In situ heat transfer in man-made geothermal energy reservoirs

PDF Version Also Available for Download.

Description

Two hot dry rock geothermal energy reservoirs were created by hydraulic fracturing of Precambrian granitic rock on the west flank of the Valles Caldera, a dormant volcanic complex, in the Jemez Mountains of northern New Mexico. Heat was extracted in a closed-loop mode of operation, injecting water into one well and extracting the heated water from a separate production well. The first reservoir was produced by fracturing the injection well at a depth of 2.75 km (9020 ft) where the indigenous rock temperature was 185/sup 0/C. The relatively rapid thermal drawdown of the water produced from the first reservoir, 100/sup ... continued below

Physical Description

Medium: P; Size: Pages: 39

Creation Information

Murphy, H.D.; Tester, J.W.; Grigsby, C.O. & Potter, R.M. January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Two hot dry rock geothermal energy reservoirs were created by hydraulic fracturing of Precambrian granitic rock on the west flank of the Valles Caldera, a dormant volcanic complex, in the Jemez Mountains of northern New Mexico. Heat was extracted in a closed-loop mode of operation, injecting water into one well and extracting the heated water from a separate production well. The first reservoir was produced by fracturing the injection well at a depth of 2.75 km (9020 ft) where the indigenous rock temperature was 185/sup 0/C. The relatively rapid thermal drawdown of the water produced from the first reservoir, 100/sup 0/C in 74 days, indicated that its effective fracture radius was about 60 m (200 ft). Average thermal power extracted was 4 MW. A second, larger reservoir was created by refracturing the injection well 180 m (600 ft) deeper. Downhole measurements of the water temperature at the reservoir outlet as well as temperatures inferred from chemical geothermometry showed that the thermal drawdown of this reservoir was negligible; the effective heat transfer area of the new reservoir must be at least 45,000 m/sup 2/ (480,000 ft/sup 2/), nearly six times larger than the first reservoir. In addition reservoir residence time studies employing visible dye tracers indicated that the mean volume of the second reservoir is nine times larger. Other measurements showed that flow impedances were low, downhole water losses from these reservoirs should be manageable, that the geochemistry of the produced water was essentially benign, with no scaling problems apparent, and that the level of induced seismic activity was insignificantly small.

Physical Description

Medium: P; Size: Pages: 39

Notes

NTIS, PC A03/MF A01.

Source

  • 19. national heat transfer conference, Orlando, FL, USA, 27 Jul 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-80-454
  • Report No.: CONF-800723-17
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5303877
  • Archival Resource Key: ark:/67531/metadc1071647

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • May 30, 2018, 12:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Murphy, H.D.; Tester, J.W.; Grigsby, C.O. & Potter, R.M. In situ heat transfer in man-made geothermal energy reservoirs, article, January 1, 1980; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1071647/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.