MASTER

ECONOMIC EVALUATION OF THE MIT PROCESS FOR MANUFACTURE OF ETHANOL

By D. M. Jenkins T. S. Reddy

June 28, 1979

Work Performed Under Contract No. ET-78-X-01-3992

Battelle Columbus Laboratories Columbus, Ohio

U.S. Department of Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

"This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

DSE-3992-T1 Distribution Category UC-61

REPORT TO

U.S. DEPARTMENT OF ENERGY

on

ECONOMIC EVALUATION OF THE MIT PROCESS FOR MANUFACTURE OF ETHANOL

June 28, 1979

Ъy

D.M. Jenkins and T.S. Reddy

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

> . ||

EXECUTIVE SUMMARY

This report summarizes the results of an economic evaluation of the MIT process for the manufacture of ethanol from cellulosic residues. Conceptual process designs were developed for two cases, Case A which is based on the experimental data obtained to date, and Case B which hypothesizes the suppression of acid byproducts. Manufacturing costs, including profit, were estimated at \$12.20/million Btu for Case A and \$9.40/million Btu for Case B. These are equivalent to about \$1.05 and \$0.80/gal ethanol respectively. These economic estimates may be slightly on the low side since they do not consider feedstock storage nor working capital requirements. Nevertheless, the manufacturing costs for Case A appear to be comparable to those of the manufacture of ethanol from corn.

The plant size used for this analysis was 1500 ton/day corn stover. This is considered to be a realistic size. The conceptual plants make about 27 million gal/yr ethanol in Case A and 41 million gal/yr in Case B.

The MIT process appears to be one of the more promising programs being developed under contract for DOE. We would recommend that the process research be continued.

Three areas of concern were identified which must be investigated before the process can be commercialized. First, a satisfactory means of storage of corn stover and other agricultural residues must be developed. Second, a method to sterilize corn stover must be developed or it must be demonstrated that the MIT process can run continuously for extended periods with stover that has not been sterilized. Third, research must be done to demonstrate the recycle and reuse of process water.

iii

TABLE OF CONTENTS

		Page
	INTRODUCTION	1
	PROCESS DESCRIPTION	3
	Feed Preparation	3
	Fermentation	3
•	Distillation	5
	Anaerobic Digestion	5
••	Offsites	6
0	PROCESS ECONOMICS	7
	DISCUSSION	12
	APPENDIX APROCESS DETAILS	-1
	Process Flow Sketches	
	FIGURE A-1. FEED PREPARATION	-2
	FIGURE A-2. FERMENTATION SECTION	-3
	FIGURE A-3. DISTILLATION SECTION	4
	FIGURE A-4. DIGESTER SECTION	<u>.</u> ≂5
	Major Equipment List	-6
	LIST OF TABLES	
	TABLE 1. BASIS FOR PROCESS DESIGN	2
	TABLE 2.MANUFACTURING ECONOMICS, MIT ETHANOL PROCESSCASÉ ACASÉ A	8
	TABLE 3.MANUFACTURING ECONOMICS, MIT ETHANOL PROCESSCASE B	9
	TABLE 4. BASIS FOR THE COST ESTIMATION	1
	LIST OF FIGURES	
	FIGURE 1. BLOCK FLOW DIAGRAM ALCOHOL FROM CORN STOVER 4	

INTRODUCTION

The objective of this study was to make an independent review of the economic feasibility of manufacturing ethanol by the MIT process. The MIT process consists of the simultaneous hydrolysis and fermentation of cellulosic agricultural residues utilizing a mixed culture of thermophilic bacteria. The bacteria are <u>Clostridium thermocellum</u> and <u>C. thermosaccharolyticum</u>. This mixed culture has the ability to hydrolyze and convert both cellulose and hemicellulose to a mixture of ethanol, acetic acid, and lactic acid.

Two cases were investigated in this study. The first case, Case A, is based on actual experimental results to date.^{*} Case B is based upon an extrapolation of experimental results assuming that the formation of acetic and lactic acids can be suppressed. The fermentation conditions used as a basis for the economic evaluation are shown in Table 1. The yield of ethanol on corn stover is 18 percent for Case A and 27 percent for Case B.

The plant has been designed to manufacture fuel-grade (99.5%) ethanol. The plant was assumed to operate 24 hours per day, 330 days/year. The plant was sized to process 1500 ton/day corn stover and can produce about 27 million gallons per year in Case A and 40 million gallons in Case B.

Corn stover was selected as a typical agricultural residue because it is believed to be generally available and because the experimental data were based on corn stover. Assuming a typical corn belt yield of 100 bushels/acre and the removal of half the stover, about 400,000 acres of corn farms would be needed to supply the plant used in the study.

Cooney, C.L., Department of Nutrition and Food Science, Massachusetts Institute of Technology, Personal Communications (April and June 1979).

		•		<u></u>	Produ	ct Concen	trations	,g/1
Case	Productivity, g EtOH/1-hr	Dilution, hr ⁻¹	Initial Stover g/l	EtCH	Acetic Acid	Lactic Acid	Cells	Residue
A	1.37	0.03	245	45	22	30	7.7	98
В	1.37	0.03	165	45	0	0	7.9	66

۴.,

TABLE 1. BASIS FOR PROCESS DESIGN

Ν

PROCESS DESCRIPTION

The overall process block flow diagram used to estimate the cost of both cases is summarized in Figure 1. The plant consists of the following sections: feed preparation, fermentation, distillation, anaerobic digestion, steam plant, and waste treatment. There is no anaerobic digestion in Case B.

Feed Preparation

The feed preparation section is very simple. It consists of two belt conveyors to feed the stover, a mill and a screen to reduce the size of corn stover, and a pneumatic conveyor system to convey the milled stover to the feed bins installed over the fermenters.

The storage section was not included in the economic analysis. Due to the low bulk density of corn stover (about 16 pounds dry stover per cubic foot), the volume required to support one day's operation is about 190,000 ft³. Assuming the stover could be stored outside, 20 feet high, over 72 acres would be required for the storage area. Reclaiming the stover would be done with a combination of conveyor belts and bucket elevators. If the stover were stored in large bales, additional equipment would be needed to break these bales before milling.

The reader should note that the outdoor storage of corn stover for long periods of time has not been demonstrated. It is very likely that the cost for the storage section will be significant.

Fermentation

The fermentation section consists of several continuous fermenters. Each fermenter is installed with a vibrating bin for continuously feeding the milled corn stover. The feeder bins are continuously loaded with the stover by a pneumatic conveyor; sterilized nutrients and recycled/makeup water is pumped into the fermenters through a separate line. The fermenters operate continuously at a dilution rate of 0.03 (hour)⁻¹ and 140 F (60 C).

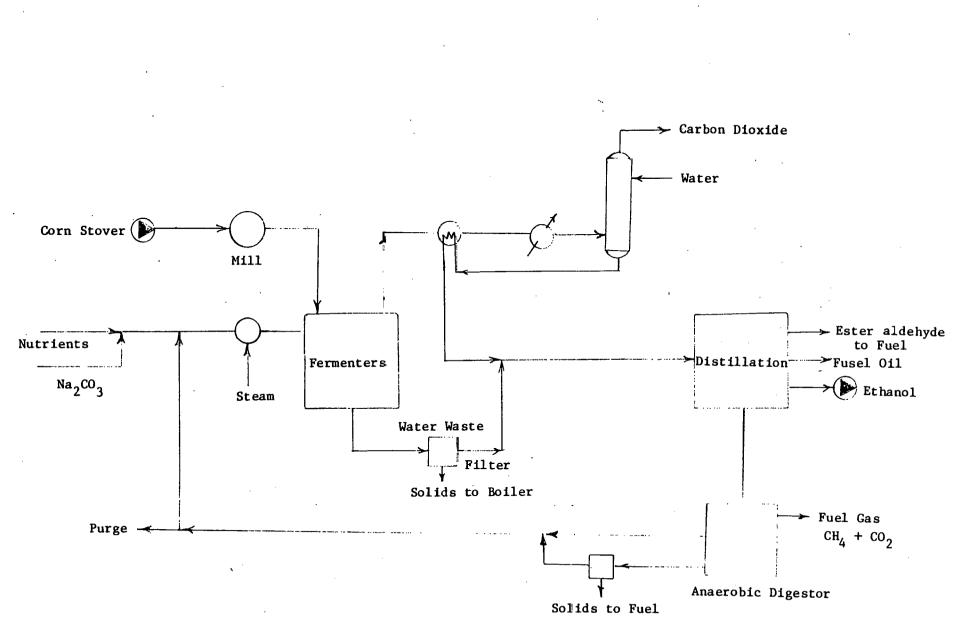


FIGURE 1. BLOCK FLOW DIAGRAM ALCOHOL FROM CORN STOVER

~

The beer from the fermenters is filtered and pumped into the beer tank. The solid residue obtained from the filters is used as fuel for steam generation. It was assumed that the filter cake would have 52 percent water and that a warm water wash of about 2 displacements would reduce the ethanol lost with the solids to a negligible amount. The carbon dioxide gas from the fermenters is cooled, and a water absorber is used to recover ethanol from the gas. The carbon dioxide is then vented to the atmosphere.

Distillation

The distillation section of the corn stover ethanol process is based on a recent DOE report^{*}. The distillation section consists of a stripper/rectifer, a dehydration tower, a hydrocarbon stripper, a fusel oil washer, and several heat exchangers. The Katzen design conserves energy.

The stillage from the distillation section goes to an anaerobic digester for Case A while it is recycled to the fermentation section directly without anaerobic digestion for Case B.

Anaerobic Digestion

The anaerobic digester is designed for 3 days detention. Ninety percent of the supernatant liquid from the anaerobic digester is recycled to the fermentation section. The other ten percent is purged to the waste treatment system. The solids from the digester are recovered by means of a centrifuge and burned as plant fuel. A fuel gas (836 Btu/cu ft) containing methane and carbon dioxide is recovered and sold to nearby · industrial customers. This relatively high heating value gas is obtained because much of the carbon dioxide from the digestion is retained in solution as sodium bicarbonate.

The costs of the anaerobic digestion section do not include any units for enriching fuel gas by removing carbon dioxide.

Moon, G.D. et al, "Grain Motor Fuel Alcohol Technical and Economic Assessment Study", Raphael Katzen Associates report to U.S. Department of Energy (December 1978).

Offsites

The steam plant is designed to consume all the combustible solid residues. It consists of two bagasse-fired boilers with a combined capacity of 190,000 pounds per hour 450 psig, 225 F superheat steam. Boiler efficienty of 63 percent was assumed. This steam plant supplies twice the process steam required for Case A.

The high-pressure steam is exhausted through back-pressure turbines which are connected to electric generators. The exhaust steam is used for the process requirements. Excess steam is sent through condensing turbines and is used to generate electricity.

The waste treatment cost is based on the bleed stream, boiler and cooling tower blowdowns. A BOD of about 2500 mg/l has been assumed in the combined streams. The costs do not include equalization nor a primary clarifier but do include the aerated stabilization basin, suspended solids removal, effluent monitoring and sludge dewatering. A removal efficiency of about 97 to 98 percent has been assumed. This removal corresponds to "hest practicable control technology".

PROCESS ECONOMICS

The process economics for the manufacture of ethanol by the MIT process are summarized in Tables 2 and 3. For Case A, which represents the best experimental results to date, the manufacturing cost including profit is estimated at about \$12.20/MM Btu (or about \$1.03/gal). If the process improvements hypothesized in Case B can be achieved, the estimated manufacturing costs would be reduced to about \$9.40/MM Btu (or \$0.80/gal). These economic estimates may be slightly on the low side since they do not consider feedstock storage nor working capital requirements. Nevertheless, it appears that the cost of manufacturing ethanol using the best experimental results to date is in the same range as the manufacture of ethanol from corn.

The estimated capital requirement for a plant processing 1500 ton/day corn stover is estimated at \$34.3 million for Case A and \$31.4 million for Case B. The daily capacities are 83,400 gal and 123,800 gal ethanol, respectively. All costs are expressed in 1979 dollars. The offsites represent about half of the total plant capital investment. Steam and electricity generation account for about 70 percent of the fixed investment in offsites. Working capital is not included in the estimate; it would probably be significant.

There is a considerable amount of solid residue recovered from the process. Most of this residue is unconverted corn stover, but it also includes cells generated in the fermentation and the anaerobic digestion. In the conceptual process design, all of this solid residue is burned and the heat used to generate steam. In Case A, half of the steam generated is not needed for the process. This excess steam was used to generate electricity.

A credit for this surplus in electricity was taken at 1.6¢/kwhr. This is the approximate break-even price for this electricity. Therefore, the overall process has not been penalized for the additional capital required to generate excess electricity and steam. Fortunately, the break-even cost of generating the surplus power is about equal to the price that might be expected from a large electric utility system. Electric

TABLE 2.MANUFACTURING ECONOMICS, MIT ETHANOL PROCESS CASE A, 1979 \$PLANT CAPACITY 1500 TON STOVER/DAY, 83,400 GAL ETHANOL/DAY

	Feed Preparation	Fermentation	<u>Distillation</u>	Anaerobic Digestion	<u>Offsites</u>	Total
Fixed Investment, Millior \$	0.91	8.22	4.01	6.18	14.99	34.31
Fixed Capital Related	0.09	0.82	0.40	0.61	1.49	3.41
Stover, \$30/dry ton	-	6.42	-	-	-	6.42
Soda Ash, \$80/ton	-	0.52	-		-	0.52
Corn Steep Liquor, \$101/ton	-	1.77	_	-	-	1.77
)ther Materials	-	0.71	- *	_	_	0.71
Steam, \$0.96/1000 ^{#(a)}	-	0.05	0.27	_	(0.32)	-
Power, 3.2¢/kwhr	0.02	0.03	0.02	0.01	(0.08)	_
ower (surplus), 1.6¢/kwhr					(0.65)	(0.65)
Direct Labor Related	0.11	0.21	0.11	0.05	0.21	0.69
laintenance	0.02	0.21	0.10	0.05	.13	0.51
Fuel Gas Credit, \$2.00/MM Btu	. 			(<u>1.17</u>)		(<u>1.17</u>)
TOTAL	0.24	10.74	0.90	(0.45)	0.78	12.21
	•					

(a) Low steam cost results from use of low cost bagasse boilers and no fuel charges for combustible residue.

	Feed Preparation	Fermentation	Distillation	<u>Offsites</u>	Total	
Fixed Investment, Million \$	0.91	9.63	5.21	15.45	31.20	•
Fixed Capital Related	0.06	0.65	0.35	1.03	2.09	
Stover, \$30/dry ton		4.32			4.32	
Soda Ash, \$80/ton	- .	-		• .		
Corn Steep Liquor, \$101/ton		1.77 .			1.77	
Other Materials	•	0.71			0.71	
Steam, $0.96/1000^{\#}$		0.05	0.27	(0.32)	-	
Power, 3.2¢/kwhr	0.01	0.03	0.02	(0.06)	-	
Power (surplus), 1.6¢/kwhr	- .	-	-	(0.36)	-	•
Direct Labor Related	0.07	0.18	0.07	0.14	0.46	
Maintenance	0.02	0.17	0.09	0.09	0.37	
TOTAL	0.16	7.88	0.80	0.52	9.36	· .

9

TABLE 3. MANUFACTURING ECONOMICS, MIT ETHANOL PROCESS CASE B, 1979 \$ PLANT CAPACITY 1500 TON STOVER/DAY, 123,800 GAL ETHANOL/DAY

DMJ/ 6/79

power used in the process was charged at 3.2c/kwhr, which is the price that a plant would probably pay to purchase power from an electric utility. Since this power was generated within the system, an equivalent credit was taken in the offsite section.

In Case A, acids made in the process are converted to fuel gas by anerobic digestion. A \$2/MM Btu credit was taken for the fuel gas, which equates to about \$1.17/MM Btu of ethanol product. This credit is equivalent to the maximum lawful wellhead price for interstate gas from new onshore production wells. This gas price also approximates the price obtained in new intrastate gas contracts. While the byproduct fuel gas produced in Case A is not quite pipeline quality, the gas could be easily upgraded by absorbing the acid gases. The alcohol plant would be located in the corn belt, closer to major gas markets than most gas production. A change of 20c/MM Btu in the value of byproduct fuel gas would result in about a 12c/MM Btu change in the alcohol product price.

Materials constitute the major operating cost (77 percent for Case A). Corn stover represents about half the total manufacturing cost. There are also significant costs for the nutrients required for the fermentation. For the purpose of analysis, it was assumed that all nutrients added to the process would be removed with the residues rather than recycled.

In estimating the process economics, capital charges were assessed assuming a 12 percent discounted cash flow return on fixed investment, a 3-year construction period, a 20-year economic life, an ll-year tax life, and a 50 percent effective tax rate. It was further assumed that the plant would operate at 70 percent capacity during the first year and at full capacity thereafter. No provision was made for return on working capital nor for startup costs. Land costs are not included. Other assumptions used in estimating the process costs are summarized in Table 4.

TABLE 4. BASIS FOR THE COST ESTIMATION

Plant capacity	1500 tons per day dry corn stover
Operation	24 hours per day, 330 days per year
Corn stover	\$30/dry ton
Electricity	\$0.032/kwhr
Byproduct electricity	\$0.016/kwhr
Fuel gas byproduct	\$2.00/MM Btu
Urea	\$175/ton (45% N)
CaCl ₂	\$93/ton (77.8% flakes)
MgSO ₄ · 7H ₂ O	\$12.60/100 lb
Corn steep liquor	\$101/ton
H ₃ PO ₄	\$22.60/100 lb
FeSO4 · 7H20	\$53/ton
Maintenance	6% fixed investment for process units, 2% for offsites

DISCUSSION

The conceptual process appears to be one of the most promising methods for conversion of cellulosic biomass to liquid fuels. Even without the improvement of the process to eliminate coproduction of acetic and lactic acids in the fermentation, the manufacturing cost of fuel grade ethanol appears competitive with that for ethanol from grain. The MIT process appears to be more economic and significantly less capital intensive than the previously costed Purdue process.

A further advantage of the MIT process over other conceptual processes is that all byproducts are energy (fuel gas and electricity). Many processes have an animal feed component as a byproduct which could present a marketing barrier to some manufacturers.

In spite of the apparent advantages of the MIT process, we have three concerns which could affect the overall economics. The first concern relates to the storage of the corn stover or other agricultural residue. To our knowledge, no comprehensive studies have been made of the best methods to store corn stover. Because the corn is harvested during a brief period, an entire year's supply must be stored to enable year-round operation. The very real problems of degradation during storage, protection from the weather, handling equipment, and the possibility of spontaneous combustion have generally been assumed away in most analyses (including this one). Therefore, we recommend that DOE investigate the storage problem which applies to all processes for the utilization of cellulosic residues.

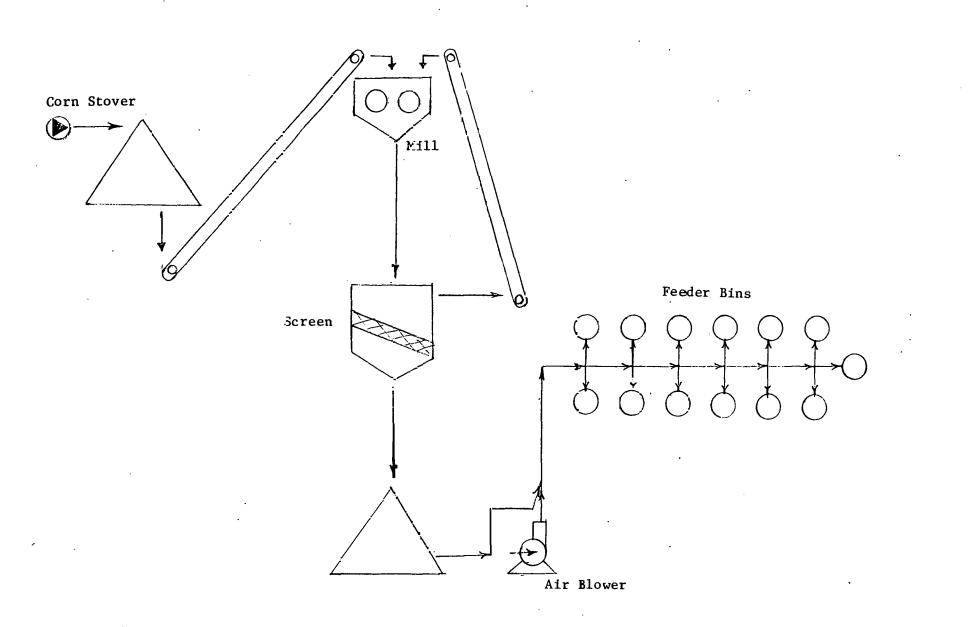
A second concern specific to the MIT process relates to a need for aseptic operation. Although provision is made to sterilize the liquids and dissolved solids entering the fermenters, no provision was made in the conceptual design for sterilization of the stover. It is hoped that the combination of elevated fermentation temperature and moderate alcohol concentration in the fermenters will prevent infection by wild microorganisms. Nevertheless, it remains to be demonstrated that a sustained

^{*} Jenkins, D.M., Reddy, T.S., and Harrington, J., "Economics of Manufacturing Liquid Fuels From Corn Stover", Battelle report to Department of Energy (January 1979)

continuous fermentation can be operated without sterilization of the stover. Investigation of sterility requirements should be high on the list of research priorities. If sterilization is required, there would be plenty of steam available and the impact on overall costs should not be great.

Our third concern relates to the recycle of liquids from the anaerobic digestion or still. While demonstration of continuous operation with recycle should be part of a future process development program, current efforts should attempt to identify the composition of the recycle stream. Furthermore, preliminary experiments can be conducted to determine whether toxic materials will build up in the recycle of a continuous process.

> n (1944) Vi (1955) Vi (1955)


APPENDIX A

PROCESS DETAILS

Process Flow Sketches Equipment List

.

.

FIGURE A-1. FEED PREPARATION

A-2

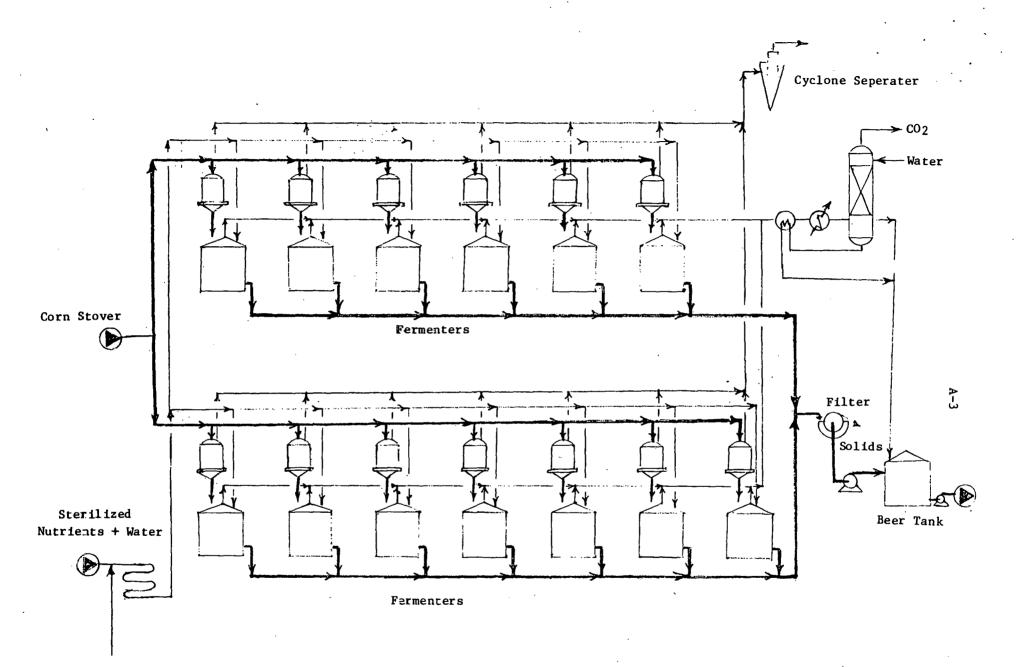


FIGURE A-2. FERMENTATION SECTION

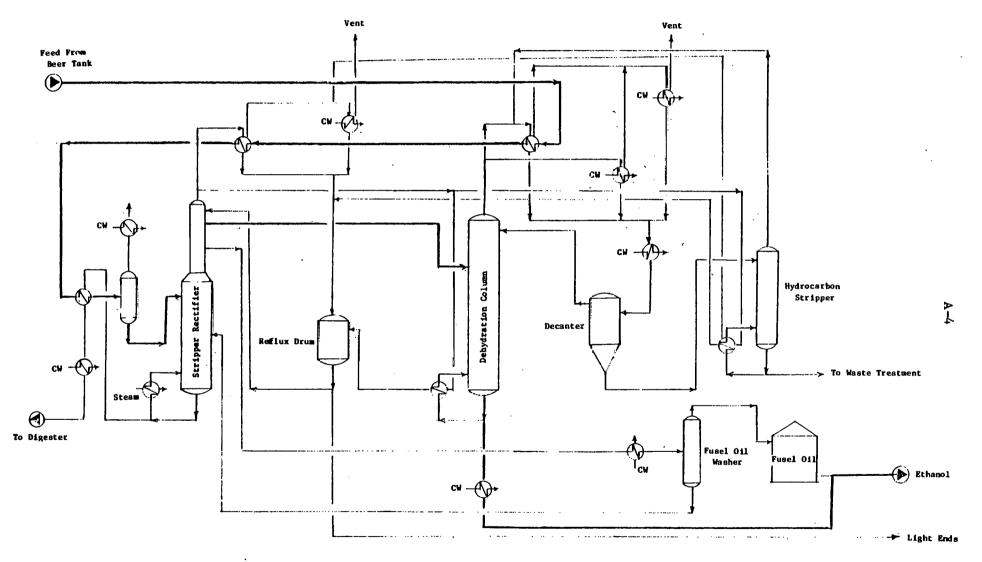


FIGURE A-3. DISTILLATION SECTION

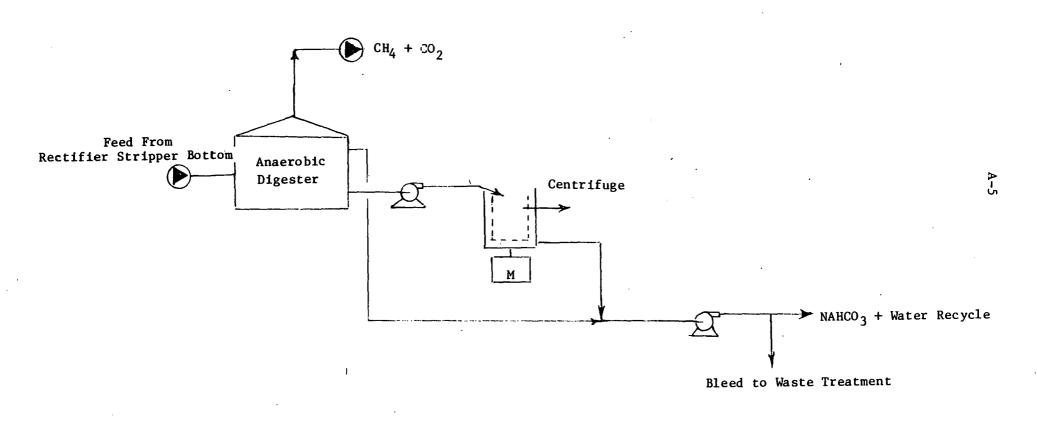


FIGURE A-4. DIGESTER SECTION

Item	Basis	No. of Units	Unit Cost	Installed Cost
Preparation				
Selt conveyers	58.6 tph	2	21,000	
lammer mills	58.6 tph	· 1	61,000	
Vibrating screens	58.6 tph	1	61,000	
Pneumatic conveyer syste	ms	13	9,820	
Hopper bin feeders	2,000 gal	13	9,960	** (
Subtotal feed prepa	ration			768,700
Contingency + fee 🗧	18%	· · ·		138,366
Total feed preparat	ion			907,066
rmentation				1
Phosphoric acid tank	2,000 gal, ss	1	93,000	
Corn steep liquor tank	200,000 gal, cs	. 1	65,500	
Na ₂ CO ₃ storage	8618 ft ³	warehouse	-	
lix tanks Na ₂ CO ₃	40,000 gal, cs	2	24,000	
Nutrient mix tanks	2,000 gal, cs	2	9,850	

Item	Basis	No. of Units	Unit Cost	Installed Cost
mentation (con't)	and a second		· · · · · · · · · · · · · · · · · · ·	
Corn steep liquor	20 gpm	1	5,400	
Na_2CO_3 sol.	72 gpm	1 +-1	9,000	
Nutrients sol.	24 gpm	1 + 1	5,400	
Phosphoric acid	8 gpm	1 + 1	3,800	
Sterilizer	63.9 MM Btu/yr	2	108,200	
ermenters, coned roof sloped bottom,	250,000 gal, cs	13	73,300	
35' dia x 35' high				
Off-gases exchanger	2300 ft^2	1	93,558	
Off-gases cooler	50,026 ft ²	2	172,587	
Scrubber bottoms pump	100 gpm, 5 hp	1	842	
Cooler water pump	1046, 50 hp	1	4,000	
Scrubbing water pump	90, 4 hp	1	842	

MAJOR EQUIPMENT LIST

Item	Basis	No. of Units	Unit Cost	Installed Cost
entation (coń't)			<u></u>	
Fermenter discharge pump	95 gpm	13 + 2	842	
CO ₂ off-gas scrubber	5' dia x 10' high	1	10,400	
- Rotary filter	760 ft ² & 20 lbs/hr/ft ³	4	181,500	
Filtrate pump	304 gpm, 50 hp	4	21,000	
Cake conveyor	56 tpd	1	3,300	
Beer tank	200,000 gal, coned roof, sloped bottom	1	66,300	
Distillation feed pump	1520 gpm	2	5,000	
Subtotal fermentation	equipment			6,965,852
Contingency + fee @ 18	3%	-		1,253,853
Total Fermentation				8,219,705

A-8

Item	Basis	No. of Units	Unit Cost	Installed Cost
illation				
Stillage pump	1283 gpm	2	4,400	
Stripper/rectifier reboiler	$Q = 47.2 \text{ MM } \frac{\text{Btu}}{\text{hr}}$ A + 3350 ft each 304 ss/cs	2	72,800	
Degasser drum	5' dia x 6' high, cs	1	5,500	
Dehydration column reboiler & pump	2000 gpm, 30' tdh	1	2,500	
Stripper/rectifier	75 psig	1	167,600	
Degassing vent con- denser	Q = 500,000 Btu/hr A = 100 ft ² 304 ss	1	5,200	
Vapor condenser/ pre- heater	Q = 4.82 MM Btu/hr A = 365 ft ² , 304 ss/cc	1	22,600	
Rectifier vent con- denser	Q = 4.13 MM Btu/hr A = 1020 ft ²	1	27,600	
Rectifier reflux pump	360 gpm, 170' tdh	1	2,600	

Item	Basis	No. of Units	Unit Cost	Installed Cost
illation (con't)				
Rectifier reflux drum	6' dia. x 5' high	1.	3,100	
Product cooler	$Q = 1.7 MM Btu/hr A = 193 ft^2, 304 ss/cs$	1	14,000	
Condenser/reboiler	Q = 18 MM Btu/hr A = 3240 ft ² , 304 ss/cs	1	127,000	
Dehydration reboiler pump	1375 gpm, 30' tdh, 15 hp	1	3,500	
Dehydration tower	102' dia, 50 trays, 15 psig, 250 F, cs shell, 304 ss trays	1	113,000	
Product pump	83 gpm, 72' tdh	1	830	
Dehydration condenser perheater	Q = 12.93 MM Btu/hr A - 2450 ft ² , 304 ·ss/cs	1	65,000	
Dehydration condenser	Q = 22.40 MM Etu/hr A = 82 ft ² , 304 ss/cs	1	3,960	

Item	Basis	No, of Units	Unit Cost	Installed Cost	
cillation (con't)	<u>,</u>				
Dehydration vent condenser	Q = 550,000 Btu/hr A = 82 ft ² , 304 ss/cs	1	5,000		
Decanter	10,000 gal, cs 15 psig	1	15,300		
Dehydration reflux cooler	$Q = 4.62 \text{ MM } \frac{Btu}{hr}$ A = 722 ft ² , 304 ss/cs	1.	27,000		
Stripper feed pump	18 gpm, 93' tdh	1	700		
Dehydration reflux pump	330 gpm, 120 tdh	1	1,100		
Hydrocarbon stripper	31" dial, 30 trays, cs shell, cs trays	1	16,500		
Condenser/reboiler condensate pump	275 gpm, 40' tdh, 304 ss	1	1,100		
Stripper reboiler pump	66 gpm, 50' tdh, 1.5 hp 304 hp	1	8,300		

Item	Basis	No. of Units	Unit Cost	Installed Cost
illation (con't)			<u></u>	
Stripper reboiler condensate pump	31 gpm, 40' tđh	1	680	
Hydrocarbon stripper reboiler	Q = 3.3 MM $\frac{B \pm u}{\ln r}$ A = 1650 ft ² 304 ss/cs	1	47,000	
Fusel Oil cooler	$A = 27 \text{ ft}^2, 304 \text{ ss/cs}$	1	2,100	
Fusel Oil washer	250 gal, cs	· 1	1,600	
Wash water pump	0.5 hp	1	700	
Fusel oil storage tank	3000 gal, cs	1	3,600	
Fusel oil pump meter- ing	5.5 gpm, 150 ¹ tdh	1	400	
Stripper/rectifier feed heat exchanger	$A = 4882 \text{ ft}^2 \text{, cs/ss}$ Q = 73.23 MM Btu/hr	1	154,095	
Cooler	Q = 23.3 MM Btu/hr	1	38,982	
	A = 956 ft ² , cs/ss			
Subtotal Distilation	n Equipment			3, 399, 966
Contingency + fee @ 1	18%			611,994
Total Distillation				4,011,960

				· · · · · · · · · · · · · · · · · · ·	
Item	Basis	No. of Units	Unit Cost	Installed Cost	
naerobic Digestion		····· · · · · · · · · · · · · · · · ·			·
Anaerobic digester	100' dia x 40' deep	3	5,200,000		
Supernatant recycle pump	1263 gpm 100' tdh	1	4,400		
Sludge settling unit	15 gpm	1	w/anaerobic dige	ester	
Sludge settler super- natant pump	15 gpm	1	w/anaerobic digester		
Centrifuge	15 _{gpm}	1	11,000		
Filtrate pump	15 gpm	1	-		
Solids conveyor	1.4 tdh	1	2,200		
Subtotal Anaerobic Digestion				5,236,398	
Contignecy + fee @ 18%				942,552	
Total Anaerobic Digestion				6,178,950	
				· · ·	

A-13

	Basis	Unit	Total Installed Cost
sites			,
Steam generation with auxiliaries	95,000 lb/hr, 450 psig 225 F S.H.	2	5,300,000
Electrical generation and distribution	13,400 kw	-	3,448,000
Cooling tower	15,937 gpm, 20 F rise	-	1,237,000
Wastewater			950,000
Product storage	2,000,000		516,000
Offsite piping			330,000
Misc. buildings			395,000
Site preparation			525,000
Cost + fee @ 18%			12,701,000 2,286,000
Total			14,987,000

ť

.

۰.

.