Hot corrosion of ceramic-coating materials for industrial/utility gas turbines

PDF Version Also Available for Download.

Description

Furnace hot corrosion tests of yttria-stabilized zirconia (YSZ) and other candidate ceramic coating materials were run under combinations of temperature, salt deposits, and gaseous environments know to cause severe hot corrosion of state-of-the-art metallic coatings for industrial/utility gas turbines. Specimens were free-standing ceramic coupons and ceramic-coated IN 792. X-ray fluorescence and diffraction data on free-standing YSZ coupons showed surface yttrium loss and cubic-to-monoclinic transformation as a result of exposure to liquid salt and SO/sub 3/. Greater destabilization was observed at the lower of two test temperatures (704 and 982/sup 0/C), and destabilization increased with increasing SO/sub 3/ pressure and V-containing ... continued below

Physical Description

Pages: 33

Creation Information

Barkalow, R.H. January 1, 1981.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Furnace hot corrosion tests of yttria-stabilized zirconia (YSZ) and other candidate ceramic coating materials were run under combinations of temperature, salt deposits, and gaseous environments know to cause severe hot corrosion of state-of-the-art metallic coatings for industrial/utility gas turbines. Specimens were free-standing ceramic coupons and ceramic-coated IN 792. X-ray fluorescence and diffraction data on free-standing YSZ coupons showed surface yttrium loss and cubic-to-monoclinic transformation as a result of exposure to liquid salt and SO/sub 3/. Greater destabilization was observed at the lower of two test temperatures (704 and 982/sup 0/C), and destabilization increased with increasing SO/sub 3/ pressure and V-containing salt deposits. The data suggest that hot corrosion of YSZ can occur by a type of acidic dissolution of Y/sub 2/O/sub 3/ from the ZrO/sub 2/ solid solution. In spite of the greater surface destabilization at 704/sup 0/C, the bond coat and substrate of YSZ-coated IN 792 were not attacked at 704/sup 0/C but severely corroded at 982/sup 0/C. These results show that degradation of ceramic-coated metallic components can be more strongly influenced by the porosity of the microstructure and fluidity of the liquid salt than by the chemical stability of the ceramic coating material in the reactive environment. Other ceramic materials (SiO/sub 2/, Si/sub 3/N/sub 4/, ZrSiO/sub 2/, and mullite), concurrently exposed to the same conditions which produced significant destabilization of YSZ, showed no evidence of reaction at 704/sup 0/C but noticeable corrosion at 982/sup 0/C. Also, the high temperature corrosion was greater in air than in SO/sub 3/-containing gases. These trends suggest that hot corrosion of the silicon-containing ceramics was basic in nature, and such materials have potential for good resistance to chemical decomposition under the acidic conditions characteristics of industrial/utility gas turbines.

Physical Description

Pages: 33

Notes

NTIS, PC A03/MF A01.

Source

  • Other Information: Portions of document are illegible

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE82008638
  • Report No.: DOE/ET/13330-T1
  • Grant Number: AC03-78ET13330
  • DOI: 10.2172/5345936 | External Link
  • Office of Scientific & Technical Information Report Number: 5345936
  • Archival Resource Key: ark:/67531/metadc1071850

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1981

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • April 4, 2018, 12:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barkalow, R.H. Hot corrosion of ceramic-coating materials for industrial/utility gas turbines, report, January 1, 1981; United States. (digital.library.unt.edu/ark:/67531/metadc1071850/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.