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ABSTRACT

A system of postionally stationary magnets is analyzed for the

JRY N

I .
. continuously variable deflection of a 50 MeV electron beam. The system is

composed of a collection of horizontal and vertical bending magrets,

quadrupoles, and a final deflection magnet thati is conical in shape and

capable of deflections of plus or minus 50 degrees simultaneously in both

horizonal and vertical planes, Throughout the system the beam is assumed to be

! focused by its own magnetic self-field, the electric self~field being

neutralized by background ions. The motion of the beam in the externally

j applied magnetic fields may then be considered as single particle motica. The
system of bending magnets and gquad-upoles pre-conditions the beam by
introducing the proper displacements and angles at the entrance to the final
deflection magnet for momentuw deviations up to plus or minus one percent. The
displacements and angles are determined by the chromati:ity of the final
deflection magnet and are a function of the bending angles in the two planes.
The total system ie then doubly achrometic in both planes. The

‘ pre~conditioning magnets are or standard accelerator beam transport design
while the conical deflection magnet is of a design fashioned from a television
deflection coil scaled up by about a factor of 10 inm size.

; *Lawrence Livermore Nationsl Lsboratory is operated by the University of
! California for the Department of Energy wmcer Contract No. W-7405-Eng-48.

Thig work is performed by LINL for the Departwment of Defense under DARPA (DOD)
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Introduction

The system shown in Fig. 1 is considered in detail in this report. The
deaignation of the sections of the system and the individual magnets shown in
the figure will be used *hroughout this work. Linear piurticle optics are
smployed to first order in the momentum devistion. It is assumed that gas
focusing of the beam prior to entrance intc the system results in & beam with
negligible transverse dimensions and thus the motion in the externally applied
wagnetic fields ia that of a single particle. The dispersion of the final
deflection magnet (hereafter referred to as the "snout" magnet) is a known
function of the bending amgles a, and dv_in the horizontal and vertical
planes respectively. The beam passing through the pre-conditioning magnets is
given values of x, x', y, y' at the entrance to the snout sccording to the
momentum deviation. These quentities are individually sellected by four "tuning
knobs" on the preconditioner. The values selected are those that make the

total system doubly achromatic in both planes.

We emphasize that only liuear theory is employed in this paper and that
certainly second order effects must be considered in future work. Furthermore
in the mathematical model of the enout that we use, motion in the two
transverse planes is nat coupled, vhile in a practical smout they will
generally be coupled. This coupling in a real snout does not alter our
conclusions that a preconditioner can be deaigned to provide the required
angles and displacements at the snout entrance since the coupling will merely
give different values from those we consider. The values required by a
practical smout as well as second order cffects may dictate a preconditioner

that is more complex than the rather simple arrangement comsidered in this

work.
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We shall refer to the preconditioner and the snout as the deflection
system. The system consiats of five sections, four of which make up the
preconditioner and the fifth is the snout mngnét. Each section of the
precouditioner consists of a single msgnet or an array of magnets and drift
spaces. We describe briefiy the matrix formalism of conventional veam
transport theory that is used in this repor:l, and outline the principle
employed in the design of the preconditiomer.

4 particle with momentum p that enters a section at the proper position
and at the proper angle we call the reference particle, and we call its
trajectozy the reference trajectory. The womentum p is that for which the
entire system has been tuned. Other particle trajectoriea will have
devigtions from the reference trajectory, both in position and angle. These
deviations are x, y, x', and y', where x and y are the distances from the
reference trajectory in the two transverse planes and the prime indicates the
slope relative to the reference trajectory. Particles may also have a momentum
deviation dp and and a path length deviation ds. Thus each trajectory is
characterized by & six-dimensional vector. The vector v’ exiting the
section is related to the vector V entering the section by the matrix

equation,
vt gy, (1.1

The matrix R is the transport matrix of the section and is the product of
the matrices of the magnets and drift spaces that make up the section., The
transport matrix of the syastem is the product of the matrices of the sections
that make up the system. The elements of the 6 X 6 matrix of a section are
determined by the configuration of magnetic fields and drift spaces throughout

the section.



The path length deviation does not enter our calculations, therefore we
are dealing with 5 X 5 matrices. We will, however, retain the conventional

notation and write the matrix equation in the form

e j'ﬁ N— -T ——y — -
x Ry Bz By Ry, Ry, x -
x! Ryg By Ryy Ry By x'
v - Ryy  Ryp  Ry3 Ry, Ry y (1.2
¥y Ry Bay  Byy Ry, Ry vy’
& 0 ) 0 0 1| {e
T P
] | I I A

The meirix elements RIS’ st, 336’ and Rl,o are the dispersion elements
of the matrix. The quantities R!6dplp and Ra6dp/p are the positional I
dispersion and the quantities R26dp/p and R“dp/p are the angular :
dispersion. To avoid confusion, we sa, that if both the positional and

angular dispersion are zero in one plane the section is doubly achromatie in
that plane. If the section bends the beam in one transverse plane only, it is
conventional that the top two rows of the matrix transform the displacement :

and angle in the bend plene and the third and fourth rows transform the o

displacement and angle in the non-bend plane. We will not follow that

convention coneistently in this work.

In general the matrix of the snout will have all the elements indicated in
Eq. (1.2). These elements will be functions of the deflection angles oy

and “v, and we sssume that the matrix elements can be found by computation

ST




and or measurement to the degree of accuracy required. In this work, the
assumption of decoupled planes allows us to take H13 - H‘ll; = H23 = Hzls
=My =My, = M, =M, = 0. The trajectory of a particle exiting the
snout is represented by the vector V: and we have

- -
v, "RV, (1.3
in which V; represents the trajectory enterimg the snout. The + and -
superscript convention will be retained throughout this work. for all

deflection angles Cl‘ﬁ and “w the desired form of V: is
v, = (0, 0, 0, 0, dp/p). (1.4)

We multiply Eq. (1.3) on the left by the inverse of Rs and set R;IRE
= I, the identity matrix, and obtain,

v, = a;'lv:. (1.5)
The physical meaning of Bqs. (1.4) and (1.5) is graphically illustrated in
Tig. (2). The vector v-s in general has all five campanents men-zern.
For any values of Cth and a'v' V; gives the values of x, x', y, and
y' as a function of dp/p that must be provided at the entrance to the snout by
the preconditioner in order for V: to have the form given by Eq. (1.4).
Within the linear theory employed in this work, X, x', ¥, and y' are linear
functions of dp/p and it is therefore possible to preconditon the beam with
four sections.

We call the first section of the preconditioner the horigentil corvector

(HC). The section consiets of three bending magnets and two drift spaces.
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The trajectories of all particles entering the BC are represented by the same
vector, v;c, vhich is identical to v: and given Eq. (1.4). The HC
provides & horizontal displacement only, so that V;e = (xl, 0, 0, 0,
dp/p). The value of = is that necessary to pass through the rest of the
preconditioner and arrive at the snout entrance with the degired vector. We
let B, be the matrix of the HC. The second section is the horizontal
quadrupole section (focusing in the horizontal plame), which we call QH. 1t
turns out that two quadrupoles and a drift space are needed in this section
for some vertical deflection angles, but for this discussion we simply employ
the matrix th for this section. The QH provides a value of x' but does not
contribute to y and y', so that V;h = (xz, x5 0, 0, dp/p). The
values x, and x‘2 are not those required at the snout entrance because the
next two sections are focusing and defocusing in the horizontal plane. The
values are those required to pase through the remaining two sections and
arrive at the snout with the desired vector.

The third section is the vertical corrector VC. 1t is identical to the
horizontal corrector except it is rotated 90 degreex. The VC provides a
displacement y and new values of x and x', so that V:c = (xa, x'a,

730 05 dp/p). The fourth section of the precorditioner is the vertieal
quadrupole section (focusing in the vertical plame), QV. This section
provides the desired value of y' and changes the values of x, x', and y to the
desired values at the entrance to the snout. Since the initial vector

= V:, the condition on the matrices of the five sections of the

vhc

system is
ns“ﬁvnvcnghnhc =1

-1
or, RQVRVCRQthc =R

T T e



In the following treatment the problem is actually worked backwards from
the enout, using the inverse mstrices of the sectiona. For given a,
and O the depired values of x, x' y, and ¥' are determined from the
knowledge of 3;1. The QV section ip set to meke y' = 0 {going backwards)
and this setting detarmines values of X, x' 9 and Y3 The VC section
is set to make y = 0 and determine values of %, and x'z. The QH section

is set to make x' = 0 and determine the value of x; that must be provided by

the HC section.

2. Snout Megnet

Pigure 3 is a photogragh of a yoke magnet that directs the electron beam
onto the shadow screen of a television picture tube. Such a magnet, which ie
capable of simultanecus large angle deflectiong in both horizontal and
vertical directions is the principal component of tha deflection aystem we are
cousidering, The aberrations inherent in the magnet are assumed to be known

functions of the bending angles % and o .
A. Physical Model of the Deflection Magnet.

To gain some insight into the chromatic aberrations of the snout, we have
investigated the coil configuration shown in Fig. 4. The origin of a
rectangular coordinate system is located 10 cm below the narrow end of the
cone, and the z exis lies along *he axig of the cone. The augle of the cone
is 70 degrees and the height ia 0.9 m. For deflection in one plane (x as
ehown} two nine turn coils are wound on the purface of the cone. The choice of

nine turns is made for ccnvenience. In practice the coil would have many more
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turns., In & cross—section normal to the axis, the conductors are placed to
approximate a surface current distribution proportional to cos 6. All of the
turni close in the 0O direction at the ends of the come. For deflection in
the y direction an identical pair of nine turn coile is placed on the surface,
but rotated 90 degrees about the z axis. This second pair of coils is shown
in the figure, separated from of horizomtal pair for clarity. These two gets
of coils approximate a crossed dipole magnetic field configuration.

The usgnetic field from these coils has been cnmputer). Figure 5 shows
the contours of comstant By in the plane y = 0 for a current of 10 kA in the
horizontal deflection coils. We note that this field configuration bears no
resemblance to the field in conventional bending wagnets in accelerators aad
beam transport systems. In conventional bending maghets the magnetic field is
wiform or has a specified radial gradient. The field in the cone magnet
resembles uore the fringing field at the edge of a conventional magnet, where
it is sumetimes useful, but more often a nuisance.

The trajectories af 50 MeV electrons in the y = O plane have been
compuceda) for varicus currents in the horizontal deflection coils, and are
shown in Fig. 5. The angle of bend and the ampere turns/coil necessary to
obtain that angle are given. A 7 kA current correspondes to 6.3 X 104
ampere-turas in each coil of the pair. We note that the trajectory exiting at
56 degrees paased through the surface of the cone, indicating vhat to achieve
bending angles greater thai. about 50 degrees the coils would not be placed on
the surface of a cone, but rather be shaped similarly to the television yoke
in Fig. 3. 1In the television industry, the yoke is referred tc as a saddle

coi14) Figure 7 shows the ampere~turns required to achieve a given bending

.

angle.

If the deflection is in the horizontal plane only, the matrix elements

R, and R, in Eq. (1,2) are zero and the elemerts By, and R,. are
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non-zero. The umits of Ryc and Ry, are meters/fraction {cm/percent} and
rad/F-action (10mrad/percent) respectively. These digpersion elements zre
plotted vs O in Fig. 8. The values were abtaincd by integrating over path
lengths of 1 meter and 1.5 meters, and we see that there is considerable
difference. For small angles of deflection the difference between the curves
for one meter path lemgth and 1.5 meter path length corresgponds to the effect
of drift on the matrix elements. That is, these trajectories are clear of the
magnetic field after ! meter and for the remaining one-half meter we have x =
x + Lx'o, vhere L is the drift length, while x' = x'o. For large
angles the trajectories lie near the coils and are not clear of the fieid
after 1 meter. The "exit" of the conical snout is a bit nebulous, however we
will employ an analytic model of the snout in the following treatment.

For a given dp/p the lecus of points in Fhe x ~ x' plane found by
varying o forms a curve that we wili call the dispersionr carve. It is the
parametric curve (with & the parameter) of Ry vs ®,., and it is ghown in
Fig. 9 for a path lengths of 1 m and 1.5 m. For linear optics employed here,
the curve is to be interpreted in the following manner: A particle with
momentum p will exit from the cone at the origin in the x -~ x' plane,
independent of the angle o . A particle with momentum 1.01p will exit at
some point on the curve, the location of the point being determined by the
angle @ , For the same angle 0, particles wirh momentum between p and
1.01p will exit at 4 point lying om a straight line linking the origin with
the point on the curve, the distance from the origin being porportional to dp,
as shown in Fig. 9 for & = 50.6 © and 1.5 m path length. For uegative dp

tte straight line extends through the origin to the reflected point on the

Curva,
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B. Analytic Model of the Deflection Magnet.
In order to avoid the necessity of numerical integration of trajectories
in the magnetic field of the cone, we will use an analytic model fcr the snout
We consider 2 conventional bending magnet with a dispersion curve

matrix,
matching that of the coue in the y ¥ 0 plane te & rather good approximation.

The idealized magnet has uniform magnetic field in the bend nlane.
Furthermore, the exit edge of the model magnet is shaped so that the an:le
between the particle trajectory at exit snd the normal to the edge is equal to

one half the bending #ngle and provides vertical focusiag. The geometry is

shown in Pig. 10. The value of L for the model in chosen so that the angulsr

and positional dispersion matsix elements R16 and 326 match that of the

physical model, Fig, 8, for o = 42,7°. The transport matrix for the model

magnet in the bend plane is

(" ]
cos O L cos ®/2 L sin ©/2
R, = -2 sin /2 tan ©/2 1 2 tan /2 (2.1)
L
)] 0 1

L

Figure 9 shows the dispersion curve for this matrix for L = 1.2165 m. We

see that the curve appinximates that found for the cone by integrating

trajectories over 1 m path length, The curve of the analytic model with L =

1.2165 m followed by a 0.5 m drift approximates the curve found for the cone

by integrating trajectories over 1.5 m path length.

The matrix for the wodel magnet in the non—bend plame is

A —— e et
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1 La 0
7 sin 0/2

=] -2 sin & tan & 1~ C¢tan @ o]. (2.2)
L 2 2 2

We do not employ this matrix in our work. Because of the assumption of
uncoupled motion, both the x and y planes are transformed by the bend plane

matrix in Eq. (2.1).

3. Horizontal and Vertical Correctors

The HC and VC sections are identi.al arraye of three dipole bendiug
magnets, the VC being rotated 90 degrees about the z axis with respect to the
HC. In discussing these arrays we teke the x plane to be the bending plane as
it is in the HC section. These sections are fashioned from the dispersionless
three magnets array shown in Fig. 1l1. The presence of the symmetry plane
S - S guarantees that the array is doubly achromatic. Partiecles with
o. Fferent mementa follow different trajectories through the array, but 11
crajactories exit the array on the same beam line as at entry. We call
trajectories with this property colinear.

Introducing an asymmetry into the array produces a beam with positional
digpersion at the exit., If the magnets are properly tuned, the weference
particle with momentum p follows a colinear trajectory as stown in Fig. 12.
As defined in the figure, the bending angles 61’ [?_, and 63 of the
reference particle in the three bending magnets must satisfy two conditions.

Firat, in order for the reference particle to exit at the proper angle, we Lave
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8 = 6 + 8, (3.1

Second, in order for the reference particle to exit at the proper position, we

nave

L, tan (8,/2} + S, tan 6 - L, tan (6, -8)/2

- §, tan 93 - L, tan (93/2) = 0, (3.2)

In this expression Ly Lyy Ly S and 5, sre the magnet lengths and
separations as ghown in Fig. 12. With these conditions, a value of 91
determines values of €, and 9. he values of €, and 93 that
satisfy Eqs. (3.1 and 3.2) are plotted vs, B in Fig, 13 fer L, =1L, =
I.|3 = 0.5 m, sl = ! m and S2 = 0.5 m. These dimensions are arbitrarily
chosen, and we will use them throughout this work.

Particles with momentum p + dp will exit the array with a displacement in
the bend plane proportional to dp,fas shown qualitatively in Fig. 14 for 91
both positive and negative. i‘he array results in positional dispersion b. * no
angular dispersion. For 91 > 0 a positive momentum deviation produces a
negative displacement, vhile for 01 <0 a positive momentum deviation
produces a positive displacement. The convention of positive or negative
displa'clement is based on the sipgn of the positional dispersion matrix element,
R,s+ This dispersion element is plotted vs. 01 in Pig. 15, and is found

to be well approximated by the relation
Rg =-a 6, 1, (3.3)

vith R in cu/%, 8, in degrees, a = 4.78 x 10™%, and b = 0,1014. In

the following ':- refer to 91 in the HC as eh, and 91 in the VC as 61’.

2
L
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Pocusinf in the non—bend plane ia provided by the fringing fields at
magnet 1 exit, magnet 2 entrance and exit, and magnet 3 entrance because the
. tragectories are not normal to the magnet edge at these locations. In the

bend plane, edges are defocusing but the bends are focusing so that the net

QR

_; effect is that the array provides no net foecusing. The transport matrix
elementa of the sections for the non-bend plane are plotted in Fig. 16, and

the elements for the bend plane are plotted in Fig. 17. In these figures we

have used the convention that the top two rows of the matrix transforms the
bend plane. Since the array is & drift space for motion in the bend plare.
Ry; =Ry =1 and Ry, is the effective path length through the array es
g function of 91.

The matrix elements i1 Eq. (1.2) that couple the x &nd y wotion are zero

throughout the preconditioner. These elements are R13, Rllo’ R23, Rza,

n31’ By Rkl and RﬁZ‘

4. Dispersive Preconditioning

With the analytic model, Eq. (2.1), for the transport matrix of the snout,
and the matrix elements of the HC and VC sections displayad in Figa, 'S5, 16,

and 17, we wmay write the matrices and inverse matrices of the five gection of

-

the deflection system.
. We now adopt the convention that the first two rows of our matrices
transform motion in the horizontal (x) plane snd the second two rows transform

metion in the vertical (y) plane. Since the vector v: = (0, 0, 0, O,

dp/p), we need only the last column of the inverse matrix R;l. We

1

generate the matrix R; from the matrix R given by Eq. (2.1) and find

that the vector V: at the entrance to the snout is given by


http://tragectori.es

SV
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vV = [L siu‘;—h s =8in a,, L 8in

2

There is a vertically focusing quadrupole, QV, between the VC and the

Gy ’ -sinuv. 1:' dp/p. (4.1)

snout as shown in Fig. 18, We use the thin lens approximation for both the QV

and the QR sections, with equsl drift spaces of length D on either side.

inverse matrix R;‘l; is given by

-

-1/f
-1 -
2l 0
4]
0

]

in vhich £ is the focal length of the quadrupole.

0
0
0

1+ D/f ~(2D + nzlf)

1 + D/f

0
0
1 - D/f
1/¢
0

0
)
-2 + p¥/¢
1- b/f
]

The
0
0
o (4.2)
0
1
—

spaces, the inverse matrix R;'ll for the Q1 is found from this expression

by reversing the sign of f.

In order to display the matrices R, and L for the HC and VC
sectiona respectively, we refer to Figs. 15, 16, amnd 17.
these fignres is such that Rl‘.’ LPY Rn, nzz, and Rls transform the
bend plane and RﬂS’ Ryyr Bygy and Ry, transform the non-bend plane.

From the figures we see that nu = Ryy = 1, and By =By = 0. We

The notation in

For the same length drift

define thc gueantities a, b, ¢, d, e, and h in terms of the uatrix elements in

Figs., 16 and 17. This procedure results in sowe simplified (and hopefully

less econfusing) notation. We set

e ind
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, 8 = Ry € =Ry e ™Ry
et (4.3)
;5 : b= Ry, d =Ry, h = Ry,
j ' Employing these definitions, we write the matrix R, for the HC section
: in the form
_ _
! 1 h 0 0 e1
Q 1 0 0 0
R = 0 0 a b ¢ |. (4.4)
o} 0 c d 0
0 0 < 0 1
| —
The iuverse matrix R.;l is given by
1 -h 0 0 -e
0
31-1:: = 0 0 d -b ol (4.5)
0 0 -c a 0
0 0 0 0 1
 S— —
. The inverse mstrix R;(l: of the VC section is given by
per ——
4 -b 0 0 0
-c a 0 0 0
. R;: = 1 -h -e|. (4.6)
! 0 0 0 1 [}
0 4] 4] 0 1
S p—
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A. Predeondicioning in one plane
As an example of how the system is tuned, let us consider “he vector

V; given by Eq. (4.1). At the entrance to the snout we have

y = L sin -21- o (dp/p), (&.74)

y' = -sina (do/p) . (4.7B)

Referring to Eq. (4.2) we see that the condition y' = 0 at the exit of the VC

determines the focal length, £, of the quadrupole to be

£=D- (ysly'a) . (4.8)

The value of y at the exit of the VC determines the setting of the VC. We have

RRNCE S

with £ given by Eq. (4.8). The value of § necessary to achieve this value
of y at the exit of the VC is then found from Figs. 15 and 17, or from

Eq. (3.2). The focal length of the vertical quadrupole and the value of ev
are now set to provide doubly achromatic deflection in the vertical plane.
But the QV is defocusing in the x plane, and the ¥C focusing in the x plane.

So preconditioning in the x plane is a2 bit more complicated.

B. A Numerical Example
To demonstate preconditisniag in both transverse planes, we consider

deflection angies ﬂh = 30° and Gv = 20°. The momentum deviation is

)

P e

vl
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+1% for this example. The lengths L = 1.2165 m, and D = 0.25 m in both the qv
and QH gections, as shown in Fig. 19. The various positioms in the systey sre
also dagjgnated in the figure. In terms of the notation employed in the
+
Voe

introd 3 ~ - T )
introduction, we have Va V2, = qu V3, vvc

vy v =y dV. =V i
= = "

qh & vqh Ve 5 an vhe 6" The inverse

matriceg of the 4 sections of the preconditioner and the ve-tors at each

position are displsyed in Tsble 1. The calculation is performed with x ang ¥

in em apd x' and y' in units of 10 mrad.

In Table 1 the vector V, is found from Eq. (4.1) with L = 1.2165 m,

2
@ = 30° and a, = 20°. The irverse matrix ls;l. is given by Eq.

(4.2) with D = 0.25 m and £ determined by Eq. (4.8), which yiclds

£, = «8797 m. To save space, mumbers in Table 1 are given to 5 decimal

Places gply, but the calculations were carried out to at least 15 decimal
Places. The setting of & quadrupole is generally stated as the field gradient
times the effective lemgth, which is kG-u/m, or simply kG. The relationsh;p
between fjeld strength, focal length, and the magnetic rigidity (Bp) of the

particlgg js B = (Bp)/f. For electrons with p = 50.5 MeV/c we have

B = 1.68451 kG-m/f, (4.10)

so that phe strength of the vertical quadrupole is —-1.9415 kG-m/m for
f= .B7Y7 m. By convention the sign of a quadrupole field is positive for
horizenta]l focusing and negative for vertical foeusing. In Table 1 the valye
of Y; iy indicated to be zero, although the numerisal ealeulaticm yielded
2 value of 4,821077 rad.

The jnverse matrix R;z is given by Eqs. (4.3) and (4.6). The value
of B i chosen to yield e ( = R;, in Figs. 14 &d 16) = .29674. The

value of Bv was not found from the figures or from Eq. (3.3) but was
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ealculated using a special computer code. A value Bv = ~29,91808° was !
found to yield the proper value of e (Eq. %#.3). The remaining elements of
: were also calculated with the code. \
Tha inverse matrix n;; ie found from Zq. (4.2) by reversing the sign

B,

L]
of £. The condition f, =D - (xalx,') yields £ = 2.6011 m, and & .
corresponding field strength 0.64762 kG-m/m.
The inverse msatrix R;i is given by Eq. (4.5), The value of Gh =
46.8632° was found to yield e = =2.41593. This value as well as the

remaining elements of R;l was calculated with the code.

5. Syotem Tume Zor All Deflecticu Angles

Our defleciion system wust be capable of aiming the electron beam in any
direction. That is, the settings of the four sectionms of the preconditioner
must be reasonable for all combinatioms oy and G, a8 shown in Fig. 20.

The system shovn in ?ig. 19 is inadequate in that values of o, mear 4°
cannot be accomodated. Figure 21 shows the angles ﬂh and Bv and the
quadrupole settings Q and ¢ (in kG-m/m) as functions of o, for

dp/p = 1% and o, = 10°%, 20°, 30° and 4G6°. The settings Q, and

ev are independent of ¢, and the setting Q varies by less than 1% for
o< | oy | <50°. We see that there is a gsingularity in the setting Qh
and an abrupt change in the sign of eh at & = 4°,

The singularity in the setting Qh can be understood from the horizontal
dispersion curve at the entrance to the VC. 1In Fig. 22 the values of x' and x
at this position are plotted for dp/p = 1Z, o= 20° and
~-50° <av < 56°. We see that the value of x passes through zero at

o, % 4°, and therefore the QR section can have ro effect upon particle

et S R i S e
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trejectories. Por o < 4% the sign of both Q, and 9h are reversed.

Physically the singularity arises because of the focusing properties of
tse VC section in the horizental plane. The VC is focusing in the horizontal
plane and for ¢ > 4° there is a momentum focus (i.e., a point where x = 0
regardless of the value of dp) within the VC. As the vertical deflection is
reduced with the associus*ed reduction in vertical correction, this momentum
focus in the x plane shifts towsrd the entrance to the W. For @ < §°
the momentum focus lies upstream of the VC. The position of the momentum
focus for different values of o is shown qualitatively in Fig. 23, which
displays the trajectories in the X plane of particles with momentum p and
Pt dp.

The tuning singularity cen be removed by the additior of a second
horizontally focusing quadrupole, with setting Q.. to the QH se tion as
ghown in Figs. 1 and 23. The QH section with 2 quadrupoles cam no doubt be
operated in several ways in order to provide the required values of x and x'
at the entrance to the VC, One mode of operation ie to maintain the same
setting of Qh far all Gv less than some value, and obtain the required
valuas of x and x' at the entrance to the VC with the gsetting of Qx’ Por
smaller values of o (and ev) the horizontal focus lies upstream of the
gquadrupole Qh. The clamped setting of Qh is sufficient to insure that the
momentum focus lies between Qh and Q_, and elimnates the necessity of eh
changing sign et a = 4%,

We consider the geometry shown in Fig. 23, with two thin lens quadrupoles
separated by a distance Lx' There is a drift distance D between the
entrance to the VC and the quadrupole Qh and between the quadrupole Qx and

the exit of the BC. Since y and y' are zero throughout the HC and the QH
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sections, we need consider only the elements 11, 12, 21, and 22 of the inverse

matrix n;;. These elements are given by

L.\
-1 T x 1]
R. (1) =f1 -2 -2y - 2 (5.12)
qh ( Ex) ( fh) Eh
-1 w.yr f_p _D _D _D
nqh (12) L, (1 f‘) (1 fh) +D (2 £ Ez) (5.1b)
L
-1 i 1 x
R, (21) = — + =— - (5.1c)
ah W 5 fn fx
L
-1 pr) X D
R (22) = (1 - & - — - (S.Id)
qh ( th fx ) fx
1
1f x, and x, are the horizontal displacement and slope at the

entrance to the ¥C, the condition x' = o at the exit of the HC is satisfied if
focal length f.,l satisfies the relation

' -
%+ % (fh L) (5.2)

x, (th - Lx) - x,; (fh D+ £L - an)

+

S S
£
X

A smoothly varying tune for the four preconditioned sections is found by
chosing L = 3 m and Q, = 1.15 k6-m/m for -10° < o < 10° The
quantities Q,, @, Qs 6, and Bh are plotted vs. & in Fig. 24
for o = 20° and dp/p = 1%. The twne variations in Fig. 24 are still not
ideal because of the discontimuwity in the derivatives aﬁhlaﬂv and
th/ aav.

We have not performed an extensive study of the effects of perturbations

in magnet settings on the chromaticity of the system. For Olh = 30° and
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a, = 20° and dp/p = 1%, calculations performed with the TRANSPORT code
show that the syatem is achromatic in both planes to within 10 lrad and 0.1 mm
if the setting of any one megnet in the vreconditioner iz sccurate to within
one part in 104; Clearly second order effects muat be iuncluded before a

meaningful ptudy of tuning errors can be performed.
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Dispersion in final bending magnet. a) Dispersion if beam
is not preconditioned. b) Dispersion eliminated by proper
preconditioning. c) Phase space is required at entrance to

final bending magnet.
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FIGURE 5.

Contours of constant B, in the plane y=0 generated by
90 kA-turns in the coi¥ shown in figures 4 a,b, or c.
The f{eld values are in Gauss.
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Trajectories of electrons with momentum p=50.5 MeV/C in tke

FIGURE &.
y=0 plane of the physical model. The Ampere turns per coil
(fig. 4) required to achieve a given bending angle is also

indicated.
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FIGURE 7.

FIGURE 8.
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Bending angle o« vs. required Ampere turns/coil in the
physical model.
Dispersive matrix elements R16 and R26 vs. the bending

angle in the physical model obtained by integrating
particie trajectories,
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of the

FIGURE 9. Dispersion curves of the physical (x) and analytic (¢} models
final deflection magnet for path lengths of 1.0 and 1.5 m.
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FIGURE 10.

Schematic of particle trajectories in the final deflection
magnet. a) analytic model, b) physical model.
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FIGURE 11. Symmetric three-dipole magnet array. Trajectories of particies
with different momenta are recombined on exit so that the array
is double achromatic in the bend plane.
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FIGURE 12.

Asymmetric three-dipole magnet array with colinear trajectory.
The path lengths are those of the reference particle.
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FIGURE 13. The angles B, and 8, that are the solutions to Egs. (3.1)
and {3.2), réquired“to produce a calinear reference trajectory

in the three-dipole asymmetric array, Fig. 12
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Trajectories of particles with different momenta in the three
dipole array of Figure 12. The heam exits the array with no
angular dispersion. There is a momentum focus between the secong
and third magnets.
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Matrix elements pf the magnet array of fiqgure 12 for the
non-bend plane vs. the angle 9.,. !
1
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FIGURE 17. Matrix elements of the mignet array of Figure 12 for the bend
- plane vs. the angle @,. The array appears as a pseudo-deift
space in this plane.
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Vertical corrector, vertical guadrupole and snout showing
preconditioned trajectories in the vertical plane and vertical
phase space at various positions along the reference

trajectory,
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FIGURE 19.
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Schematic of spout magnet and four sections of the beam

preconditioner as used in the numerical example, Table 1.
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FIGURE 20. Snout deflection space showing a possible beam exit point.
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FIGURE 21. System tune vs, vertical bending angle a, for the system shown in Figure 19. The values
of Q, and Q_ ave in kG-m/m. Only & varYes significantly with horizontal bending angle
ap. Mote tne singularity in the Q) "and rapid change of & near Iavf of about 4 degrees.
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FIGURE 22, Plot of x and x' at the entrance to the vertical

corrector as o, is varied. HNote that x passes through
zero near o, o¥ 4 degrees.
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FIGURE 23. System with quadrupole  added to the horizontal quadrupele
section. The trajector(i]’és in the horizontal plane of particles
with ptdp are shown qualitatively for various values of oy
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Figure Captions

1. The doubly achromatic beam deflection systems giving the designation of .
the sections and the individual magnet.
2, Dispersion in final bending magnet. &) Dispersion if beam is not
preconditioned. b) Dispersion eliminated by proper preconditioning.
¢) Phase space at required at entrance to final bending magnet.
3. Photograph of a Television Deflection Coil. |
4. Coil windings employed in physical model of the deflection coil. a), b),
¢) Windinos for deflection in x plane. d), e), £) Windings for deflection
in y planes.
5. Contours of constant By in the plane y = o generated by 10,000 A in the
coil phown in Fig. & a,b,c. The values are in Gauss,
6. Trajectories of electrons with momentum p = 50 MeV/e in the y = o plane of

the physical model. The values of current are those in the 9-turn coil,

i
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;

Fig. 4 a,b,c, required to achieve a given bending angle.

7. Bending angle @ vs. required current in thephysical medel,

8. Dispersive matrix elements ll16 and R,. vs. bending angle in the
physical model obtained by integrating particle trajectories over 1 m
{solid curve) and 1.5 = (dashed curve).

9. Dispersion curves of the physical and smalytic models of the final

deflection magnet.

10, Schematic of particle trajectories in the final deflection magent. a)

g e

Analytic model, b) physical model.

11, Symmetric three-dipole magnet array. Trajectories of particles with
different momenta are recombined on exit so that the array is doubly

achromatic in the bend plane.
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Asymmetric three-dipole magnet array with colinear trajectory. The path
lengths are those of the reference particle.
The anglen 92 and 93 that are solutions to Egs. (3.1)and (3.2),
Trajectories of particles with different mumenta in the three dipole array
in Fig. 13. The beam exits the array with no angular dispersion. There
is a momentum focus between the second and third magnets.
Positional dispersion vs. the sngle 61 introduced by the magnet array in
Fig. 13.
Matrix elements of the magnet array in Fig. 13 for the non-bend plane vs.
the angle el.
Matrix elements of the magent array in Fig. 13 for the bend piane vs. the
angle 6,. The array appears as a drift space in this plane.
Vertical connecter, vertical quadrupole and enout showing preconditioned
trajectories in the vertical plane and vertical phase space &t various
positions.
Schematic of snout magnet and four sections of the prevosditioner as used
in the numerical example, Table 1.
Four squares and some dots.
System tune vs. vertical bending angle u'v for the system shown in
Fig. 19. The values of Q and Q, are in kG-m/m. Only eh varies
significantly with horizontal bending angle Q. HNote the singularity in
Qh and rapid change of Gh near Idv| - 4°,
Plot of x and x' ac the entrance to the vertical corrector as dv is

varied. Note that x passes through zero near t!v = 4°,
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23. System with quadrupole Qx added tot he horizontal quadrupole section.
The trzjectories in the horizontal plane of particles with p + dp are
shown qualitatively for various values of L
24, Tune of the horizontal preconditione: sectioms vs. a, for o = 30°.
The presence of the quadrupole Qx renoves the singularities at
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