

The F i r s t  Tom Lyne sand i s  ted w i t h i n  the upper Wilcox 

he Mackhank below. 

much o f  the area; recent work by Edwards 

two larger sa 

been confused 

I n  the past it has 
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(1981) has demonstrated t h e i r  separate nature. The Lu l i ng  and the over ly ing 

S l i ck  sands compose t h e  L i ve  Oak de l ta  o f  t h e  Rosi ta de l ta  system (Edwards, 
\ 

1981), whi le  the under ly ing Mackhank and Massive sands are par t  o f  the  newly 

defined Bee d e l t a  (Weise and others, 1981). The F i r s t  Tom Lyne sand, also a 

d e l t a i c  sand, l i e s  between the  two previously defined deltas. 

The sand var ies from less  than 25 f t  t o  over 150 ft i n  thickness i n  t h e  

area ( f i g .  15) and i s  profoundly af fected by growth fau l t ing .  Updip o f  a l a rge  

growth f a u l t  t he  sand i s  not separable from t h e  Mackhank sand, and both are 

under 25 ft th ick.  Thickening occurs over th ree  s t ruc tu ra l  l eve l s  t o  the main 

sand depocenter southeast o f  t he  f i e l d .  Sand thickness decreases r a p i d l y  t o  t h e  

east and somewhat l ess  r a p i d l y  t o  the west. The overa l l  shape o f  the sand iso- 

l i t h s  suggests a high-'constructive, lobate de l ta  sand. 

The F i r s t  Tom Lyne i s  a composite d e l t a i c  sand ( f i g .  16). Basal upward- 

coarsening sequences are over la in  by de l ta -p la in  and channel sands w i th  blocky 

t o  upward-tapering SP patterns. Shale breaks are remarkably continuous i n  t h i s  

area, extending over 2.5 m i  along s t r i ke .  These may be del ta- lobe abandonment 

shales preserved from l a t e r  erosion by rap id  subsidence, much as a t  the Pettus 

SE f i e ld .  The shale breaks are th innest  i n  the  Braslau South f i e l d  area, but  the  

lower de l ta - f ron t  sand i s  s t i l l  separate from the r e s t  o f  the sand sequence. 

The depocenter o f  t h e  F i r s t  Tom Lyne sand l i e s  between two depocenters of 

t he  immediately under ly ing Mackhank (Weise and others, 1981), and i t s  main ex- 

pansion f a u l t s  are s l i g h t l y  Gulfward o f  t he  Mackhank fau l ts .  The expansion 

f a u l t s  and depocenters o f  the  Lu l i ng  and S l i c k  sands are  s t i l l  f a r the r  gulfward, 

as noted by Edwards (1981). 

St ructure o f  the Braslau South Area 

The Braslau South f i e l d  l i e s  w i t h i n  a complexly growth-faulted area ( f i g .  

15). A b e l t  o f  small f a u l t  compartments l i e s  southeast o f  a gent ly  dipping 
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Figure 15. Structure and net-sand map, Braslau area. Datum i s  F i r s t  Tom Lyne 
sand. Shading i n d i c a t e s  sand grea ter  than 100 ft th ick .  F a u l t s  downthrown t o  
southeast unless i ndicated. 
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Figure 16. 
Datum i s  top o f  F i r s t  Tom Lyne sand. 
shown i n  f igure 15. 

St rat igraphic  sect ion o f  upper Wilcox Group sands, Braslau area. 
Symbols as i n  f i g u r e  9; sect ion l i n e  
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unfaul ted area over la in  by a t h i n  Wilcox section. 

f a u l t  b lock s i ze  increases as wel l  con t ro l  decreases. The Braslau, Braslau 

South, and Tom Lyne f i e l d s  occupy successive f a u l t  compartments along the b e l t  

from northeast t o  southwest . 

Southeastward o f  the be l t ,  

d 

Reservoir Vol ume - Br  as1 au South F i  e l  d 

The Braslau South f a u l t  compartment ( f i g .  15) i s  bounded by major f a u l t s  on 

a l l  sides. A f a u l t  w i t h  100 ft o f  throw i s  detected i n  the Hanson #1 Prossen 

wel l  nor th  o f  the f i e l d ;  i t  may or may not break reservo i r  con t i nu l t y  on the  

northwest. The eastern f a u l t  i s  poor ly determined, as wel l  cont ro l  i s  not good. 

For ca l cu la t i ng  aqui fer  volume, the  most westerly and most eas ter ly  loca t ions  

for t h i s  f a u l t  y i e l d  minimum and maximum values. 

Assuming t h a t  t he  e n t i r e  net sand i s  produced i n  t h i s  compartment, and as- 

suming t h a t  the small f a u l t  on the northwest does not break cont inu i ty ,  the area 

o f  t he  f a u l t  compartment i s  2.8 m i 2  minimum and 3.9 m i 2  maximum. 

volume i n  t h i s  compartment i s  5.1 Bc f  minimum and 7.0 Bcf maximum. 

i t y  o f  16 percent estimated from L ive  Oak fairway averages (Bebout and others, 

The sand 

A t  a poros- 

1979), the aqui fer  volume i s  about 140 t o  210 m i l l i o n  bbl. The water volume es- 

t imated from production f igures  i s  61 2 14 m i l l i o n  bbl. 

volume i s  on ly  22 percent t o  54 percent o f  the  geologic estimate. 

Hence, the  producible 

I f  t he  small f a u l t  d is rup ts  cont inu i ty ,  the area o f  the f a u l t  compartment 

i s  between 2.2 and 3.2 mi2, the reservo i r  volume i s  3.7 t o  6.0 Bcf, and the 

aquifer volume a t  16 percent poros i ty  i s  105 5 17 m i l l  i on  bb l  , g iv ing  an appar- 

ent e f f i c i e n c y  o f  27 t o  71  percent. 

, 

This low e f f i c i e n c y  i s  probably caused by 

eaks. As noted above, shale breaks are remarkably continuous i n  

the sand, and the lower de l ta - f ron t  sand i s  separated by 5 t o  10 ft o f  shale 

from the  r e s t  o f  the  sand. I f  t h i s  lower sand i s  not  connected w i th  the upper 
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sand, the two volume estimates are i n  good agreement. 

lower poros i ty  assumption and a higher water saturat ion could be involved. 

A l ternat ive ly ,  a much 

The South Peach Poin 

Brazoria County ( f i g .  5). 

South Peach Point  F i e l d  

f i e l d  i s  located 7 m i  west-northwest o f  Freeport i n  

Two wel ls produce gas from t h e  F r i o  A sand and one 

we l l  produces gas from the underlying F r i o  A '  sand. 

approximately 250OF. 

Reservoir temperature i s  

The f i e l d  had an o r i g i n a l  shut- in pressure o f  9,572 psi ,  

g i v ing  a pressure gradient o f  0.85 p s i / f t .  

Strat igraphy o f  t h e  F r i o  A Sand 

The F r i o  A sand o f  the Peach Point  area l i e s  i n  the T3-T4 i n t e r v a l  

(Nodosaria blanpiedi  zone) o f  the subsurface Fr io.  A t  Peach Point, three named 

sands are found i n  t h i s  i n t e r v a l ,  the A, A', and 6 sands. I n  the reg ion studied, 

t h e  A sand ranges i n  thickness from zero t o  over 60 ft. 

and contains minimal breaks northwest o f  Clemens Dome, where i t  shows blocky SP 

The sand i s  t h i c k e s t  

patterns and some suggestion o f  upward-coarseni ng sequences. 

f ie lds,  sands are l e s s  regular w i t h  numerous s i l t y  breaks ( f ig .  18); both 

upward-coarseni ng and upward-fini ng sequences are observed. 

of Peach Point, upward-fining sequences dominate and the sand i s  th inner.  

i s o l i t h s  ( f i g .  17) show t h a t  t he  th i cke r  sand i n t e r v a l s  are roughly dip- 

oriented. A sand-free area occurs northeast o f  the Peach Point  f i e l d s .  

I n  t h e  Peach Point  

Southeast and west 

Sand 

This complex thickness pat tern can be in terpreted as a delta-margin se- 

quence. 

Clemens Dome f i e l d s  and a th inner one through Peach Point. 

i r r e g u l a r  thickness occur a t  the ends and margins o f  these channels i n  the area 

southeast o f  Peach Point and i n  the  A l l en  Dome area. 

development character ize the other sands o f  the i n te rva l  i n  t h i s  area. 

Channel deposits form a th ick,  upward-fining sandy sequence through the 

Del ta- f ront  sands o f  

Simi lar  patterns o f  sand 

t 

t L 
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Figure  17. 
sand. F a u l t s  down-to-south unless indicated.  Shading i n d i c a t e s  sand g r e a t e r  
than 40 ft th ick .  

S t ruc ture  and net-sand map, Peach Point  area. Datum i s  t h e , F r i o  A 

J 
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Figure 18. 
Point area. 
as in figure 9;  section l ine on figure 17. 

Stratigraphic secti0.n o f  T3-T4 sands o f  the Frio Formation, Peach 
Datum i s  top of the A sand. Note reversed SP in one well. Symbols 
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The Peach Point  area l i e s  about 25 m i  south o f  the main sand depocenter o f  

t h e  T3-T4 F r i o  i n t e r v a l  (Bebout and others, 1978, f i g .  18).  The regional  maps 

J 
suggest t h a t  t h i s  area was a t  the seaward margin o f  the Houston d e l t a  system 

(Galloway and others, i n  press) dur ing t h i s  in terva l .  

maximum progradation o f  t h a t  d e l t a  system i n  t h i s  area. 

The sands represent t h e  

Structure o f  t h e  Peach Point  Area 

The complex s t ruc tu re  o f  the Peach Point area i s  p r i m a r i l y  due t o  s a l t  tec- 

tonics. The Peach Point  f i e l d s  l i e  atop an east-west-trending r i dge  ( f i g .  17) 

which i s  presumably salt-cored a t  depth. 

Clemens Dome, a piercement s a l t  dome. A t  t he  east end, southeast o f  a sag i n  

the r idge, i s  Bryan Mound s a l t  dome. 

withdrawal basin. Another salt-withdrawal basin l i e s  south o f  the r idge, i n  

A t  the west end o f  the r idge i s  

North o f  the r idge i s  a large s a l t -  

which A l l en  Dome i s  up l i f t ed .  

Faul t ing i s  complex and o f  several types. Radial fractures segregate 

f i e l d s  around Clemens Dome and also occur a t  A l l en  Dome. Axial grabens dominate 

the Peach Point r i d g e  ( f i g .  19). I n  the salt-withdrawal basin t o  the northeast, 

two growth-fault  systems w i t h  numerous a n t i t h e t i c  f a u l t s  have been recognized 

from regional seismic data (Teledyne l i n e  3F). These growth f a u l t s  i n t e r f e r e  

w i t h  the Peach Point  r idge, g i v ing  r i s e  t o  complex, large-scale displacements o f  

up t o  1,000 ft. The extent o f  f a u l t i n g  i n  t h e  A l l en  Dome withdrawal basin i s  

unknown, due t o  lack o f  wel l  cont ro l  and avai lab le seismic data. 

The productive blocks a t  Peach Point and South Peach Point f i e l d s  are pro- 

f i l e d  i n  f i g u r e  19. 

t he  no r th  s ide o f  t h e  ridge. South Peach Point  l i e s  i n  the ax ia l  graben o f  the 

r i dge  (for the A sand production) and on the south side o f  the r idge ( f o r  the A '  

sand product 

the graben ( f i g .  19). 

The Peach Point  f i e l d  l i e s  i n  a north-dipping sect ion on 

). The A and A'  sands are juxtaposed along the south f a u l t  o f  

'tsd 
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Reservoir Volume - South Peach Point  F i e l d  

h-, The South Peach Point f a u l t  Compartment ( f i g .  17) i s  bounded by minor f a u l t s  

rl on the south and east and a l a rge r  f a u l t  on the north. Assuming t h a t  the e n t i r e  

net sand i s  produced i n  t h i s  compartment, the  sand volume i s  0.72 Bcf ( the f a u l t  

compartment area i s  0.61 m12). Assuming a reasonable poros l ty  o f  15 percent 

(from Brazoria fa i rway,  Bebout and others, 1978), t he  aqui fer  volume i s  

19.2 m i l l i o n  barre ls ;  a t  a h igh poros i ty  o f  20 percent, the volume i s  

25.5 m i l l i o n  barrels. The reservo i r  volume from pressure dec l ine data i s  33 - t 
3 m i l l i o n  barrels.  Thus, t he  ca lcu lated aqui fer  volume i s  t o o  small f o r  the  

observed product i on  fo r  reasonable porosi t ies.  

As shown on the s t ruc tu re  sect ion ( f i g .  19), the  A '  sand t o  the south i s  

juxtaposed w i th  the  producing A sand. The southern block A' sand i s  a l i k e l y  

candidate f o r  providing the ex t ra  volume. If the  two sands are connected, 

(1) the  f a u l t  i s  nonsealing, and (2) t he  observed volume must be recalcu lated t o  

include the product ion from the t h i r d  well, g iv ing  46 - t 6 m i l l i o n  barrels,  This 

connection i s  supported by the  pressure h i s t o r y  o f  t h e  A '  well. The extent o f  

the  A '  f a u l t  compartment i s  unknown; there fore  no volumes can be calculated. To 

match t h e  observed and ca lcu lated values, a f a u l t  block area equal t o  70 percent 

of the known f a u l t  compartment i s  needed. 

Mobil-David L F i e l d  

The Mobil-David f i e l d  l i e s  southwest o f  Corpus Chr f s t i  i n  Nueces County 

( f i g .  5). Deep production i n  the area comes from the Anderson sand (Fr io)  

approximately 11,000 ft below sea level .  The f i e l d  includes a number o f  f a u l t  

compartments; one o f  these, the L compartment, i s  the reservoir  o f  i n t e r e s t  

immediately southwest o f  t h e  Ross (Coastal States) #1 K r a f t  wel l  of opportunity. 

I n  the L reservo i r  the i n i t i a l  BHP was 9,507 psi, g i v i n g  an i n i t i a l  gradient o f  

0.84 ps i / f t .  Reservoir temperature i s  estimated a t  266OF (Duggan, 1972). 
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Strat igraphy o f  the  Anderson Sand 

The Anderson sand i s  one o f  a number o f  lower F r i o  sands i n  t h e  Corpus 

C h r i s t i  area. 

deepest co r re la t i on  marker, w i t h i n  t h e  Anomalina b i l a t e r a l i s  zone. 

o f  i n te res t  the Anderson l i e s  more than 1,000 ft below the  C C l O  (Harvey sand) 

marker . 

It occurs a t  the C C l l  marker o f  Weise and others (1981), t h e i r  

I n  the  area 

I n  the  Corpus C h r i s t i  fairway, the Anderson sand i s  recognized i n  a b e l t  

between two major growth f a u l t s  t h a t  form the  western edges o f  t he  Nueces Bay 

and Corpus Channel f a u l t  blocks. 

The northern one i n  San P a t r i c i o  County ranges up t o  100 ft i n  th ickness and 

I n  t h i s  area there  are two major sand th icks.  

averages 50 t o  60 ft. 

t h i s  depocenter contains t h e  Mobil-David f i e l d  and t h e  #1 Pauline K r a f t  well. 

The southern one i s  la rger  and ranges up t o  160 ft th ick ;  

Net-sand isopachs o u t l i n e  a combination o f  d i p  and s t r i k e  trends, s t r i k e  trends 

being dominant towards the  Gulf. This pat tern ind icates a de l ta  system w i t h  

sand supplied from centra l  Nueces and southern San P a t r i c i o  Counties. 

I n  t h e  Mobil-David area, sand thickness i s  con t ro l l ed  by numerous small 

growth f a u l t s  ( f i g .  20). The Mobil-David f i e l d  produces’ gas from a th ick,  

blocky Anderson sand ( f i g .  21). 

par t ings t o  the southwest. 

less  blocky i n  i t s  SP response but thickens i n t o  a downfaulted block. 

the K r a f t  wel l  the sands conta in  more shale and show a suggestion o f  upward- 

coarsening sequences. Westward, thickness var ia t ions  are pronounced, poss ib ly  

i nd i ca t i ng  a feeder channel ; eastward, sand thickness and q u a l i t y  de te r io ra te  

toward a la rge  growth fau l t .  

The sand becomes thinner and broken by shale 

Northeast toward the K r a f t  wel l ,  i t  becomes s l i g h t l y  

North o f  

St ructure o f  the Mobil-David Area 

The s t ruc tu re  o f  t h e  Anderson sand ( f i g .  20) i s  complex, although l i t t l e  o f  

t h a t  complexity i s  mirrored a t  shallower depths. I n  the  Mobil-Davld f i e l d ,  
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Figure 21. S t r a t i g r a p h i c  sect ion  of lower F r i o  sands, Mobil-David area. 
i s  top o f  the  Anderson sand. 
f i g u r e  20. 

Datum 
Symbols as i n  f i g u r e  9; l i n e  o f  sect ion shown on 
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numerous growth f a u l t s  w i t h  100 t o  200 ft o f  displacement d i v ide  the Anderson 

tj sand i n t o  small f a u l t  compartments, such as the  L compartment described by 

d 
Duggan (1972). These small f a u l t s  a re  no? c l e a r l y  d is t inguishable on a seismic 

p r o f i l e ,  which crosses the  f i e l d  (unpublished data). A s im i l a r  s t ruc tu re  occurs 

no r th  o f  the K r a f t  well. 

11,500 ft. 

I n  both o f  these areas the Anderson l i e s  a t  11,000 t o  

I n  contrast ,  a block between these two f ractured areas i s  depressed over 

1,500 ft. Five we l ls  provide cont ro l  w i th in  t h i s  block; two o f  t he  wel ls  pene- 

t r a t e  the  Anderson sand i t s e l f .  The depression i s  f i l l e d  by a t h i c k  sequence o f  

Anderson sand and post-Anderson shale and s i l t .  

wel ls,  few minor growth f a u l t s  can be found i n  the i n te rva l  above the Anderson 

sand; apparently, t h i s  downfaulted block has been spared t h e  extreme fragmenta- 

t i o n  seen i n  the  s t ruc tu ra l  highs t o  the nor th  and south. This downdropped . 

block i s  a t  near ly  t h e  same depth as the  block east o f  t h e  Mobil-David f i e l d ,  as 

in te rpre ted  from the seismic l i ne ,  forming a landward embayment o f  the lower 

s t ruc tu ra l  l eve l  inser ted  between two domes. This dome and basin structure,  

I n  contrast  t o  the  Mobil-David 

reminiscent o f  sa l t - tec ton ic  features (but here probably shale-control led) i s  

mostly f i l l e d  i n  by t h e  top  o f  the  lower Fr io.  

Reservoir Volume - Anderson Sand 

The Anderson sand i n  the  L f a u l t  compartment ranges from 80 t o  over 100 ft 

th ick.  

The f a u l t  compartment has an area o f  about 1.2 m i *  and contains 4.25 t o  

Shale breaks i n  the i n te rva l  are minor and sand q u a l i t y  appears good. 

4.75 Bcf o f  sand. Assuming a poros i ty  o f  24 percent (Duggan, 1972), the  aqui fer  

volume i s  180 t o  200 m i l l i o n  barrels.  

Production data f o r  t he  Anderson L sand are given by Duggan (1972). 

Although a simple pressure-depletion d r i v e  was expected, t h e  BHP/z versus pro- 

duct ion curve shows a negative def lect ion.  Duggan a t t r i b u t e d  t h i s  t o  pressure 
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maintenance by the dewatering o f  adjacent shales. The gas-in-place estimate 
~ i 
1 

from e a r l y  data was 112 Bcf, but approximately 70 Bcf was expected from volume 

calculat ion.  More recent data ( t o  October 1980) show cumulative production t o  

be approaching 55 Bcf ult imate. 

The data presented by Duggan (1972) suggest t h a t  the aquifer volume from 

production data ranges from 185 t o  290 m i l l i o n  barrels,  t he  lower f i g u r e  being 

indicated from the revised gas-in-place estimate. These f igures (especia l ly  the 

minimum f i g u r e )  agree w i th  the  geologic estimate. The actual near-ult imate gas 

production o f  55 Bcf then indicates an e f f i c i e n c y  r a t i o  o f  75 t o  80 percent. 

The concave-down production curve seen a t  Mobil-David L f i e l d  has not been 

noted i n  the other production curves used f o r  t h i s  study. 

exists, the r e s u l t  would be t o  lower the production volume estimates. 

If such an e f f e c t  

I n  most 

cases t h i s  would only increase the gap between production estimates and geologic 

estimates o f  aqui fer vol ume. 

Comparisons and Conclusion 

Comparison o f  geologic and production estimates o f  aqui fer  volume f o r  n ine 

Texas Gulf Coast reservo i rs  ( t ab le  6 and f i g .  22) shows a general tendency f o r  

geologic estimates t o  be higher than production estimates i n  small, pressure- 

deplet ion reservo i rs  (except where nonsealing f a u l t s  are present). This ten- 

dency i s  l a r g e l y  due t o  t h i n  (2  t o  7 f t t h i c k )  shale breaks w i t h i n  the sand 

sequence, t h a t  seal o f f  port ions o f  t he  sand body w i t h i n  the small f a u l t  com- 

partments. The larger  (aqui fer  volume >lo0 MMbbl) reservo i rs  general ly show a 

closer agreement between geologic and production estimates, although problems 

with shale breaks and nonsealing f a u l t s  may s t i l l  ex is t .  

Nonsealing f a u l t s  have been found i n  two, and possibly three, cases. I n  

the Yorktown f i e l d ,  a small f a u l t  cuts a t h i c k  (300 ft) sand. The same sand i s  

c 
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Figure 22. Comparison o f  production and geologic est imate aquifer  volume. 
Bars show t h e  range o f  estimated volumes. 
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juxtaposed on both sides o f  the  nonsealing f a u l t .  A t  South Peach Point, the 

t h i n  A sand i s  juxtaposed across a small (100 ft) nonsealing f a u l t  w i th  the  L 
smaller A '  sand. A t  Christmas f i e l d  the s i t u a t i o n  i s  l ess  cer ta in ,  but  a non- 

seal ing f a u l t  may be in fer red,  s im i la r  i n  magnitude and geometry t o  the  one a t  

South Peach Point. A l l  other fau l t s  i n  the f i e l d s  studied, espec ia l l y  those 

w i th  la rge  displacement or those which juxtapose sand on shale, are sealing. 

I n  evaluat ing geopressured reservoirs, the reservo i r  con t i nu i t y  character- 

i s t i c s  o f  t he  sand should be taken i n t o  account. 

i t  should be possible t o  recognize p o t e n t i a l l y  nonsealing f a u l t s  by t h e i r  small 

displacement and jux tapos i t ion  o f  sands. 

recogni t ion w i l l  be very d i f f i c u l t ,  as these small f a u l t s  w i l l  genera l ly  not 

Given adequate wel l  cont ro l ,  

I f  well con t ro l  i s  not present, t h i s  

show up on seismic sections. Faul ts  w i th  small displacement can 

ing, as i n  the Mobil-David L f i e l d .  Such f a u l t s  could ser ious ly  

pect ive geopressured reservo i r ,  but t h i s  problem i s  p a r t i a l l y  a1 

areas o f  t h i c k  and numerous sands. 

Thin, continuous shale breaks can be cor re la ted  w i t h i n  a f a  

also be seal- 

impair a pros- 

eviated i n  

It block i f  

there  i s  s u f f i c i e n t  wel l  control .  

recognize. 

considered i n  sand cor re la t ion ,  but they do a f f e c t  the po ten t ia l  product ion o f  

t he  reservoir .  

growth-fault systems may d isp lay  a d i s t i n c t i v e  s t y l e  of sedimentation. 

par t i cu la r ,  t h e  Pettus SE and Braslau S areas i n  the  upper Wilcox growth-faul t  

t rend of Bee and L ive  Oak Counties, an area o f  h igh expansion across c lose ly  

spaced growth fau l ts ,  show s imi la r ,  continuous shale breaks i n  d i f f e r e n t  sand 

Breaks l ess  than 5 ft t h i c k  may be hard t o  

These permeabi l i ty  ba r r i e rs  are general ly sub t le  and are not usual ly  

S t ra t ig raph ic  horizons a t  pa r t i cu la r  loca t ions  w i t h i n  the  

I n  

un i ts .  The F r i o  sands, on the other hand, appear t o  have fewer shale breaks o f  

s igni f icance. Such general knowledge could help t o  evaluate reservo i rs  i n  areas 

o f  poor we l l  control. 
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GEOLOGIC SETTING AND RESERVOIR CHARACTERISTICS, 
WELLS OF OPPORTUNITY 

b.l 
Three deep wel ls  on t h e  Texas Gulf  Coast ( f i g .  5, t a b l e  7) have been tes ted  

f o r  t h e i r  geopressured resource by Eaton Operating Company, under contract  t o  

t h e  U.S. Department of Energy. To provide de ta i l ed  geologic contexts fo r  these 

wel ls  o f  opportunity, t he  s t ruc tu re  and strat igraphy o f  the areas adjoining them 

have been studied by the  methods previously out1 ined for geologic est imat ion of 

aqui fer  vol  umes 

Riddle #2 Saldana 

The Riddle O i l  Company #2 Saldana well  l i e s  i n  t h e  Martinez f i e l d  i n  east- 

e r n  Zapata County, Texas. The t e s t  reservoir ,  the F i r s t  Hinnant sand i n  the 

upper Wilcox Group, i s  also the  main reservoir  o f  t h e  Northeast Thompsonville 

f i e l d  (Jim Hogg and Webb Counties) 10 m i  t o  the northeast. 
c 

The Martinez f i e l d  i s  located on a h i g h - r e l i e f  domal s t ruc tu re  cu t  by three t 1  

southeast-down normal f a u l t s  t h a t  were ac t i ve  dur ing Wilcox deposi t ion 

( f i g .  23). 

the western f a u l t  block, the other i n  the eastern. The Riddle #2 Saldana wel l  

tested t h e  centra l  f a u l t  block but y ie lded s a l t  water; the gas cap i n  t h a t  

block, i f  any, i s  small. 

hole shut- in pressure (BHSIP) of 6,627 p s i  (gradient of 0.68 p s i / f t )  and a tem- 

perature o f  300'F. 

Company. The average porosi-ty (from the  sonic l og )  i s  16 percent, t he  average 

F i r s t  Hinnant gas production occurs from two small gas caps, one i n  

I n  the t e s t  well ,  the F i r s t  Hinnant sand had a bottom- 

Reservoir propert ies were determined by Eaton Operating 

I permeabi l i ty  i s  7 md, and measured water s a l i n i t y  i s  13,000 ppm. Porosi ty i s  

f a i r l y  uniform throughout the  sand, whereas permeabil i ty shows two upward- 

decreasing cycles ( f i g .  24). 
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Name, county 
sand, depth 

03 
0 

-~ . .-.. . , ~ ~ ~ .  . _ . ~ ,  . .. . , ._i_ . ~...~ .. .. - . - . . . . . . . . . . . . . . . . . . . 

Table 7. Reservolr area and volume fo r  Texas ne1 Is of opportunlty. 

Prlmary geolaglc estlmates 

Area(mt2) Vr, (Bcf 1 vag (106) Poroslty Drive est. Posslble problems 

Rlddle 62 Saldana 
Mart Inez W I I cox area, 

Fl  r s t  Hlnnant 9,120' 
Zapata Co. 

Coastal States 61 K r a f t  
Mob1 I-Davld area, 

Anderson 12,675' 
Nueces Co. 

Leer # I  Koelemay 
Doyle area, 

Jefferson Co. 
Leger 11,590' 

3.6 7.0 200 16% W ( ? )  Compartment t o  N poor ly  determlned 
Poss I b I e sha le breaks 

4.77-8.34 17.9-28.6 638-1220 20-24$ no pro- Poor comparhnent contro l  on N,NW 
duct lon 

2% 7 250 20% W Very poor compartment control 



0 

0 3 km 
d mi 

F igure  23. 
t h e  F i r s t  Hinnant sand, upper Wilcox Group. 
than 60 ft. 

St ructure  and net-sand map, Riddle #2 Saldana area. Datum i s  top o f  
Shaded area ind ica tes  sand t h i c k e r  

Fau l ts  down t o  southeast unless indicated.  Fau l ts  from Geomap. 
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SP 

RIDDLE SALDANA No.2 
First Hinnant sand 

Wmobility Porosity SP 
I -- 

lo S o K ) O D 2 0 3 0  

ROSS(Coos1ol) KRAFT N0.l 
Anderson sand 

GR 

LEAR KOELEMAY N0.l 
Leper sand 

Pennobility Porosity -- 
lo ~ o m ~ )  ~ O M  

Figure  24. 
t h e  well o f  opportunity program. 

Porosity and permeabi l i ty  var ia t ions  i n  t h r e e  reservo i rs  t e s t e d  by 
For locat ions  see f i g u r e  5. 
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Strat igraphy o f  the F i r s t  H i  nnant Sand 

The F i r s t  Hinnant sand occurs w i th in  the  uppermost Wilcox i n te rva l ,  about 

I n  the Martinez f i e l d ,  i t  i s  the top- 200 ft below the regional  top  o f  Wilcox. 

most Wilcox sand and occurs w i t h i n  a dominantly shale sequence. The sand i s  

more than 600 ft above the top o f  the Zapata de1t.a complex (Edwards, 1981) and 

i s  c o r r e l a t i v e  s t r a t i g r a p h i c a l l y  w i th  the  L ive  Oak de l ta  complex i n  McMullen and 

L ive  Oak Counties 75 mi,_to the northeast. 

The productive sand i n  the  two f i e l d s  i s  over 50 ft th ick ,  w i th  blocky SP 

and r e s i s t i v i t y  responses and minor shale breaks t h a t  can be corre la ted w i t h i n  

each f i e l d .  

l a t i o n  i s  good ( f i g .  25). To the nor th  and south, the sand merges i n t o  a mixed 

sand-shale sequence w i th  subdued SP and r e s i s t i v i t y  response. To the south, t h i s  

t r a n s i t i o n  occurs over about 1.5 m i ;  t o  the nor th  i t  i s  much sharper ( l ess  than 

4,000 ft), occurr ing j u s t  nor th  o f  A t l a n t i c  #1 Bruni  ( f i g .  25). 

Despite t h e  lack o f  well cont ro l  between the  two f i e l d s ,  the  corre- 

The sand th ins  t o  both the  east and the west ( f i g .  26). To the east the 

sand grades i n t o  s i l t  w i t h i n  2.5 mi .  

sect i o n  t o  the northwest, where i t  over1 i e s  several upard-coarsening sequences, 

which increase i n  sand content westward. These sands are in te rpre ted  as de l ta  

sequences w i t h  a western source. 

The sand t h i n s  markedly and migrates up- 

The F i r s t  Hinnant sand has been studied previously i n  t h e  Northeast Thomp- . 

s o n v i l l e  f i e l d ,  where i t  was in te rpre ted  as a barr ier -bar  deposi t  by Wood (1962) 

and Young (1966); Berg and Tedford (1977) prefer red a deep-sea fan  or ig in .  The 

sand e x h i b i t s  a wel l -def ined N30"E t rend o f  maximum sand thickness w i t h  abrupt 

t h inn ing  t o  t h e  southeast and gradual th inn ing  t o  the  west ( f i g .  23). This ge- 

ometry i s  f u l l y  consistent w i t h  a barr ier -bar  o r i g i n  fo r  the F i r s t  Hinnant sand 

but c o n f l i c t s  sharply w i th  the  dip-or iented fan model o f  Berg and Tedford 

(1977). The upward-coarsening sequences t o  the west represent smal 1 late-stage 
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E 
SE 

t Figure  26. 
Wilcox sands. 
sect ion shown i n  f i g u r e  23. 

S t r a t i g r a p h i c  d i p  sect ion through R idd le  #2 Saldana o f  uppermos 
Datum i s  top o f  Wilcox Group. Symbols as i n  f i g u r e  9; l i n e  of 
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deltas,  which i n  par t  formed as bayhead del tas behind the  bar. The source o f  

bar sand i s  unknown but  may be the  L i ve  Oak de l ta  t o  the northeast. L 

Reservoir Character and Volume 

The character o f  t h e  reservo i r  sand i n  the  Martinez Deep f i e l d  i s  shown on 

f igures 24, 25, and 26. 

o f  the  sand, and two closer t o  the  bottom. 

continuous shale breaks may d is rup t  con t inu i t y  w i t h i n  a f a u l t  compartment. The 

Gulf fl Saldana wel l  (northeast o f  the  well o f  opportuni ty)  provides some i n -  

s ight .  

BHSIP o f  8,882 psi. 

BHSIP o f  on ly  5,558 psi .  

two sands were connected w i t h i n  the  small eastern block despi te t h e  la rge  shale 

break, as no other we l l  produces from the compartment a t  t h i s  i n te rva l .  

Four shale breaks can be correlated; two near the top 

This ra ises the  question whether 

It was o r i g i n a l l y  completed i n  1965 below the  major shale break with a 

I n  1974 it was recompleted above the  shale break w i t h  a 

The marked d i f fe rence i n  pressure suggests t h a t  the 

Reservoir volume i s  d i f f i c u l t  t o  estimate because o f  t he  lack  o f  con t ro l  

f o r  2 m i  t o  the nor th  or south. A conservat ively estimated campartment size, 

w i th  a northern boundary j u s t  east o f  the  Jim Hogg county l i n e  and a southern 

boundary near the Martinez f i e l d ,  gives an area o f  about 3.6 mi2. 

average sand thickness o f  70 ft, the  rock volume i s  7 Bcf. The measured poros- 

i t y  averages 16 percent, g i v ing  a pore water volume w i t h  an estimated range o f  

from 100 t o  800 m i l l i o n  barrels.  

smaller water-drive geopressured reservo i rs  such as the  South Cook f i e l d  

r eser voi  rs. 

With an 

This volume i s  s im i la r  t o  t h a t  observed i n  t h e  

The F i r s t  Hinnant sand i s  a reservo i r  o f  good con t inu i t y  (espec ia l l y  along 

s t r i k e )  and poor t o  excel lent  reservo i r  q u a l i t y  (par ts  o f  t h e  NE Thompsonville 

f i e l d  range up t o  22 percent poros i ty  and 140 md permeabil ity). 

condi t ions are good (pressure gradient general ly 0.7 t o  0.8 p s i / f t  and tempera- 

tures o f  240° t o  26OOF). 

Geopressure 
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I 

Ross (Coastal States) #1 Pauline Kraf t  
i 

d 

i 

The Ross (Coastal States) #1 Pauline K r a f t  wel l  l i e s  on the northeastern 

f r inge o f  t he  Mobil-David f i e l d  i n  Nueces County, Texas ( f igs .  5, 20). 

e rvo i r  o f  i n t e r e s t  i s  the Anderson sand of the lower Fr io ,  which occurs a t  a 

subsea depth o f  12,675 ft. The area l i e s  w i th in  the  Corpus C h r i s t i  fa i rway  of 

Weise and others (1981) and i s  immediately south o f  the Nueces Bay prospect. 

The Kra f t  w e l l  has a bottom-hole pressure o f  10,986 ps i  a t  12,805 ft, g iv ing  a 

pressure gradient o f  0.86 p s i / f t .  Corrected bottom-hole temperature i s  e s t i -  

The res- 

mated a t  290OF. 

St ructure o f  the Mobil-David Area 

The s t ruc tu re  o f  t he  Mobil-David area has been previously described i n  

r e l a t i o n  t o  the Mobil-David L reservo i r  Structural  mapping indicates two 

domes, one o f  which l oca l i zes  the  Mobil-David f i e l d ,  separated by a downdropped 

block. A NE-SW s t ruc tu re  sect ion ( f i g .  27) shows t h a t  t h i s  transverse dome-and- 

trough s t ruc tu re  i s  l a rge l y  concealed by the t ime o f  CC9 deposition, but has 

over 1,500 ft o f  r e l i e f  a t  the C C l l  marker ( the Anderson sand). 

The Pauline K r a f t  w e l l  l i e s  w i th in  the  downdropped block ( f i g .  20). I t s  

southwester n-boundi ng f a u l t  i s pr eci  sel y 1 ocated. 

probably occurs near the la rge  f a u l t  t o  the northwest. , 

poor ly  known, but i t  must l i e  on the southwestern f lank  o f  the dome t o  the 

north. 

i s  a lso i n fe r red  from a minor growth f a u l t  seen I n  a regional seismic l i n e  and 

from the  regional  study. This f a u l t  compartment i s  estimated t o  have a minimum 

area o f  4.8 mi2 and a probable maximum value o f  about 8.4 mi2. 

I t s  p o r t  hwester n boundary 

The northern boundary i s  

The southeastern-bounding f a u l t  probably cuts the  Pauline K r a f t  wel l  and 

1 
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h i g h l i g h t  s t r a t i g r a p h i c  markers. 

Anderson sand ( lower F r i o )  i s  a t  CC-11 ( s t i p p l e ) ;  o t h e r  pa t te rns  
Line o f  section i s  shown i n  f i g u r e  20. 
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Reservoir Volume o f  t he  Anderson Sand 

br Within the f a u l t  compartment, t h e  Anderson sand ranges from less  than 10 f t  

It i s  general ly o f  good q u a l i t y  with minor t o  more than 150 ft t h i c k  ( f i g .  20). 

shale breaks (f ig. 24). Planimetry o f  the net-sand map over the minimum and 

maximum f a u l t  compartment sizes y i e l d s  a minimum sand volume o f  17.9 Bcf and a 

maximum volume of 28.6 Bcf. 

based on sidewall  cores i n  the K r a f t  well  and on estimates given f o r  the Mobil- 

David f i e l d  by Duggan (1972). For 20 percent porosity, the aquifer volumes fo r  

the minimum and maximum cases are 640 and 1,020 m i l l i o n  barrels,  respectively; 

f o r  24 percent, they are 700 and 1,200 m i l l i o n  barrels. This can be compared 

w i t h  the C sand a t  the South Cook f i e l d ,  De W i t t  County (Cuero area), which has 

588 m i l l i o n  barrels. The aqui fer  volume i s  larger than the Texas water-drive 

geopressured gas reservo i rs  described above, but smal l eu  than several calculated 

by Boardman (1980) f o r  Louisiana. This reservoir  might support 14,000 bpd f o r  

10 years a t  5 percent recovery, using 20 percent poros i ty  and the larger  f a u l t  

compartment size. 

d 

Porosi ty ranges from 20 percent t o  24 percent, 

The Pauline K r a f t  wel l  o f  opportuni ty has a good sand thickness i n  an un- 

usual ly  large f a u l t  compartment. 

f l u i d s  were produced during the short-term t e s t  because o f  very low permeabil i- 

t ies .  

pa r t  o f  the sand and lowest a t  the top and bottom o f  the sand ( f i g .  24). 

low permeabi l i t ies are common t o  many South Texas reservo i rs  (Loucks and others, 

1981 ) . 

Unfortunately, i n s i g n i f i c a n t  quan t i t i es  of 

Sidewall cores suggest t h a t  permeabi l i t ies are highest i n  the  cen t ra l  

Such 

Lear #1 Koel emay 

The Lear fl Koelemay wel l  was d r i l l e d  as a wi ldcat  i n  the Doyle area of 

northwestern Jef ferson County ( f ig.  5). The t e s t  reservo i r  i s  the Leger sand o f  

4 
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i 
the Yegua Formation, a t  11,590 ft below sea leve l  ( f i g .  28). The sands o f  t h i s  . 

area l i e  w i t h i n  a geopressure t rend which has been re fe r red  t o  previously as 
( & ;  

"Vicksburg" (Loucks, 1979); t he re  are no sands i n  the Vicksburg i n t e r v a l  i n  the 

immediate area. The Leger sand i s  geopressured i n  most o f  the area considered. 

I n  the Koelemay wel l ,  bottom-hole pressure was measured as 9,441 ps i  a t  

11,669 ft, g i v ing  a gradient of 0.81 p s i / f t .  Measured bottom-hole temperature 

i s  257'F. 

increase i r r e g u l a r l y  upward ( f i g .  24). 

Strat igraphy o f  the Leger Sand 

Porosi ty and permeabi l i ty  trends w i t h i n  the sand are canplex but they 

The Leger sand occurs about 700 ft below the  top  o f  t h e  Yegua (Cockf ie ld)  

i n  the study area, as corre la ted by paleontologic in format ion from Texaco 81 

Doyle and regional  cross sect ions (Dodge and Posey, 1981). 

ber of l e n t i c u l a r ,  o f ten  shaly sands t h a t  occur i n  the shale-dominated Yegua 

sect ion south and east o f  Sour Lake ( f i g .  29). Corre la t ions i n  t h i s  sequence 

are  general ly unre l iab le,  but the Leger sand i s  fa i r ly  pers is ten t  i n  most cases. 

E lec t r i c - l og  patterns o f  many o f  these sands suggest a d e l t a i c  o r i g in ;  they were 

probably deposited as de l ta - f ron t  sands i n  a high-construct ive del ta .  

It i s  one o f  a num- 

The Leger sand shows two depocenters i n  the  study area ( f i g .  28). The main 

depocenter o f  i n t e r e s t  i s  south-southeast o f  Sour Lake Dome; i n  t h i s  area the 

sand i s  over 100 ft t h i c k  on t h e  downthrown side o f  several growth fau l ts .  Im-  

mediately updip, t h i s  sand i s  on ly  15 t o  40 ft th ick,  but  thickens northward t o  

80 ft. The second depocenter, west of Sour Lake, i s  s l i g h t l y  younger. 

d ip-or iented sand reaches a thickness o f  95 ft i n  Hathaway f i e l d ,  L i b e r t y  Coun- 

ty. Sands i n  these two depocenters cannot be assumed t o  be connected. 

I t s  more 

The s t ra t ig raph ic  sect ion ( f i g .  29) suggests a recurrent  pa t te rn  o f  sedi- 

mentation i n  t h i s  area. The depocenter contains an upward-coarsening sequence 

c 
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Figure 28. Structure and net-sand map, Lear #1 Koelemay area. Datum i s  top o f  
t h e  Leger sand, Yegua Formation. 
Faul ts  downthrown t o  south unless indicated.  

Shading indicates sand th icker  than 90 ft. 
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Figure 29. 
i s  "Second Top o f  Cockfield" o f  indus t ry  usage. 
sect ion on f i g u r e  28. 

St rat igraphic  sect ion o f  Yegua sands, Lear #1 Koelemay area. Datum 
Symbols as i n  f i g u r e  9; l i n e  o f  
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i 

o f  shales t o  sands, presumably a de l ta - f ron t  sequence. Southwest o f  t h i s  depo- 

center are th inner,  cleaner sands t h a t  have more blocky SP responses. These may 

represent bar sands reworked along s t r i k e  from the d e l t a  f r o n t  by longshore 

~ 

i 
~ 

:f 
I 
~ 

i 

cur rents  . 
Str ucture 

Well cont ro l  a t  depth i s  sparse i n  t h i s  area; hence most o f  the major 

s t ructures are not p rec i se l y  located. Structure i n  the area consis ts  o f  growth 

f a u l t s  separating gent ly  g u l f w a r d - t i l t i n g  f a u l t  blocks, which are l o c a l l y  

pierced by s a l t  domes ( f i g .  28). 

Expansion across the f a u l t s  i n  t h i s  area i s  not large but d i d  in f luence 

Yegua, Jackson, and Vicksburg sedimentation. Expansion factors  across the 

f a u l t s  suggest Yegua and Jackson movement for a l l  f a u l t s  (with greatest  Jackson 

expansion on the most southern f a u l t ) ,  Vicksburg movement on the southern 

fau l t s ,  and s l i g h t  F r i o  expansion on the  most seaward fau l t .  The long h i s t o r y  

o f  growth across these fau l t s  may be re la ted  t o  the low sedimentation rates i n  

t h e  sh a1 e-domi nat ed Y egua- Jac kson-Vi cksbur g sequence. 

Three s a l t  domes occur i n  the area: Hul l  (west of f i g .  28), Sour Lake, and 

Ar r i o la ;  t he  Yegua sands are u p l i f t e d  t o  shallow depths around each s a l t  stock. 

However, t h i s  does not appear t o  have re l i eved  the geopressured cond i t i on  o f  the 

Leger sand i n ' t h e  basin between Sour Lake and A r r i o l a  Domes, where t h e  Sour Lake 

East f i e l d  has a pressure gradient o f  0.65 p s i / f t .  

Reservoir Volume and Cont inu i ty  

The spars i ty  o f  deep wel l  cont ro l  i n  the area makes i t  impossible t o  e s t i -  

mate a meaningful compartment area or reservo i r  volume without seismic data. A t  

l e a s t  2 t o  3 mi2 o f  reservo i r  area might be expected w i t h  a gross sand th i ck -  

ness o f  roughly 100 ft. This would g ive a sand volume o f  7 Bcf, or (using 
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20 percent poros i ty)  a pore volume o f  250 m i l l i o n  barrels.  This i s ,  however, 

on ly  an order-of-magnitude calculat ion.  

Cont inu i ty  o f  t h i s  reservo i r  i s  d i f f i c u l t  t o  estimate. No major shale 

breaks appear t o  be continuous through the  area; however, minor shaly i n t e r v a l s  

a re  abundant i n  most wel ls  and may i n t e r f e r e  w i t h  v e r t i c a l  con t i nu i t y  i n  some 

cases. The f a u l t  on the  nor th  boundary o f  the  area i s  marg ina l ly  sealing. 

There may be connection t o  the Forest #2 Ki rby  well, but  t h i s  i s  not l i k e l y .  

The Leger sand i n  the  Doyle area shows marginal geopressure condi t ions i n  

an area o f  poor we1 1 contr o l  . The Lear 81 Koel emay t e s t  does, however, appear 

t o  be t y p i c a l  o f  the  Yegua geopressure reservo i rs  i n  t h i s  area. 

Conclusion, We1 1 o f  Opportunity Study 

Table 7 sllmmarizes the reservoir  volume estimates f o r  th ree  wel ls  o f  oppor- 

tun i ty .  The wel ls  o f  opportuni ty have sampled a Wilcox ba r r i e r  sand, a Yegua 

d i s t a l  de l ta - f ron t  sand, and a t h i c k  F r i o  de l ta - f ron t  or composite sand. Two 

wel ls  have been located i n  South Texas and one i n  southeast Texas. A l l  of t h e  

aqui fers tested are s im i la r  i n  volume and fau l t -b lock  area t o  water-drive gas 

reservoirs.  Two o f  the aqui fers  ( a t  Riddle f2  Saldana and tear #1 Koelemay) 

have volumes s imi la r  t o  the Yorktown f i e l d  o f  De W i t t  County. 

t h e  Ross (Coastal States) #l K r a f t  wel l  i s  s im i la r  i n  volume t o  t h e  South Cook 

sa s o f  the Cuero area. For comparison, Blessing area sands (Winker and others, 

1984) are larger ,  w i th  aquifer volumes o f  1,700 t o  2,900 m i l l i o n  barrels.  

The aqui fer  a t  

4 i 
i 
! The greatest  problem w i t h  determining aqui fer  volume f o r  the we l ls  o f  op- 

pordunity i s  the  poor de l ineat ion  o f  fault-compartment geometry. 

these cases, seismic data i s  essent ia l  t o  proper ly evaluate fault-compartment 

I n  a l l  o f  
! 

area and, therefore, reservo i r  volume. This contrasts  w i th  t h e  case h i s t o r i e s  

f o r  producing reservo i rs  i n  which lack of compartment cont ro l  was important i n  

b 
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only  a few cases. This d i f fe rence i s  p a r t l y  inherent i n  the data base; the case 

h i s t o r i e s  are o f  developed f i e lds  w i th  production h is tory ,  whereas we l ls  o f  op- 

po r tun i t y  are genera l ly  w i ldca t  holes, hence the s t ruc tu re  i s  l ess  we l l  deter- 

mined. 

INTERNAL PROPERTIES OF SANDSTONES 

The basic construct ional  elements o f  sand bodies (laminae, beds) may ex- 

grains and 

i nhomogene 

wel l  as by 

ture) ,  and 

vo i  r us i ng 

h i b i t  large grain-size var ia t ions  over a space o f  inches. These tex tu ra l  d i f -  

ferences may be enhanced dur ing diagenesis and may r e s u l t  i n  major reductions i n  

t ransmiss iv i ty  a f t e r  sandstone consol idation. Chemical p rec ip i ta tes  t h a t  coat 

f i l l  pores serve t o  fu r ther  r e s t r i c t  f l u i d  flow. 

t i e s  o f  reservo i rs  are con t ro l l ed  mainly by degree o f  cementation as 

s i ze  and shape o f  grains ( texture) ,  t h e i r  so r t i ng  and packing ( tex- 

arrangement ( s t r a t i f i c a t i o n ) .  Pred ic t ing  f l u i d  f low through a reser-  

sandstone fac ies models depends l a r g e l y  on (1) whether or not o r i g in -  

The small-scale 

vestiges of 

e t i o n  and 

a1 var ia t ions  i n  pore proper t ies are preserved i n  rocks, and (2) i f  

those trends are preserved, whether they are important i n  wel l  comp 

product i on  s tr  a t  egi es . 
Poros i ty  and Permeabi l i ty  o f  Modern Sands 

Most modern Gu l f  Coast sands are t y p i c a l l y  f i n e  t o  very f i n e  grained be- 

cause o f  t h e i r  source and mul t i -cyc le  or ig in .  

have higher poros f t ies  but lower permeabi l i t ies  than coarse-grained sands from 

comparable environments elsewhere. 

Such f ine-grained sands general ly 

I n  fact ,  some modern point-bar and beach 

sands from the Gulf Coast have o r i g i n a l  permeabi l i t ies  t h a t  a re  f i v e  t o  ten  

times lower than those of equivalent sand types elsewhere (Pryor, 1973). 

Pryor (1973) studied inhomogeneities associated w i t h  g ra in  so r t i ng  and d i -  

r e c t  ional  proper ti es o f  modern sand bodies i ncl udi ng sever a l  Gul f Coast beaches 
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and a Mississippi River point-bar deposit .  

g rea te r  permeabili ty v a r i a t i o n s  than  beach sands and t h a t  both sand types  have Li 
well-organized d i r ec t iona l  permeabi l i t i es .  The d i r e c t i o n s  of g r e a t e s t  permea- 

b i l i t y  a r e  aligned pa ra l l e l  t o  the l eng th  of r i v e r  bars  and perpendicular t o  the 

long a x i s  o f  beaches. 

He found t h a t  r i v e r  sands have 

c 

Permeabi l i t i es  f o r  modern r i v e r  and beach sands range 

from a few mi l l i da rcys  t o  tens o f  darcys depending on g ra in  s i z e  and so r t ing .  

T h i s  range of more than  four  orders  o f  magnitude decreases as the sediments 

compact and a r e  bur ied ,  b u t  even ranges o f  t h r e e  o rde r s  o f  magnitude (0.1 t o  

100 md) a r e  canmon i n  consolidated sandstones. 

Detailed Inves t iga t ion  of Vertical  Changes 
i n  Poros i ty  and Permeabili ty 

Cored i n t e r v a l s  from the General Crude Oil/Department o f  Energy #1 and #2 

Pleasant Bayou wells were selected for  d e t a i l e d  a n a l y s i s  of v e r t i c a l  v a r i a t i o n  

i n  poros i ty  and permeabili ty because of the exce l l en t  condi t ion  o f  the c o r e  and 

because the geology of the test well s i te  ( f i g .  30) is  well documented (Bebout 

and o the r s ,  1978, 1980). 

All of the cored i n t e r v a l s  examined occur between the T2 and T6 c o r r e l a t i o n  

u n i t s  (Cibicides hazzardi through Anomalina b i l a t e r a l i s  zones) of the Oligocene 

F r i o  Formation. A v a r i e t y  of deposit ional environments, ranging from d i s t r i b u -  

t a r y  channel w i t h  assoc ia ted  subaer ia l  levees t o  shallow-marine storm-related 

depos i t s  on the shoreface t o e ,  a r e  represented. 

i n e d  and described, selected i n t e r v a l s  of which a r e  presented i n  f i g u r e s  32 

through 35. 

Over 300 f t  of co re  were exam- 

Explanation of the symbols used i n  the d e t a i l e d  d e s c r i p t i o n s  of t h e  

c o r e  is  presented as f i g u r e  31. 

Diagenesis, involving the reduct ion  of pore voids through compaction and 

cementation, i s  an important modifier of i n i t i a l  p o r o s i t i e s  and pe rmeab i l i t i e s  

on i n  the i n  anc ien t  sandstones. The d iagenet ic  h i s t o r y  of the F r i o  Format 

96 
L 

L' 



i 

/ 

F igure 30. Location o f  the  General Crude Oil/Department o f  Energy Pleasant 
Bayou No. 1 and No. 2 geopressured geothermal t e s t  wel ls  (Pleasant Bayou) and 
s t ruc tu ra l  f a b r i c  a t  the  T5 marker (Anomalina b i l a t e r a l i s ) .  The we1 I s ,  which 
were d r i l l e d  500 ft apart, are located on the f lanks o f  t he  Chocolate Bayou 
domal s ure i n  a salt-withdrawal basin associated w i t h  the  Danbury Dome. 
No rt hea [Modif ied from Bebout 
and others (1980)l. 

ending f a u l t s  are Frio-aged growth fau l ts .  
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I ! 97 



EXPLANATION OF SYMBOLS 

CONTACT ROCK TYPE 

Fining-upward A Siltstone and Mndy 
siltstone (--.--) 

Planar - 
Erosive E (- -1 Conglomerate 

Mud ciost and mud floke 

.. . ; , . '. . . 
a m e n i n g v  . ..:... 

-upword . . . . . Interbedded MndStOne (**.*), 
siltstone (---).and ...,. mudstone (-1. 

STRUCTURES 

Trough crassbedding 

Planar crossbedding 

Crossbeds with oversteapaned forerets 

indirtinct crass-stratification 

Gently inclined laminotion 

Gently inclined lamination separated by 
low-ongie discordances 

Horizontal laminotion 

Ripple trough lamination 

Plonar ripple lamination 

Climbing-ripple lamination 

Heavily bioturbated sandstona 

"Massive" sandstone 

Contorted bedding 

ACCESSORIES 
:k+ Vertical ond horizontal burrows 

+ Organic fragments 

A k O t k t S  

< r( Shells 
3 

TEXTURE 

Sorting Rounding 

VP Very poorly o Angular 

P Poorly S-o Subonguiar 
,W Moderately well . S-v Subrounded 
u Well r Rwnded 

INDURATION ' 

W I  Well indurated 

I Indurated 

I F  Indurated but friable 

IS indurated but sholy 

PERCENT CARBONATE 
CEMENT 

I Slight effervescence 

3 Moderate effervescence 

5 Strong effervescence 

io Very rtrang effervescence 

POROSITY 

Porosity trend 

PERMEABILITY 

Figure 31. Explanation o f  s.ymbols f o r  f igures  32 t o  35. Poros i ty  and permea- 
b i l i t y  values obtained from whole-core analyses. 
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PERMEABILITY 
AND POROSITY 
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UTERPRETATIOC 

Lower 
Shoreface 

Foreshore 

Upper 
Shoreface 

Figure 32. Deta i led core descr ip t ion,  core character is t tcs ,  and i n t e r p r e t a t i o n  
o f  the upper p a r t  o f  the  F r i o  T3 co r re la t i on  un i t .  Ver t i ca l  changes represent a 
composite o f  several trends, t he  highest poros i t ies  and permeabi l i t ies  being 
associated wi th  large-scale crossbedding and the coarsest g ra in  s i ze  pre.sent. 
Poros i ty  and permeabi l i ty  data are derived from laboratory analysis o f  whole 
core. 
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Figure 33. 
o f  t h e  geopressured geothermal production i n t e r v a l  (Andrau o r  C sand). V e r t i -  
cal  changes general l y  show an upward decrease i n  porosity and permeabi l i ty  f o r  
both sections. 

Deta i led  core descr ip t ion ,  core c h a r a c t e r i s t i c s ,  and i n t e r p r e t a t i o n  
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Figure 34. 
o f  a p a r t  o f  t h e  F r i o  D c o r r e l a t i o n  i n t e r v a l  (sub T5). 
uniformly low poros i ty  and permeabi l i ty .  Contorted beds i n  t h i s  sand have lower 
poros i t ies  than adjacent undeformed beds (15,556 t o  15,543 ft).  

D e t a i l e d  core descr ip t ion ,  core c h a r a c t e r i s t i c s ,  and i n t e r p r e t a t i o n  
Upper sand e x h i b i t s  
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Figure 35. Deta i led core descr ipt ion,  core character is t ics ,  and in te rp re ta t i on  
o f  a p a r t  o f  t h e  F r i o  sub T5, F co r re la t i on  in te rva l .  This composite sand- 
stone shows a central  decrease i n  porosity. On a smaller scale, large crossbeds -- 

(15,670 t o  15,661 f t  and 15,620 t o  15,616 f t )  have higher poros i t ies  and p e r m e a L  
b i l i t i e s  than smaller scale crossbeds (15,653 t o  15,640 ft). L 
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6.i 
Chocolate Bayou/Danbury Dome area has been described i n  d e t a i l  (Bebout and 

others, 1978; Loucks and others, 1981; M i l l i k e n  and others, 1981) and i s  b r i e f l y  

summarized here. L i t h i c  arkoses and feldspathic volcanic areni tes o f  the F r i o  

Formation underwent ear ly ,  near-surface leaching o f  fe ldspars accompanied by 

replacement and cementation by ca lc i te .  Compaction o f  the sediments, w i t h  

concomitant generation o f  c l a y  coats and feldspar overgrowths, was fol lowed by 

p r e c i p i t a t i o n  of l o c a l l y  var iab le  quant i t ies  o f  quartz overgrowths and a minor 

phase o f  sparry c a l c i t e  cementation. This ear ly  phase o f  passive diagenesis 

took place t o  a depth o f  approximately 8,500 ft ( M i l l i k e n  and others, 1981) and 

reduced poros i ty  t o  less  than 15 percent (Bebout and others, 1978), Below 

8,500 ft w i t h i n  the geopressured zone, leaching o f  the unstable l i t h i c  c l a s t s  

( fe ldspar,  volcanic rock fragments) and e a r l y  c a l c i t e  cement created secondary 

porosi ty,  but  t h i s  was somewhat reduced i n  the deep subsurface by p r e c i p i t a t i o n  

o f  k a o l i n i t e  and Fe-r ich c a l c i t e  cement (Bebout and others, 1978). 

The primary ob jec t ive  of the  present analysis was t o  "look through" the  di- 

agenetic impr in t  and examine the  in f luence of var ia t ions  i n  gra in  size, primary 

sedimentary structures,  b io turbat ion,  and tex tu re  (rounding and so r t i ng  o f  

grains) on poros i ty  and permeabi l i ty  trends i n  t h e  geopressured Frio. 

Pleasant Bayou cores, poros i ty  and hor izontal  permeabi l i ty  vary i n  d i r e c t  re la -  

t i o n  t o  changes i n  these parameters. Generally, va r ia t i on  I n  one parameter i s  

accompanied by a change i n  one or more o f  the  remaining variables, e.g., a de- 

crease i n  g ra in  s i ze  i s  accompanied by an increase i n  b io tu rba t i on  ( f i g ,  32, 

11,732 t o  11,740 ft); therefore,  considering these parameters i n d i v i d u a l l y  

places a r t i f i c i a l  cons t ra in ts  on the  analysis. Because changes i n  g ra in  s i ze  

are commonly accompanied by changes i n  primary sedimentary structures,  and 

because these two parameters exert  t he  most in f luence on poros i ty  and perme- 

a b i l i t y ,  these parameters are discussed j o i n t l y .  

I n  t h e  
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Variat ions i n  Grain Size and Primary Sedimentary Structures 

I n  t h e  Pleasant Bayou cores a decrease i n  g ra in  s ize  i s  accompanied by a 

decrease i n  poros i ty  and permeabi l i ty  ( f i g .  32, 11,732 t o  11,741 ft; f i g .  338, 

14,757.5 t o  14,759 ft; f i g .  35, 15,629 t o  15,632 ft). This decrease i s  most 

marked where a decrease i n  g ra in  s ize  involves a change i n  l i t h o l o g y  from sand- 

stone t o  s i l t s t o n e  or mudstone ( f i g .  32, 11,765 t o  11,772 ft, permeabi l i ty  de- 

crease from an average o f  100 md t o  less  than l md, and poros i ty  from 20 t o  

13.5 percent). 

w i th  changes i n  sedimentary s t ructures r e s u l t  i n  dramatic changes i n  permeabil- 

i ty .  

14,713 t o  14,716 ft), a gradual decrease i n  gra in  s ize  from medium t o  f i n e  sand 

i s  accompanied by a th ree fo ld  change i n  permeabi l i ty  (475 t o  140 md). 

c ident  decrease i n  poros i ty  i s  l ess  dramatic (20 t o  17.5 percent), The reverse 

a lso holds t rue, as an increase i n  g ra in  s i ze  ( f i g .  32, 11,775 t o  11,785 ft) 

r e s u l t s  i n  a poros i ty  increase from 13 t o  17 percent. 

However, even very subt le  changes i n  g ra in  s i ze  unassociated 

For example, i n  an i n t e r v a l  composed o f  r i p p l e  cross-lamination ( f i g .  33A, 

The coin- 

Changes i n  g ra in  s ize  are general ly accompanied by changes i n  primary sedi- 

mentary structures.  

T3 cored i n t e r v a l  ( f i g .  32) corresponds t o  a v e r t i c a l  gradation i n  the  scale o f  

s t ructures from hor izonta l  laminations and scattered r i p p l e d  zones, through 

c l imbing r ipp les,  t o  small-scale planar crossbeds, f i n a l l y  t o  a large-scale 

trough crossbed i n  the coarsest g ra in  s ize  present (11,771 t o  11,785 ft). 

highest permeabi l i t ies  encountered i n  t h i s  i n te rva l  occur i n  t h e  large-scale 

trough crossbedded, medium-grained sandstone ( f i g .  32, average 118 md, 

11,772 ft). 

o f  sedimentary s t ructures as wel l  as a reduct ion i n  poros i ty  and permeabi l i ty  

( f i g .  32, 11,732 t o  11,740 ft; f i g .  338, 14,757 t o  14,759 ft; f i g .  35, 15,653.5 

t o  15,662.5 ft). 

A progressive increase i n  g ra in  s ize  from the base o f  the  

The 

Decreases i n  g ra in  s ize  are accompanied by a decrease i n  the scale 
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Some o f  the sandstone i n t e r v a l s  described do not e x h i b i t  a change i n  gra in  
' s i ze  but are characterized by var ia t ions i n  the scale and types o f  the primary 

rd sedimentary structures. These var ia t ions i n  bed thickness and conf igurat ion a t  

constant gra in  s i ze  r e s u l t  from changes i n  water depth and/or current v e l o c i t y  

(Simons and others, 1965; Southard, 1971). 

be influenced by the scale and type of sedimentary structures. 

l a rge r  the scale of the sedimentary structure,  the higher the r e l a t i v e  porosi ty 

and permeabil ity. The term " re la t i ve "  i s  used here as quan t i t a t i ve  comparisons 

of the measured po ros i t i es  and permeabi l i t ies from d i f f e r e n t  i n t e r v a l s  are not 

Val i d  because o f  d i f ferences i n  diagenetic h is tor ies.  Large-scale crossbedded 

sandstones ( f i g .  36A, r i g h t  core slab) have higher poros i ty  and permeabil i ty 

Val ues than smal ler -sca le crossbedded sandstones ( f i g .  36A, l e f t  core slab, and 

f i g .  36B), which, i n  turn,  have higher values than r i p p l e d  sandstones 

Porosity and permeabil i ty appear t o  

Generally, t h e  

, ( f i g .  36C). Horizontal ( f ig .  36C) and gent ly i nc l i ned  laminated sandstones have 

. var iable permeabil i t ies, probably as a r e s u l t  o f  f l u i d s  moving along bedding 

planes rather than between the sand grains ( i n t e r s t r a t a l  versus i n t r a s t r a t a l  

flow). Non-biogenic, postdeposit ional structures also a f f e c t  poros i t ies and 

permeabil i t ies. I n  an i n t e r v a l  cons is t ing o f  interbedded, undeformed and con- 

t o r t e d  upward-fining cycles, the undeformed beds have po ros i t i es  s i g n i f i c a n t l y  

higher (2 t o  3 percent) than the  adjacent contorted beds ( f i gs .  34 and 37A), 

t h a t  are o f  a s im i la r  g ra in  size. 

B ioturbat ion and Texture 

The e f f e c t s  o f  b io tu rba t i on  on permeabil i ty trends and, t o  a lesser extent, 

poros i ty  i n  t h e  Pleasant Bayou cores are wel l  defined. 

zones permeabil i t i e s  ar 

I n  in tensely  bioturbated 

arkedly reduced i n  canparison t o  adjacent s l i g h t l y  

bioturbated horizons. This i s  p a r t l y  because burrowing and feeding t r a i l s  o f  

t race  f o s s i l s  d i s rup t  and destroy bedding, thereby i n h f b i t i n g  f l u i d  movement 
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Pleasant Bayou #2  

B 

Figure 36. A. R ight  slaw. 
porous (19 percent) sandstone, in te rpre ted  as a bed-load distr ibutary-channel  
deposit (F co r re la t i on  i n te rva l ,  f i g .  35). Intermediate- t o  smal 1-scale cross 
beds ( l e f t  slab) a lso deposited w i t h i n  bed-load channels i n  t h i s  i n t e r v a l  have 
neg l i g ib le  permeabi l i t ies  ( less than 1 md) and s i g n i f i c a n t l y  lower poros i t ies  
(10 t o  12 percent) than sandstones w i th  large-scale cross-lamination. 
B. Intermediate- t o  smal 1-scale crossbedded sandstone o f  the production i n t e r v a l  
( f i g .  33B). 
t h a t  of large-scale crossbedded sandstone. 
l a i n  by hor izontal  l y  bedded sandstone w i th  t h i n  mud drapes. Ripple-laminated 
sandstone has the  lowest permeabi l i ty  and comparatively low poros i ty  i n  the  
production i n t e r v a l  (see f i g .  33B). 

Large-scale cross-lamination i n  permeable (729 md), 

Poros i ty  (16.5 percent) and permeabi l i ty  (100 md) are less than 
C. Ripple-laminated sandstone over- 
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Figure 37, A. Inter laminated very f i n e  grained sandstone and s i l t s t o n e  i n t e r -  
preted as shal low-marine storm-related sequences. Undeformed u n i t s  have h igher  
po ros i t i es  (2 t o  3 percent) than adjacent contorted deposits (see f i g .  34). 
B. Highly bioturbated sandstone ( t race f o s s i l  0 hiomor ha) i n  which poros i t ies  
and permeabi l i t ies  have been subs tan t i a l l y  reduced p--7e ow ng t o  dest ruct ion of p r i -  
mary sedimentary s t ruc tu res  and in t roduc t i on  o f  f ine-grained de t r i tus .  I n  these 
lower shoreface deposits po ros i t i es  were reduced from 23 percent i n  unbioturba- 
ted  sandstones t o  7,5 percent, and permeabi l i ty  was reduced from 60 md t o  1 md 
( f i g .  32). . ,  
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along bedding planes, Furthermore, poros i ty  and permeabil i ty reductions are 

p a r t l y  a t t r i b u t e d  t o  mixing cf  f iner grained d e t r i t u s  i n t o  the sand by t h e  di 
organisms. An example o f  the e f fec ts  o f  b io tu rba t i on  on reservoir  q u a l i t y  i s  

i l l u s t r a t e d  i n  f i g u r e  32 (11,743 t o  11,732 ft). Three zones o f  in tensely  b io-  
c 

turbated, very f i n e  grained sand are interbedded w i t h  weakly t o  moderately bio- 

turbated sands, i n  which sedimentary structures are s t i l l  recognizable. I n  the  

bioturbated zones, primary sedimentary structures are ob l i t e ra ted  by burrowing 

o f  organisms, t h e i r  a c t i v i t i e s  now recorded by the  t race  f o s s i l  Ophiomorpha 

( f i g .  37B). 

i s  s i g n i f i c a n t l y  higher than i n  the adjacent in tensely  bioturbated sands. 

meab i l i t i es  decrease from an average o f  50 md t o  l e s s  t h  

zones have permeabi l i t ies o f  less than 1 md). 

Permeabil ity i n  the weakly bioturbated zones (11,741 and 11,735 ft) 

Per- 

30 md (two of the 

The response o f  porosi ty t o  b io tu rba t i on  i s  varied. In  the bioturbated in-  

t e r v a l  11,741 t o  1,737 f t  ( f i g .  32) ,  poros i ty  i n  one o f  t he  samples was s im i la r  

t o  t h a t  o f  adjacent weakly bioturbated sandstones, whi le  the other was 5 percent 

n gra in  size, po ros i t i es  lower, Where b io turbat ion i s  accanpanied by a change 

decrease markedly (23 t o  7.5 percent; 11,735 t o  11,732 

organisms o f  f i n e r  grained d e t r i t u s  from the over ly ing 

stones i s  the probable cause o f  t h i s  decrease. 

ft), Int roduct ion by the  

deposits i n t o  the sand- 

The inf luence o f  t e x t u r a l  var ia t ions on poros i ty  and permeabi l i ty  i n  t h e  

Pleasant Bayou cores i s  masked t o  a large extent by the overr id ing e f f e c t s  o f  

diagenesis. 

i s  indicated i n  f i g u r e  338 (14,760 t o  14,766 ft). 

poor t o  moderate, and i n  gra in  shape from subangular t o  subrounded i s  accom- 

panied by an increase i n  permeabil i ty (125 md t o  an average o f  850 md) w i t h i n  

sandstones o f  a constant gra in  s i ze  and s im i la r  scale o f  structure. 

However, t he  importance o f  t e x t u r a l  con t ro l s  on reservoir  q u a l i t y  

Here, changes i n  so r t i ng  from 

The reverse 

a lso holds t r u e  as a decrease i n  sor t ing and rounding r e s u l t s  i n  a decrease i n  

permeabil i ty and poros i ty  ( f i g .  33B, 14,750 t o  14,754 ft), 
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I ndur a t  i o n 

bi Indurat ion refers  t o  the  hardness and cohesiveness o f  sandstones and can be 

an i nd i ca to r  of poros i ty  and .permeabil i ty .  We1 1-i-ndyrated sandstones i n  the d 
F r i o  Formation ( f i g .  33A, B; and f i g .  35) have n e g l i g i b l e  permeabil i t ies. On 

the other end of the spectrum, indurated but f r i a b l e  sandstones are character- 

ized by comparatively high permeabi l i t ies  ( f i g .  35). 

Poros i ty  and Permeabil i ty as a Function 
o f  Depositional Environment 

Environments o f  deposi t ion o f  the sandstones in tersected by the Pleasant 

Bayou cores were in terpreted on the basis o f  sandstone geometries (Bebout and 

others, 1978, 1980) and v e r t i c a l  arrangement o f  g ra in  s i ze  and primary sedimen- 

t a r y  structures. The nature and i n t e n s i t y  o f  b io tu rba t i on  and micropaleontolog- 

i c a l  evidence (Appendix A) were also taken i n t o  account. The broad deposit ion- 

a l  se t t i ng  of the geopressured F r i o  i n  the Chocolate BayoulDanbury Dome area i s  

i n f e r r e d  t o  be a high-construct ive d e l t a i c  system w i t h  i nd i v idua l  deposi t ional  

sequences e x h i b i t i n g  lobate net-sand patterns. 

w i t h i n  t h i s  d e l t a i c  system are represented i n  the cores. Because o f  t h e  dynamic 

nature o f  the deltaic-marine in ter face,  t he re  i s  o f ten  a r a p i d  a l t e r a t i o n  o f  

subenvironments w i t h i n  t h e  del ta ic-shal low marine system. For example, marine 

reworking o f  de l ta -p la in  sediments fo l l ow ing  lobe abandonment and switching o f  

f l u v i a l  a c t i v i t y  elsewhere on the d 

i t s  o f  var iab le thickness interbedded wi th in  a predominantly subaerial sequence 

35, 15,660 ft). Ver t i ca l  a l t e r n a t i o n  o f  subenvironments i n  t h i s  instance 

A v a r i e t y  o f  subenvironments 

% 

a p l a i n  r e s u l t s  i n  nearshore marine depos- 

(marine sandstone interbedded i n  f l u v i a l  sandstone) would not in f luence reser- 

vo i r  behavior as markedly as superposit ion of more d i s t a l  marine fac ies (lower 

shoreface s i l t s tones  or offshore mudstones) or f l o o d p l a i n  mudstones ( f i g .  35, 

15,625 ft) i n  the sequence. Therefore p red ic t i on  o f  reservo i r  behavior should 
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always consider the dynamic nature ‘of the systems responsible f o r  deposi t ion and 

accumulation o f  the reservo i r  host rocks. 

Porosi ty and permeabi l i ty  trends w i t h i n  these subenvironments are d i r e c t l y  

re la ted  t o  gra in  size, sedimentary structures,  and bioturbat ion.  Thus, t he  

lower shoreface, which i s  composed o f  bioturbated, very f i n e  grained, horizon- 

ta l ly  laminated sandstone, has lower poros i t ies  and permeabi l i t ies  than do the  

sparsely bioturbated, crossbedded, very f i n e  t o  f ine-grained sandstones o f  the 

upper shoreface ( f igs.  32 and 34). 

sandstones o f  d istr ibutary-mouth bars ( f i g .  33A, 8) and sand- f i l  l ed  d i s t r i b u t a r y  

channels have r e l a t i v e l y  higher poros i t ies  and permeabi l i t ies  than do associated 

subenvironments ( f i g .  35). 

S i m i l a r l y ,  the  medium-grained crossbedded 

I n  summary, a knowledge o f  grain-size trends, sedimentary structures,  and 

b io tu rba t ion  associated w i t h  spec i f i c  deposi t ional  environments i s  c r i t i c a l  i n  

p red ic t ing  reservo i r  q u a l i t y  i n  adjacent areas f o r  which core data are unavai l -  

able. 

e r  grained sandstones (upper shoreface, f l u v i a l  channel, d istr ibutary-mouth bar 

subenvironments) have higher permeabili t i e s  than do the associated r i pp le -  

laminated and ho r i zon ta l l y  laminated, bioturbated, poor ly  sorted, f i n e r  grained 

sandstones of the lower shoreface, d i s t a l  de l ta- f ront ,  and levee subenviron- 

ments. 

I n  general, crossbedded, moderately sorted and rounded, r e l a t i v e l y  coars- 

Faci es Control on Reservoir Cont inu i ty  

Sandstone reservo i rs  are r a r e l y  the uniform, l a t e r a l l y  pers is ten t  sheet 

sands they are o f ten  assumed t o  be. Sandstone deposi t ional  geometries d i f f e r  

markedly its a r e s u l t  o f  deposi t ion under widely divergent conditions; f o r  ex- 

ample, t h i ck ,  l a t e r a l l y  pers is tent  sheet sands deposited as distr ibutary-mouth 

bars i n  the de l ta - f ron t  s e t t i n g  o f  a const ruct ive lobate de l ta  ( f o r  example, the 

Andrau o r  C sand, f igs .  38 and 39) cons t i tu te  more a t t r a c t i v e  ta rge ts  than th in ,  
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Figure 38. Net-sand map o f  the  sub-T5 Andrau Sand ( the potent ia l  geopressured 
geothermal production i n t e r v a l )  and locat ion o f  the fence diagram presented i n  
f igure  39. The i s o l i t h  map suggests a high-constructive lobate d e l t a i c  o r i g i n  
f o r  the  Andrau Sand. 

111 



0 

O 
I- 

c 
114 110 

ft rn 

Honzontal Scale 

EXPLANATION 

( S.P. PATTERN and WELL NUMBER 
Y 89 

DELTA PLAIN (including Fluvial Channels and Overbank) 

0 ~NTERDWR~R~~TAW . ...-- .. .. .. 
[3 DISTRIBUTARY CHANNEL and MOUTH BAR 

MARGINAL DELTA FRONT 

DELTA-FRONT SLOPE 

DISTAL DELTA FRONT (including Sheet Sands [-I) and PRODELTA 

Figure 39. Fence diagram i l l u s t r a t i n g  the  cont inu i ty  o f  deposit ional  un 
t h e  production i n t e r v a l .  De l ta - f ront  sheet sands and distributary-mouth 
channel deposits a r e  l a t e r a l  l y  pers is tent  and comprise a more a t t r a c t i v e  
r a t i o n  t a r g e t  than the  t h i n  impersistent  sands o f  t h e  d e l t a  p l a i n  and de 
ma rg i n . I 1’ 
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impersistent,  f l u v i a l  sandstones o f  the  de l ta  plain.  S imi lar ly ,  th in ,  "shaly" 

sandstones o f  the  reworked de l ta  margin have a lower production po ten t ia l  than 

do continuous sand s t r ingers  (possibly deposited under storm-related condi t ions) 

o f  the  d i s t a l  de l ta  f ront .  Figure 39 i l l u s t r a t e s  the l a t e r a l  extent o f  the del-  

t a  f r o n t  and channel and mouth bar deposits and t h e i r  f a v o r a b i l i t y  as explora- 

t i o n  ta rge ts  compared t o  t h i n  impersistent sands o f  the  de l ta  p l a i n  o r  de l ta  

ma r g  i n . 
I n  add i t ion  t o  the  in f luence o f  deposit ional geometry on reservo i r  continu- 

i t y ,  v e r t i c a l  and l a t e r a l  superposit ion o f  subenvironments creates heterogeneity 

i n  prospective reservoirs.  Th in ly  interbedded i n t e r d i s t r i b u t a r y  mudstones and 

sandstones t h a t  prograded over l a t e r a l  l y  extensive distr ibutary-channel  and 

mouth-bar sandstones ( f i g .  39) i n h i b i t  v e r t i c a l  permeabi l i t ies  i n  the  po ten t ia l  

reservo i r  and make pos i t ion ing  o f  wel l  locat ions and perforated i n te rva l s  c r i t -  

i c a l .  S imi la r ly ,  l a t e r a l l y  continuous mudstones interbedded w i t h i n  f l u v i a l  

sandstones o f  a s t r a t i g r a p h i c a l l y  higher de l ta  system tha t ,  based on net sand 

patterns, was o f  the  high-construct ive lobate va r ie t y  ( f i g .  40) increase the  

heterogeneity (and reduce the cont inu i ty )  o f  a po ten t ia l  production i n t e r v a l  

( f i g .  41). 

more l a t e r a l l y  pers is tent  i n  a basinward d i rec t i on  but are not as extensive as 

i n  the  previous example ( f i g .  39). 

cross sections i n  the  proximal reaches o f  the  de l ta  and not i n  the region ' o f  

maximum marine reworking o f  the  f l u v i a l  sediments. 

d e l t a  f r o n t  winnows the f i n e r  f ract ion,  creat ing clean, l a t e r a l l y  pers is ten t  

sheet sands , in which inhomogeneities are minor. On a smaller scale, d i s t r i b u t a r y  

mouth-bar sands have been shown t o  be composed o f  the  coarsest g ra in  s ize  and 

contain large primary sedimentary s t ructures ( f ig.  33) and, as such, compose the  

most favorable reservo i r  i n  the  const ruct ive d e l t a i c  set t ing.  

D is t r i bu ta ry  mouth-bar sands i n  t h i s  lobate de l ta  th icken and become 

This i s  possibly a r e s u l t  o f  pos i t ion ing  the  

Marine reworking o f  the  
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Figure  40. 
o f  cross sections i l l u s t r a t e d  i n  f i g u r e  41. 

Lobate net-sand p a t t e r n  of the  T3 c o r r e l a t i o n  i n t e r v a l  and l o c a t i o n  
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Figure 41. Cross sections through the T3 depositional interval. 
ing of the assemblage across growth faults, the relative persistence of the 
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distr ibutary-mouth bar  and channel f a c i e s ,  and the  presence of mudstone drapes 
t h a t  i n h i b i t  v e r t i c a l  f l u i d  f low i n  the  d e l t a - p l a i n  deposits. 
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Vert ica l  Patterns 1 
Porosi ty and permeabi l i ty  values reported for modern sands (Pryor , 1973; cb 

Fulton, 1975), outcrops (Hutchinson and others, 1961; Polasek and Hutchinson, 

1967), and whole-core analyses ( f i gs .  24, and 32 t o  35) provide a wealth o f  data 

for i n t e r p r e t i n g  v e r t i c a l  changes i n  pore propert ies. Earl i e r  workers re1 i e d  on 

nonuniform var iants  and s t a t i s t i c a l  (Monte Carlo) techniques t o  describe and 

represent permeabi l i ty  i n  reservoir  models because var ia t ions were thought t o  be 

crpd 

random (Warren and others, 1961). For example, Polasek and Hutchinson (1967) 

measured outcrop permeabi l i t ies f o r  seven v e r t i c a l  outcrop sections i n  t h e ,  

Cretaceous Almond sandstone and concluded t h a t  permeabi l i ty  d i f ferences were 

randomly d i s t r i bu ted .  However, examination o f  t h e i r  data reveals d e f i n i t e  perme- 

a b i l i t y  trends dipping across the  outcrop a t  1 degree (apparent s t ruc tu ra l  dip?) 

with cycles o f  higher and lower permeabi l i ty  about 15 t o  20 ft thick.  Reevalua- 

t i o n  o f  pore propert ies i n  t h i s  repo r t  using deposit ional models gives more or- 

der and meaning t o  v a r i a b i l i t y  t h a t  previously was considered random. 

permeabi l i ty  are not  d i r e c t l y  related; however, the v e r t i c a l  

t rends o f  poros i ty  and permeabi l i ty  w i t h i n  sandstones are remarkably consistent 

and form r e p e t i t i v e  patterns. 

f i v e  are systematic (upward increase, upward decrease [ f i g .  331, cent ra l  i n -  

crease, cen t ra l  decrease [ f i g .  351, and uni formly low [ f i g .  34]), whereas t h e  

s i x t h  i s  i r r e g u l a r  or a composite ( f i g .  32) o f  the other types. 

O f  the s i x  basic patterns documented ( f i g .  42) 

I n  t h e i r  simplest form, patterns one and two r e f l e c t  upward-coarsening and 

upward-fining sequences; p a t t e r n  th ree  usua l l y  represents o r i g i n a l  pore trends 

or t i g h t  streaks associated w i th  the  upper and 1 ower sandstone boundaries; pat- 

t e r n  f i v e  represents late-stage cementatdon, occlusion o f  primary porosity, and 

d ras t i c  reduct ion of permeabil i ty; and pat tern s i x  i s  usual ly  associated w i t h  

t h i c k  amalgamated sandstones, each w i t h  var iable i n te rna l  propert ies and sepa- 

ra ted from one another by shale. Higher po ros i t i es  and permeabi l i t ies near t h e  
4 
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SP Permeability Porosity SP Permeability Porosity 

1. UPWARD INCREASE 2. UPWARD DECREASE 

3. CENTRAL INCREASE 4. CENTRAL DECREASE 

7 ‘. 
1 .’ t 

5. UNIFORMLY LOW 6. IRREGULAR 

F i g u r e  42. Generalized patterns f o r  v e r t i c a l  changes i n  pore propert ies  w i t h i n  
a sand body. 
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sandstone margin, shown by pa t te rn  four, are d i f f i c u l t  t o  explain, Perhaps they 

r e f l e c t  a l t e r a t i o n  and leaching by ground water, or they may represent an i n -  

verse r e l a t i o n  t o  o r i g ina l  tex tu ra l  propert ies whereby clean we1 1-sorted sands 

were t i g h t l y  cemented, whi le  moderately sorted sands were less  af fected by ce- 

mentation, I n  any case, pa t te rn  four i s  the l eas t  common. 

Pore Propert ies and S t r a t i f i c a t i o n  

Judging from l i m i t e d  published data (Mast and Potter, 1963; Pryor, 1973) 

and avai lab le core analyses, poros i ty  and permeabil i ty are i n d i r e c t l y  re la ted  t o  

in te rna l  s t r a t i f i c a t i o n  because sedimentary structures are p a r t l y  con t ro l led  by 

gra in  size. I n  modern sands, a r e l a t i v e  ranking o f  permeabi l i t ies from highest 

t o  lowest corresponds t o  (1) foresets  and large-scale troughs, (2) hor izonta l  

and low-angle i n c l i n e d  pa ra l l e l  s t r a t i f i c a t i o n ,  and (3) small-scale troughs and 

r i p p l e  c ross-s t ra t i f i ca t ion .  Simi lar  conclusions can be derived from the data 

of Hewitt  and Morgan (1965), Polasek and Hutchinson (1967), and Dodge and others 

(1971). 

t i e s  o f  surrounding sediments, fo r  as Pryor (1973) noted, "a bedding u n i t  o f  

_higher permeabi l i ty  completely surrounded by u n i t s  o f  lower permeabi l i ty  w i l l  

not  demonstrate i t s  u l t imate  through-flow c a p a b i l i t y  but w i l l  have an e f f e c t i v e  

permeabi l i ty  inf luenced and l a r g e l y  determined by the lower permeabi l i t ies  of 

the boundi ng u n i t s  . " 

These relat fonships,  however, should be used i n  the context o f  proper- 

Mast and Potter (1963), among others, found t h a t  permeabi l i ty  i s  highest 

p a r a l l e l  t o  s t r a t i f i c a t i o n  and gra in- fabr ic  or ientat ion.  Therefore, h igh ver- 

t i c a l  permeabi l i t ies  may ind ica te  f ractur ing across bedding surfaces. 

Frequency gnd Arrangement o f  Flow Bar r ie rs  

According t o  Polasek and Hutchinson (1967), f l u i d  movement i s  l a r g e l y  de- 

termined by the d i s t r i b u t i o n  o f  sand and shaly sand rather  than by permeabi l i ty  
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var ia t ions  w i t h i n  a sand. 

d ic ted  from sedimentary models may a i d  i n  evaluat ing reservo i r  performance. 

Therefore, gross arrangement o f  sediment types pre- 

hpI 

b The d i s t r i b u t i o n  o f  pore space and f low ba r r i e rs  can be re la ted  t o  the en- 

vironment o f  deposi t ion in te rpre ted  from t h e  SP and short-normal r e s i s t i v i t y  

curves (Sneider and Others, 1977). 

bet ter  p red ic t ion  o f  f low barr iers ,  t h e i r  e f f e c t  on reservo i r  production, 'and 

the probable locat ions o f  i so la ted  segments w i t h i n  a sand body t h a t  remain 

undrained dur ing primary production. 

Establishment o f  these re la t ionsh ips  a1 lows 

Poros i ty  and permeabi l i ty  var ia t ions  i n  f l u v i a l  sandstones are s l i g h t l y  

more predic tab le i n  fine-grained, mixed-load and suspended-load channels than i n  

coarse-gr ained, bed-1 oad channel s because channel deposits o f  mixed-1 oad and 

suspended-load streams t y p i c a l l y  f i n e  upward. The high percent o f  s i l t  and c l a y  

t ransported by these streams gives r i s e  t o  a broad range o f  g ra in  sizes t h a t  a re  

mixed and sorted a t  various stages o f  stream discharge. The r e s u l t i n g  assem- 

blages of sedimentation u n i t s  are commonly graded or a t  l e a s t  capped by numerous 

c l a y  drapes t h a t ' a r e  preserved as discontinuous shale partings. 'The frequency 

o f  shale layers and the propor t ion o f  s i l t  and c lay  gradual ly  increase upward, 

r e s u l t i n g  i n  upward decreases i n  poros i ty  and permeabi l i ty  and v e r t i c a l  con- 

t i nu i ty . 
I n  contrast ,  streams t ranspor t ing  coarse-grained sediment do not  e x h i b i t  

systematic ve r t i ca l  changes i n  size, hence, the  r e l a t i v e  pos i t ions o f  major 

permeabi l i ty  changes are uncertain. Judging from Pryor 's (1973) data, abrupt 

decreases i n  porost'ty and permeabi l i ty  occur a t  the tops and b 

grained channel deposits. The lower permeabi l i t ies  near the c 

caused by in te rca la ted  mud layers formed dur ing rap id  f a l l  i n  f l ood  stage. 

These slack-water deposits w i t h i n  the  thalweg are commonly eroded or completely 

removed dur ing subsequent stages o f  f lashy discharge, but some are  preserved as 

t h i n  shale lenses or wedges. 
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Coarse-gr ained r i v e r  deposits are commonly poor ly sorted and contain large- 

scale sedimentary structures. These condi t ions lead t o  h igh l y  tor tuous f low 

paths because d i p  d i rec t ions  i n  the master bedding and sedimentary structures 

are var iab le  and o f ten  opposite. 

s., 
4 

Percent sand, sand thickness, and bulk permeabi l i ty  (product o f  reservoir  

thickness and permeabi l i ty)  decrease toward the  margins o f  f l u v i a l  and d i s t r i b u -  

tary channels, but bu lk  permeabi l i ty  var ies g rea t l y  w i t h i n  the sand body (Houser 

and Neasham, 1976), owing t o  t runcat ions and other bedding disrupt ions,  and t o  

changes i n  gra in  fabr ic .  

The commonly recognized upward-coarseni ng sequence attendant w i th  d e l t a  

progradation provides a ra t i ona l  basis f o r  p red ic t ing  gross i n te rna l  proper t ies 

of del ta- f ront and delta-margin sands. For purposes o f  t h i s  discussion, a prac- 

t i c a l  d i s t i n c t i o n  can be made between complete and incomplete progradational se- 

quences. The former are character ized by superposition o f  d i s t r  ibutary-channel 

sands over sands o f  de l ta - f ron t  or distr ibutary-mouth or ig in .  I n  contrast, 

de l ta - f ron t  sands are usua l ly  over la in  by she l f  or de l ta -p la in  muds i f  progra- 

da t ion  i s  incomplete because o f  d i s t r i b u t a r y  abandonment. The s ign i f icance o f  

t h i s  d i f fe rence i s  t h a t  t he  number and thickness o f  shale interbeds decrease 

upward i n  the  camplete progradational sequence, whereas de l ta - f ron t  sands o f  

incomplete cycles may be over la in  as well as under la in by interbedded sands and 

shales. 

, 

Sor t ing  improves, and sand percent and sand-bed thickness increase upward 

i n  de l ta - f ron t  and de l ta - f r inge  deposits. Both de l ta - f ron t  and del ta- f r inge 

sands are h igh l y  continuous, but de l ta - f r inge  sands have poor v e r t i c a l  permea- 

b i l  i t y  because o f  numerous l a t e r a l  1 

poor ly sorted, sand beds th in ,  and gra in  sizes decrease away from d i s t r i b u t a r y  

channels. The physical changes cause reduct ion i n  the  bulk  permeabi l i ty  o f  

del t a-fr i nge deposits (Houser and Neasham, 1976) 

ve c lay  beds. Sands become more 
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Ver t i ca l  trends o f  poros i ty  and permeabi l i ty  i n  b a r r i e r s  and strandplains i 
I 

I are somewhat analogous t o  those found i n  de l ta  f ron ts  and distr ibutary-mouth i 
~ 

bars because o f  upward-coarsening textures, but beyond t h a t  s i m i l a r i t y  they are  

q u i t e  d i f f e r e n t  i n  a t  l e a s t  two respects. 

sediment sor t ing  along b a r r i e r  and s t randpla in  shorelines produce cleaner and 

bet ter  sorted sands w i th  p r a c t i c a l l y  no mud deposited on the  upper shoreface and 

beach. Moreover, the l a t e r a l  con t i nu i t y  o f  t h i c k  b a r r i e r  and s t randpla in  sand 

bodies fa r  exceeds t h a t  o f  most de l ta  f ron ts  and distr ibutary-mouth bars 

F i r s t ,  the  strong wave ac t ion  and 
i 1 
I 
I 
I 

( tab les 1 and 2). 

p la ins  possess the  greatest l a t e r a l  and v e r t i c a l  c o n t i n u i t y  o f  t he  cunmn 

sandstone types . 
Consequently, i n  t h e i r  unaltered state, b a r r i e r s  and strand- 

Outer she l f  and slope sands are best developed i n  submarine channel and fan  

complexes. The d i s t r i b u t i o n  o f  low-permeabil ity zones i n  these deep-water sand- 
I 
I stones i s  s im i la r  t o  the spa t ia l  pat terns i n  d e l t a i c  deposits. The th i ckes t  and 

cleanest sands are associated w i t h  submarine channel deposi ts t h a t  a re  l a t e r a l l y  
I 

1 I 

~ 

r e s t r i c t e d  and v e r t i c a l l y  separated by shaly in terva ls .  

c ia ted  w i t h  the submarine fan  deposi ts a re  remarkably uni form i n  th ickness and 

l a t e r a l l y  continuous over broad areas. 

sandstones i s  extremely low because interbedded shales are cunparable t o  or 

greater than the  sand layers i n  thickness. Turb id i tes  are a lso character ized by 

some contorted and bioturbated zones w i t h  extremely low permeabi l i t ies.  Except 

for  t he  t h i c k  channel sands, t u r b i d i t e s  general ly make poor reservo i rs  for pro- 

duct ion o f  l iqu ids .  

Thin-bedded sands asso- 

I 

However, v e r t i c a l  c o n t i n u i t y  i n  these 

IMPLICATIONS FOR GEOPRESSURED ENERGY DEVELOPMENT 

On the basis o f  energy product ion requirements, sand bodies can be ranked 

accordi ng t o  sand vol ume , 1 ater a1 con t i  nui  ty, and in te rna l  heterogeneity. Ideal  - 

b 
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reservo i rs  consis t  o f  l a rge  l a t e r a l l y  extensive sand bodies w i t h  minimal i n t e r -  

ference t o  f low from i n t e r n a l  permeabi l i ty  barr iers.  Some natura l  reservo i rs  

approach t h i s  h igh standard, but most are less  than ideal  because o f  external  

and in te rna l  d iscont inu i t ies .  

iented para1 le1 t o  regional  s t ruc tu ra l  f a b r i c  approximate the ideal  reservoir .  

These deposits also have h igh permeabi l i t ies  i n  the upper pa r t  o f  the sand body, 

an added advantage w i t h  regard t o  production o f  gravity-segregated f l u i d s  such 

as o i l  and gas. 

rtis, 

d 
I n  theory, ba r r i e r  and strandplain sandstones or-  

F1 uv ia l  sandstones or iented normal t o  regional s t ruc tu ra l  f a b r i c  rank sec- 

ond according t o  the  favorable c r i t e r i a .  These meanderbelt systems may conta in  

substant ia l  quant i t ies  o f  sand in te r laced and interconnected throughout the 

v a l l e y - f i l l  network. A c lose t h i r d  are d i s t r i b u t a r y  channel sands and associ- 

ated 'de l ta - f ron t  and d i s t r  ibutary-mouth bar sands or iented normal t o  deposition- 

a l  s t r i ke .  The channel and bar-finger sands are commonly th icker  and narrower 

than a1 l u v i a l  channels although they both e x h i b i t  s im i la r  pore properties. 

\ 

Favorable reservo i r  po ten t ia l  markedly decreases toward the  de l ta  f r i n g e  and 

d i s t a l  d e l t a  f ront .  

Submarine channels and fans or iented normal t o  regional  s t ruc tu ra l  f a b r i c  

provide the l e a s t  volume and l a t e r a l  con t i nu i t y  o f  the  common sandstone types. 

A disadvantage o f  these and other channel sandstones i s  t h a t  h ighest permeabil- 

i t i e s  are o f ten  associated w i t h  the  coarsest g ra in  s izes and la rges t  sedimentary 

s t ructures found near the  channel base. Although channel sands make excel lent  

reservo i rs  when completely f i l l e d  w i t h  hydrocarbons, they are l e s s  su i tab le  when 

only  p a r t i  a1 l y  f i l l e d  because reservo i r  c o n t i n u i t y  and permeabil i t i e s  decrease 

toward the top  o f  the  sand body. However, basal channel sands are  su i tab le  for 

so lu t ion  gas production i f  s t ruc tu re  and g rav i t y  segregation o f  t he  f l u i d s  are 

unimportant . 

1 
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The r e l a t i v e  ranking o f  these sand bodies i s  g rea t l y  s imp l i f ied ,  and un- 

However, the  ranking can serve as a h*j doubtedly there  are numerous ?xceptions. 

guide t o  drainage e f f i c i e n c y  on the basis o f  shaliness. Conceptually, upper t 
shoreface and beach sands should provide greater l a t e r a l  con t inu i ty ,  fewer re- 

s t r i c t i o n s  t o  flow, and, consequently, greater drainage e f f i c i e n c y  than d i s t a l  

de l ta - f ron t  sands. 

poor agreement between reservo i r  volumes estimated from geological maps and 

ca lcu lated from production data. 

Inhomogeneities w i th in  the sand body account i n  par t  fo r  t h e  
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APPENDIX 

Mic ro foss i l  Recovery and Pa l  eoenvironmental I n t e r p r e t a t i o n  

f o r  DOE/General Crude No. 1 and No. 2 Pleasant Bayou Cores 

Brazor i  a County, Texas 

Micropaleontological analysis and i n t e r p r e t a t i o n  o f  31 core samples were 

undertaken by Clarence A1 bers of h o c 0  Production Company, Houston, Texas. Sam- 

ples selected f o r  analysis were taken from mudstones and s i l t y  mudstones o f  the  

Pleasant Bayou we1 1 s . Foss i 1 s present were i d e n t i  f i ed , and t h e  pal eoecol ogy o f  

the depositional system interpreted. 

i n i t i a l  rock volumes processed were not measured, as r e l a t i v e  numbers are ade- 

Fossi l  numbers recorded are vague because 

quate f o r  paleoecological in te rpre ta t ion .  The paleoecological in te rpre ta t ions  

based on f o s s i l  evidence agree very we1 1 w i th  i n te rp re ta t i ons  o f  deposi t ional  

systems based on deposi t ional  geometry and core cha rac te r i s t i cs  . 
Microfoss i 1 Recovery 

#l Pleasant Bayou 

10229 Tatulur ia  cf. dibotlensis - numerous 
Ronwn a f f .  s t rum - s ing le  
Butiminet la c f  . etegantissima 
Cgtheridea sp. 
Qthere t ta  jeffersonemis - s ing le  

10232 Textuluria cf.  dibotlensis - several 
Textuluriu cf. nwm)ttnvegi - s ing le  
Textuluria Spp. - few 
DiscorHs nomada - several 
T r o c h d n a  sp. - r a r e  
lPoniaetta sp. - several, very small 
Buliminetlu cf .  etegantissima - common 
Botivina cf. s t ~ d a t u t a  - few 
Virgutina c f .  pontoni - r a r e  
Globigerina sp. - s ing le  
Qtheretta jeffersonensis - few 
Pyri t i zed diatoms 
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10233.5 L%scorbis nomada - r a r e  
Nonionetla sp. - r a r e  
Virgutina pontoni - s ing le  
Raptocutheridea i s ~ a e t s k ~  - fragment 
RaptocythePidea sp. - fragments 

10236.5 ~scorbis'nomada - common 
T&ular€a momhinvegi - f a i r l y  common 
Textuhda SD. 

10239 

10242 

10246 

10249 

BulinrhaeZla-if . elegantissima - common 
Cibccides haaaad% - two 
Virgutina pontmi - fragment 
B o l i v i n a  cf. striatuk2 - several 
Nonitmetla sp. 
E l p h i d i m  incepturn - two 
Angulogedna sp. - s ing le  
Trochanmrin& sp. - common 

Raploctttheddea ispaetskyi - s ing le  

I 

AmbaCutite6 cf. Batas - two 

s ing le  & fragments 

Textularda sp. 
Nscorbis nomdda - several 
Bolivina cf. striatulq - r a r e  
Trochammina sp. - several 
CibCcide6 haaaardi - s ing le  
Raplocutheridea ismetsky% - fragment 

Textuhda mornhinvegi 0 several 
TextuhPia sp. - several 
Discorbis nomada - r a r e  
Trochandnu sp. - few 
A?nn~b&CUtCte8 cf. satsus - ra re  
Qthepetta &ffersonensCs - s ing le  
CgthePidea 3 sp. - fragment 

Discopbis no& - two 
Cibicides hasaardi - s ing le  
Bo t i v ina  cf. st&tuta - r a r e  
Textulada moPnh$nveg$ - few 
Textutaria sp. - single 
Trochanrmina sp. - r a r e  
Amb&cutites cf. satsus - r a r e  
HapZoctjthePidea h w e t s k t j 5  - s i  ng l  e 

I 

very poor ly  preserved 
llironion pixarrense - s ing le  
C g c l u d n a  sp. - compressed 
Eponides cf . et tisome 
Trochandna sp. - r a r e  
RObUtUs Sp. - V 
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10260 

10262 

11752 

11761 

14065 

14069 

14072.5 

14075 

14079 

14080.5 

14086.9 

14103 

14105 

15559.2 

15561.2 

Eponides e t t i e o ~ ~ e  - three 
Textularia cf . dibot lensis 
Textuluria sp. 
~mmobacutites cf. satacs - several 
Cytheridea ? sp. - fragment 

A ~ ~ d ~ ~ c u t i t e 6  C f .  6at6U6 - few 

' D i S 6 O P b h  ? Sp. 
cyctanmriM sp. - smal 1,  several 

Amphistegina ? sp. 
Eponides ? sp. 
Amphistegina ? sp.  

very poorly preserved, worn 

No fossils noted 

No fossils noted 

No fossils noted 

Trochanrmina sp. - compressed, fairly common 
~ m b a c u t i t e s  cf. sutsw - several 
Pyritized diatoms - rare 

Trochanrmina ? s p .  - rare, poor 
P y r i t i r e d  diatoms - rare 

Discorbis nomada - several 

Nonionetlu sp. - single, pyritized 
Ammobacutites cf. sateus - few 
TrochanmrCna sp. - fairly common, very small 
Pyritized diatoms 

D i s C O P b h  SP. 

TextuluPia seZigi - single 
Textulada sp. 
Amm~bacutites cf. sateus - fairly common 
Trochammina sp. - common 
Pyritized diatoms - common 

T e x t u l u h  sel igi  - three 
Ammobacutites cf. satsus - several 
~rochanrmina sp. - fairly common, very small 

No fossils noted 

Ambacutites (?) sp. - very rare 

No fossils noted 

Ambacutites C f .  6at8U6 - COmmOn 

Ammobacutites cf. satsus - fairly common 
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15562 Anmobacu1ites cf .  sahus - several 

6, 15592 No f o s s i l s  noted 

'trs 
82 Pleasant Bayou 

No marine f o s s i l s  noted i n  the  s i x  samples provided i n  the  in terva l  15624-15674. 

I 
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Pal eoenvi r onment a1 I n t e r p r e t a t i o n  

#1 Pleasant Bayou 

10229-10262 

11752-1 1761 

14065-14072 5 

14075-14080.5 

14086.9-14105 

15559.2 - 155562 

15592 

52 Pleasant Bayou 

15624- 15674 

Inner n e r i t i c  

Unfossil  i f e r o u s  - non-marine? 

Transi t ional  - bay, lagoon 

Inner n e r i t i c  

Unfoss i 1 i ferous or t r a n s i t i o n a l  

Transi t ional  - bay, lagoon 

Unfossil  i f e r o u s  

Unfossil  i f e r o u s  - high 1 i g n i t e  content 
indicates marsh or swamp deposit .  

i 
u i  
L 
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