Beam Deflection into a quadrant

by a Positionally Stationary
Magnetic Bending System

Arthur C. Paul
Lawrence Berkeley Laboratory
Berkeley, California
V. Kelvin Neil

Lawrence Livermore National Laboratory;'
livermore, California

June 20, 1980

Abstract

A aystem of postionally stationary magnets is analyzed for the continuously variable deflection of a 50 MeV electron beam. The system is

 composed of a collection of horizontal and vertical bending magnets, quadrupoles, and a final deflection magnet that is conical in shepe and capable of deflections of plus or minus 50 degrees aimultaneously in both horizonal and vertical planes. Throughout the byatem the beam is assumed to be focused by its own magnetic self-field, the electric self-field being neutralized by background ions. The motion of the beam in the externally applied magnetic fields may then be considered as single particle motica. The syatem of bending magnets and quadzupoles pre-conditions the beam by introducing the proper displacements and angles at the entrance to the final deflection magnet for momentum deviations up to plus or minus one percent. The displacements and angles are determined by the chromati fity of the final deflection magnet and are a function of the bending anglea in the two planes. The total system is then doubly achrometic in both planes. The pre-conditioning magnets are of standard accelerator beam transport degign while the conical deflection magnet is of a design fashioned from a television deflection cail gcaled up by about a factor of 10 in size.\&awrence Livermore National Laboratory is operated by the Dniversity of Galifornia for the Department of Energy umaer Contract No. W-7405-Eng-4B. Thid work is performed by LLNL for the Department of Defense under DARPA (DOD) ARPA Order 3718 , Amendment 412 , monitored by NSWC under Contrect No. N60921-80-WR-W0188.

The system shown in Fig. 1 is considered in detail in this report. The designation of the bections of the system and the individual magnets shown in the figure will be used 'hroughout this work. Linear particle optice are employed to first order in the momentum deviation. It is asaumed that gas focusing of the beam prior to entrance into the gystem resulta in beam with negligible transverse dimensions and thus the motion in the externally applied magnetic fields is that of a \quad ingle particle. The dispersion of the final deflection magnet (hereafter referred to as the "snout" magnet) is a known function of the bending angles α_{h} and α_{v} in the horizontal and vertical planes respectively. The beam passing through the pre-conditioning magnets is given values of $x, x^{\prime}, y, y^{\prime}$ at the entrance to the anout according to the momentum deviation. These quantities are individually selected by four "tuning Enobs" on the preconditioner. The values selected are chose that make the total syetem doubly achromatic in both planes.

[^0]We ahall refer to the preconditioner and the snout as the deflection system. The system consiats of five sections, Sour of which make up the preconditioner and the fifth is the anout magnet. Each section of the preconditioner consists of a single magnet or an array of magnets and drift spaces. We describe briefiy the matrix formalism of conventional beam transport theory that is used in this report ${ }^{1}$, and outline the principle employed in the deaign of the preconditioner.

A particle with monentum p that enters a section at the proper position and at the proper angle we call the reference particle, and we call its trajectory the reference trajectory. The momentum p is that for which the entire system has been tuned. Ocher parcicle trajectoriea will have deviations fron the reference trajectory, both in position and angle. These deviations are x, y, x^{\prime}, and y^{\prime}, where x and y are the diatances from the reference trajectory in the two transverse planes and the prime indicates the slope relative to the reference trajectory. Particles may also have a momentum deviation dp and and a path length deviation ds. Thus each trajectory is characterized by a six-dimensional vector. The vector $\mathrm{V}^{\boldsymbol{+}}$ exiting the section is related to the vector \mathbb{V}^{-}entering the section by the matrix equation,

$$
\begin{equation*}
\nabla^{+}=R V^{-} \tag{1.1}
\end{equation*}
$$

The matrix R is the transport matrin of the section and is the product of the matrices of the magnets and drift apaces that make up the section. The traneport matrix of the syatem is the product of the matrices of the sections that make up the aystem. The elements of the $6 \mathbf{x} \mathbf{6}$ merix of a aection are determined by the configuration of tagnetic fielda and dxift apaces throughout the section.

The path length deviation does not enter our cslculations, therefore we are dealing with 5×5 matrices. We will, however, retain the conventional notation and write the matrix equation in the form

The matrix elements R_{16}, R_{26}, R_{36}, and R_{46} are the dispersion elements of the matrix. The quantities $\mathbf{R}_{16} \mathrm{dp} / \mathrm{p}$ and $\mathrm{R}_{36} \mathrm{dp} / \mathrm{p}$ are the poaitional diapersion and the quantities $\mathbf{R}_{\mathbf{2 6}} \mathrm{dp} / \mathbf{p}$ and $\mathbf{R}_{\mathbf{4 6}} \mathrm{dp} / \mathrm{p}$ are the angular dispersion. To avoid confusion, we sh, that if boch the positional and angular dispersion are zero in one plane the section is doubly achromatic in that plane. If the section bends the beam in one transverse plane only, it is conventional that the top two rows of the matrix transform the displacement and angle in the bend plane and the third and fourth rows transform the displacement and angle in the non-bend plane. We rill not follow that convention consistently in this work.

In general the matrix of the snout will have all the elements indicated in Eq. (1.2). These elements will be functions of the deflection angles α_{h} and α_{v}, and we assume that the matrix elements can be found by computation
and or measurement to the degree of accuracy required. In this work, the assumption of decoupled planes allows to to take $\mathrm{M}_{13}=\mathrm{M}_{14}=\mathrm{H}_{23}=\mathrm{K}_{24}$ $=M_{31}=M_{32}=M_{41}=M_{42}=0$. The trajectory of a particle exiting the gout is repiresented by the vector \mathbf{p}_{B}^{+}and we have

$$
\begin{equation*}
\nabla_{s}^{+}=R_{s} \nabla_{B}^{-} \tag{1.3}
\end{equation*}
$$

in which $\mathbf{V}_{\mathbf{s}}^{-}$represents the trajectory entering the snout. The + and superscript convention will be retained throughout this work. for all deflection angles α_{n} and α the desired form of V_{s}^{+}is

$$
\begin{equation*}
\mathrm{v}_{5}^{+}=(0,0,0,0, \mathrm{dp} / \mathrm{p}) \tag{1,4}
\end{equation*}
$$

We multiply Eq. (1.3) on the left by the inverse of R_{B} and set $R_{s} \mathbf{I}_{s}$
$=1$, the identity matrix, and obtain,

$$
\begin{equation*}
\overline{v_{B}^{-}}=R_{s}^{-1} v_{s}^{+} \tag{1.5}
\end{equation*}
$$

The physical meaning of Eqs. (1.4) and (1.5) is graphically illustrated in Fig. (2). The vector V_{s}^{-}in general bas all five components pon-zexa. For any values of α_{h} and α_{v}, V_{s}^{-}gives the values of x, x^{\prime}, y, and y^{\prime} as a function of dp/p that must be provided at the entrance to the snout by the preconditioner in order for v_{B}^{+}to have the form given by Eq. (1.4). Within the linear theory employed in this work, x, x^{\prime}, y, and $y^{\prime \prime}$ are linear functions of dp / p and it is therefore possible to preconditon the beam with four sections.

We call the first section of the preconditioner the horizonthl corrector (HC). The section consists of three bending magnets and two drift apaces.

The trajectories of all particles entering the EC are represented by the aame vector, $\nabla_{\text {fhe }}^{-}$, which is identical to V_{g}^{+}and given Eq. (1.4). The HG provides a horizontal dieplacement only, so that $\mathrm{v}_{\mathrm{he}}^{+}=\left(\mathrm{x}_{1}, 0,0,0\right.$, dp / p). The value of x_{1} is that necessary to pass through the rest of the preconditioner and arrive at the anout entrance with the desired vector. We Let R_{hc} be the matrix of the HC. The second section is the horizontal quadrupole gection (focusing in the horizontal plane), which we call QH. It turns out that two quadrupoles and a drift space are needed in this section for some vertical deflection angles, but for this discussion we simply employ the matrix $R_{\text {qh }}$ for this section. The $Q H$ provides a value of x^{\prime} but does not contribute to y and y^{\prime}, so that $v_{q h}^{+}=\left(x_{2}, x_{2}^{\prime}, 0,0, d p / p\right)$. The values x_{2} and $x^{\prime}{ }_{2}$ are not those required at the snout entrance because the next two sactions are focusing and defocusing in the horizontal plane. The values are those required to pasa through the remaining two sections and arrive at the enout with the desired vector.

The third aection is the vertical corrector VC. It is identical to the horizontal corrector except it is rotaced 90 degreen. The vC provides a displacement y and new values of x and x^{\prime}, so that $V_{v e}^{*}=\left(x_{3}, x^{\prime \prime}{ }^{\prime \prime}\right.$ $\mathbf{J}_{3}, 0, \mathrm{Ap}^{2} / \mathrm{p}$). The fourth section of the preconditioner is the vertical quadrupole section (focusing in the vertical plane), $Q \mathbf{V}$. This section prowides the desired value of y^{\prime} and changes the values of $x_{+} x^{\prime \prime}$, and y to the desired values at the entrance to the onout. Since the initial yentur $V_{h c}^{-}=V_{s}^{+}$, the condition on the matrices of the five sections of the system is

$$
\begin{aligned}
& \text { or, } \\
& \mathrm{E}_{\mathrm{qv}} \mathrm{R}_{\mathrm{ve}} \mathrm{E}_{\mathrm{qh}} \mathrm{R}_{\mathrm{hc}}-\mathrm{R}_{\mathrm{a}}^{-1} .
\end{aligned}
$$

In the following treatment the problem is actually worked backwards from the onout, using the inversa matrices of the sections. For given α_{h} and a^{\prime} the desired values of $x, x^{\prime} y$, and y^{\prime} are determined from the knowledge of R_{s}^{-1}. The $Q V$ section is set to make $y^{\prime}=0$ (going bacicwards) and this getting determines values of $x_{3}, x^{\prime}{ }_{3}$, and y_{3}, The VC section is set to make $y=0$ and determine values of x_{2} and x_{2}^{\prime}. The $Q H$ section is set to make $x^{\prime}=0$ and determine the value of x_{1} that must be provided by the HC section.

2. Snout Ragnef

Figure 3 is a photogragh of a yoke magnet that directa the electron beam onto the shadow screen of a television picture tube. Such a magnet, which is capable of simultaneous large angle deflections in both horizontal and vertical directions is the principal componert of tha deflection aystem we are cousidering. The aberrations inherent in the magnet are assumed to be known functions of the bending angles α_{b} and α_{v}.
A. Physical Hodel of the Deflection Magnet.

To gain some insight into the chromatic aberrations of the snout, we have investigated the coil configuration ahown in Fig. 4. The origin of a rectangular coordinate system is located 10 cm below the narrow end of the cone, and the z axis lies along the axis of the cone. The augle of the cone is 70 degrees and the height ia 0.9 m . For deflection in one plane (x as bhown two nine tura coils ate wourd on the aurface of the cane. The choice of aine turns is made for convenience. In practice the coil would have many more
turps. In e crobs-gection nomal to the axis, the conductors are placed to approximate a surface current distribution proportiosal to cos θ. All of the turns close in the θ direction at the ends of the cone. For deflection in the \bar{y} direction an identical pair of nine turn coils is placed on the surface, but rotated 90 degrees about the z axis. This second pair of coils is shom in the figure, geparated from of horizontal paix for clarity. These two sets of coils approximate a crossed dipole magnetic field sonfiguration.

The ragnetic field from these coils has been computed ${ }^{2)}$. Pigure 5 shows
 horizontal deflection coils. We note that this field configuration bears no resemblayce to the field in conventional bending magnets in accelerators a.d beam transport ayatems. In conventional bending magnets the magnetic field ia uniform or has a specified radial gradient. The field in the cone magnet resembler idore the fringing field at the erge of a conventional magnet, where it is sumetimes useful, but more often a nuisance.

The trajectories of 50 MeV electrons in the $\mathrm{y}=0 \mathrm{plane}$ have been compated ${ }^{3}$) for various currents in the horizontal deflection coila, and are show in Fig. 6. The angle of bend and the ampere turns/coil necessary to obtain that angle are given. A 7 kA current correspondes to 6.3×10^{4} ampere-turns in each coil of the pair. We note that the trajectory exiting at 56 degrees pasad chrough the surface of the cone, indicating that to achieve bending anglas greater that about 50 degrees the coils would not be placed on the surface of a cone, but rather be shaped similarly to the televiaion yoke in Fig. 3. In the television industry, the goke is referred to as a saddle coil ${ }^{4)}$. Figure 7 shows the ampere-turns required to achieve a given bending angle.

If the deflection is in the horimontal. plane only, the matrix elements B_{36} and $\mathrm{R}_{\mathbf{4 6}}$ in Bq , (1.2) are zero and the elemerts R_{16} and $\mathrm{R}_{\mathbf{2 6}}$ are
non-zero. The unite of \mathbf{R}_{16} and \mathbf{R}_{26} are metera/fraction (cm/percent) and rad/f-action (10mrad/percent) respectively. These dispersion elements are plotted vs g_{h} in Fig. 8. The values were obtaincd by integrating over path lengths of 1 meter and 1.5 meters, and we see that there is considerable difference. For small angles of deflection the difference between the curves for one meter path leagth and 1.5 meter path length corresponds to the effect of drift on the matrix elements. That is, these trajectorios are clear of the magnetic field after 1 meter and for the remaining one-half meter we hava $x=$ $x_{0}+L x_{0}^{\prime}{ }_{0}$, where L is the drift length, while $x^{\prime}=x_{0}^{\prime}{ }_{0}$. For large angles the trajectorias lie near the coils and are not clear of the fieid after 1 meter. The "exit" of the conical onout is a bit nebulous, however we will employ an analytic model of the snout in the following treatment.

For a given $d p / p$ the locus of pointa in the $x=x$ plane found by varying α forms a curve that we will call the dispersion curve. It is the parametric curve (with α the parameter) of R_{26} vs ${ }^{[16}$, and it is shown in Fig. 9 for a path lengths of 1 m and 1.5 m . For linear optics employed here, the curve i is to be interpreted in the following manner: A particle with momentum p will exit from the cone at the origin in the $x-x^{\prime}$ plane, independent of the angle α. A particle with momentum $1.01 p$ will exit at some point on the curve, the location of the point being deternined by the angle α. For the bame angle α, particles wich momentum between p and 1.01p will exit at a point lying on atraight line linking the origin with the point on the curve, the distance from the origin being porportional to $d p$, as shown in Fig. 9 for $\alpha=50.6^{\circ}$ and 1.5 m patll 1ength. For negative dp the straight line extends through the origin to the reflected point on the curva.

B. Analytic Model of the Deflertion Magnet.

In order to avoid the necessity of numerical integration of trajectories in the magnetic field of the cone, we will use an analytic model fir the bnout matrix. We consider a conventional bending magnet with a dispersion curve matcining that of the cone in the $y=0$ plane to a rather good approximation. The idealized magnet has uniform magnetic field in the bend olane. Furthermore, the exit edge of the model magnet is shaped so that the and le between the particle trajectory at exit and the normal to the edge is equal to one half the bending angle and providea vertical focueing. The geometry is shown in Fig. 10. The value of L for the model in chosen so that the angulsr and positional dispersion matcix elements R_{16} and R_{26} match that of the physical mode1, Fig, 8, for $\alpha=42.7^{\circ}$. The transport matrix for tise model magnet in the bend plane is

$$
R_{3}=\left[\begin{array}{ccc}
\cos \alpha & L \cos \alpha / 2 & L \sin \alpha / 2 \tag{2.1}\\
\frac{-2 \sin \alpha / 2 \tan \alpha / 2}{L} & 1 & 2 \tan z / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 9 show the dispersion curve for this matrix for $\mathrm{L}=1.2165 \mathrm{~m}$. We see that the curve appinximates that found for the cone by integrating trajectories over 1 m path length. The curve of the analytic model with $\mathrm{l}=$ 1.2165 m followed by a 0.5 m drift approximates the curve found for the cone by integrating trajectories over 1.5 m path 1ength.

The matrix for the model magnet in the non-bend plane is

We do not employ this matrix in our work. Because of the assumption of uncoupled motion, both the x and y planes are transformed by the bend plane matrix in $E q$. (2.1).
3. Horizontal and Vertical Correctors

The HC and VC sections are identisal arrays of three dipole bending magnets, the $V C$ being rotated 90 degrees about the z axis with respect to the HC. In discussing these arrays we take the x plane to be the bending plane as it is in the $H C$ section. These sections are fashioned from the dispersionless three magnets array shown in Fig. 11. The presence of the symmetry plane s-S guarantees that the array is doubly achromatic. Particles with a. Fferent mementa follow different trajectories through the array, but p.l1 crajactories exit the array on the same beam line as at eritry. We call trajectorieg with this property colinear.

Introducing an asymetry into the array produces a beam with positional dispersion at the exit. If the magnets are properly tuned, tile reference particle with momentum f follows a colinear trajectory as stown in Fig. 12. As defined in the figure, the bending ang!es $\theta_{1},{ }_{2}{ }_{2}$, and θ_{3} of the reference particle in the three bending magnets must satisfy two conditions. First, in order for the reference particle to exit at the proper angle, we have

$$
\begin{equation*}
\theta_{2}=\theta_{1}+\theta_{3} . \tag{3.1}
\end{equation*}
$$

Second, in order fur the reference particle to exit at the proper position, we have
$L_{1} \tan \left(\theta_{1} / 2\right)+S_{1} \tan \theta_{1}-L_{2} \tan \left(\theta_{3}-\theta_{1}\right) / 2$
$-s_{2} \tan \theta_{3}-L_{3} \tan \left(\theta_{3} / 2\right)=0$.

In this expression $L_{1}, L_{2}, L_{3}, S_{1}$ and S_{2} are the magnet lengths and separationa as ahowa in Fig. 12. With these conditions, a value of θ_{1} determines values of θ_{2} and θ_{3}. The values of θ_{2} and θ_{3} that setisfy Eqs. (3.1 and 3.2) are plotted vs, θ_{1} in Fig. 13 fer $L_{1}=L_{2}=$ $L_{3}=0.5 \mathrm{~m}, S_{1}=1 \mathrm{~m}$ and $S_{2}=0.5 \mathrm{~m}$. Theze dimensions are arbitrarily chosen, and we will use them throughout this work.

Particles with momentum $p+d p$ will exit the array with a displacement in the bend plame proportional to dp , as shown qualitatively in Fig. 14 for θ_{1} both positive and negative. The array resulte in positional dispersion by no angular dispersion. For $\theta_{1}>0$ a positive momentum deviation produces a negative displacement, while for $e_{1}<0$ a positive monenrum deviation produces a positive displacement. The convention of positive or negative displacement is based on the sign of the positional dispersion matrix element, R_{16}. This dispersion elewant is plotted vs. θ_{1} in Fig. 15, and is found to be well approximated by the relation

$$
\begin{equation*}
R_{16}=-a \theta_{1} e^{b \theta_{1}} \tag{3,3}
\end{equation*}
$$

with R_{16} in $\mathrm{cm} / \mathrm{k}, \theta_{1}$ in degrees, $a=4.78 \times 10^{-4}$, and $b=0.1014$. In the following :ir refer to θ_{1} in the HC as θ_{h}, and θ_{1} in the vC as θ_{ψ}.

Pocusing in the non-bend plane ia provided by the fringing fields at Ilagnet 1 exit, magnet 2 eptrance and exit, and magnet 3 entrance because the tragectories are not normal to the magnet edge at these locations. In the bend plane, edges are defocusing but the bends are focusing so that the net effect is that the array provides no get focusing. The transport matrix elements of the gections for the non-bend piane are plotted in Fig. 16, and the elements for the bend plane are plotted in Fig. 17. In these figures we have used the convention that the top two rows of the matrix transforms the bend plane. Since the array is a drift epace for motion in the bend plane. $R_{1 I}=R_{22}=1$ and R_{12} is the effective path length shrough the array as a function of θ_{1},

The matrix elements in Eq. (1.2) that couple the x and y motion are zero throughout the preconditioner. These elements are $R_{13}, \mathrm{R}_{14}, \mathrm{R}_{23}, \mathrm{R}_{24}$, $\mathbf{R}_{31}, \mathrm{R}_{32}, \mathrm{R}_{41}$ snd $\mathrm{R}_{\mathbf{4 2}}$ *

4. Disperaive Preconditioning

With the analytic model, Eq. (2.1), for the transport matrix of the snout, and the watrix elements of the HC and $V C$ sections displayed in Figs. $\therefore 5,16$, and 17, we may mrite the matriced and inverse matrices of the five section of the deflection system.

We now adopt the convention that the firet two rows of our matrices transform motion in the horisantal (x) plane and the second two rows transform motion in the vertical (y) plane. Since the vector $v_{s}^{+}=(0,0,0,0$, $d p / p)$, we need only the last colum of the inverse matrix R_{s}^{-1}. We generate the matrix R_{g}^{-1} from the matrix R_{8} given by $E q$. (2.1) and find that the vector ∇_{s}^{-}at the entrance to the snout is given by

$$
\begin{equation*}
V_{s}=\left[L \sin \frac{\alpha h}{2},-\sin \alpha_{h}, L \sin \frac{\alpha_{v}}{2},-\sin \alpha_{v}, 1\right] \quad d p / p \tag{4,1}
\end{equation*}
$$

There is a vertically focusing quadrupole, QV, between the vC and the snout as shown in Fig. 18. We use the thin leas approximation for both the $q \mathbf{V}$ and the QR sections, with equal drift spaces of length D on either side. The

$$
R_{Q V}^{-1}=\left[\begin{array}{ccccc}
-D+D / f & -\left(2 D+D^{2} / f\right) & 0 & 0 & 0 \tag{4.2}\\
-1 / f & 1+D / f & 0 & 0 & 0 \\
0 & 0 & 1-D / £ & -2 D+D^{2} / £ & 0 \\
0 & 0 & 1 / f & 1-D / f & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

in which f is the focal length of the quadrupole. For the same length drift spaces, the inverse matrix $\mathrm{R}_{\mathrm{qh}}^{\mathbf{- 1}}$ for the QH is found from this expression by reversing the sign of f.

In order to display the matrices A_{hc} and R_{vc} for the HC and VC bectiona respectively, we refer to Figs. 15, 16, and 17. The notation in these figures is such that $R_{11}, R_{12}, R_{21}, R_{22}$, and R_{16} transform the bend plane and $R_{33}, \mathrm{E}_{34}, \mathrm{R}_{43}$, and R_{44} transform the non-bend plane. From the figures we see that $R_{11}=R_{22}=1$, and $R_{21}=R_{26}=0$. We define the quantities a, b, c, d, e, and h in terme of the tuatrix elements in Figs. 16 and 17. This procedure results in sone simplified (and hopefully leas confusing) notation. We set
$a=R_{33}$
$c=R_{43}$
$e=R_{16}$
$b=R_{34}$
$d=R_{44}$
$h=R_{12}{ }^{\circ}$
(4.3)

Employing these definitions, we write the matrix A_{hc} for the HC gection in ri:e form
$R_{h c}=\left[\begin{array}{lllll}1 & h & 0 & 0 & e \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a & b & 0 \\ 0 & 0 & c & d & 0 \\ 0 & 0 & a & 0 & 1\end{array}\right]$.
The inverse matrix $R_{h c}^{-1}$ is given by
$\mathrm{R}_{\mathrm{hc}}^{-1}=\left[\begin{array}{ccccc}1 & -\mathrm{h} & 0 & 0 & -\mathrm{e} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & d & -b & 0 \\ 0 & 0 & -c & a & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(4.5)

The iaverse matrix $\mathrm{R}_{\mathrm{vc}}^{-1}$ of the VC section is given by
$R_{v c}^{-1}=\left[\begin{array}{ccccc}d & -b & 0 & 0 & 0 \\ -c & a & 0 & 0 & 0 \\ 0 & 0 & 1 & -h & -e \\ 0 & 0 & 0 & 1 & 0 \\ & & 0 & 1\end{array}\right]$.

A. Prodeonditioning in one plane

As an example of how the system is tuned, let us consider the vector $\mathbf{V}_{\mathrm{s}}^{-}$given by Eq. (4.1). At the entrance to the onout we have

$$
\begin{equation*}
y=L \sin \frac{1}{2} \alpha_{y}(d p / p) \tag{4.7a}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}=-\sin \alpha_{v}(d p / p) \tag{4,7b}
\end{equation*}
$$

Referring to $\mathrm{Eq} .\left(4.2\right.$) we aee that the condition $y^{\prime}=0$ at the exit of the vC deterwines the focal length, f, of the quadrupole to be

$$
\begin{equation*}
f=p-\left(y_{B} / y_{B}^{\prime}\right) \tag{4.8}
\end{equation*}
$$

The value of y at the exit of the vC determines the setting of the vC. We have

$$
y=\left(1-\frac{D}{f}\right) \quad y_{s}-\left(2 D-\frac{D^{2}}{f}\right) y_{B}^{\prime}
$$

with f given by Eq. (4.8). The value of θ_{v} necessary to achieve this value of y at the exit of the VC is then found from Figs. 15 and 17, or from Eq. (3.3). The focai length of the vertical quadrupole and the value of $\boldsymbol{\theta}_{v}$ are now set to provide doubly achromatic deflection in the verticel plane. But the OV is defocusing in the x plane, and the $\mathbb{F C}$ focusing in the x plane. So preconditioning in the x plane is a bit more complicated.

B. A Numerical Example

To demonstate preconditioning in both transverse planes, we consider deflection angies $\alpha_{h}=30^{\circ}$ and $\alpha_{v}=20^{\circ}$. The momentum deviation is
$+1 \%$ for this example. The lengths $L=1.2165 \mathrm{~m}$, and $\mathrm{D}=0.25 \mathrm{~m}$ in both the QV and QEI sections, as shown in Fig. 19. The various positions in the system are also deaignated in the Eigure. In terms of the notation employed in the introduction, we have $V_{s}^{-}-V_{2}, \nabla_{v c}^{+}=V_{q v}^{-}=\nabla_{3}, V_{v c}^{-}=$ $\nabla_{q h}^{+}=\nabla_{4}, \mathbf{V}_{\mathbf{q h}}^{-}=\nabla_{h c}^{+}=\mathbf{V}_{5}$, and $\nabla_{h c}^{-}=\nabla_{6}$. The inverse matrices of the 4 aections of the preconditioner and the ventors at each position are displaged in Tzble 1. The calculation is performed with x and y in cm and x^{\prime} and $y^{\prime \prime}$ in units of 10 mrad.

In Table I the vector ∇_{2} is found from Eq. (4.1) with $L=1.2165 \mathrm{~m}$, $\alpha_{f}=30^{\circ}$, and $\alpha_{f}=20^{\circ}$. The inverse matrix $R_{q^{\circ}}^{-1}$ is given by Eq. (4.2) With $D=0.25$ mand F_{v} determined by Eq. (4.8), which yielde $f_{v}=.8797$ w. So save space, mombers in Table 1 are given to 5 decimal placea only, but the calculations were carried out to at least 15 decimal. places. The setting of a quadrupole is generally stated as the field graqient times the effective length, which is kG-m/m, or aimply kG. The relationahip between field strength, focal length, and the magnetic rigidity (B) of the particles is $B=(B \rho) / f$. For electrons with $p=50.5 \mathrm{MeV} / \mathrm{c}$ we have

$$
\begin{equation*}
B=1.68451 \mathrm{kG}-\mathrm{m} / \mathrm{f}, \tag{4.10}
\end{equation*}
$$

 $f=.8797 \mathrm{~m}$. By convention the sign of a quadrupole field is positive for horizontal focusing and negative for vertical focusing. In Table 1 the value of y_{3}^{\prime} is indicated to be zero, although the numerieal calculation yielded a value of $4.8 \times 10^{-7} \mathrm{rad}$.

The inverse matrix $R_{v c}^{-1}$ is given by Eqs. (4.3) and (4.6). The value of θ_{y} is chosen to yield e (- R_{16} in Figs. 14 a:d 16) =.29674. The value of θ was not found frow the figures or from Eq. (3.3) but was
calculated using a apecial computer code A value $\theta_{v}=-29.91808^{\circ}$ wab found to yield the proper value of e(Eq. 4.3). The remaining elements of $\mathrm{R}_{\mathrm{vc}}^{\mathbf{- 1}}$ were also calculated with the code.

The inverse matrix $\mathrm{R}_{\mathrm{qh}}^{\mathbf{- 1}}$ is found from Gq . (4.2) by reversing the sign of f. The condition $f_{h}=D-\left(x_{4} / x_{4}^{\prime}\right)$ yields $f_{h}=2.6011 m$, and a corresponding field strength $0.64762 \mathrm{kG}-\mathrm{m} / \mathrm{m}$.

The inverse matrix $R_{h e}^{-1}$ is given $b ;$ Eq. (4.5). The value of $\theta_{h}=$ 46.8632° was found to yield $e=-2.41593$. This value as well as the remaining elements of $\mathrm{R}_{\mathrm{h}}^{\mathrm{-1}}$ was calculated with the code.

5. System Tune Zor All Deflection Angles

Our defleciion system must be capable of aiming the electron beam in any direction. That is, the gettings of the four sections of the preconditioner must be reasonable for all combinations $\alpha_{h_{1}}$ and $\alpha_{\boldsymbol{v}}$, as shown in Fig. 20. The system shown in rig. 19 is inadequate in that values of a near 4° cannot be accomodated. Figure 21 shows the anglea θ_{h} and θ_{v} and the quadrupole settings Q_{v} and Q_{h} (in $k\left(G-m / m\right.$) as functions of α_{v} for $d_{p} / p=12$ and $\alpha_{h}=10^{\circ}, 20^{\circ}, 30^{\circ}$ and 40°. The settings Q_{v} and θ_{v} are independent of α_{h}, and the setting Q_{h} varies by less than 1% for $0<\left|\alpha_{h}\right|<50^{\circ}$. We see that there ie a aingularity in the setting Q_{h} and an abrupt change in the sign of θ_{h} at $\alpha_{v} \simeq 4^{\circ}$.

The singularity in the setting Q_{h} can be understood from the horizontal dispersion curve at the entrance to the VC. In Fig. 22 the valuea of x^{\prime} and x at this position are plotted for $d p / p=17, \alpha_{h}=30^{\circ}$ and $-50^{\circ}<\alpha_{v}<50^{\circ}$. We aee that the value of x passes through zero at $\alpha_{v} \approx 4^{\circ}$, and therefore the $Q R$ section can have no effect upon particle
trajectories. Por $\alpha_{v}<4^{\circ}$ the sign of both Q_{h} and θ_{h} are reversed.
Physically the aingularity arises because of the focusing properties of tse VC section in the forizontal plane. The VC is focusing in the horizontal plane and for $\alpha_{v}>4^{\circ}$ there is a momentum focus (i.e., a point where $x=0$ regardless of the va?ue of $d p$) within the VC. As the vertical deflection is reduced with the associs*ed reduction in vertical correction, this momentum focus in the x plane shifta toward the entrance to the VC. For $\alpha_{v}<4^{0}$ the momentum focus lies upstream of the VC. The position of the momentum focus for different values of α_{y} is shown qualitatively in Fig. 23, which displays the trajectories in the X plane of particles with momentum P and $\mathbf{p} \pm \mathbf{d p}$.

The tuning singularity can be removed by the addition of a acond horizontally focusing quadrupole, with setting Q_{x}, to the $Q H$ section as shown in Figa. 1 and 23. The $Q H$ section with 2 quadrupoles can no doubt be operated in severs 1 ways in order to provide the required values of x and x^{\prime} at the entrance to the VC. One mode of operation is to maintain the bame setting of Q_{h} for all α_{v} less than some value, and obtain the required values of x and x^{\prime} at the entrance to the vC with the setting of Q_{x}. Por smaller values of α_{v} (and θ_{v}) the horizontal focus lies upstream of the quadrupole Q_{h}. The clamped setting of Q_{h} is sufficient to insure that the momentum foevs lies between Q_{h} and Q_{x}, and elimnates the necessity of θ_{h} changing sign at $\alpha=4^{\circ}$.

We consider the geometry shown in Fig. 23, with two thin lens quadrupoles aeparated by a distance I_{x}. There is a drift diatance D between the entrance to the vC and the quadrupole Q_{h} and between the quadrupoie Q_{x} and the exit of the HL. Since y and $y^{\prime \prime}$ are zero throughout the HC and the QH
sections, we need consider only the elements $11,12,21$, and 22 of the inverse matrix $\mathbf{R}_{\mathbf{q h}}^{\mathbf{- 1}}$. These elemente are given by

$$
\begin{align*}
& R_{q h}^{-1}(12)=\left(1-\frac{D}{E_{x}}\right)\left(1-\frac{L_{x}}{f_{h}}\right)-\frac{D}{f_{h}} \tag{5.1a}\\
& R_{q h}^{-1}(12)=-L_{x}\left(1-\frac{D}{f_{x}}\right)\left(1-\frac{D}{f_{h}}\right)+D\left(2-\frac{D}{f_{h}}-\frac{D}{f_{x}}\right) \tag{5,1b}\\
& R_{q h}^{-1}(21)=\frac{L}{f_{h}}+\frac{1}{f_{x}}-\frac{L_{x}}{f_{h}} f_{x} \tag{5.1c}\\
& R_{q h}^{-1}(22)=\left(1-\frac{\Sigma}{E_{h}}\right)\left(1-\frac{L_{x}}{f_{x}}\right)-\frac{D}{f_{x}} \tag{5,1d}
\end{align*}
$$

If x_{4} and x_{4}^{\prime} are the horizontal displacement and slope at the entrance to the $V C$, the condition $x^{\prime}=0$ at the exit of the $H C$ is satisfied if focal length f_{x} antisfies the relation

$$
\begin{equation*}
-\frac{1}{f_{x}}=\frac{x_{4}+x_{4}^{\prime}\left(f_{h}-L_{x}\right)}{x_{4}\left(E_{h}-L_{x}\right)-x_{4}^{\prime}\left(f_{h} D+f_{h} L_{x}-I_{x} D\right)} \tag{5.2}
\end{equation*}
$$

A smonthly varying tune for the four preconditioned aections is found by chosing $L_{x}-3 m$ and $Q_{h}=1.15 \mathrm{kE}-\mathrm{m} / \mathrm{m}$ for $-10^{\circ}<\alpha, v<10^{\circ}$. The quantities $Q_{v}, \theta_{h}, \theta_{R}, \theta_{v}$ and θ_{h} are plotted va. α_{v} in Fis. 24 for $a_{h}=30^{\circ}$ and $d p / p=17$. The tume variations in Fig. 24 are still not ideal because of the diacontimuity in the derivatives $\partial \theta_{h} / \partial \alpha_{v}$ and $\partial Q_{h_{1}} / \partial \alpha_{v}$.

We have not performed an extensive btudy of the effectis of perturbations in magnet aettinga on the chromaticity of the syatem. For $\alpha_{h}=30^{\circ}$ and
$a_{v}-20^{\circ}$ and $d p / p=1 \%$, calculations performed with the TRASSORT code show that the syatem is achromatic in both planes to within $10 \mu_{\text {rad }}$ and 0.1 min if the sesting of any one magnet in the greconditioner fa accurata to within one part in 10^{4}. Clearly second order effects must be included before a meaningful otudy of tuning errors can be performed.

TABLE 1
$\alpha_{h}, \alpha_{r}=30 ., 20$.

$$
\begin{aligned}
& m_{Q_{y}}^{-1}=\left(\begin{array}{ccc}
1.2881 & -.57204 & \\
-1.1586 & 1.2881 & \\
& .71196 & -.42796 \\
& 1.526 & 0 \\
& .71186 & 0 \\
& & \\
& & 1 .
\end{array}\right)\left(\begin{array}{c}
.31485 \\
-.50000 \\
-21124 \\
-.34202 \\
1 .
\end{array}\right)_{2}\left(\begin{array}{c}
.65158 \\
-1.0069 \\
.29674 \\
0 \\
1 .
\end{array}\right)_{3} \\
& Q_{0}=29.918082 \\
& m_{\theta_{1}}^{-1}=\left(\begin{array}{cccc}
-1.9041 & .92957 & & 0 \\
.30623 & -.71208 & & 0 \\
& 1 . & -4.8252 & -.25676 \\
0 & 1 . & 0 \\
& & & 1 .
\end{array}\right)\left(\begin{array}{c}
.69158 \\
-1.0069 \\
.29674 \\
0 \\
1
\end{array}\right)_{3}\left(\begin{array}{c}
-2.18366 \\
.92877 \\
0 \\
0 \\
1
\end{array}\right) \\
& B_{h}=0.6476225 \mathrm{kG}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\mathcal{O}_{h} & =46.86321 \\
& =1 \begin{array}{cc}
1 . & -11.057 \\
0 & 1 .
\end{array}
\end{aligned} \\
& \left.\begin{array}{ccc}
2.41593 \\
. .74198 & .69597 & 0 \\
0 & .69171 & 0 \\
1 .
\end{array}\right)\left(\begin{array}{c}
-2.4153 \\
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

FIGURE 1. The double achromatic beam deflection system giving the designation of the sections and the names of individual magnets of the system.

FIGURE 2. Gispersion in final bending magnet. a) Dispersion if beam is not preconditioned. b) Dispersion eliminated by proper preconditioning. c) Phase space is required at entrance to final bending magnet.

FIGURE 4. Coil windings employed in physical model of the deflection coil a), b), c) windings for deflection in x plane. d), e), f) windings for deflection in y plane.

FIGURE 5. Contours of constant B_{y} in the plane $y=0$ generated by 90 kA-turns in the colv shown in figures $4 \mathrm{a}, \mathrm{b}$, or c . The field values are in Gauss.

FIGURE G. Trajectories of electrons with momentum $p=50.5 \mathrm{MeV} / \mathrm{C}$ in the $y=0$ plane of the physical model. The Ampere turns per coil (fig. 4) required to achieve a given beriding angle is also indicated.

FIGURE 8.

FIGURE 7. Bending angle α vs. required Ampere turns/coil in the physical modet.
FIGURE 8. Dispersive matrix elements R_{16} and R_{26} vs. the bending angle in the physical model obtained by integrating particle trajectories.

FIGURE 9. Dispersion curves of the physical (x) and analytic (o) models of the final deflection magnet for path lengths of 1.0 and 1.5 m .

31

FIGURE 10. Sthematic of particie trajectories in the final deflection magnet. a) analytic model, b) physical model.

FIGURE 11. Symmetric three-dipole magnet array. Trajectories of particies with different momenta are recombined on exit so that the array is double achromatic in the bend plane.

FIGURE 12. Asymmetric three-dipole magnet array with colinear trajectory. The path lengths are those of the reference particle.

FIGURE 13. The angles θ_{2} and θ_{3} that are the solutions to Eqs. (3.1)
and (3.2), required to produce a colinear reference trajectory in the three-dipole asymmetric array, Fig. 12.

FIGURE 14. Trajectories of particles with different momenta in the three dipole array of Figure 12. The beam exits the array with no angular dispersion. There is a momentum focus between the second and third magnets.

FIGURE 15. Positional dispersion vs; the

FIGURE 16. Matrix elements of the magnet array of figure 12 for the non-bend plane vs. the angle θ_{p}.

FIGURE 77. Matrix elements of the magnet array of Figure 12 for the bend plane vs. the angle θ_{1}. The array appears as a pseudo-drift space in this plane.

FIGURE 18. Vertical corrector, vertical quadrupole and snout showing preconditioned trajectories in the vertical plane and vertical phase space at various positions along the reference trajectory.

FIGURE 19. Schematic of snout magnet and four sections of the beam preconditioner as used in the numerical example, Table 1.

FIGURE 20. Snout deflection space showing a possible beam exit point.

FIGURE 21. System tune vs. vertical bending angle a for the system shown in Figure 19. The values of Q_{v} and Q_{b} are in $\mathrm{kG}-\mathrm{m} / \mathrm{m}$. Only θ_{h} var Y_{es} significantly with horizontal bending angle α_{h}. $v_{\text {Note }}$ the singularity in the $\ell_{h} h$ and rapid change of θ_{h} near $\left|\alpha_{v}\right|$ of about 4 degrees.

FIGURE 22. Plot. of x and x^{\prime} at the entrance to the vertical corrector as α_{y} is varied. Note that x passes through zero near a_{y} of 4 degrees.

FIGURE 23. System with quadrupole Q added to the horizontal quadrupole section. The trajectories in the horizontal plane of parificles with $p \pm d p$ are shown qualitatively for various values of α_{v}.

FIGURE 24. Tune of the horizontal preconditioner sections vs. α for $\alpha_{p}=300$. The presencs of the quadrupole Q_{x} remaves
the s;ngularity at $\left|\alpha_{v}\right| \approx 4$.

Figure Captions

1. The doubly achromatic bear deflection syatem giving the deaignation of the sections and the individual magnet.
2. Dispersion in final bending magnet. a) Dispersion if beam is not preconditioned. b) Dispersion eliminated by proper preconditioning. c) Phase space at required at entrance to final bending magnet.
3. Photograph of a Television Deflection Coil.
4. Coil windings employed in physical model of the deflection coil. a), b), c) Windiags for deflection in x plane. d), e), f) Windings for deffectiou in 7 planes.
5. Contours of constant B_{y} in the plane $y=0$ generated by 10,000 A in the coil shown in Fig. $4 \mathrm{a}, \mathrm{b}, \mathrm{c}$. The values are in Gauss.
6. Trajectories of electrons with momentum $p=50 \mathrm{MeV} / \mathrm{c}$ in the $\mathrm{y}=\mathrm{o}$ plane of the physical model. The values of current are those in the 9 -turn coil, Fig. $4 \mathrm{a}, \mathrm{b}, \mathrm{c}$, required to achieve a given bending angle.
7. Bending angle α vs, required current in the physical model.
a. Dispersive matrix elements R_{16} and R_{26} ve . bending angle in the physical model obtained by integrating particle trajectories over 1 m (solid curve) and $1.5 \cdots$ (dashed curve).
8. Dispersion curves of the physical and snalytic models of the final deflection magnet.
9. Schematic of particle trajectories in the final deflection magent. a) Analytic model, b) physical model.
10. Symetric three-dipole magnet array. Trajectories of particles with different momenta are recombined on exit so that the array is doubly achromatic in the bend plane.
11. Asymetric three-dipole magnet array with colinear trajectory. The path lengtha are those of the reference particle.
12. The anglen θ_{2} and θ_{3} that are solutions to Eqa. (3.1) and (3.2),
13. Trajectories of particles with different momenta in the three dipole array in Fig. 13. The beam exits the array with no angular dispersion. There is a momenturi focus between the aecond and third magnets.
14. Positional diepersion vs. the angle θ_{1} introduced by the magnet array in Fig. 13.
15. Matrix elements of the magnet array in Fig. 13 for the non-bend plane vs. the angle θ_{1}.
16. Matrix elements of the magent array in Fig. 13 for the bend piane vs. the angle θ_{1}. The array appears as a drift apace in this plane.
17. Vertical connector, vertical quadrupole and snout showing preconditioned trajectoriea in the vertical plane and vertical phase apace at various positions.
18. Schematic of snout magnet and four sections of the precissitioner as used in the numerical example, Table 1.
19. Four Bquares and some dots.
20. System tune va. vertical bending angle α_{v} for the syatem shown in Fig. 19. The values of Q_{G} and Q_{h} are in kG-m/m. Only θ_{h} varies significantly with horizontal bending angle α_{h}. Noce the singularity in Q_{h} and rapid change of θ_{h} near $\left|\alpha_{v}\right|=4^{\circ}$.
21. Plot of x and x at the entrance to the vertical corrector as α_{v} is varied. Note that x passes through zero near $\alpha_{v}=4^{\circ}$.
22. Syecem with quadrupole Q_{X} added tot he horizontal quadrupole section. The trejectories in the horizontal plane of particlea with $p \pm d p a r e$ shown qualitatively for various values of α_{v}.
23. Tune of the horizontal preconditione: sections vs, α_{v} for $\alpha_{h}=30^{\circ}$. The presence of the quadrupole Q_{x} renoves the singularities at $\left|a_{v}\right| n_{4} 4^{\circ}$
24. "Transfort, An Ion Optic Program, LBL Version", Arthur C. Paul, Lawrence Berl.eley Laboratory Report LBL-2697, (1975). This report containe references to many earlier publications,
25. MAFCO - A Magnetic Field Code for Handling Geteral Gurrent Elements in three Dimensions" W.A. Perkins, J.C. Brown, Lamrence Livermore Laboratory Teport VCRL-7744 (1966).
26. "TRAJECTORY ~ An Orbit and Ion Optic Matrix Program fox the 184-Inch Gyclotron" A.C. Paul, Lawrence Berkeley Laboratory report UCRL-19407, (1969).
27. "Recent Advance in Electron Beam Deflection", Edward F. Ritz; Jr., Advances in Electronics and Electron Physics, Vo1. 49, (1979).

[^0]: We emphasize that only linear theory is employed in this paper and that certainly second order effects must be considered in future work. Furthermore in the mathematical model of the mont that we use, motion in the two transverse planes is not coupled, wile in a practical snout they will generally be coupled. This coupling in a real smout does not alter our conclusions that a preconditioner can be designed to provide the required anglea and displacements at the anout entrance aince the coupling will merely give different values from those we consider. The values required by a practical mout as well as second order effects may dietate a preconditioner that is more complex than the rather siuple arrangement considered in this work.

