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1. INTRODUCTION

The operation of Free Electron Lasers (FED in the short wavelength

o

region, X <1000 A, requires a large field amplification per undulator

pass in order to overcome the large losses of the optical' cavity at these

wavelengths . Systems based on the combination of a storage ring and of

a free electron laser can provide this large amplification ' . In fact,

for these systems small-signal gains of the order of 100-1000% per pass

have been estimated. Of course, at this level of amplification, the

small-signal gain formula is no longer appropriate and a more accurate

description of the FEL is required.

FEL studies in the high-gain regime have been carried out by many
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authors who have shown that, with an appropriate selection of the

electron density, detuning, and undulator length, it is possible to pro-

duce an exponential growth of both the radiation field and of the elec-

tron bunching. This is the result of the emergence of a collective

instability for the electron beam-undulator-radiation field system.

In this paper we.study the conditions for the onset of this insta-

bility and derive the characteristic complex frequencies of the FEL

system which are different from the ones derived in Refs. 4 and 11.

We show from this result how one can obtain the small-signal gain formula

and establish the condition for its validity. We also consider the pro-

blem of the initiation of laser action and of the growth of the radiation

field from noise and derive a formula to evaluate the lethargy time.

Finally, we study numerically the nonlinear regime and obtain results

related to the maximum amplification and optimum efficiency of the FEL.



No space-charge effects are included in our description so that we limit

our considerations to cases where the ratio of the plasma frequency to

undulator frequency is sufficiently smaller than unity.

2. THE FEL EQUATIONS

Following earlier developments ' we derive the working equations

of the FEL using the phase and energy as electron variables and the slowly

varying phase and amplitude approximation for the radiation field. In

this and the remaining sections, we shall adopt the following notations:

z represents the direction of propagation of the electron beam and of

the electromagnetic wave, as well as the undulator axis; .- and y are

the transverse coordinates; B denotes the undulator magnetic field

(we use a helical undulator for simplicity) and X and N the period

o o

length and the number of periods, repsectiyely; the undulator parameter

is K • eB X /(2irmc ), where me is the electron rest energy; X is the

Q 3
wavelength o£ the radiation field, y is the electron energy in units
of me , B is the longitudinal electron velocity and B = tc/y the

z p

amplitude of the transverse velocity; the electron phase, $, relative

to that of the electromagnetic wave is connected to z and t by the

relation 6 = 2irz/X + 2ir Cz-ct) /X; the resonant energy y is related
o *t

2 2
to X , X .and ic by y =» X tl+K )/2X, and, finally, the undulator fre-

0 K 0

quency to i s given byoi." 2TTC6_/X .
0 \J Z O

With these notations, the FEL equations can be written as ' :

(1)
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where j labels the j-th electron in the beam (j=l,2, ,N., with N

being the total number of electrons), the average <...> is carried out

over all electrons in a beam slice of length X at the beam position

z - <B > ct where <B > is the average longitudinal velocity. Thez z

remaining parameters have the following meanings: n is the electron

beam longitudinal density, Sis an effective beam transverse cross section

describing the overlap of the beam with the radiation field, whose ampli-

tude E and phase 6 have been combined in the complex amplitude
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a =• i E e (4)
o

It is important to stress that, contrary to what was done in Refs..12,13,

we have not required that y remain nearly the same as the resonant value

y throughout the evolution.

R

For the purpose of our subsequent analysis, it is convenient to

rewrite Eqs. (1),(2) and (3) using the variables

1 z • <3 > ct
Z (5)

t-t
In this case, these equations become

sir t j - V 1 " ^ (6)



(8)

The term (1 - 1 in Eq. (8) is important to describe the pulse

propagation in a FEL, especially when the electron-photon slippage N X

in crossing the undulator is comparable to the length of the electron

bunch, Lg. In this paper we confine ourselves to the situation where

Lg » N X ; thus, we neglect the propagation term ( 1 - 3 )3/3z' and

assume that the electron density n (z1) is constant and equal to n .

3. STABILITY ANALYSIS

The FSL equations (6)-(8) are more conveniently analyzed in terms

of a new set of variah vid parameters. We will use the relativistic

beam plasma frequency

4irr n c
e o

1/2

(9)

where y is the initial anectron energy and r the classical radius

of the electron; we also introduce the quantities

Y 2 n I 2/3

(10)

and

(11)

and rescale the time variable as

T - 2u o PlYR/Yo>
 fc (12)

In terms of the new variables:



(13)

2 FT/I (15)

(4ir ma y n p )

Eqs. (6)-(8) become

2̂  U " VP^J) (16)

*|?/'-- j (17)

A* - ifiA + - \—TT-/ (18)

where the prime denotes differentiation with respect to the new scaled

time variable. Equations (16)-(18) represent our working description

for the dynamics of the FEL; they are controlled by the two parameters

p, the Pierce parameter, and

6 » A/p (19)

where A is the usual detuning parameter

(20)
Y2 -

Because we neglect space-charge forces, we assume in the following that

p is sufficiently smaller than unity. Using the above equations of mo-

tion, one can easily verify that the quantity

L - <r> + |A|2

is an invariant, In terms of measurable parameters, Eq. (21) can

also be written as:



2 2
L • me a <y> + E /4ir » const (22)

o °

which can easily be recognized as the conservation of energy for the

electron beam-radiation field system.

In our subsequent numerical studies of the equations of motion

(16)7(18), the maximum time is defined by the undulator length,

t » N X /c. In terms of the scaled time T this becomes
max o o

max K °'Tmax
(23)

-2 2
which, for typical parameters p • 10 , y ~ yn and N = 10 leads to

O K O

Tmax ~ 4T-

We have analyzed the stability of this system following the method

developed by Bonifacio, Casagrande and Casati . The equations are

-irnji
linearized around the equilibrium state A =0, r . = 1/p, <e s - 0,

o 03
and perturbed by letting A=a, T. " — (l+r))» 'p. = ij> • + ty • • The linearized
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equations for the variables a, n, and ijj can be used to - 'onstruct linear

equations for the collective variables

-ii//
x =• <i> e °> (24)

y - i<5i e °> (25)

These take the form

X1 - Y (26)

Y! - -a (27)

a1 - i6a - iX - pY (28)

iXx
Nontrivial solutions with a time dependence of the type e

will exist if X is a solution of the characteristic equation:



X 3 - 6\2 + pX + 1 - 0 (29)

4 11
This differs from the secular equation derived in previous publications '

because of the linear term pX whose origin can be traced to our retention

of the variable V inside the average carried out in the last term of

4 11
Eq. (18). The results of the earlier analyses ' can be obtained by

formally setting p •> 0 in Eq. (29) . The solutions of the linearized

equations (26)-(28) will exhibit exponential growth corresponding to

the emergence of an instability if the cubic equation (29) has one real

and two complex conjugate roots. In this case, the imaginary part of

the eigenvalue measures the rate of growth of the unstable solution.
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The instability condition can be derived easily : in terms of the

parameters p and 6 it takes the form

p3 - i p V + | p 6 - 6 3 + ^ - > 0 (30)

The boundary between the stable and unstable domains of equations

(26)-(26) is shown in Pig. 1. Obviously, p is a positive definite

quantity, so that for any value of 6 less than 6* (see Fig. 1) the

equations of motion will always lead to unstable behavior. Only for

6><S* will one need to overcome a threshold condition in order to pro-

duce an exponential growth of the initial signal.

The eigenvalues of the linearized system, not surprisingly, are

responsible for many key aspects of the problem; they control the

emergence of instabilities, the duration of the build-up time of the

pulse, and the system's small signal gain.

Figure 2 shows the dependence of a typical set of eigenvalues on

the detuning parameter 6. As expected from the snaps of the instability

boundary (Fig. 1), the eigenvalues are real beyond a given value 6



of the detuning parameter, while two of them are complex conjugate of

each other for S<6 , . Of course, the threshold value depends on p.

For p <<1, the imaginary part of the eigenvalues display a charac-

teristic power law dependence on <5 near the instability threshold and

for large values of the detuning parameter. Thus, a simple analysis

shows that

Zm X ~ is!" 1 7 2, l«l » 1 (31a)

ImX~ <5thr-6)1/2' S = 6 t h r {31b)

In particular, Eq. (31b) may be recognized as the typical behavior

of the rate constant in the neighborhood of an instability threshold.

4. THE SMALL-SIGNAL GAIN

The small-signal gain emerges in a natural way from our analysis

in the limit p -*• 0 and for sufficiently large values of [ 61 . In this

case, the eigenvalues take the explicit limiting form (to order 1/6)

Ax = 6 (1 - ̂  ), X2 3 =± -j^j , 6 > 0 (32a)

A * <5(1 - 7 ) , A =± • * , 6 < 0 (32b)
1 p 2,3 I g 11/2

as one can confirm qualitatively by inspection of Fig. 2. It is now

a simple matter to calculate the output field in the linear regime

where A(x) is just a linear combination of exponentials

I i X i T
ACT) - I C. e J (33)



and where C. are constants to be determined from the initial conditions.

A lengthy, but straightforward calculation yields the following expres-

sions for the snail-signal gain:

* ( ' -

G 1 - — - — = -rr [ 1 - COS Sx COS -^

'Aol
(34a)

+ — 6 sin 6T sin — J, d > 0

G - -y (l - cos fix cosh — — + i 151 3 / 2 sin <5T sin —— \

6 < 0 (34b>

To make contact with what is usually known as the small-signal gain

formula ' it is not enough to require that |6| be sufficiently larger

than unity, but one alsom must impose the condition — — ; « 1. In this

case, Eqs. (34) take the form

G = A? (1 - cos fix + ̂ f sin Sx) (35)
63 2

which, in fact, agrees with the standard expression for G.

5. TIMJ3 EVOLUTION OF THE FREE ELECTRON LASER

The analysis of the time evolution of the system as prescribed by

the nonlinear equations (16)-(18) requires, in general, a numerical

approach. Two aspects of this problem can still be handled very accurately

by analytical means.



(i) Evolution Below Threshold

When the detuning parameter is sufficiently large that the system

operates stably below threshold, the time evolution of the output inten-

sity is very well described by the linear approximation (33). in this

regime, the eigenvalues are real and the output field displays small

amplitude oscillations when plotted as a function of time. On varying

6, the real eigenvalues undergo significant variations, as one can see

from Pig. 2, so that, depending on the values of the operating parameters,

a variety of different output patterns can be obtained, These include

beats, as well as more complicated modulation phenomena. The origin of

these oscillations, however, can be understood entirely with reference

to the eigenvalues of the linearized problem. Two exariples are shown

in Figs. 3 and 4, which are representative of the patterns that charac-

terize the operation below threshold. It may be worth mentioning that

while the traces shown in Figs. 3 and 4 have bzen produced by plotting

Eq. (33), the exact solution of the nonlinear equations (16)-(18) is

indistinguishable on the scale of these graphs.

(ii) Short-time Evolution and Lethargy

-i^
If the initial bunching parameter |<e °>J were exactly equal to

zero and all the electrons were injected in the active region with the

same velocity, and if in addition, the initial field amplitude is zero,

the field source term would be exactly zero and no emission would occur.

In fact, the mechanisms that trigger the initial field build-up are the

presence of fluctuations in the electron injection velocities, or the

lack of uniformity in the initial distribution of the electron phase

variables, or the presence of an initial field. In this paper we have
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studied the-evolution triggered by an initial small value of the bunching

parameter, but the same conclusion would apply if one injected a small

initial field and set the initial bunching parameter equal to zero.

Because of the nature of the triggering mechanism, intuitively, one would

expect that the time required for the initial pulse to build up (lethargy

time) should be a rather sensitive function of the initial bunching para-

meter. We have examined the dependence of the first pulse build-up time

on the initial value of the bunching parameter and verified that:

(1) a significant fraction of the build-up process is well described

by the solution of the linearized equations; and

(2) the arrival time of the first peak is described to an excellent

approximation by the formula:

W " - 23BC *» ̂ "*°>\ + l <*6)

Thus, one can expect significant fluctuations in the lethergy time.

On the other hand, we have also verified that ..the peak height |A |
max

is essentially independent of the number of electrons n , as long as

n is larger than about 30. in these simulations, we have assumed

that all the electrons are injected with the same velocity.

A test of point (1) above is given in Fig. 5 where numerical

solutions of Eqs. (16)-(18) are compared with those solutions of

the linearized equations (33). As one can see, most of the build-up

time is well represented by the linearized exponential growth, A

comparison of Eq. (36) with the calculated values of x , from

Eqs. (16)-(18) is shown in Fig. 6.
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We have analyzed the full nonlinear regime using the exact equa-

tions of motion under the assumption that all the injected electrons

have the same initial velocity. One aspect of considerable interest

for the purpose of optimizing the system's parameters is the existence

of a maximum peak power output as a function of p and S. We can see

that while a maximum initial growth rate is obtained for 6=0, the

maximum peak amplitude occurs for 626 . . We have analyzed this point

by monitoring the peak output intensity of the FEL just above threshold

(i.e., by selecting the parameters p and 6 as close as practical to the

boundary curve of Fig. 2). The results of this scan are displayed in

Pig. 7 where the peak output intensity p[A( is plotted as a function

of p. The scatter of the points is almost certainly due to the slight

variation of the conditions from run to run. The solid line which is

only a qualitative average through the points, suggests the existence

of an optimum gain condition such that the efficiency of the system is

maximum for operation just above threshold. We find remarkable that

at least in principle, efficiencies as high as about 40% should be avail-

able. It is also clear that treatments in which the initial electron mo-

mentum is assumed to vary only by a small amount during the evolution can-

not be adequate to describe situations where such large energy exchanges

take place between the electron beam and the field.

The above results are somewhat sensitive to the inicial momentum

spread of the electron beam. In Fig. 8 we show some preliminary results

of a comparison between output pulses generated with different initial

amounts of momentum spread. The general trend is a lowering of the

maximum pulse intensity and a reduction of the lethargy time. This

point, however, will require additional investigation.
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We conclude with a brief comment concerning the connection between

the results predicted on the basis of the present equations (16)—(18)

and of those proposed in Ref. 11. We note that the main difference

between our present treatment and thar of Bonifacio, Casagrande and

Casati is that, in the present treatment, the electron momenta are

allowed to vary appreciably with respect to their initial values. It

is expected, then, that for sufficiently low values of the Pierce para-

meter, when the electron energy suffers only a limited depletion, the

two sets of equations should yield essentially identical results. A

verification of this statement is given in Fig. 9.
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FIGURE CAPTIONS

(1) Instability boundary in the (p,6) plane. For S<6* the solutions

of Eqs. (16)-(18) are unstable for all values of p which is a posi-

tive definite quantity. For a selected value of p (e.g. p in the

figure) unstable behavior occurs for 6<6 . .

(2) The behavior of three eigenvalues of the secular equation as a

function of the detuning parameter 6 and for p = 0.1. The vertical

axis labels both the real and imaginary parts. The real parts have

been scaled by a factor of 10 to fit the display. For a sufficiently

postive value of <S (i.e., 6 > 6 j ) . The eigenvalues are real

(curves c,d,e). At threshold, two the real eigenvalues degenerate

into one, while, for the same value of <5, the imaginary parts

(curves b,b') become different from zero. The real part of the

complex conjugate eigenvalues for 6 <6 . is labelled by a.

(3) Output intensity |A| as a function of time for p = C.01 and

6 • 10. The eigenvalues of the linearized problem are -0.347,

0.364, 7.90. The beat pattern is due to the interference between

the first two eigenvalues, while the rapid oscillations are produced

by the third. The horizontal time axis ranges from 0 to 20 units

of T. The vertical axis has been expanded from 9.0x10 to
-4

1,15x10 to display the oscillations.

(4) Output intensity |A| for p » 0.01 and 6 = 4.0. The eigenvalues

of the linearized equations are -0.519, 0.628, 3.066. The beat

pattern is no longer observable over the scale (0,40) fo the time
-4

axis. The vertical axis ranges from 0.0 to 2.0x10

(5) Comparison between the exact solution of the FEL equations and

the exponential growth predicted by the linearized approximations.



15

(6) The arrival time of the first peak (lethargy time) is plotted as

a function of the logarithm of the initial bunching parameter

(dots). The solid curve corresponds to Eq. (36). The paraw-.ters

used in this scan are n * 8, p =• 0.4, 6 = 1.25.

(7) Dependence of the peak output intensity [A| on p in the

neighborhood and just above the instability boundary line of

Fig. 1. The solid line is only a qualitative average of the

points.

<8) The effect of an initial momentum spread. The output pulses

have been obtained for n = 16, p = 0.01 and 5 = 1.0 and are

displayed on a time scale from 0-12 units of T. From right

to left the initial spread, Sy/y, «*;u^ C. i'*^'" -~*'0~ >

(9) A comparison between the solution of cur equations (16)-(18) and

those of Ref. 11. The parameters used in this simulation are

p » 0.0021, 5 » 1.86, n = 1 6 . The horizontal axis ranges from
o

0-20 units of T.
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