Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon Material Task Low-Cost Silicon Solar Array Project. Eighth quarterly progress report, July 1, 1977--September 30, 1977. [Zinc vapor reduction of silicon tetrachloride in fluidized bed of seed particles]

PDF Version Also Available for Download.

Description

Progress is reported in the design of a large experimental facility for the preparation of high-purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free-flowing granular product. As of July 25, 1977, the capacity goal for the experimental facility was raised from 25 to 50 MT Si/year. Process flow diagrams and materials/energy flow sheets have been revised to conform to the higher capacity and a plant layout has been developed for locating the facility within an available structure. A unit-by-unit review of instrumentation and other requirements has been made, ... continued below

Physical Description

Pages: 39

Creation Information

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J. & Carmichael, D.C. October 20, 1977.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Progress is reported in the design of a large experimental facility for the preparation of high-purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free-flowing granular product. As of July 25, 1977, the capacity goal for the experimental facility was raised from 25 to 50 MT Si/year. Process flow diagrams and materials/energy flow sheets have been revised to conform to the higher capacity and a plant layout has been developed for locating the facility within an available structure. A unit-by-unit review of instrumentation and other requirements has been made, with the inclusion of those items in the flow diagrams and flow sheets. Alternative designs are presented for a silicon carbide-coated carbon-lined fluidized-bed reactor contained in hot-wall stainless steel, including alternative designs for zinc vaporizers based on detailed heat-transfer calculations. Conditions and equipment for the conversion of by-product chlorine to hypochlorite for use in the treatment of sewage effluent locally were defined. The logistics of 19 percent NaOH delivery and pick-up of 14 percent NaOCL was worked out and equipment suppliers were identified. Heat dissipation requirements for the fluidized bed, Zn/ZnCl/sub 2/ condenser, and SiCl/sub 4/ waste disposal sections were established. Resistivity and purity data were obtained for DuPont's silicon prepared by batchwise zinc reduction of SiCl/sub 4/. A preliminary safety review was made of the experimental facility. During the report period, the miniplant was operated to (1) provide 2.2 kg of product for JPL evaluation, (2) evaluate methods of product withdrawal, and (3) test three zinc vaporizer concepts. Results of the zinc vaporizer tests were consistent with concurrent heat-transfer calculations. An average value of approximately 450 Btu hr/sup -1/ ft/sup -2/ F/sup -1/ for heat transfer from graphite to boiling zinc (1 atm) was determined.

Physical Description

Pages: 39

Notes

Dep. NTIS, PC A03/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ERDA/JPL/954339-77/8
  • Grant Number: NAS-7-100-954339
  • DOI: 10.2172/5290723 | External Link
  • Office of Scientific & Technical Information Report Number: 5290723
  • Archival Resource Key: ark:/67531/metadc1071329

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 20, 1977

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • March 23, 2018, 2:15 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J. & Carmichael, D.C. Evaluation of selected chemical processes for production of low-cost silicon (Phase II). Silicon Material Task Low-Cost Silicon Solar Array Project. Eighth quarterly progress report, July 1, 1977--September 30, 1977. [Zinc vapor reduction of silicon tetrachloride in fluidized bed of seed particles], report, October 20, 1977; United States. (digital.library.unt.edu/ark:/67531/metadc1071329/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.