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ABSTRACT

Measurements of fast ion losses due to the "fishbone" instability during
high BTq neutral beam heated discharges in the Poloidal Divertor Experiment
have been made using two new vertical-viewing charge-exchange analyzers. The
measurements show that the instability has an n=1 toroidal mode number, and
that it ejects beam ions in a toroidally rotating beacon directed outward
along a major radius. Observations of ejected ions with energies up to twice
the beam injection energy at R ® R, + 4 indicate the presence of a non-k-

conserving acceleration mechanism.
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I. INTRODUCTION

Recently, a new instability, dubped the "fishbone" instability from its
characteristic signature on the Mirnoy coils, has been observed during high
BTq discharges in the ©Poloidal Civertor Experiment (PDX¥), with near
perpendicular neutral heam injectian.1 The instability ejects bursts of fast
ions at a repetition rate of 1-10 msec and causes a drop in the neutron
emission as large as 40w, It may accoant for a 20-40% loss of the beam
heating power and thus may be responsible for the observed saturation of beam
heating at high !'3.:[.(;.2

In this paper the efflux of {ast neutrals from the plasma is used to
study the features and dynamics of the fishbone instability. The results are
compared to a fishbone model developed recently by White et al. to describe

mode induced beam particle 1osses.3

II. APPARATUS

Two new charge-exchange analyzers were installed on PDX, viewing the
plasma edge along the nearly-vertical sightlines shown in Fig. . For a
plasma major radiuns of R, = 145 cm and a minor radius of r = 40 cm, the
sightlines of the outside (ODE) and of the inside {(IDE) detector Sskim the
cuter and inner plasma edges, crossing the horizontal midplane at a major
radius of R = Ry, & 37 cm, respectively. The locations of the sightlines were
chogen so as to determine the direction along the major radius in which the
fast ions are preferentially lost during the fishhane actlvity.

The need for vertical sightlines made it necessary to locate ODE
between two adjacent toroidal field coils. The torecidal field at this
location was estimated to be as high as 0.5 T during at 2.5 T discharge, which

imposed severe magnetic shieldi'ng requirements. The limited space available



between the toroidal field coils, furthermore, meant that the analyzer had to
be as compact as possible. These constrainta resulted in the design of ODE as
shown in Fig. 2. Instead of the usual gas stripping cell, a 5 mm diameter,
100A thick carbon foil supported by a 90% transmission nickel mesh was
employed to ionize incoming neutrals. The emerging ions were energy-analyzed
using electrostatic deflection plates, and were detected using a Channeltron
detector, operated in current mode within its linear amplificatlion range. The
analyzer was partially magnetically shielded by its vacuum enclosure, which
was constructed of 2.5 ecm thick soft iron. Additional shielding, consisting
of 1.2 cm thick soft iron separated by a 1.2 cm wide air gap from the analyzer
housing, sufficiently attennated fields as high as ~ 1 T, This allowed
particles with energies as low as 10 keV to be detected. The PDX wvacuum
system was used to maintain the vacuum in the analyzer housing and the flight
tubes connecting the analyzer to PDX.

IDE was constructed similar to ODE, though no double shielding was
employed since it was possible to place IVE in a region on PDX where the ohmic
heating and equilibrium magnetic fields were much lower. The integraticn time
of the analyzers and associated electronics was approximately 30 Vsec, while
the signals were digitized at a rate of 100 kHz.

The toroidal location of the new analyzers is shown in Fig. 3. Alsc
shown is the horizontally scanning charge-exchange analyzer of the Fast Ion
Diagnostic Experiment (FIDE). The toroidal angle hetween ODE and IDE is 369,

and betieen ODE and FIDE is 889,

II1X. RE SULTS
Typical 35 keV charge-exchange signals obtained with ODE and IDE for

deuterium injection into a deuterium divertor plasma are shown in Fig. 4.



Strong fishbones are seen on the ODE signal about 50 msec after the start of
neutral beam injection (t = 300 msec}, and repeat about every 5 msec. During
fishbone spikes, the fast neutral efflux is enhanced by factors of 10 to 100
over the background charge-exchange flux. In Fig. 4, the Eishbone activity
lasts until a disruption terminates the discharge at t ™ 460 msec. Without
disruptions, fishbone activity may persist throughout the entire beam heating
phase. The IDE signal, on the other hand, shows no sign of fishbone activity,
even at a greatly increased gain (by a factor of ~ 1000} relative to ODE.
This marked difference in the CDE/IDE signals is present regardless of the
plasma major radius, which was varied between 135 and 150 cm. Thus the
difference in signal amplitude is not a sensitive function of the distance
between a given sightline and the plasma edge, but rather indicates that
particles escape the plasma primarily in the direction of increasing major -
radius. The FIDE analyzer is capable of viewing the plasma along many
sightlines in the horizontal midplane, and the signal aleng its most
perpendicular sightline (4.4° at R = 182 cm} is usually very similar to that
measured with ODE.

An expanded view of the charge-exchange flux during a single fishbone
(Fig. 5) reveals its internal, oscillatory structure. This feature is used to
determine the toroidal mcde number by comparing phases between signals
observed with ODE and with FIDE. After compensating for the their different
integration times, it is found that the FIDE signal leads the ODE signal by an
average phase difference of 98° % 15°. Since ODE and FIDE are separated by a
toroidal angle of about 88°, this result indicates a toroidal mode number of
n=1 and is consistent with Mirnov coil d.a‘l.a.1

The internal frequency for the fishbone in Fig. 5 is plotted versus

time In Fig. 6. The frequency decreases exponentially in time ar a rate of



about 450 Hz during the initial 1 msec of the instability, and decreases at a
slawer rate towards the end. Exponential decay rates as fast as 700 Hz aand as
slow as 280 Hz have been observed during the initial phase of the
irstability. The average duration of the particle efflux versus energy during
the fishbone instability is plotted in Fig. 7. Here the fishbone width is
defined as the full temporal width of the particle efflux at half maximum.
The figure provides an indication of the duration of the mode-particle
interaction for ions of a given energy. Although the fishbone width plotted
in Fig. 7 may be affected by the particle distribution in the plasma, the
figare implies a resonance between the mode and 35 keV particles. The energy
of the particles with which the mode predominately interacts may actually be
higher, sirce according to the model by White et al. existing particles will
typically have lost some of their energy to the mode.

With somewhat different discharge parameters it was possible to measure
the ejected particle flux levels versus energy in the 25 to 60 keV range
(Fig. 8). The flux here is defined as the average height of the fishbone
minus the background charge-exchange £lux, times the full width at half
maximum of the fishbone. The data have been corrected for the foil stripping
efficiences at each energy. Figura 8 shows that the fishbone instability
primarily expels lons with energies around 37 eV, while fewer ions are
ejected near the injection energy. B =econd ejection peak is observed for
ions with E ® 47 keV. Similar results have been obtained with FIDE's most
perpendicular channel, where again, only few ions are found to be lost at

E The ratjio of the second peak (£ > Einj) to the first peak (E < Einj)'

inj®
however, is considerably smaller than the ratio observed with ODE. This may

suggest that unlike the orbits of the low energy ions, the orbits of those

with E > Ein are located primarily near R = R, + a. Thus CDE would be more

3



sensitive to those orbits than FIDE. On other run days, strong fishbones were
seen at energies as losd as thermal energles on FIDE and as high as the

detection limits of the analyzers (80 keV on ODE, 100 keV on FIDE}.

Iv. DISCUSSION

The results indicate that the plasma ions are expelled in a toroidally
rotating "beacon" in the direction of increasing major radius. This is
consistent with a mode particle pumping model developed recently by
White iﬂ.:’ The toroidal frequency of rotation of the mode causing tlis
beacon lies between 12 and 19 kHz as seen in Fig. 6. The precession frequency

f for fast ions of energy E can be estimated by

L
=—E (1 -2 ( 1))
f = 1 8 + =
2Trn2eae R, P 2 ’
Q

where Bg is the poloidal field at the minor radius a, e is the electron
char ge, BP is the poloidal beta, and 2; is the plasma inductance. Thus beam
ions in the energy range of 30 to 50 KkeV have precession frequencies
comparable to the rotation freguency of the mode. This is consistent with the
resonance between the mode and particles in this energy range, as impl:ied in
Fig. 7. Again, such a resonance agrees with the model developed by White et
al,

The energy distribution of exiting ions within a fishbone reveals a
double peak. Monte Carlo calculations Ly White et al. have shown that such a

double-humped distribution may result, provided that toreoidal plasma rotatiocn

is included in the mode particle pumping model.3 If the double-humped feature



of the distribution in the experimental data is due to a toroidal plasma
rotation which shifts the enerqy distribution of the exiting ions, the shift
in energy is consistent with a rotation speed on the order of 107 cm/sec.
Central rotation speeds found by Brau et El'4 using optical technigues on PDX
are close to this value, although the rotation speed drops off with increasing
minor radius.

In the mode particle pumping model developed by White et al., exiting
particles will almost always lose energy, So that the maximum energy for an
exiting ion is < Einj' Even including the effects of toroidal rotation as
described above, the maximum attainable energies according to White et al.
should be less than 1.2 x Einj'3 On the other hand, strong particle bursts at
energivs as high as the detection limits of ODE (80 keV) and FIDE (100 keV)
have been observed during fishbone activity. Since ODE in particular views
these particles at the large major radius (low field)} periphery of the plasma,
a non-U-conserving acceleration mechanism in addition to toroidal rotation is
needed. Such a mechanism, however, has not yet been identified, although
microinstability of the highly anisotropic exiting beam ion distribution in
the cold scrape-off plasma seems a likely candidate. Acceleration due to this
microinstability may explain the strongly enhanced flux of bulk plasma ions
observed by the mass-resclving charge~exchange analyzers anG by FIDE in the
energy range below 10 keV.

Thus, 1t appears that the fishbone activity is characterized by two
perhaps distinct processes., One of them 1s the mode particle pumping
mechanism responsible for the ejection of particles, and the other process
causes the acceleration of beam ions. Together these processes may then be

responsible for the high energy particles seen during some fishbones.
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V. CONCLUSIONS

The measurements of the fast ion loases during high BTq discharges in
PDX have shown the fishbone instability as causing the ejection of beam ions
in a toreidally rotating beacon with torcidal mode number n=1. This feature
is in good agreement with the mode particle pumping model developed by white
et al. The duration and strength of the mode-particle interaction predicted
by the model are consistent with ocur measurements. The data, however, alsco
suggest the presence of socme additional mechanism capable of accelerating

particles to energies at least a8 hich as 2 Ej,j- Further wvork is needed to

explain these results.
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FIGURE CAPTIONS
poloidal cross secticn of PDX shawing the sightlines of the outside
(ODE) and inside ({IDE) detectors. For a plasma major radius of
R, = 145 com; the sightlines of ODE and JIDE cross the horizental
midplane at major radii of R = Ry & 37 cm.

Schematic diagram of the outside detector.

Layout of POX showing the location of the inside, ou:iside, ard FIDE

detectors.

35 KeV charge-exchange flux on {2) ODE and (b) IDE. ieam injection

starts at + = 300; a disruption terminates the discharge at t~
460 msec. Bp * 11 XG, I, " 220 XA, Bpg & 0.042, R, = 140 cm,
r = 40 rn, 4 beams, Pinj ¥ 4.0 WM.

Expanded view of a single fishbone revealing its internal

oscillations. The period of the oscillations increases with time.

Semi-log plot of internal freguency versus time for the fishbone in

Fig. 5. The initial decay rate is 450 Hz.

Full temporal width of the charge-exchange flux at half maximum of
the 1lation amplitude during fishbone activity, versus energy.

The error bars represent statistical ancertainties in the data.
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Energy distribution of exiting particles during a fishbone
instability. The beam injection energy is about 44 keV. By *
17 kG, Ip ™ 380 kA, Ry, = 140 cm, 2 = 40 cm. The data were taken
during the low mode phase of a two deuterium beam (2.5 MH) heated

deuterium divertor plasma.
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