
i' i' UCID- X8732 

Beam Deflection into a Quadrant 
by a Positionally Stationary 

Magnetic Bending System 

Arthur C. Paul 
Laurence Berkeley Laboratory 

Berkeley, California 

V. Kelvin Neil 
Lawrence Livermore National Laboratory 

Livermore, California 

June 20, 1980 

This is an informal repot] intended primarily for internal or limited cxlcrrtftl distribution. The 
opinions and coaduwons slated arc those of the author and ma.} or may not be Ihese of the 
Laboratory. 

&** 

.innmiim OF THIS oowjNyi! is tttutuifp 



1»jMcfe«**9n«M*«aMMmtnc-w-lE>ir«-.«mrol| >>tW<M«Sa ,n«~ n-i><-<H' 
Hten fm V*M Sun I M V M nr intmm * * « f . nw VH f f » * ^ » » n i m w * 
• M O T . t w i n B li«l«C • B M . • * » » • " • " i» er «*•.*•*.!» *« • » m r r . 
u f t imMH w U4MM. M n m^nrtut. M M pntai. « ufirad ^touB. v> 
o m M lnu»Mwta<o4 I f •!•*« » " * * * awW'iTft * • •«•«• * » - . =" • • *««• ' * 
rcmrcW pvfcct. pert*. « Wv*. fcr V* "»». w « * * * , mrM'teta*. or a i w r . ton 
TCI rota.* v # . ) M * i-wy «i « w u « J W B w l r l a i . tf ' * * « . h- <** U*TB 
Sum covffwrwie» MI , M M . IIOTCI. T™ »^n«M tamtam ol 1.1 Mr inMi .afWJ'wiwl 
««ti*ilvniM(»ri!l«tlMlii»ltl*UililrtSllB(;o«rr™iHM«VI9PWIN*«o'. 

Beam Deflection into a Quadrant by a Positionally Stationary 
Magnetic Bending System* 

Arthur C. Paul, 
Lawrence Berkeley Laboratory 

Berkeley, California 

V. Kelvin Neil 
Lawrence Livermore National Laboratory 

Livermore, California 

ABSTRACT 

A system of postionally stationary magnets is analyzed for the 

continuously variable deflection of a SO MeV electron beam. The system is 

composed of a collection of horizontal and vertical bending magnets, 

quadrupoles, and a final deflection magnet thai is conical in shape and 

capable of deflections of plus or minus 50 degrees simultaneously in both 

horizonal and vertical planes. Throughout the system the beam is assumed to be 

focused by its own magnetic self-field, the electric self-field being 

neutralized by background ions. The motion of the beam in the externally 

applied magnetic fields may then be considered as single particle motion. The 

system of bending magnets and quadrupoles pre-conditions the beam by 

introducing the proper displacements and angles at the entrance to the final 

deflection magnet for momentum deviations up to plus or minus one percent. The 

displacements and angles are determined by the chromati ?ity of the final 

deflection magnet and are a function of the bending angles in the two planes. 

The total system is then doubly achromatic in both planes. The 

pre-conditioning magnets are of standard accelerator beam transport design 

while the conical deflection magnet is of a design fashioned from a television 

deflection coil scaled up by about a factor of 10 in size. 

*Lawrence Livermore National Laboratory is operated by the University of 
California for the Department of Energy unaer Contract Ro. W-7405-Eng-48. 
Thio work is performed by LLHL for the Departcsnt of Defense under DARPA (DOD) 
ARPA Order 3718, Amendment #12, monitored by NSWC under Contract 
Ho. N60921-8(Hira-W)188. 
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Introduction 

The system shown in Fig. 1 is considered in detail in this report. The 

designation of the sections of the system and the individual magnets shown in 

the figure will be used 'hroughout this work. Linear particle optics are 

employed to first order in the momentum deviation. It is assumed that gas 

focusing of the beam prior to entrance into the system results in a beam with 

negligible transverse dimensions and thus the motion in the externally applied 

magnetic fields is that of a single particle. The dispersion of the final 

deflection magnet (hereafter referred to ae the "snout" magnet) is a known 

function of the bending angles a. and a in the horizontal and vertical 

planes respectively. The beam passing through the pre-conditioning magnets is 

given values of x, x', y, y' at the entrance to the snout according to the 

momentum deviation. These quantities are individually selected by four "tuning 

knobs" on the preconditioned The values selected are chose that make the 

total system doubly achromatic in both planes. 

He emphasize that only linear theory is employed in this paper and that 

certainly second order effects must be considered in future work. Furthermore 

in the mathematical model of the snout that we use, motion in the two 

transverse planes is not coupled, while in a practical snout they will 

generally be coupled. This coupling in a real snout doeB not alter our 

conclusions that a preconditioner can be designed to provide the required 

angles and displacements at the snout entrance since the coupling will merely 

give different values from those we consider. The values required by a 

practical snout tn well as second order effects may dictate a preconditioner 

that is more complex than the rather simple arrangement considered in this 

work. 
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We shall refer to th= preconditioner and the snout as the deflection 

system. The system consists of five sections, four of which make up the 

preconditioner and the fifth is the snout magnet. Each section of the 

preconditioner consists of a single magnet or an array of magnets and drift 

spaces. We describe briefly the matrix formalism of conventional beam 

transport theory that is used in this report , and outline the principle 

employed in the design of the preconditioner. 

A particle with momentum p that enters a section at the proper position 

and at the proper angle we call the reference particle, and we call its 

trajectory the reference trajectory. The momentum p is that for Which the 

entire system has been tuned. Other particle trajectories will have 

deviations from the reference trajectory, both in position and angle. These 

deviations are x, y, x', and y', where x and y are the distances from the 

reference trajectory in the two transverse planes and the prime indicates the 

slope relative to the reference trajectory. Particles may also have a momentum 

deviation dp and and a path length deviation ds. Thus each trajectory is 

characterized by a six-dimensional vector. The vector V exiting the 

section is related to the vector V~ entering the section by the matrix 

equation, 

V* - RV". {1.1) 

The matrix R is the transport matrix of the section and is the product of 

the matrices of the magnets and drift spaces that make up the section. The 

transport matrix of the system is the product of the matrices of the sections 

that make up the system. The elements of the 6 X 6 matrix of a section are 

determined by the configuration of magnetic fields and drift spaces throughout 

the section. 
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The path length deviation does not enter our calculations, therefore we 

are dealing with 5 X 5 matrices. We will, however, retain the conventional 

notation and write the matrix equation in the form 

,+ 

Rll R12 R13 R1A R16 

P 

R21 R22 R23 R24 R26 

R31 R32 RJ3 R34 R36 

R41 R42 R43 R44 R46 

dj> 

P 

<1.2> 

The matrix elements Rje» ^os* ^36' a n < ' R4fi a r e t ' l e d ispersion elements 

of the matrix. The quant i t i e s R. ,dp/p and R_,dp/p are the pos i t iona l 

dispers ion and the quant i t i e s R„,dp/p and R.,dp/p are the angular 

d i spers ion . To avoid confusion, we as, that i f both the pos i t ional and 

angular dispersion are zero in one plane the sec t ion i s doubly achromatic in 

that plane. If the sect ion bends the beam in one transverse plane only, i t i s 

conventional that the top two rows of the matrix transform the displacement 

and angle in the bend plane and the third and fourth rows transform the 

displacement and angle in the non-bend plane. We w i l l not follow that 

convention c o n s i s t e n t l y i n t h i s work. 

In general the matrix of the snout w i l l have a l l the elements indicated in 

Eq. ( 1 . 2 ) . Those elements w i l l be functions of the de f l ec t i on angles a. 

and a . and we assume that the matrix elements can be found by computation 
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and or measurement to the degree of accuracy required. In this work, the 

assumption of decoupled planes allows us to take H.. » M,. = M_, = V... 

= JL = « 3 2 = M 4 1 • M 4 2 • 0. The trajectory of a particle exiting the 

snout is represented by the vector V and we have 

V* - R.V", (1.3) 

in which V represents the trajectory entering the snout. The + and -

superscript convention will he retained throughout this work, for ell 

deflection angles O. and * the desired form of V is 

V* = (0, 0, 0, 0, dp/p). (1.4) 

We multiply Eq. (1.3) an the left by the inverse of R and set R R 

= J, the identity matrix, and obtain, 

vs" • « ;X- ( i - 5 > 

The physical meaning of Eqs. (1.4) and (1.5) is graphically illustrated in 

Fig. (2). The vector v~ in general has all five caanan/ea.ta. wm-ieto. 

For any values of cc. and c*v, V gives the values of x, x', y, and 

y' as a function of dp/p that must be provided at the entrance to the snout by 

the preconditioner in order for V to have the form given by Eq. (1.4). 

Within the linear theory employed in this work, x, js', y, and y' are linear 

functions of dp/p and it is therefore possible to preconditon the beam with 

four sections. 

We call the first section of the preconditioner the horizontal corrector 

(HC)< The section consists of three bending magnets and two drift spaces. 
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The trajectories of all particles entering the HC are represented by the same 

vector, Vj" , uhich is identical to V + and given Eq. (1.4). The HC nc 8 
provides a horizontal displacement only, so that V. = (x-, 0, 0, 0, 

dp/p). The value of x, is that necessary to pass through the rest of the 

preconditions and arrive at the snout entrance vith the desired vector. He 

let R. be the matrix of the HC. The second section is the horizontal 

quadrupole section (focusing in the horizontal plane), which we call QH. It 

turns out that two quadrupoles and a drift space are needed in this section 

for some vertical deflection angles, but for this discussion ve simply employ 

the matrix R , for this section. The OH provides a value of x1 but does not qn 
contribute to y and y", BO that V . = (x_, x',, 0, 0, dp/p). The 

values x„ and x', are not those required at the snout entrance because the 

nest two sections are focusing and defocusing in the horizontal plane. The 

values are those required to pass through the remaining two sections and 

arrive at the snout with the desired vector. 

The third section is the vertical corrector VC. It is identical to the 

horizontal corrector except it is rotated 90 degree?. The VC provides a 

displacement y and new values of x and x', so Chat V = (x_, x',, 

•JV 0, dp/p). The fourth section of the preconditions is the vertical 

quadrupole section (focusing in the vertical plane), QV. This section 

provides the desired value of y' and changes the values of x, x', and y to the 

desired values at the entrance to the snout. Since the initial vector 

v7 • Vg, the condition on the matrices of the five sections of the 

system is 

"sVvc^h^ic " *' 

•qv"vc~qhK" *-AcVi.c - R, 
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In the following treatment the problem is actually worked backwards from 

the snout, using the inverse matrices of the sections. For given a. 

and » the desired values of x, x' y, and y' are determined from the 

knowledge of B~ . The QV section is set to make y' = 0 (going backwards) 

and this setting determines values of x», x'-, and y«. The Vc section 

is set to make y = 0 and determine values of x« and x'2< T n e Q H section 

is set to make x' = 0 and determine the value of x, that must be provided by 

the HC section. 

2. Snout Magnet 

Figure 3 is a photogragh of a yoke magnet that directs the electron beam 

onto the shadow screen of a television picture tube. Such a magnet, which is 

capable of simultaneous large angle deflections in both horizontal and 

vertical directions is the principal component of the deflection system we are 

considering. The aberrations inherent in the magnet are assumed to be known 

functions of the bending angles a, and a. . 

A. Physical Model of the Deflection Magnet. 

To gain some insight into the chromatic aberrations of the snout, we have 

investigated the coil configuration shown in Fig. A. The origin of a 

rectangular coordinate system is located 10 cm below the narrow end of the 

cone, and the z axis lies along *he axis of the cone. The angle of the cone 

is 70 degrees and the height is 0.9 m- For deflection in one plane (x as 

shown) two nine tarn coils are wound on the surface of the c w . The choice of 

nine turns is made for convenience. In practice the coil would have many more 
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turns. In a cross-section normal to the axis, the conductors are placed to 

approximate a surface current distribution proportional to cos 6. All of the 

turns close in ths 8 direction at the ends of the cone. For deflection in 

the y direction an identical pair of nine turn coils is placed on the surface, 

but rotated 90 degrees about the z axis. This second pair of coils is shown 

in the figure, separated from of horizontal pair for clarity. These two sets 

of coils approximate a crossed dipole magnetic field configuration. 

The magnetic field from these coils has been computed , Figure 5 shows 

the contours of constant B in the plane y =» 0 for a current of 10 kA in the 

horizontal deflection coils. We note that this field configuration bears no 

resemblance to the field in conventional bending magnets in accelerators aid 

beam transport systems. In conventional bending magnets the magnetic field is 

uniform or has a specified radial gradient. The field in the cone magnet 

resemble; uore the fringing field at the e-Jge of a conventional magnet, where 

it is sometimes useful, but more often a nuisance. 

The trajectories of 50 MeV electrons in the y = 0 plane have been 
3) . . 

computed for various currents in the horizontal deflection coils, and are 

shown in Fig. 6. The angle of bend and the ampere turns/coil necessary to 

obtain that angle are given. A 7 kA current correspondes to 6.3 X 10 

ampere-turns in each coil of the pair. We note that the trajectory exiting at 

56 degrees passed through the surface of the cone, indicating chat to achieve 

bending angles greater than about 50 degrees the coils would not be placed on 

the surface of a cone, but rather he shaped similarly to the television yoke 

in Fig. 3. In the television industry, the yoke is referred to as a saddle 

coil . Figure 7 shows the ampere-turns required to achieve a given bending 

angle. 

If the deflection i s in the horizontal plane only, the matrix elements 

R_g and R.g in Eq. (1.2) are zero and the elements R l f i and Rj, are 
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non-zero. The units of R., and R-e are meters/fraction (cm/percent) end 

red/fraction (lOmrad/percent) respectively. These dispersion elements are 

plotted vs <V in Fig. S. The values were obtained by integrating over path 

lengths of 1 meter and 1.5 meters, and we see that there is considerable 

difference. For small angles of deflection the difference between the curves 

for one meter path length and 1.5 meter path length corresponds to the effect 

of drift on the matrix elements. That is, these trajectories are clear of the 

magnetic field after 1 meter and for the remaining one-half meter we hav^ x • 

x + lac" , where L is the drift length, while x' = x' . For large 

angles the trajectories lie near the coils and are not clear of the field 

after 1 meter. The "exit" of the conical snout is a bit nebulous, however we 

will employ an analytic model of the snout in the following treatment. 

For a given dp/p the locus of points in the x ~ x' plane found by 

varying a forms a curve that we will call the dispersion carve. It is the 

parametric curve (with <* the parameter) of R,, vs P.,, and it is shown in 

Fig. 9 for a path lengths of 1 m and 1.5 m. For linear optics employed here, 

the curve is to be interpreted in the following manner: A particle with 

momentum p will exit from the cone at the origin in the x - x' plane, 

independent ot the angle a . A paTticle with momentum l.Olp will exit at 

some point on the curve, the location of the point being determined by the 

angle « . For the same angle <*, particles with momentum between p and 

l.Olp will exit at a point lying on a straight line linking the origin with 

the point on the curve, the distance from the origin being porportional to dp, 

as shown in Fig. 9 for oc = 50.6 ° and 1.5 m path length. For negative dp 

tie straight line extends through the origin to the reflected point on the 

curvs. 
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B. Analytic Model of the Deflection Magnet. 

In order to avoid the necessity of numerical integration of trajectories 

in the magnetic field of the cone, we will use an analytic model itr the snout 

matrix. We consider a conventional bending magnet with a dispersion curve 

matching that of the ecie in the y - 0 plane to a rather good approximation. 

The idealized magnet has uniform magnetic field in the bend olane. 

Furthermore, the exit edge of the model magnet is shaped so that the an^le 

between the particle trajectory at exit and the normal to the edge ia equal to 

one half the bending angle and provides vertical focusing. The geometry is 

shown in Fig. 10. The value of L for the model in chosen so that the angular 

and positional dispersion matrix elements R,, and R,, match that of the 

physical model, Fig, 8, for a • 42.7°. The transport matrix for the model 

magnet in the bend plane is 

r 
cos o L cos a/2 L s i n a/2 

H, = - 2 s in a/2 tan a/2 
L 

tan a/2 

L 

(2 .1 ) 

Figure 9 shows the dispersion curve for th i s matrix for L • 1.2165 m. We 

see that the curve approximates that found for the cone by integrat ing 

t r a j e c t o r i e s over 1 m path length . The curve of the analyt ic model with L = 

1.2165 m followed by a 0 .5 m d r i f t approximates the curve found for the cone 

by in tegrat ing t r a j e c t o r i e s over 1.5 m path length. 

The matrix for the model magnet in the non-bend plane i s 



11 

-̂SJE -2 sin a tan « 
L 2 2 

2 sin a/2 

2 - a tan a 
2 

(2.2) 

We do not employ this matrix in our vork. Because of the assumption of 

uncoupled motion, both the x and y planes are transformed by the bend plane 

matrix in Eq- (2.1). 

3. Horizontal and Vertical Correctors 

The HC and VC sections are identical arrays of three dipole bending 

magnets, the VC being rotated 90 degrees about the z axis with respect to the 

HC. In discussing these arrays we take the x plane to be the bending plane as 

it is in the HC section. These sections are fashioned from the dispersionless 

three magnets array shown in Fig. 11. The presence of the symmetry plane 

S - S guarantees that the array is doubly achromatic. Particles with 

a fferent momenta follow different trajectories through the array, but p.ll 

trajectories exit the array on the same beam line as at ei.try. We call 

trajectories with this property colineax. 

Introducing an asymmetry into the array produces a beam with positional 

dispersion at the exit. If the magnets are properly tuned, the reference 

particle with momentum p follows a colinear trajectory as shown in Fig. 12. 

As defined in the figure, the bendine angles °., L, and ", of the 

reference particle in the three bending magnets must satisfy two conditions. 

First, in,order for the reference particle to exit at the proper angle, we tave 
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0 2 - 6X + 83. (3.1) 

Second, in order fur the reference particle to exit at the proper position, we 

have 

l x tan (6^2) + Sj tan 6j - L 2 tan (6 3 -6l)/2 

- S 2 tan 63 - L 3 tan (03/2) • 0. (3.2) 

In this expression L,, L-, L_, S. and 5, are the magnet lengths and 

separations as shown in Fig. 12. With these conditions, a value of 9 

determines values of 6. a na 9 . l"he values of 3 and 6. that 

satisfy Eqs. (3.1 and 3.2) are plotted vs. 6. in Pig. 13 fcr L. « L, = 

L_ = 0.5 m, S. = 2 m and S, =0.5 m. These dimensions are arbitrarily 

chosen, and we will use them throughout this work. 

Particles with momentum p + dp will exit the array with a displacement in 

the band plane proportional to dp, as shown qualitatively in Fig. 14 for 9 

both positive and negative. The erray results in positional dispersion V. *. no 

angular dispersion. For 9L > 0 a positive momentum deviation produces a 

negative displacement, while for 8. < 0 a positive momentum deviation 

produces a positive displacement. The convention of positive or negative 

displacement is based on the sign of the positional dispersion matrix element, 

&.g. This dispersion elenant is plotted vs. 9, in Fig. 15, and is found 

to be well approximated by the relation 

Rjg - -a 9j e b 6l , (3.3) 

with R ^ in cm/2, 8j in degrees, a - 4.78 x 10~ , and b = 0.1014. In 

the following -,v refer to 9. in the HC as &, and 6. in the VC as o , 
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Focasinf in the non-bend plane ia provided by the fringing fields at 

magnet 1 exit, magnet 2 entrance and exit, and magnet 3 entrance because the 

tragectori.es are not normal to the magnet edge at these locations. In the 

bend plane, edges are defocusing but the bends are focusing so that the net 

effect is that the array provides no net focusing. The transport tutrix 

elements of the sections for the non-bend plane are plotted in Fig. 16, and 

the elements for the bend plane are plotted in Fig. 17. In these figures we 

have used the convention that the top two rows of the matrix transforms the 

bend plane. Since the array is a drift Bpace for motion in the bend plane. 

R.. • R 2 2 • 1 and H, 2 is the effective path length through the array as 

a function of S,, 

The matrix elements in Eq. (1.2) that couple the x and y motion are zero 

throughout the preconditioner. These elements are R,,, H.,, R,,, R,,, 

R31' R32' ̂ 41 aB^ R42" 

4. Dispersive Preconditioning 

With the analytic model, Eq. (2.1), for the transport matrix of the snout, 

and the matrix elements of the HC and VC sections displayed in Figs. 5, 16, 

and 17, we may write the matrices and inverse matrices of the five section of 

the deflection system. 

We -now adopt the convention that the first two rows of our matrices 

transform motion in Che horizontal (x) plane and the second two rows transform 

motion in the vertical (y) plane. Since the vector V • (0, 0, 0, 0, 

dp/p)} we need only the last column of the inverse matrix R . He 

generate the matrix R~ from the matrix R given by Eq. (2.1) and find 

that the vector V~ at the entrance to the snout is given by 

http://tragectori.es
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L sin \ - , -sin « h, L sin v , -sin a , l dp/p. (4.1) 

There is a vertically focusing qusdrupole, QV, between the VC and the 

snout as shown in Fig. 18. He use the thin lens approximation for both the QV 

and the QH sections, with equal drift spaces of length D on either side. The 

inverse matrix R~ is given by 

0 0 0 

0 0 0 

I - D/f -2D + 32/f 0 (4.2) 

l/£ 1 - D/f 0 

0 0 1 

• ; ; -

I + D/f -(2D + D / f ) 

- 1 / f 1 + D/f 

0 0 

0 0 

0 0 

in which f is the focal length of the quadrupole. For the same length drift 

spaces, the inverse matrix R~ for the QH is found from this expression 

by reversing the sign of f. 

In order to display the matrices B. and R for the HC and VC 

sections respectively, we refer to Figs. IS, 16, and 17. The notation in 

these figures is such that R^, R 1 2, R 2 1, Rj 2, and Rj 6 transform the 

bend plane and R,^, S,., RAJ, and R.. transform, the non-bend plane. 

From the figures we see that RJJ - ft22 « 1, and R 2, • R_, • 0. He 

define the quantities a, b, c, d, e, and h in terms of the Matrix elements in 

Figs. 16 and 17. This procedure results in some simplified (and hopefully 

less confusing) notation. He set 
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a = R 33 c »R, 43 e « R. 16 
(4.3) 

b •= R 34 d - R, 44 h <• R. 12* 

Employing these definitions, \ie vrite the matrix R. for the HC section 

in the form 

*hc 

h 

1 

0 

0 

0 

-1 

1 J 

(4.4) 

The inverse matrix R, is given by 

C = 

1 -h 0 0 -c 
0 1 0 0 0 
0 0 d -T> 0 
0 0 -c a 0 
0 0 0 0 1 

The inverse matrix R~ of the VC section is given by vc 

(4.5) 

d 

-c 

0 

0 

0 

0 
1 

0 

0 

0 

0 
-e 

0 

1 

(4.6) 
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A. Preconditioning in one plane 

As an example of how the system is tuned, let us consider the vector 

V~ given by Eq. (4.1). At the entrance to the snout we have 

y = L sin i « v (dp/p), (ft.7a) 

y' = -sinav (dp/p) . (4.7b) 

Referring to Eq. (4.2) we see that the condition y' = 0 at the exit of the VC 

determines the focal length, f, of the quadrupole to be 

£ - D - {yjy\) • <*-e> 

The value of y at the exit of the VC determines the setting of the VC. We have 

»2> (,-1) ,.-(»-t)r. 

with f given by Eq. (4.3). The value of 9 necessary to achieve this value 

of y at the exit of the VC is then found from Figs. 15 and 17, or from 

Eq, (3.3). The focal length of the vertical quadrupole and the value of e „ 

are now set to provide doubly achromatic deflection in the vertical plane. 

But the 'OV is defocusing in the x plane, and the VC focusing in the X plane. 

So preconditioning in the x plane is a bit more complicated. 

B. A numerical Example 

To demonstete preconditioning in both transverse planes, we consider 

deflection angles a h - 30° and a^ - 20°. The momentum deviation is 
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+1Z foe this example. The lengths I. - 1.2165 m, and D » 0.25 m in both tt,e Q V 
and QE sections, as shown in Fig. 19. The various positions in the system a r e 

also designated in the figure. In terms of the notation employed in the 
introd« c t i o n, ^ h a v e v'g - V 2, V* c - V ^ = \ y V~c ' 

Vqh " V Vqh • Vhc " V -* V " V »• i n v e r 8 e 

matriceB 0 f the 4 sections of the preconditioner and the vectors at each 
position are displayed in Table 1. The calculation is performed with s at^ y 

in cm and jt' and y' in units of 10 mrad. 
I n Table 1 the vector V, is found from EG.. <4.l) with L = 1.2165 m, 

o^ « 3 0 ^ and „ = 20°. The inverse matrix RT is given by Eq. 
(4.2) with D = 0.25 m and E determined by Eq. (4.8), which yields 
f „ = ''797 m» To save space, numbers in Table 1 are given to 5 decimal 
places only, but the calculations were carried out to at least 15 decimal 
places. The setting of a quadrupole is generally stated as the field gradient 
times t n e effective length, which is fcG-m/tn, or simply kG. The relationship 
between field strength, focal length, and the magnetic rigidity (B p) of t n e 

particl e s i s B = (B p)/f. For electrons with p = 50.5 MeV/c we have 

E = 1.68451 kG-m/f, <4.10) 

so that the strength of the vertical quadrupole is -1.9415 kG-ra/m for 
f • .67^7 B, By convention the sign of a quadrupole field is positive for 
horizontal focusing and negative for vertical focusing. In Table 1 the vai u e 

i 
o f v 3 1!4 indicated to be zero, although the numerical calculation yielded 
a value o t 4.8xl0 - 7 rad. 

"•* inverse matrix R~ is given by Eqa. (4.3} and (4.6). The value 
o £ % U chosen to yield a ( - B ^ in Figs. 14 a: d 16) - .29674. The 
value o£ @ was n o C found from the figures or from Eq. (3.3) but was 
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calculated using a special computer code. A value S - -29.91808 was 

found to yield the proper value of e (Eq. 4.3). The remaining elements of 

R~ were also calculated with the code, vc 
The inverse matrix R~ is found from 2q. (4.2) by reversing the sign 

i 
of f. The condition f. - D - (x./x.) yields f. • 2.6011 m, and a 

corresponding field strength 0.64762 kG-m/m. 

The inverse matrix sT is given by Eq. (4.5). The value of 8. = 

46.8632° was found to yield e - -2.41593. This value as veil as the 

remaining elements ox RJ" was calculated with the code. 

5. System Tune ior All Deflection Angles 

Our deflection system must he capable of aiming the electron bean in any 

direction. That is, the settings of the four sections of the preconditioner 

must be reasonable for all combinations a and a . as shown in Fig. 20. 

The system, shown in Fig. 19 is inadequate in that values of a near 4° 

cannot be accomodated. Figure 21 shows the angles 6. and 6 and the 

quadrupole settings 0 and Q. (in kG-m/m) as functions of a for 

dp/p - 12 and a h = 10°, 20°, 30° and 40°. The settings O and 

6 are independent of Ct , and the setting Q. varies by less than IX for 

0 < | a. | <50°. He see that there is a singularity in the setting Q, 

and an abrupt change in the sign of 6. at » a 4°, 

The singularity in the setting Q. can be understood from the horizontal 

dispersion curve at the entrance to the VC. In Fig. 22 the values of x' and x 

at this position are plotted for dp/p * 1Z, O. m 30° a n d 

-SO <a < 50°. We see that the value of x passes through aero at 

Ctfc 4 , and therefore the QH section can have no effect upon particle 
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trajectories. For a < 4° the sign of both Q. and &. are reversed. 

Physically the singularity arises because of the focusing properties of 
tj.e VC section in the horizontal plane. The VC is focusing in the horizontal 
plane and for ot > 4 there is a momentum focus (i.e., a point where x = 0 
regardless of the va?ue of dp) within the VC. As the vertical deflection is 
reduced with the associb'-ed reduction in vertical correction, this momentum 
focus in the x plane shifts toward the entrance to the VC. For a < 4° 
the momentum focus lies upstream of the VC. The position of the momentum 
focus for different values of Ct is shown qualitatively in Fig. 23, which 
displays the trajectories in the X plane of particles with momentum p and 
P i dp. 

The timing singularity can be removed by the addition, of a second 
horizontally focusing quadrupole, with setting Q , to the QH seition as 
shown in Figs. 1 and 23. The QH section with 2 quadrupoles can no doubt be 
operated in several ways in order to provide the required values of x and x' 
at the entrance to the VC, One mode of operation is to maintain the same 
setting of Q. far all a less than some value, and obtain the required 
values of x and x' at the entrance to the VC with the setting of 0 . For 
smaller values of a (and 6 ) the horizontal focus lies upstream of the v v * 
quadrupole Ov . The clamped setting of Q. is sufficient to insure that the 
momentum focus lies between Ov and O , and elimnates the necessity of 6-
changing sign at a • 4°. 

He consider the geometry shown in Fig. 23, with two thin lens quadrupoles 
separated by a distance t . There is a drift distance D between the 
entrance to the VC and the quadrupole Q. and between the quadrupole Q and 
the exit of the HC. Since y and y' are zero throughout the HC and the QH 
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sections, ve need consider only the elements 11, 12, 21, and 22 of the inverse 

matrix B .. These elements are given by qn 

* < u , - ( 1 - t ) ( 1 - ^ ) - i 

•S < u ) • - i . ^-k){l-k)"H-k) "•-

If z. and x. are the horizontal displacement and slope at the 

entrance to the VC, the condition i' = o at the exit of the EC is satisfied if 

focal length f x satisfies the relation 

1 _ x 4 + *A (£h " Lx) _ (5.2) 

A smoothly varying time for the four preconditioned sections is found by 

chosing L x » 3 m and Q h » 1.15 kG-m/m for -10° < a < 10°. The 

quantities 0> , ft. 0 , 9 and 6. are plotted vs. a in F;.g. 24 

for C^ » 30° and dp/p • IX. The tune variations in Fig. 24 are still not 

ideal because of the discontinuity in the derivatives 36 /3a and 
n v 

We have not performed an extensive study of the effects of perturbations 

in magnet settings on the chromaticity of the system. For «. « 30° and 
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a • 20° and dp/p = 12, calculations performed with the TRANSPORT code 
show that the system is achromatic in both planes to within 10 lirad and 0,1 m 
if the setting of any one magnet in the preconditioner is accurate to vithin 
one part in 10 • Clearly second order effects must be included before a 
meaningful study of tuning errors can be performed. 
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FIGURE 1. The double achromatic beam deflection system giving the designation or 

the sections and the names of individual magnets of the system. 
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» 
FIGURE 2. Dispersion in final bending magnet, a) Dispersion If beam 

is not preconditioned, b) Dispersion eliminated by proper 
preconditioning, c) Phase space is required at entrance to 
final bending magnet. 
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FIGURE 4. Coil windings employed n physical model of the deflection 
coil a ) , b), c) windings for deflection in x plane, d), e), 
f) windings for deflection in y plane. 



90 HA •*»**>* 
fIGURE 5- Contours of constant B in the plane y=0 generated by 

90 kA-turns in the coil shown in figures ^ a,b, or c. 
The field values are in Gauss. 
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FIGURE 6, Trajectories of electrons with momentum p=50.5 MeV/C in the 
y=0 plane of the physical model. The Ampere turns per coil 
(fig. 4) required to achieve a given bending angle is also 
indicated. 
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FIGURE 7. Bending angle a vs. required Ampere turns/coil in the 
physical mode?. 

FIGURE 8. Dispersive matrix elements R,g and R,. vs. the bending 
angle in the physical model obtained by integrating 
particle trajectories. 



FIGURE 9. Dispersion curves of the physical (x) and analytic (o) models of the 
final deflection magnet for path lengths of 1.0 and 1.5 m. 
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FIGURE 10. Schematic of particle trajectories in the final deflection 
magnet, a) analytic model, b) physical model. 

i \ 
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FIGURE 11. Symmetric three-dipole magnet array. Trajectories of particles 
with different momenta are recombined on exit so that the array 
is double achromatic in the bend plane. 
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FIGURE 12. Asymmetric three-dipole magnet array with colinear trajectory. 
The path lengths are those of the reference particle. 
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FIGURE 13. The angles 9 2 and 9, that are the solutions to Eqs. (3.1) and (3.2), required to produce a colinear reference trajectory 
in the three-dipole asymmetric array, Fig. 12. 



35 

FIGURE 14^ Trajectories of particles with different momenta in the three 
dipole array of Figure 12. The beam exits the array with no 
angular dispersion. There is a momentum focus between the second 
and third magnets. 
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FIGURE 16. Matrix elements of the magnet array of figure 12 for the 
non-bend plane vs. the angle 9-j. 



FifiURE 17. Matrix elements of the raignet array of Figure 12 for the bend 
' plane vs. the angle fl,. The array appears as a pseudo-drift 

space in this plane. 
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FIGURE 18. Vertical corrector, vertical quadrupole and snout showing 
preconditioned trajectories in the vertical plane and vertical 
phase space at various positions along the reference 
trajectory. 
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FIGURE 19. Schematic of snout magnet and four sections of the beam 
preconditioner as used in the numerical example, Table 1 
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FIGURE 20. Snout deflection spaca showing a possible beam exit point. 



FIGURE 21. System tune vs. vertical bending angle a for the system shown in Figure 19. The values 
of Q u and 

vNote 
Q. a,-e in kG-m/ni. Only 6, varfes significantly with horizontal bending angle 
tf)e singularity in the l)n and rapid change of 8 h near \av\ of about 4 degrees. 
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FIGURE 22. Plot, of x and x' at the entrance to the vertical 
corrector as a is varied. Note that x passes through 
zero near a y of 4 degrefei. 
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FlllURE 23. System with quadrupole <L added to the horizontal quadruple 
section. The trajectories in the horizontal plane of parf-icles 
with p±dp are shown qualitatively for various values of a,-
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FIGURE 24. Tune of the horizontal preconditloner sections vs. OL^ 
for a. = 300. The presence of the quadrupole Q removes 
the singularity at Jôl £ 4\ 
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Figure Captions 

The doubly achromatic beam deflection systems giving the designation of 

the sections and the individual magnet. 

Dispersion in final bending magnet, a) Dispersion if beam is not 

preconditioned, b) Dispersion eliminated by proper preconditioning. 

c) Phase space at required at entrance to final bending magnet. 

Photograph of a Television Deflection Coil. 

Coil windings employed in physical model of the deflection coil, a), b), 

c) Windings for deflection in x plane, d), e), f) Windings for deflection 

in y planes. 

Contours of constant B in the plane y = o generated by 10,000 A in the 

coil shown in Fig. 4 a,b,c. The values are in Gauss. 

Trajectories of electrons with momentum p = 50 HeV/c in the y • o plane of 

the physical model. The values of current are those in the 9-turn coil, 

Fig. 4 a,b,e, required to achieve a given bending angle. 

Bending angle a vs. required current in the physical model. 

Dispersive matrix elements R,, and R_, vs. bending angle in the 

physical model obtained by integrating particle trajectories over 1 m 

(solid curve) and 1.5 :•> (dashed curve). 

Dispersion curves of the physical and analytic models of the final 

deflection magnet. 

Schematic of particle trajectories in the final deflection magent. a) 

Analytic model, b) physical model. 

Symmetric three-dipole magnet array. Trajectories of particles with 

different momenta are recombined on exit so that the array is doubly 

achromatic in the bend plane. 
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12. Asymmetric three-dipole magnet array with colinear trajectory. The path 

lengths are those of the reference particle. 

13. The angle? 6. and 9, that are solutions to Eqa. (3.1) and (3.2), 

14. Trajectories of particles with different momenta in the three dipole array 

in Fig. 13. The beam exits the array with no angular dispersion. There 

is a momentum focus between the second and third magnets. 

15. Positional dispersion vs. the angle 6. introduced by the magnet array in 

Fig. 13. 

16. Matrix elements of the magnet array in Fig. 13 for the non-bend plane vs. 

the angle 6.. 

17. Matrix elements of the magent array in Fig. 13 for the bend plane vs. the 

angle 9.. The array appears as a drift space in this plane. 

18. Vertical connector, vertical quadrupole and snout showing preconditioned 

trajectories in the vertical plane and vertical phaBe space at various 

positions. 

19. Schematic of snout magnet and four sections of the pr€ii£>3itioner as used 

in the numerical example, Table 1. 

20. Four squares and some dots. 

21. System tune vs. vertical bending angle a for the system shown in 

Fig. 19. The values of 0 and Qfa are in kG-m/m. Only S. varies 

significantly with horizontal bending angle « . Note the singularity in 

Q. and rapid change of 8. near |<* | - 4°. 

21. Plot of x and x f at the entrance to the vertical corrector as a is 

varied. Note that x passes through zero near a « A 0. 
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23. System with quadrupole Q added tot lie horizontal quadrupole section. 

The trajectories in the horizontal plane of particles with p + dp are 

shown qualitatively for various values of a . 

24. Tune of the horizontal preconditioner sections vs. a for a. « 30°. 

The presence of the quadrupole Q renoveo the singularities at 
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