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Abstract 

This report describes a subprogram, SpLP( ), for solving linear programming prob

The package of subprogram units comprising SPLP( ) is written in Fortran 77. 

The subprogram SPLP( ) is intended for problems involving at most a few thousand 

~onstrai~ts and variables. The subprograms are wr~tten to take advantage of sparsity 

in ~he constraint matrix. 

A ver.y general pr9blem statement is accepted by SPLP( ). It allows upper, lower, 

or no bounds on the variables. Both the primal and dual solutions are returned as 

output parameters. The package has many opt~onal features. Among them is the ability 

to save partial results and then use them to continue the computation at a later time • 
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L Introduction 

This report discusses the subprogram SPLP( ) that computes solutions to linear 

programming (LP) problems of "modest size." An LP problem seeks the optimum of a 

linear function of unknowns. The unknowns also must s~tisfy certain given linear· 

.constraints. The constraints are usually stated as equations, inequalities, or bounds 

on the unknowns. 

Typically LP problems have sparse constraint matrices, and effectively dealing with 

this sparseness is one of our goals. We have also concentrated on achieving easy pqr-

tability across various machine lines. 

How does the· subprogram Sl'LP( ) compare with some other LP software packages? To 

partially answer this question·we list five of the primary features of our package as 

seen from a user's viewpoint. 

1. Up-to-date and robust methods are used in the implementation of the revised 

simplex method. 

2. Generally, the user's problem can be accepted by the package without modifi-

cation• 

3. The software is portable. Virtually no change is required on any computer 

system that s~pports Fortran 77. 

4. The software is in the public domain. 

S. The package is easy to use, yet flexible. 

We consider three alternate mathematical programming packages: XMP [17], MINOS [18], 

and MPS [19]. In our opinion these packages admirably satisfy 1. and 2., and provide 

other features that we have not mentioned. Yet each one of these packages does not 

satisfy at least Ot'le of these five desirable feature~: 

• XMP does not satisfy S. 

• MINOS does not satisfy 3. 

• MPS does not satisfy 3. or 4. 

The subprogram SPLP( ) does satisfy all five features and should be a welcome addi-

tion to the mathematical progtalliiiiing software "repertoire." 

3 



Readers who are primarily concerned. with using SPtP(.) should read Sections 1.1 

and 3 for some background ~nformation and then turn ~o Section 4 for an example and 

Section 6 for the usage documentation. Section 2 details our.implementation of the 

revised simplex methqd. Section, 5 describes how to install the pac}tage. 

1.1 Statement of the LP Problem 

The subprogram SPLP( ) nominally solves the fpllowing linear optimization problem. 

Problem LP 

.subject to 

·Ax .. w 

and bounds on the unknowns X and Wo 

The matrix A has MRELAS rows and Nv~S columns. The bounds for x and w can be any 
.... 

one of the four types:· 

a) lower and upper .bounds, 

b) lower bound only, 

c) upper bound on~y, and 

d) no bound at all. 

Variables of type (d) wlli ~e called free variables. 

The input to SPLP( ) consists of the pro~lem dimensions MRELAS and NVARS, the 

(1) 

vector of "costs," c, tl;le matrix A and the bounds for x and w. The output from SPLP( ) 

normally includes the primal vectors x and w, and the dual variables, d, for the equa-

tions Ax = w and for the constraints· expressed as, bounds on the components of x. A dis-

cussion of the dual variables and their calculations is given in Section 3. 

Alternate output from SPLP( ) includes indications of usage errors or that the 

stated problem has no solution in the usual sense. Usage errors are described in 

Section 6 ·and the situation of no solution is diSCU$Sed in Section 3. 
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1. 2 Reposing Other Forms of Proble~ LP 

We use the novel problem statement of Eq. (1) because it incorporates most common 

linear programming problems. It ~as some attributes that are not immediately obvious. 

These will be discussed in the next section. The reader should note that our form of 

the standard problem statement is close t.o that of Ref .• [2), p. 11-17. 

Two problem state~ents that many LP codes use are as follows. 

Problem LP-A 

subject to 

Ax- b 

X) 0 

Problem LP-B 

subject to 

Ax p b (AM~N· bMxl known) - -
a < x < ~ (a,~ known) 

·,..,. -,..,. 
T (The symbol~ • (p1 , ••• ,pM) is a set of 

relations: each Pj is either "<", "=", or ")".) 

It is well-known that the Problem ~P-A suffices (mathematically) for linear optimi-

zation problems; see, e.g., Ref. [1], p. 94. This form of the problem statement has 

several unfortunate side effects. For example, each simple bound (on the unknowns) 

becomes a new constraint equation and introduces a new variable into the problem. 

This is unnecessary; Problem LP-B avoids this objection. 

Each of these two problem statements are easily reposed in terms of our statement 

of Eq. (1). For Problem LP-A we define NVARS = N, MRELAS = M, and w = Ax• The bounds 

for x and ware 0 < Xj, j = l, ••• ,NVARS, and bi ( wi ( bi (i.e~, b1 a wi), 

i = l, ••• ,MRELAS. Fnr Problem LP-B we define NVARS = N, MRELAS = M, and w 

bounds for x and ware aj < Xj < ~j; j .-a l, ••• ,NVARS, and wi < bi, if Pi is 

II It = • 

Ax. The 
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Problem LP-B has its own unfortunate side effects. One example is an LP problem 

with generalized bounds on some of the constraints: vi < Eai,jXj < ui• Users normally 

write this as two constraint~: vi < EaijXj• ~aijXj < ui• This is unnecessary when our 

problem statement is used.. To put the generalized bounds into a form compatible with 

our Problem LP, define wi = ~aijXj with the bounds Vi < wi < ui~ This provides an 

alternative to writing pairs of inequalities for each generali,zed bound. 

A potential difficulty with any LP problem, no matter which statement is used, is 

inconsistent constraints. Suppos.e a user has a constraint EaijXj = bi and a second 

(almost) redundant constraint EaijXj = bi + o. This second equation makes the result

ing constraint matrix (nearly) rank deficient~ This can be a seri,oqs problem and it 

may not be easy for the user to identify the offending constraints. The subprogram 

SPLP( ) can be used to eliminate this problem. First, when this condition exists, 

SPLP( ) will return with information to identify the offending constraint• Then, because 

of our specific problem statement, the redundant equation can be eliminated by reclassi-

fying it as a free variable. 

2. Details of the Implementation 

Basically we are using the revised simplex algorithm, Ref. [1], p. 195, to solve 

Problem LP. In this section we will discuss modifications to the user's problem made 

by the SPLP( ) subprograms, modifications to the basic simplex algorithm and some 

numerical aspects of the implementation. 

2.1 Normalizing and Scaling the Original Problem 

Within the subprogram SPLP( ) both the independent variables, x, and the dependent - . 

variables, w, are translated or reflected so that each variable that is not free has a 

lower bound of zero. By extending the costs vector, c, and rewriting the constraint 

equations as 

(1') 

we can abbreviate Eq. (1) as 
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A'x' = 0 ( 2) 

where 

c•T = [cT:oT] 

A' = [A:-1] 

x' [xT ,wT] T 

The components'of c' and colQmns of A' that correspond to the dependent variables, 

w, are not explicitly stored.in SPLP( ). -
Next the unknowns ·x• are separated into four groups~ The classification into 

these groups is determined by the bounds on x'. Eq. (2) can be written as 

A'x' Abxb + Avxv + Auxu + AfXf = 0 - - -
Bounds on xb, xv and xu, .are as follows: 

y ( xb ( & - -
ex < Xv 

~· 

Xu ( 13 -
Xf is ·free 

These constrR1nts Rr.e normalized by translatine and reflecting the variables with the 

transformations 

xb = Xb - y - - -
~ = x.l! - ex 

x' u 
;; 13 - Xu 

The transformed minimization problem is 

minimize CTX, + CTX, + (-c~)~ + T 
_b_b .l! v :f~f 

subject to ~Xb + Av~~ + (-~)x~ + ~f~f = h 
.... "'" 

h = -(.f\bY +Avo: + Aul3) - ..... 
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and bounds 0 < ~b < £ .. & - y 
~ 

0 < x{, 

0 < x' u 

Xf is free {3) 

Thus the problem has been norma~ized so that all of the variables have zero as their 

lower bound or they are free. The variables xf, also have a'nQnnegative upper bound • ... 
We rewrite Eq. {3), in the abbreviated form 

minimize cTx 

subject to cons~raints 

Ax .. h 

and bounds ~or each j 

or 

or 

0 ( Xj 

0 < Xj < ej 

Xj is free 

Scaling of the columns of A and the vector c is also performed within SPLP( ). 

Column scaling amounts to the change of variables x • Dy where each diagonal term di 

(3') 

of the diagonal matrix D is nonnegative. Normally D is comput~d so that each nonzero 

column of A has maximum magnitude equal to one. For columns of A that are zero, 

di = 1. The nonnegative scale factor, a , for ~he vector c ~s chosen so that if cTD 

is nonzero, acTn has maximum magnitude eq4al to one. If cTD is zero,. a • .1. Those 

users who think this particular choice of scaling is inappropriate can {optionally) 

specify other nonnegative choices for D and (1. 

With this rescaling of the variables and the objective func~ion, we have the 

problem 

minimize a(cTD)y 

subject to constraints 

(An)y = h 

and bounds; for each ·1 

0 < Yi 
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or 

or Yi is free 

The condition di = 0 implies that Yi a 0. For di ) 0 the upper bounds for the 

-1 yi are eidi • 

(4) 

This problem (Eq. 4) 1.s the actual problem solved within SPLP( ). The user does 

not need to perform any of the translations, reflections or scaling of the variables. 

Eq. (4) is solved using the input data of Eq. (1). 

Finding a solution to Eq. (4), y = y, determines a solution to the normalized ' 

problem, Eq. (3'), x' = x = oy. A translation or reflection of the components of x 

is required to yield the solution vectors for x and w of Problem LP, Eq. (1). The 

dual variables p', that satisfy the optimality conditions n.ATp' ;> crDc, are rescaled 

to yield the dual variables for the constraint equations of Eq. (1): p 

2.2 Modifications to the Revised Simplex Algorithm 

First we review the revised simplex algorithm, as usually presented. This form 

of the algorithm is based on two assumptions: 1) all the variables are nonnegative and 

have no upper bound and 2) the starting value for the variables is feasible (satisfies 

all the constraints). Given the description of this algorithm we are then able to dis-

cuss where modifications have been made. 

In this section we refer to the notation of Eq. (3') but with the understanding 

that scaling of the data has been applied as in Eq. (4). Therefore consider problem 

statement Eq. (3') with every Xi ) 0. At each step of the algorithm we assume that 

the columns are permuted so that 

where ~2 "' 0 with ~1 ) 0 

The M by M nonsingular matrix A1 is the basis matrix; the vector x1 is the set of -
hasic vari<~.bles, and ·the vector x2 is the set of non basic variables. The revised -. 
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simplex algorithm, as presented below, consists of a main loop with three possible 

exits in steps (A.2), (A.S) and (A.9). 

T Compute reduced costs zi = ci - ~ :i• i = M++, ••• ,N. 

(Here the ci are components of : 2 and AI~= :1.) 

If Zi > 0 fori= M+l, ••• ,N, then exit Loop with an optimal solution. 

Else 

Choose a nonbasic column vector, ·:q, from 

those zi < 0, M < i < N. 

Compute search direction w 

If wi < 0 for i = l, ••• ,M, then exit Loop with an 

indication of an unbounded solution.· 

Else 

Determine the step length and the column vector 

to leave the basis matrix: 

Update the solution, i1 = x1 - aw, xp = a 

Exchange column p and q of A1. 

Exit Loop if too many_iterations have been taken. 

End Loop 

Figure 1. Statement of the Revised Simplex Algorithm 

2.2.1 General Bounds and Free Variables 

In order to incorporate general bounds and free variables as stated in Eq. (3') 

we made three types of modifications to the revijed simplex algorithm as shown in 

Fig. 1. 
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(A.3) 

(A.4) 

(A.S) 

(A.6) 

(A. 7) 

(A~8) 
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The first modification is only a remark: additional information must be kept 

regarding types of bo~nds that the variables have, and whether a nonbasic variable is 

zero or at its upper bound. 

The second modification is necessary because in the algorithm of Fig. 1, nonbasic 

·variables can only increase. In the more general case of solving Eq. (3') nonbasic 

variables with upper bounds may decrease from thelr upper bounds and nonbasic free 

variables can either increase or decrease. Therefore in step (A.l) of Fig. 1, the 

reduced costs {zi} are replaced by modified reduced costs {zi}, where 

if Xi is free 
if Xi ei = upper bound 
if x

1 
= 0 

This modification also implies that if the nonbasic variable chosen in Step (A.3) is 

at its upper bound or is free with zi > O, then the search direction of Steps (A.4) 

and (A.7) has a sign change, w: = -w. 

The third major modification of th~ algorithm involves the step length parameter 

9 of Step (A.6). The usual restriction is that for wi > 0 and xi ) 0, 9 must not 

exceed Xi/w. ~ new restriction is that a variable with an upper bound must not ex-

ceed its upper bound. Therefore, if wi < 0 and Xi has an upper bound ei, then 9 must 

not exceed (xi-ei)/wi• The column exchanged is, nf course, the one that restricts 9 

the most severely. If this corresponds to a variable Xp ~ ep, then the variable is 

reflected, Xp = ep - Xp• This involves updating the right-hand side, ~ = ~ - ~pep 

and recording that variable number p is nonbasic at its upper bound. 

The variable being exchanged can, in fact, be. the variable entering the basis. 

This situation implies that the active basis remains fixed for this step. Only the 

right-hand side is then changed. 

2.2.2 Feasibility 

At the outset we check the bounds on the variables x and w for consistency. 

Those variables that have both lower and upper bounds must have the lower bound smaller 

than or equal to the ~pper bound. 
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The revised simplex algorithm of Fig. 1·, as modifi~d for bounds and free variables, 

requires that the solution of the system A1x1 • h satisfy the r~quired bounds for each -
component, i.e., x1 is feasible. Choosing the initial A1 to define such a feasible x1 

can be a problem. A common approach to solving this problem is a two-phase process. 

The first phase consists of solving a related· LP probl~m for which an initial feasible 

x1 is easy to define and whose optimum provides a feasible point for ~he given problem. 

A description of this two-phase process is found in Ref. [1] 1 p. 102. 

Our approach to achieving feasibility is similar to the so-called "Big M" or 

penalty function method, Ref. [4], ·p. 112. Specifically, we modify the objective func- I 

tion cTx by adding the pen~lty function MTx. The compone).'lts of M 111ay change at each 

iteration and are defined as: 

r if Xj ( 0 
Mj .. 0, if 0 ( Xj ( ej or xj· is free 

.+k, if xj > ej 

{2ncn, c ~ 0 
where k .. - .... 

1, c - 0 

(The value of k is chosen after the constraint matrix and objective fun~tion has been 

rescaled.) 

Normally the initial basis consists of the columns corresponding to the dependent 

variables, w, in. Eq. (1). In ehis case, the basis matrix is simply an identity matrix 

with possible sign changes. Given an initial basis, the value for the variables can be 

calculated and the Mj defined. In this formulation o·nly the basic variables will have 

nonzero M coefficients. As a variable is exchanged from the basis (it has become fea-

sible and nonbasie), its corresponding M value is set to zero. Once an Mj • 0, it 

remains zero for all remaining iterations. In order to preserve continuity of the 

modified objective function, w~ allow an Xj < 0 to increase OJ.'llY to zero and an Xj > ej 

to decrease only to ej• A (slight) possibilit;y remains that when the optimality con

ditions are met in step (A.2) of Fig. 1, the resulting solutions will not be feasible. 

If it is not feasible we enter a two-phase form of the algorithm by (formally) redefin-
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ing A • + =· The actual mechanics involve the scale factors for the vectors c and M 

used in subprogram SPLP( ). This has the effect of eliminating numerical difficulties 

due to disparate scali,ng that can arise in the "Big M" or penalty function method. 

The "Big M" method, as modified, was used because of its efficiency. Frequently 

users are interested in ·changes to the bounds or othe'r problem data after one solution 

has been computed. When an LP problem is well posed, small perturbations in the problem 

data should cause small changes in the solution. If the perturbations cause the original 

solution to be an infeasible starting point for the new problem, there is a problem with 

respect to efficiency for two-phase, algorithms. In this case, a two-phase LP code'cannot 

take advan.tage of knowing the original solution and must start over with Phase 1. On 

the other hand, the "Big M" method, as implemented by SPLP( ), will typically involve 

only a few new nonzero Mi·· Almost always the "Big M" method will reach an optimal 

solution with fewer iterations. 

2.2.3 Pricing Strategies 

Step (A.3) of the algorithm of Fig. 1 indicates that for some i, M < i 'N with 

zi < 0, the column vector ai enters the (active) basis. The method for choosing i is 

often called the "pricing strategy." The most common pricing strategy is to choose the 

i which corresponds to the minimum of all reduced costs Zi < 0, Ref. [1], p. 156. A 

more elaborate and more expensive technique is to choose i corresponding to the mini-

mum of all weighted reduced costs zi/Yi < 0. The Yi ) 0 are weights such that the ai -
chosen to enter the basis corresponds to an edge of steepest descent, Ref. [5]. 

Numerical results based on certain test problems indicate that this technique often 

results .in significantly fewer iterations than the "minimum reduced cost" method. For 

this reason our nominal pricing strategy is the steepest edge strategy. However, we do 

allow the user to optionally revert to the "minimum reduced cost" method. 

Calculating all of the reduced costs, zi, for Step (A.3) can be very expensive. 

Therefore, we allow the user to choose a "partial pricing" strategy. Instead of 

calculating all of the reduced costs for Step (A.3), enough zi's are calculated in 

order to find a specific number of negative values. The reduced costs are calculated 

in a "circular" orde"l· so that none are missed. Partial pz:icing is a suboptimal strategy; 
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the "best" move might not be taken at each iteration. However, especially for problems 

with many variables, partial pricing may· reduce the total amount of work because it 

reduces so much work at the early stages; ~ee Ref. [2], p. 113-114. Nominally, all the 

reduced costs are computed for step (A.3). 

2.3 Numerical Aspects 

2.3.1 Sparsity Considerations 

The revised simplex algor.ithm, Fig. 1, requires solutions of linear algebraic sys

tems of the form A1~ =~and Af£ • : 1• These computations are followed by an exch~nge 

step wherein one column of A1 is replaced. For these processes we rely on the Bartels

Golub algorithm as implemented in Ref. [6]• The LAOS package of this reference achieves 

a good balance between exploiting sparsity of A1 (to reduce data storage requirements) 

and the preservation· of numerical stabilitY in computing the LU factors, Ref. [3], 

p. 313. Beside solving the pair of linear algebraic equations A1~1 = ~ and AI~ = ~)· 

operations also must be performed on the nonbasic columns of the constraint matrix, Az. 

From the standpoint of efficiency, the most important operation is the dot product 

zi = ci - :I~· Thus one of our chief concerns is dealing effectively and 

efficiently with sparsity in the consraint matrix A. To this end, the matrix A is 

stored using a fairly standard method: the nonzero elements of A are stored sequentially 

by columns. The indices of the rows within each column, together with their values, 

are stored in ascending order. 

Although SPLP( ) stores the matrix A by columns, the user does not have to define· 

A by columns. There are two distinct ways for the user to define this matrix. The 

first and the ·simplier way is to provide SPLP( ) an array defined in a specific format 

which contains information about each nonzero entry of A. A second way is to provide 

a user-written subroutine that describes the nonzero entries of A. These matters are 

dealt with in detail in Section 6. 

If the high-speed memory storage for A is too small, the subprogram SPLP( ) 

automatically stores the data on a. direct access file, Ref. [10]. (The user may change 

the amount of high-speed memory allocated for the storage of A. Nominally there is 

enough storage allocated for an average of four nonzero entries ·per column of A.) 
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Special care has been taken to minimize "page· thrashing." The idea is to access columns 

in the same order as they are stored on the direct acces~ file~ 

After a "normal" ret.urn from SPLP( ) (see Section 6, INFO = 1) the user might be 

interested in performing calculations involving the matrix A. This is possible because 

A is not overwritten by SPLP( ) and the.re are two subP.rograms PNNZRS( ) and PCHNGS( ) 

.for retrieving and storing entries of the matrix A. These subprograms are slightly 

modified versions of LNNZRS( ) and LCHNGS( ) of Ref. (10]. The usage of PNNZRS( ) 

and PCHNGS ( ) remai ~s unchanged •. 

2.3.2 Tolerances 

The successful implementation of the revised simplex algorithm of Fig. 1, with the 

modifications discussed in Section 2.3, req4ires classification of values according to 

their signs. Specifically, in Steps (A.2)-(A~3) and (A.S)-(A.6) we must make tests 

":z:i > 0" and "wt < 0." As shown in Ref. [ 9], .. ropust tests for these cQnditions can be 

based on estimating the uncertai~ty in the numeric~! solutions of the two linear alge

T braic systems A1~{ =band A1~ = _:1 • We estimate the uncertainty in both systems by 

the use of row and column check sums. Th~.~olumns of A1 and the rows of A1 are summed 

to form right-hand side vectors h and c such that the true solution of both systems is 

~l "'_p = (1, ••• ,1)-r. The aboolute error :f.n each component of the approximate 

"" "" . 
solution x1 and ~ of these systems is used as an estima.te of,. the relative error in 

each component of the respective systems A1~1 =band Af~ = : 1• 

This relatively simple idea has an attractive side-effect: the accuracy of the 

machine is automatically reflected in the error esti~a~es becauHe uf the check oum 

approximate solution. So ~f a user is satisfied with the point of view of obtaining 

as accurate a solution as possible (in that precision), then no further adjustment of 

tolerances is required. In particular, this feature obviates the need to do any local 

"tuning" of tolerances. This fact is fundamental in achieving portabili~y. 

2.3.3 Finite Convergence 

One concern about LP software is the convergence of the revised simplex algorithm 

in a reasonable number of steps. There are, in fact, examples by Hoffman and Beale, 

Ref. [1], p. 229-?.10, that show ~hat cycling (no convergence) can occur in the algorithm. 
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Another class of examples presented by Klee and Minty," Ref. [ 3l, show that the 

algori~hm may traverse the main loop exponentially often. Since this number is so large 

for even modest values of MRELAS and NVARS, the alg6r~thm has virtually failed in this 

case. 

Ideally LP software based on the revised simplex .algotithm should alleviate both 

of these potential types of counterexamples. We have 'not achieved this ideal but we 

offer the following remarks. 

Our observation about both of these counterexamples is that they are sensitive to 

normalized scaling of the data, i.e., proper scaling alleviates the difficulty. This 

type of scaling is done automatically by SPLP( ). 

An ad hoc but effective additional technique that we use.in SPLP( ) to prevent 

cycling is to note, at Step (A.6) of Fig. 1, whenever 9 • 0. Those variables that 
. 

are exchanged with a = 0 are not allowed to reenter the basis until either a > 0 at some 

future step, or at Step (A.2) all eligible zi ~ O.· While this appears to be a.viable 

method for the virtual prevention of cycling, it will not prevent cycling from occuring 

on Beale's example, Ref. [1], P• 230, when no data scaling is performed. 

As an additional safeguard, we have an iteration counter that can cause an exit 

from the loop at Step (A.9). Nominally the maximum number of iterations allowed is 

3(NVARS + MRELAS). The user can reset this value as an option. In fact this feature 

may prove useful in other ways such as performing a fixed number of iterations and then 

saving the partial results for completion at a later time. 

3. The Solution Returned 

The subprogram SPLP( ) can return to the user for several reasons, most importantly 

when it has found a solution. In this case the primal solution, the dual solution, 

and the indices of the basic variables are returned· to the user. 

The primal solution is calculated by first solving for the values of the·MRELAS 

basic variables and then appropriately rescaling an4 translating and reflecting to 

return to the original form of the problem. The nonbasic variables are set to either 

their upper or lower bound. Because of the generaU.ty of the problem, the dual solu-

tion needs more explanation. 
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To derive the primal-dual relationship for Eq. (1) we follow Ref. [1], p. 126. 

In order to use the development given there it is necessary to group the variables 

x and w into four natural categories. 

T T T T T 
~ "' (~!·~2·~3·~4) • The ~j and ~i have the following· bounds: ~l ;> ~l· 

. X2 < ~1· Yl < XJ < 01, X4 free; WI ) a2, W2 < ~2· Y2 < WJ < 02, W4 free. ------ --------
With these categories of ~j and wi naturally partitioning the constraints Ax w, the 

primal-dual relations are as follows. 

Primal Problem Statement 

minimize T 
~1~1 

T + C2X2 .... .... 
T + C3X3 .... .... 

+ T. c4x4 ........ 
subject to 

Auxl + Al2X2 + A!JX3 + A14X4 - wl 0 

A21x1 + A22x2 + A2JX3 + A24x4 - W2 0 
.... .... .... 

AJ!Xl + AJ2X2 + A33x3 + AJ4X4 - WJ = 0 
.... 

A41Xl + A42x2 + A43x3 + A44x4 - W4 = 0 
.... 

X! ) al .... .... 

- X2 ) -~1 .... 

XJ ) Yl .... .... 

- XJ ) -61 .... .... 

wl ) a2 .... .... 

- w2 ) -~2 .... 

WJ >rz .... .... 

W) ) .52 .... .... 

Dual Problem Statement 

maximize 
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subject to 

T 
Au~1 

T 
+ A21~2 

T 
+ A31~3 

T 
+ A41~4 + ~5 ... ~i 

T 
A12~1 

T 
+ Azz~z 

T 
+ A32~3 

T 
+ A42~4 - ~6 = ~2 

T 
A13~1 

T 
+ Az3~2 

T 
+ A33~3 

T 
+ A43~4 + ~7 - ~8 = ~3 

T 
A14~1 

T 
+ Az4~2 

T 
+ A34~3 

T 
+ A44~4 = :4 

vg - ~1 = 0 ... 
VIO + vz = 0 - -

vu - VIZ - V3 = 0 - - -
v4 = 0 -

~1>~2·~3 are free; V4 = 0; vs, ••• ,v12 ) 0 -
Due to the simple dependence of vg,vlo•vll•vlz on v1,v2,v3, it is clear that only the - - - - - -
dual variables vi, i = 1, ••• ,8 need to be computed. Also note that the variables 

v7,v8 (as well as vll•vlz) are complementary, i.e., v7 and V8 cannot simultaneously 
-- -i i . 

be nonzero. 

T T T T The subprogram SPLP( ) computes the MRELAS + NVARS vec~or (~1 ,~2 ,~3 ,~ , 

T T T T T -v6 ,v7-v8,o ) as output parameters. The first group of zeros in this vector - - - -
corresponds to v4_ = 0. The second group of zeros corresponds to the variables x4 - - -
that are free. 

If the stated problem is infeasible (there are no values of x and w such that 

Ax = w and the bounds· on x and w are simultaneously satisfied) an offending set of 

components is indicated. See the subprogram documentation in Section 6. for details. 

Another possibility is that the problem is unbounded. There is no finite optimum for 

cTx within the constraint set for x and w. In-this case the offending set of variables 

in x is indicated. Further details about this situation are also in Section 6. 

4. An Example Solving Related LP Problems 

In Ref. [11], p. 9, a sequence of three linear programming problems is discussed 

and solved: 
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1. Minimize -5xl - Sx2 - 5x3 - 6x4 - 7x5 

Subject to 1 1 1 1 1 4 

2 2 -1 -3 -5 6 

2 2 3 0 0 X ( 4 
,. 

-3 0 4 5 6 - 6 

-9 3 -3 0 -1 9 

-4 0 -2 -1 5 4 

X ) 0 

2. Add the constraint to the problem 1: 

5x1 + 8x2 + 5x3 +-·6x4 + 7x5 < 23 

3. Add a new column to the constraint matrix, a 6 = (l,O,O,O,O,O,O)T. The cost 

coefficient is. -30. 

(Restart problems 2 and 3 from the solutions of 1 and 2, respectively.) 

Our approach to solving these problems is to consider the enlarged problem: 

Minimize -5x1 - 8x2 - 5XJ - 6x4 - 7x5 - 30x6 

Subject to 1 1 1 1 1 1 Wl 

2 2 -1 -3 5 0 w2 

2 ·2 3 0 0 0 W3 

-3 0 4 5 6 0 X = W4 = w 

-9 3 -3 0 -1 0 w5 
-4 0 -2 -1 5 0 W6 

5 8 5 6 7 0 W7 

To solve problems 1, 2, and 3 above, we modify the bounds on the vectors x and w: 
I 

1. x ) 0, x6 = 0, w1 < 4, w2 < 6, w3 < 4, w4 < 6, w5 < 9, w6 < 4, w7 free. 
I I 

2. x) O, x6 = O, same bounds as 1 for wi, i = 1, ••• ,6, w7 < 23. 
I 

3. x ) 0, same bounds as 21 for ~i, i .. 1, •· •• , 7. 

Note that problem 1 1 with w7 free has the additional constraint of problem 2 

effectively ignored. The constraint x6 • 0 yielde a solution for problem 1. By 

bounding w7 < 23 we obtain a solution for problem 2. Finally by replacing the con-

straint X6 = 0 by X6 ) 0 we obtain a solution for problem 3. The output primal and 

dual solution~ are listed in Fig. 2. A prog~am unit for solving these problems is 

listed in Fig. 3. Note that the source language used is SFTRAN3, Ref. [12], a Fortran 

preprocessor language. 
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.. , 

Problem 1! Probl-em 2! Problem 3! 
I 

X w duals X w duals X w duals 

1. '4/3 4 -1 1. 54 4 0 0 4 -30 

2. 2/3 -2 0 0.3175 -2·. 524 0 0 0 0 

3. 0 4 -3.5 0.09524 4 0 0 0 0 
V2 '\. 

4. 2 6 -1 2.048 6 0 v2 0 0 0 V2 

s. 0 -10 0 0 -13.19 0 0 0 0 
1 

6. 0 -73 0 0 -8.397 0 4 0 0 

7. 24 0 } V4. 23 -1 0 0 

8. 0 0 25 

9. 0 0 22 

10. 10.5 vs 0 vs 25 
v:s 

11. 0 0 24 

12. 0 0 23 

13. -29 } -v8 -30 }-v8 0 

Figure 2. Primal and Dual Solutions for the Sequence of Example LP Problems 
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100 
200 
300 
400 
500 
600 
70(} c 
8i)(l c 
900 

1000 c 
1100 c 
1200 
1201 
12t)2 
1203 
1204 
1700 c 
1800 r 

'-' 

1900 c 
2000 
2100 
22i)(; c 
2300 c 
2400 c 
2500 
2600 
270(1 
2800 
2900 
3000 
3100 
3200 
:::~3(1(7 

3400 
3500 
3600 
3700 
3800 c 
.::.900 c 
4nnn c 
4100 
4200 c 
4300 c 
4400 
4500 
4600 c 
4700 c 
4800 
4900 
5000 
5100 c 
5200 c 
5300 c 
5400 
5500 
5600 
5700 

PROGRAM MATMOD 
DIMENSION A<7,6J,DATTRVC69J,PRGOPTC020J 
DIMENSION COSTSC06J,BLC13>,BUC13J,INDC13J,PRIMALC13J 
DIMENSION DUALSC13J,IBASIS<13J,WORKC167J,IWORKC226J 
EXTERNAL USRMAT 
DATA ZERO, t1RELAS, NVARS, LW, LIW /0. EO, 7, 6, 167,226/ 

DEFINE COMPONENTS OF THE COSTS<*> ARRAY. 
DATA ·CCOSTSCJJ,J=1,6) /-5.0,-8.0,-5.0,-6.0,-7.0,-30.0/ 

DEFINE THE CONSTRAINT MATRIX OF THE EXAMPLE. 
DATA CCACI,J>,J=1,6J,I=1,7> /6*1.0, 2*2.0,-1.0,-3.0,S.O.o.O, 

*2*2.0,3.0,3*0.0, -3.0,0.0,4.0,5.0, 
*6.o,o.o. -9.o,3.0,-3.o,o.o,-1.o,o.o, 
·*-4.0~0.0,-2.0,-1.0,5.0,0.0, 

*5.0,8.0,5.0,6.0,7.0,0.0 / 

DEFINE BOUNDS FOR THE INDEPENDENT CX> AND THE DEPENDENT CW} 
VARIABLES. 
DATA CBLCJJ,J=1,6) /6*0.0/ 
DATA CBUCJ),I=7,13) /4.0,6.0,4.0,6.0,9.0,4.0,23.0/ 

DEFINE THE PROBLEM DIMENSIONS AND MOVE DATA FROM 
FULL f·1ATRI X REPRESENTATION TO "SPARSE" FORI'1. 
IP=O 
DO FOR J=l,NVARS 

IP=IP+l 
DATTRV<.IP>=-J. 
DO FOR I=l,MRELAS 

IFCACI,JJ.NE.ZEROJ THEN 
DATTRV < IP+l >=I 
DATTRVCIP+2>=ACI,JJ 
IP=IP+2 

END IF 
END FOR 

END F'DR 
DATTRV<IP+l>=lERO 

DEFINE THE OPTIONS TO SAVE AND THEN RESTART AT 
THE PREVIOUS SOLUTION. 
PRGOPTC01>=4 

KEY=55 IS 1HE CONTINUA llUN OPTION. 
PRGOPT .{ 02 > =55 
PRGOPTC04>=7 

I<EY=57 IS THE SAVE <AFTER COMPLETION) OPTION. 
PRGOPT <05) =57 
PRGOPTC06>=1 
F'RGOPTC07J=10 

OBTAIN SUMMARY PRINTED OUTPUT ON FILE NUMBER=I1MACHC2). 
I<EY=51 IS THE PRINT OPTION. t-.;:PRINT IS THE LEVEL OF OUTPUT. 
PRGOPT\08>=51 
I<PRINT=l 
PRGOPTC09)=KPRINT 
PRGOPT(10)=1 
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5800 c 
5900 c 
6000 
6100 
6200 
6300 c 
6400 c 
6500 c 
6600 
6700 
6800 
6900 c 
7000 c 
7100 c 
7200 
7300 
7400 
7500 c 
7600 c 
7700 
7800 ·C 
7900 c 
8000 
8100 
8200 c 
8300 c 
8400 c 
8500 
8600 
8700 c 
8800 c 
8900 
9000 c 
9100 c 
9200 c 
9300 
9400 c 
9500 c 
9600 
9700 
9800 c 
9900 c 

10000 c 
10100 
10200 
10300 
10301 
10500 c 
10600 c 
10700 
10800 
10900 
11000 
11100 
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EACH X< > VARIABLE HAS ZERO AS A LOWER BOUND. 
DO FOR J=1~NVARS 
: IND<J > =1 
END FOR 

EACH W< > VARIABLE MAY HAVE AN UPPER BOUND. THE BOUNDS 
ARE DEFINED IN A DATA STATEMENT. 
DO FOR I=NVARS+l~NVARS+MRELAS 

IND<I>=2 
END FOR 

SOLVE PROBLEMS 1., 2. AND 3. BY CHANGING THE BOUNDS ON THE 
SOLUTION VARIABLES X AND W. 
DO FOR IPROB=1,3 

DO CASE <IPROB~3) 

CASE 1 

: NOTE THAT THIS FIRST CASE DOES NOT RESTART. 
: PRGOPT<03>=0 

: : CONSTRAIN X<NVARS> TO HAVE ZERO AS AN UPPER BOUND. 
: BU<NVARS>=ZERO 

IND<NVARS>=3 

: REMOVE CONSTRAINT EQUATION NO. MRELAS BY LETTING W<MRELAS> 
BE A FREE VARIABLE. 

: : IND<NVARS+MRELAS>=4 
CASE 2 

: 
: RESTART THE 2ND PROBLEM FROM THE SOLUTION OF THE FIRST. 

: : PRGOPT<03>=1 
: 

ADD THE CONSTRAINT EQUATION NO. MRELAS BY LETTING W<MRELAS> 
: HAVE AN UPPER BOUND. 

: : IND<NVARS+MRELAS>=2 
: 

NONE OF THE MATRIX ENTRIES CHANGE FOR PROBLEMS 2. AND 3. 
DATTRV<l>=ZERO 

: CASE 3 
: 
: : LET X<NVARS> NO LONGER BE FIXED AT ZERO. LET IT BECOME 

OPTIMAL AND NONNEGATIVE. 
: IND<NVARS>=l 

END CASE 
: CALL SPLP<USRMAT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV, 

t: BL~BU,IND~INFO~PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW> 

: NEED TO UNLOAD PAGE STORAGE FILE WHEN DOING RESTARTS IN SAME JOB. 
IPAGEF=l 
CLOSE<UNIT=IPAGEF,STATUS='DELETE'> 

END FOR 
STOP 
END 



S. Acquiring and Installing SPLP( ) 

Figure 4 gives a list of the subprograms in the SPLP( package.· These codes are 

written in the Fortran preprocessor language SFTRAN3, Ref. [12]. They are also available 

in Fortran 77, which is output from the SFTRAN3 proce~sor. There are various do~uments, 

.test drivers and data sets that are useful when installing the SPLP( ) system on a 

machine. Recause of the wide variety of types of textual material associated with this 

package, we recommend that the physical distribution be accomplished using the TES sys-

tern, Ref. [13]. Other· arrangemen~s .. c~n be made bY .. contacting the author.s. 

Name 

SPLP 

SPLPMN 

SPOPT 

SPLPUP 

SPINIT 

SPLPDM 

SPLPCE 
:· ·( 

SPLPCW 

SPLPFE 

SPLPFL 

SPLPMU 

USRMAT 

''· 
Purpose 

Interface to main worker subprogram SPLPMN. 

Manages other subprograms in package and allocates working 

storage. 

Process option array. 

Process matrix and bound data. 

Initialize values for SPLP package. 

D~compos~ bas.is ma.trix using modified LAOS package. 

Estimate e'rror in primal and dual systems. 

Compute steepest edge weights and initialize reduced costs. 

Find variable·tO enter basis. 

.Find variable to leave basis. 

Update primal solution; edge weights, reduced costs, and 

matrix composition. 

Decodes sparse matrix if provided by user in DATTRV(*). 

PINITM, TPLOC, PRWPGE, Sparse matrix storage and retrieval package. 
PRWVIR, PNNZRS, PCHNGS, 
OPENM, CLOSM, READM, WRITM 

SVOUT, IVOUT Vector output subprogrms/ · 

LAOSAS, LAOSBS, Sparse mat:rix decom~?Cs:ition and .updating packag~, Ref. [6]. 
LAOSCS, LAOSES, MC20AS. 

IlMACH, RlMACH Environmental parameter subprograms, Ref. [15]. (These are 

the only routines that require modification if Fortran 77 is 

SCOPY, SASUM, SDOT 

XERROR, XERRWV, + 
several others 

used.) 

Subprograms from the BLAS package, Ref. [18]. 

Error message handling package,· Ref. '(1'4]. 

Figure 4. Subprograms in the SPLP( ) Package. 
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6. Documentation and Error Messages for Using SPLP( ) 

The following document gives complete usage instructions for the linea._r program

ming subprogram SPLP( ). There is an abbreviated-version of this documentation (not 

shown here) that is provided with the complete package. This shorter document may be 

useful in machine-readable library systems or in reminding the user of features of 

SPLP( ) that are intricate. 

Machine Readable Documentation 

C SUBROUTINE SPLP<USRMAT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV, 
C t BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW> 
c 
c : ------------: 
C :Introduction: 
c : ------------: 
C The subprogram SPLP<. > solves a linear optimization problem. 
C The problem statement is as follows 
c 
C minimize <transpose of costs> t>: 
C subject to Atx=w. 
c 
C The entries of the unknowns x and w may have simple lower or 
C .upper bounds <or both>, or be free to take on any value. By 
C setting the bounds for x and w, the user is imposi-ng the con-
e straints of the problem. 
c 
C <The problem may. also be stated as a maximization 
C problem. This is done by means of input in the option array 
C PRGOPT<t>.> The matrix A has MRELAS rows and NVARS columns. The 
C vectors costs, x, and w respectively have NVARS, NVARS, and 
C MRELAS number of entries. 
c 
C The input for the problem includes the problem dimensions, 
C MRELAS and NVARS, the.array COSTS<t>, data for the matrix 
C A, and the·bound information for the unknowns x and w,, BL<t>, 
C BU<t>, and IND<t>. . 
c 
C The output from the problem (when output flag INFq=l> includes 
C optimal values for x and win PRIMAL<t>, optimal values for 
C dual variables of the equations Atx=w and the simple bounds 
C on x in DUALS<t>, and the indices of the basic columns in 
C IBASISU>. 
c 
c :------------------------------: 
C :Fortran Declarations Required:: 
c :------------------------------: 
c 
C DIMENSION COSTS<NVARS>,PRGOPT<t>,DATTRV<t>, 
C tBL<NVARS+MRELAS>,BU<NVARS+MRELAS>,IND<NVARS+MRELAS>, 
C tPRIMAL<NVARS+MRELAS>,DUALS<MRELAS+NVARS>,IBASIS<NVARS+MRELAS>, 
C tWORK<LW>,IWORK<LIW> . 
c 
C EXTERNAL USRMAT,.<or 'NAME', if user provides the subprogram> 
c 
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c 
c 
c 
c 

"!·. c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

The dimensions of PRGOPT (t} and DATTRV<t·> must be at least 1. 
The exact lengths will be determined by user-required options and 
data transferred to the subprogram USRMAT< > <or "NAME">. 

The values of LW and LIW, the lengths of the arrays ·woRK<t> 
and IWORK<t>, must satisfy the inequalitie~ 

LW .GE. 4tNVARS+ StMRELAS+LAMAT+ LBM 
LIW.GE. NVARS+11*MRELAS+LAM~T+~tLBM 

It is an error if they do not both satisfy these inequalities. 
~The subprogram will inform the user of the required lengths 
if either LW or LIW is wrong.) The values of LAMAT and LBM 
nominally are 

and 
LAMAT=4tNVARS+7 
LBM =BtMRELAS 

These values will be as shown unless the user changes them by 
means of input in the option arr~y PRGOPT(t). The value of LAMAT 
determines the length of the sparse matrix "staging" area. 
For reasons of efficiency the user. may want to increase the value 
of LAMAT. The ~alue of LBM determines the amount of storage 
available to decompose and update the active basis matrix. 
Due to exhausting the working space because of fill-in~ 
it may be necessary for the user to increase the value of LBM. 
<If this situation occurs an informative diagnostic is printed 
and a value of INF0=-28 is obtained as an output parameter.> 

:------: 
:Input:: 
:------: 

MRELAS,NVA~S 

These parkmeters are respectively the number of constraints <the 
1 i near relations A*x =w that. the unknowns x and w are to satisfy> 
and the number. of entries in the vector x. Both must be .GE. 1. 
Other values are errors. 

COSTS<t> 

The NVARS entries of this array are the coefficients of the 
l1near ObJectiv~ function. Thm v~lu& CORTS<J> is th~ 
multiplier for variable J of the unknown vector x. Each 
enlry of this array mu&t be defined. This array can be changed 
by the user between restarts. See options with KEV=55,S1 for 
details of checkpointing and rest~rting. 

USRMAT 

This is the name of a specific subprogram in the SPLP< > package 
that is used to define the matrix entries when this data is passed 
to SPLP< > as a linear array. In thi$. usage mode of SPLP< > 
the user gives inform~tion about the nonzero entries of A 
in DATTRV<t> as given under the description of tha~ parameter. 
The name USRMAT must appear in a ·Fortran EXTERNAL statement. 
User•s who are passing the matrix data with USRMAT< > can skip 
directly to the description of1the ~~put parameter DATTRV<t>. 
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C If the user chooses to provide.a subprogram 'NAME' ( > to 
.C define the matrix A, then DATTRV<t> may be used to pass floating 
C point data from the user's program unit to the subprogram· · 
C 'NAME'< >. The content of DATTRV<*> i.s not changed .in .any way. 
c 
C The subprogram 'NAME' ( ) can be of the user's choice 
C but it must meet Fortran standards and it must appear in a 
C Fortran EXTERNAL statement •. The first statement of the subprogram 
C has the form 
c 
C SUBROUTINE 'NAME'<I,J,AIJ, INDCAT, PRGOPT, DATTRV, IFLAG> 
c 
C The variables I,J, INDCAT, IFLAG<10J are type INTEGER, 
C while AIJ, PRGOPT<t>,DATTRV<*> are type REAL. 
c 
C The user interacts with the contents of IFLAG<t> to 
C direct the appropriate action. The algorithmic steps are 
C as follows. 
c 
C Test IFLAG<1>. 
c 
C IF<IFLAG<1J.EQ.1) THEN 
c 
C Initialize the necessary pointers and data 
C for defining the matrix A. The contents 
C of IFLAG<K>, K=2, ••• ,10, may be used for 
C storage of the pointers. This array remains intact 
c between calls to 'NAME'< >by SPLP< >. 
C RETURN 
c 
C END IF 
c 
C IF<IFLAG<1>.EQ.2) THEN 
c 
C Define one set of values for I,J,AIJ, and INDCAT. 
C Each nonzero entry o:f A must be defined this way. 
C These values can be defined in any_convenient order. 
C <It is most efficient to define the data by 
C columns in the order 1, ••• ,NVARS; within each 
C column define the entries in the order 1, ••• ,MRELAS.) 
C If this is the last matrix value to be 
C defined or updated, then set IFLAG<1>=3. 
C <When I and J are positive and respectively no larger 
C than MRELAS and NVARS, the value of AIJ is used to 
C define <or update> row I and column J of A.> 
C RETURN 
c 
C END IF 
c 
C END 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Remarks: 
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The values of I and J are. the row and column 
indices for the nonzero entries of the matrix A. 
The value of this entry is AIJ. 
Set INDCAT=O if this value defines that entry. 
Set INDCAT=1 if this entry is to be updated, 

new entry=old entry+AIJ. 
A value of I not between 1 and MRELAS, a value of J 
not between 1 and NVARS, or a value of INDCAT 
not equal to 0 or 1 are each errors. 



C The contents of I FLAG <K>, K=2, ••• , 10, can be used to 
C remember the status (of the process of defining the 
C matrix entries> between calls to 'NAME'< > by SPLP< >. 
C On entry to 'NAME' ( >, only the values 1 or 2 will be 
C in IFLAG<l>. More than 2*NVARS*MRELAS def-initions of 
C the matrix elements is considered an error because 
c it suggests an infinite loop in the user-written 
C subprogram 'NAME'(>. Any matrix element not 
C provided by 'NAME" ( > is defi~ed to be zero. 
c 
C The REAL arrays PRGOPTCt> and DATTRV<*> are passed as 
C arguments directly from SPLP< >to 'NAME'(>. 
C ·T,e array .PRGOPTq~> contains any user·-defined program 
C options. In this usage mode the array DATTRV<*> may 
C now contain any <type REAL> data.that the user needs 
C to define the matrix A. Both arrays PRGOPT<*> and 
C DATTRV<*> remain ·intact between calls to 'NAME' ( > 
C by SPLP< >. 
C Here is a subprogram that ·communicates the matrix values for A;· 
C as represented in DATTRV<*>, to SPLP< >. This subprogram, 
C called USRMAT< >, is included as part of the SPLP< > package. 
C This subprogram 'decodes' the array DATTRV<*> and defines the 
C nonzero entries .of the matrix A for SPLP< > to store. This 
C listing is presented here as a guide and example 
C for the users who find it necessary to write their own subroutine 
C for this purpose. The contents of DATTRV<*> are given below in 
C the description of that parameter_. 
c 
c SUBROUTINE USRMATH,.J,Al.J, INDCAT,PRGOPT,DATTRV,IFLAG> 
C <THIS IS FORTRAN 77 CODING.> 
C DIMENSION PRGOPT<*> ,.r;>ATTRV<t>, IFLAG<10> 
c 
C IFCIFLAG<1).EQ.1) THEN 
c 
C THIS IS THE INITIALIZATION STEP~ THE VALUES· OF IFLAG<K>,K=2,3,4, 
C ARE RESPECTIVELY THE COLUMN INDEX, THE Row· INDEX COR THE NEXT COL. 
C INDEX>, AND THE POINTER TO THE MATRIX ENTRY'S VALUE WITHIN . 
C DATTRV U>. ALSO CHECK <DATTRV (1> =0. > SIGNIFYING NO DATA. 
C IF<DATTRV<1>.EQ.O.> THEN 
C I = 0 
c .J = 0 
C IFLAGC1) = 3 
C ELSE 
C IFLAG<2>=-DATTRV<1> 
C IFLAG<3>= DATTRV<2> 
C IFLAG<4>= 3 
C END IF 
c 
C RETURN 
C ELSE 
C .J=IFLAG <2) 
C I=IFLAG<3> 
C L=IFLAG<4> 
C IFCI.EQ.O> THEN 
c 
C SIGNAL THAT ALL 0~ THE NONZERO ENTRIES HAVE BEEN DEFINED. 
C I FLAG< 1> =3 
C RETURN 
C ELSE IF<I~LT.O> THEN 
c 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SIGNAL THAT A SWITCH IS· KADE TO A NEW COLUMN~ 
J=-1 
I=DATTRV<L> 
L=L+l 

END IF 

AIJ=DATTRV <L> 

UPDATE THE INDICES AND POINTERS FOR THE NEXT ENTRY. 
IFLA6<2>=J 
IFLA6<3>=DATTRV<L+l> 
IFLA6<4>=L+2 

C INDCAT=O DENOTES THAT ENTRIES OF THE MATRIX ARE ASSIGNED THE 
C VALUES FROM DATTRV<t>. NO ACCUMULATION IS PERFORMED. 
C INDCAT=O 
C RETURN 
C END IF 
C END 
c 
C DATTRVU> 
c ---------
c If the user chooses to use the provided subprogram USRMAT< ) then 
C the array DATTRV<t> contains data for the matrix .A as follows: 
C Each column <numbered J) requires (floating point> data con-
e sisting of the value <.-J> followed by pairs of values. Each pair 
C consists of the row index ~mmediately followed by the value · 
C of the matrix at that entry. A value of J=O signals that there 
C are no more columns. <See "Example of SPLP< > Usage," below.> 
c 
C If the Save/Restore feature is in use (see options with 
C KEY=55,57 for details of checkpointing and restarting> 
C USRMAT< > can be used to redefine entries of the matrix. 
C The matrix entries are redefined or overwritten. No ~ccum-
C ulation is performed. 
C Any other nonzero entry of A, defined in a previous call to 
C SPLP< >, remain intact. 
c 
C BL<t>,BU<*>,IND<*> 
c ------------------
c The values of IND<*> are input parameters that define 
C the form of the bounds for the unknowns x and w. The values for 
C the bounds are found in the arrays BL<*> and BU<*> •s follows. 
c 
C For values of J between 1 and NVARS, 
C if IND<J>=l, then X<J> .BE. BL<J>; BU<J> is not used. 
C if IND<J>=2, then X<J> .LE. BU<J>; BL<J> is not used. 
C if IND<J>=3, then BL<J> .LE. X <J.> .LE. BU<J>, <BL<J>=BU<J> ok> 
C if IND<J>=4, then X<J> is free to have any value, 
C and BL<J>, BU<J> are not used. 
c 
C For values of I between NVARS+l and NVARS+MRELAS, 
C if IND<I>=l, then W<I-NVARS> .GE. BL<I>; BU<I> is not used. 
C if IND<I>=2, then W<I-NVARS> ~LE. BU<I>; BL<I> is not used. 
C if IND<I>=3, then BL<I> .LE. W<I-NVARS> .LE. BU<I>, 
C <BL<I>=BU<I> is ok>. 
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C if IND<I>=4, then W<I-NVARS> is free to have any value, 
C and BL<I>, BU<I> are not used. 
c 
C A value of IND<a> not equal to 1,2,3 or 4 is an error. When 
C IND<I>=3, BL<I> must be .LE. BU<I>. The condition BL<I>.GT. 
C BU<I> indicates infeasibility and is an error. These 
C arrays can be changed by the user between restarts. See 
C options with KEY=55,57 for details of checkpointing and 
C restarting. 
c 
C PRGOPT<a> 
c ---------
c This array is used to rede·fine various parameters within SPLP< >. 
C Frequently, perhaps most of the time, a user will be satisfied 
C and obtain the solutions with no changes to any of these 
C parameters. To try this, simply liiet PRGOPT<l>=l.EO. 
c 
C For users with more sophisticated needs, SPLP< > provides several 
C options that may be used to take advantage of more detailed 
C knowledge of the problem or satisfy other utilitarian needs. 
C The complete description of how to use this option array to 
C utilize additional subprogram features is found under the 
C heading "Usage of SPLP< > Subprogram Options." 
c 
C Briefly, the user should note the following value of the parameter 
C KEY and the corresponding task or feature desired before turning 
C to that section. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Value 
of KEY 

5(1 

51 

52 

53 

54 

5b 

57 

58 

59 

Brief Statement of Purpose for Option 

Change from a minimization problem to a 
maximization problem. 
Chan~e the amount of printed output. 
Normally, no printed output is obtained. 
Redefine the line length and precision used 
for the printed output. 
Redefine the values of LAMAT and LBM that 
were dicussed above under the heading 
Fortran Declarations Required. 
Redefine the unit number where pages of the sparse 
data matr·ix A are !:itor&d. Normally~ the unit 
number is 1. 
A computation, partially completed, is 
being continued. Read the up-to-date 
partial results from unit number 2. 
Redefine the unit number where the partial results 
are stored. Normally, the unit number is 2. 
Save partial results on unit 2 either after 
maximum iterations or at the optimum. 
Redefine the value for the maximum number of. 
iterations. Normally, the ma>dmum number of 
iterations i& 3&<NVARS+MRELAS>. 
Provide SPLP< > with a starting <feasible> 
nonsingular basis. Normally, SPLP< > starts 
with the identity matrix columns corresponding 
to the vector w. 

( 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
C. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
G 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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62 

63 

64 

65 

66 

The user has provided scale factors for the 
columns of A. Normally, SPLP< > computes scale 
factors that are the reciprocals of the ma>:. norm 
of each column. 
The user has provided a scale factor 
for the vector costs. Normally, SPLP< > computes 
a scale factor equal to the reciprocal of the 
max. norm·of the vector costs after the column 
scaling for the data matrix has been applied. 
Size parameters, namely the smallest and 
largest magnitudes of nonzero entries in 
the matrix A, are provided. Values noted 
outside this range are to be considered errors. 
Redefine the tolerance required in 
evaluating residuals for feasibility. 
Normally, this value is set to SQRT<EPS>, 
where EPS = relative precision of the arithmetic. 
Change the criterion for bringing new variables 
into the basis from the steepest edge (best 
local move) to the minimum reduced cost. 
Redefine the value for the number of iterations 
between re·calculating the error in the primal 
solution. Normally, this value is equal to ten. 
Perform "partial pricing" on variable selection. 
Redefine the value for the number of negative 
reduced costs to compute <at most> when finding 
a variable to enter the basis. Normally this 
value is set to NVARS. This implies that no 
"partial pricing" is used. 

:---------------: 
:working Arrays:: 
:--~------------: 

WORK<t>,LW, 
I WORK<*>, LIW 
~~=-------- -··'· 
The arrays WORK<t> and IWORK<*> are respectively floating point 
and type INTEGER working arrays for SPLP< > and its 
subprograms. The lengths of these arrays are respectively 
LW and ~IW. These parameters must satisfy the inequalites 
noted above under the heading "Fortran Declar..-tions Ri;,quired." 
It is an error if either value is too small. 

:----------------------------: 
:Input/Output files required:: 
:----------------------------: 

Fortran unit 1 is used by SPLP< > to ~tore the sparse matrix A 
out of high-speed memory. This direct access file is opened 
within the package under the following two conditions. 
1. When the Save/Restore feature is used. 2. When the 
constraint matrix is so large that storage out of high-speed 
memory is required. The user may need to close unit 1 
<with deletion from the job step) in the main program unit 
when several calls are made to SPLP< >. A crude 



C upper bound for the amount of information written on unit 1 
C is 6*nz, where nz is the number of nonzero entries in A. 
C The unit number ~ay be redefined to any other positive value 
C by means of input in the option array PRGOPT<t>. 
c 
C Fortran unit 2 is. used by SPLP< ) only when the Save/Restore 
C feature is desired. Normally this feature is not used. It is 
C activated by·means of input in the option arr.ay PRGOPT<t>. 
C On some computer systems the user may need to open unit 
C 2 before executing a .call to SPLP( ). This file is type 
C sequential and is unformatted. 
c 
C Fortr~n unit=I1MACH<2> <check local setting> is used by SPLP< 
C when the printed output feature <KEY=51) is u&ed. Normally 
C this feature is not used. It is activated by input in the 
C options array PRGOPT<t>. For many computer systems I1MACH(2)=6. 
c 
c :-------: 
C :output:: 
c :-------: 
c 
C INFO,PRIMAL<t>,DUALS<*> 
c -----------------------
c The .integer flag INFO indicates why SPLP< has returned to the 
C user. If INF0=1 the solution has been computed. In this case 
C X<J>=PRIMAL<J> and W<I>=~RIMAL<I+NVARS>. The dual variables 
C for the equations Atx=w are in the array DUALS<I>=dual ·for 
C equation number .I. The dual value for the component X <J > that 
C has an upper or lower bound (or both> is returned in 
C DUALS<J+MRELAS>. The only other values for INFO are .LT. 0. 
C The meaning of these values can be found by reading 
C the diagnostic message in the output file, or by looking .for 
C error number = <-INFO> under the heading "List of SPLP< ) Error 
C and Diagnostic Messages.". 
C The diagnostic message~ are printed using the error processing 
C subprograms XERROR< > and XERRWV< > wit~ error category LEVEL=1. 
C See the document "Brief Instr. for Using the Sandi·a Math. 
C Subroutine Library," SAND79-2382, Nov., 1980, for further inform-
C ation about resetting the usual response to a diagnostic message. 
c 
C BL<t>,BU<t>,IND(t) 
c ------------------
c These arrays are output parameters only .under the <unusual> 
C circumstances. where the. stated problem is infeasible, has an 
C unbounded optimum value, or both. These respective conditions 
C correspond to INF0=-1,-2 or -3. For INF0=-1 or -3 certain 
C components of the vectors x or w will not satisfy the input bounds. 
C If component J of x or component I of w does not satisfy its input 
C bound because of infeasibility, t·hen IND<J>=-4 or IND<I+NVARS>=-4, 
C respectively. For INF0=-2 or -3 certain 
C components of the vector x could not be used as basic variables 
C because the objective function would have become unbounded. 
C In particular if component J of x corresponds to such a variable, 
C then IND<J>=-3. Further, if the input value of IND<J> 
C =1, then BU<J>=BL<J>; 
C =2, then fJL<J>=BU<J>; 
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C =4, then BL<J>=O.,BU<J>=O. 
c 
C <The J-th variable in x has been restricted to an appropriate 
C feasible value.> 
C The negative output value for IND<*> allows the user to identify 
C those constraints that are not satisfied or-those variables that 
C would cause unbounded values of the objective function. Note 
C that the absolute value of IND<•>, together with BL<*> and BU<*>, 
C are valid input to SPLP< >. In the case of.infeasibility the 
C sum of magnitudes of the infeasible values is minimized. Thus 
C one could reenter SPLP< > with these components of x or w now 
C fixed at their present values. This involves setting 
L the appropriate components of IND<*> = 3, and BL<*> = BU<*>· 
c 
C IBASIS<I>,I=t, ••• ,MRELAS 
c ------------------------
c This array contains the indices of the variables that are 
C in the active basis set at the solution <INFO=t>. A value 
C of IBASIS<I> between 1 and NVARS corresponds to the variable 
C X<IBASIS<I>>. A value of IBASIS<I> between NVARS+l and NVARS+ 
C MRELAS corresponds to the variable W<IBASIS<I>-NVARS>. 
c 
C Computing with the Matrix A after Calling SPLP< > 
c -------------------------------------------------
c Following the return from SPLP< >, nonzero entries of the MRELAS 
C by NVARS matrix A are available for usage by the user. The method 
C for obtaining the next nonzero in column J with a row index 
C strictly greater than I in value, is completed by executing 
c 
C CALL PNNZRS<I,AIJ,IPLACE,WORK,IWORK,J> 
c 
C The value of I is also an output parameter. If I.LE.O on output, 
C then there are no more nonzeroes in column J. If I.GT.O, the 
C output value for component number I of column J is in AIJ. The 
C parameters WORK<*> and IWORK<*> are the same arguments as in the 
C call to SPLP< >. The parameter IPLACE is a single INTEGER 
C working variable. 
c 
C The data structure used for storage of the matrix A within SPLP< > 
C corresponds to sequential storage by columns as defined in 
C SAND78-0785. Note that the names of the subprograms LNNZRS<>, 
C LCHNGS < >, LINITM < >, LLOC ( >, LRWPGE <>,· .. and LRWVIR < > have been 
C changed to PNNZRS<>,PCHNGS<>,PINITM<>,IPLOC(),PRWPGE<>, and 
C PRWVIRO .respectively. The error processing subprogram LERRORO 
C is no longer used; XERROR<> is used instead. 
c 
c :-------------------------------: 
C :subprograms Required by SPLP< >: 
c :-------------------------------: 
C Called by SPLP<> are SPLPMN<>,SPLPUP<>,SPINIT<>,SPOPT<>, 
C SPLPDM<>,SPLPCE<>,SPINCW<>,SPLPFL<>, 
C SPLPFE<>,SPLPMU<>. 
c 
C Error Processing Subprograms XERROR<>,XERRWV<>,I1MACH<>,R1MACH<> 
c 
C Sparse Matrix Subprograms PNNZRS<>,PCHNGS<>,PRWPGE<>,PRWVIR<>, 
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C PINITM<>,IPLOC<> 
c 
C Mass Storage File Subprograms OPENM<>,CLOSM<>,READM<>,WRITM<> 
c 
C Basic Linear Algebra Subprograms SCOPY<>,SASUM<>,SDOT<> 
c 
C Sparse Matrix Basis Handling Subprograms LA05AS<>,LA05BS<>, 
C ·LA05CS<>,LA05ED<>,MC20AS<> 
c 
C Vector Output Subprograms SVOUT<>,IVOUT<> 
c 
C Machine-sensitive Subprograms IlMACH< >,RlMACH< >, 
C OPENM< >,CLOSM< >,READM< >,WRITM< >. 
C COMMON Block Used 
c -----------------
c /LA05DS/ SMALL,LP,LENL,LENU,NCP,LROW,LCOL 
C See the document AERE-R8269 for further details. 
c :------------------------: 
C :Example of SPLP< > Usage: 
c :------------------------: 
C PROGRAM LPEX <FILES=TAPE1,TAPE6 MAY BE USED} 
C THE OPTIMIZATION-PROBLEM IS TO FIND Xl, X2, X3 THAT 
C MINIMIZE Xl + X2 + X3, Xl.GE.O, X2.GE.O, X3 UNCONSTRAINED. 
c 
C THE UNKNOWNS Xl,X2,X3 ARE TO SATISFY CONSTRAINTS 
c 
C Xl -3tX2 +4tX3 = 5 
C Xl -2tX2 .LE.3 
C 2tX2 - X3.GE.4 
c 
C WE FIRST DEFINE THE DEPENDENT VARIABLES 
C Wl=Xl -3tX2 +4tX3 
C W?=Xl- 2tX2 
C W3= 2tX2 -X3 
c 
C WE NOW SHOW HOW TO USE SPLP< ) TO SOLVE THIS LINEAR.OPTIMIZATJON 
C PROBLEM. EACH REQUIRED STEP WILL BE SHOWN IN THIS EXAMPLE. 
C DIMENSION COSTS<03>,PRGOPT<Ol>,DATTRV<1B>,BL<06>,BU<06),IND<06>, 
C tPRIMAL<06>,DUALS<06>,IBASIS<06>,WORK<079>,IWORK<l03> 
c 
C EXTERNAL UoRMAT 
C MRELAS=3 
C NVARS=3 
c 
C DEFINE THE ARRAY COSTS<t> FOR THE OBJECTIVE FUNCTION. 
C COSTS<01>=1. 
C COSTS<02>=1. 
C COSTS<03>=1. 
c 
C PLACE THE NONZERO INFORMATION ABOUT THE MATRIX IN DATTRV<t>. 
C DEFINE COL. 1~ 

C DATTRV<Ol>=-1 
C DATTRV<02>•1 
C DATTRV<03)=1. 
C DATTRV<04>=2 
C DATTRV<OS>=l. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DEFINE COL. 2: 
DATTRV <06> =-2 
DATTRV<07>=1 
DATTRV <OS> =-3. 
DATTRV<09>=2 
DATTRV < 10> =-2. 
DATTRV<11>=3 
DATTRV < 12> =2. 

DEFINE COL. 3: 
DATTRV < 13> =-3 
DATTRV < 14 > = 1 
DATTRV < 15) =4. 
DATTRV<lo>=3 
DATTRV < 17> =-1. 

DATTRV<18)=0 

CONSTRAIN X1,X2 
BL < 1>=0. 
IND<1>=1 
BL<2>=0. 
IND<2>=1 
IND<3>=4 

TO BE NONNEGATIVE. LET 

CONSTRAIN W1::;5,W2.LE.3, AND W3.GE.4. 
BL<4>=5. 
BU<4>=5. 
IND<4>=3 
BU<5>=3. 
IND<5>=2 
BL<6>=4. 
IND<6>=1 

X3 
·C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INDICATE THAT NO MODIFICATIONS TO OPTIONS 
PRGOPT<01>=1 

C DEFINE THE WORKING ARRAY LENGTHS:· 
C LW=079 
C LIW=103 

HAVE NO BOUNDS. 

.,. 

ARE· IN USE. 

C CALL SPLP<USRMAT,MRELAS,NVARS,COSTS,PRBOPT,DATTRV, 
C *BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW> 
c 
C CALCULATE VAL, THE MINIMAL VALUE OF THE OBJECTIVE FUNCTION. 
C VAL=SDOT<NVARS,COSTS,l,PRIMAL,l> 
c 
C STOP 
C END 
c :------------------------: 
c 
c 
c 
c 
c 
c 
c 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Users frequently have a large variety of 'requirements for linear 
optimization software. Allowing for these varied requirements 
is at cross purposes with the desire to keep the usage of SPLP< > 
as simple as possible. One solution to this dilemma is as follows. 
< 1 > Provide a 'versi.on of SPLP < >. that solves a wide class of 
problems and is easy to,use. <2> Identify parameters within SPLP<> 
that certain users may w~nt to change •. (3) Prov~de a. means 
of changing any selected number of these parameters that does 
n~t requ:i,.:e changing all· ·of. them. 

Changing selected parameters is done by. requiring 
that the user provide an option array, PRGOPT<t>, to SPLP( ). 
The contents of PRGOPT<l> inform SPLP( > of just those options 
that are going to be modified within the total set of possible 
parameters that can be modified. The array PRGOPT<t> is a linked 
list consisting of group& of data of the following form ' 

LINK 
KEY 
SWITCH 
data set 

that describe the desired options. The parameters LINK, KEY and 
switch are each.one word and are .always required. The data set 
can be comprised of several' words or can be empty. -The number of 
words in the data set for;- eact, option dep~nds on''the value of 
the parameter KEY. · 

The value of LINK. point~. to the first eri.try of the nex·t· group 
of data within PRGOPT<t>. The exception is when t~ere are no more 
options to change., In that case, LINK=1 ard the values for KEY, 
SWITCH and data set are not. refereflced. The general·· layout of 
PRGOPT<t> is as follows: 

••• PRGOPT<l>'=.LINK1 <link to f'irst entry· of next group> 
PRGOPT<2>=KEY~ <KEY to the option change>. . 
PRGOPT.,<3>=5WITCH1 <on/off switch fOr- the option> 
PRGOPT(4>=data value · · 

~ •• PRGOPT<LINK1>=LINK2 <link to first ·entry of next group> 
PRGOPT<LINK1+1>=KEY2 <KEY to option change> . 
PRGOPT<LINK1+2>=SWITCH2 (on/off switch for 'the. option> 
PRGOPT<LINK1+3)=data value . 

•. 

~--PRGOPT<LINK>~1 (no more opt~ons to change> 

A value of LINK that is .LE.O or .GT. 10000 is·an error. 
In this case SPLP< > returns with an error message, INF0=-14. 
This helps prevent using invali~ but positive values of LINK that 
will probably extend beyond the'program limits of PRGOPT<*>· 
Unrecognized values of KEY are ignciJred. If the value of SWITCH is 
zero then the option is turned off.' For any other value of SWITCH 
the option is turned on. This is used to allow easy changing of 
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C options without rewriting P.RGOPT<*>. The order of the options is 
C arbitrary and any number of options can be ch~nged with the 
C following restriction. To prevent cycling in processing of the 
C option array PRGOPT<l>, a count of the number of options changed 
C is maintained. Whenever this count exceeds 1000 an error message 
C <INF0=-15> is printed and the subprogram returns. 
c 
C In the following description of the options; the value of 
C LATP indicates the amount of additional storage that a particular 
C optioq requires. The sum of all of these values <plus one> is 
C the minimum dimension for the array PRGOPT<l>. 
c 
C If a user is satisfied with the nominal form of SPLP< >, 
C set PRBOPT<l>=l <or PRBOPT<l>=l.EO>. 
c 
C Options: 
c 
C-----KEY = 50. Change from a minimization problem to a ma>:imization 
C problem. 
C If SWITCH=O option is off; solve minimization problem. 
C =1 option is on; solve maximization problem. 
C data set =empty 
C LATP=3 
c. 
C-----KEY = 51. Change the amount of printed output. The nominal form 
C of SPLP< > has no printed output. 
C The first level of output <SWITCH=!> includes 
c 

<1> Minimum dimensions for the arrays 
PRIMAL<*>,DUALS<l>,IBASIS<l>, and 

<2> Problem dimensions MRELAS,NVARS. 

COSTS<*>,BL<*>,BU<l>,IND(l), 
PRBOPT<l>. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

<3>. The types of and values for the bounds on x and w, 
and the values of the component~ of the vector costs. 

<4> Whether optimization problem is minimization or 
ma>:imization. 

<5> Whether steepest edge or smallest reduced cost criteria used 
for exchanging variables in the revised ~implex method. 

C Whenever a solution has been found, <INFO=l>, 
c 
C <6> the. value of the objective function, 
C (7) the values of the vectors x and w, 
C <S> the dual variables for·the constraints A*x=w and the 
C bounded components of x, 
C <9> the indices of the basic variables, 
C <10> the number of revised simplex method iterations, 
C <11) the number of full decompositions of the basis matrix. 
c 
C The second level of output <SWITCH~2> includes all for SWITCH=! 
C plus 
c 
C (12> the iteration number, 
C <13> the column number to'enter the.basis, 
C (14> the column number to leave the basis, 
C <15> the length of the step taken. 
c 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

The third level of output <SWITCH=3> includes all for SWITCH=2 
plus · 

(16> critical quantities required in the revised simplex method. 
This output is rather voluminous. It is intended to be used 
as a diagnostic tool in case of a failure in SPLP( ). 

If SWITCH=O option is off; no 
=1 summary output. 
=2 lots of output. 
=3 even more output. 

data set =empty 
LATP=3 

printed output. 

c-----KEY = 52. Redefine the parameter, IDIGIT, which determines the I 

C format and precision used for the printed output. In the printe.d 
C output, at least ABS<IDIGIT> decimal digits per number is printed. 
C If IDIGIT.LT.O, 72 printing columns are used. IF IDIGIT.GT.O, 133 
C printing columns are used. 
C If SWITCH=O option is off; IDIGIT=-4. 
C =1 . option is on. 
C data set =IDIGIT 
C LATP=4 
c 
C-----KEY =53.· Redefine LAMAT and LpM, the lengths of the portions of 
C WORK<t> and IWORK(t) that are allocated to the sparse matrix 
c storage and the sparse linear equation solver, respectively. 
C LAMAT must be .GE. NVARS+7 and .LBM must be positive. 
C If SWITCH=O option is off; LAMAT=4tNVARS+7 
C LBM =BtMRELAS. 
C =1 option is on. 
C data set =LAMAT 
C LBH 
C LATP=5 
c 
C-----KEY = 54. Redefine IPAGEF, the fila number where the pages of the 
C sparse data matrix ·are stored. IPAGEF must be positive and 
C different from ISAVE (see option 56>. 
C If SWITCH~O option is off; IPAGEF=1. 
C =1 option is on. 
C data set =IPAGEF 
C LATP=4 
c 
C-----KEY = 55. Partial results have been computed and stored on unit 
C number ISAVE <see option 56>, during a previous run of 
C SPLP< >. This is a continuation from these partial results. 
C The arrays COSTS<t>,BL<t>,BU<t>,IND<t> do not have to have 
C the same values as they did when the checkpointing occurred. 
C This feature makes it possible fo.r the user to do certain 
C types of parameter studies such as changing costs and varying 
C the constraints of the problem. This file is rewound both be-
e fore and after reading the partial results. 
C If SWITCH=O option is off; start a new problem. 
C =1 option is on; continue from partial results 
C that are stored in file !SAVE. 
C data set = empty 
C LATP=3 
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c 
C-----KEY = 56. Redefine ISAVE~ "the file number where the partiaJ... 
C results are stored <see option 57>. I SAVE must be positive' .. and 
C different from IPAGEF (see option 54). 
C If SWITCH=O option is off; ISAVE=2. 
C =1 option is on. 
C data set =ISAVE 
C LATP=4 
c 
C-----KEY = 57. Save the partial results after maximum number of 
C iterations, MAXITR, or at the optimum. When this option is on, 
C data essential to continuing the calculation is saved on a file· 
C using a Fortran binary write operation. The data saved includes 
C all the information about the sparse data matrix A. Also saved 
C is in~ormation about the current basis. Nominally the partial 
C results are saved on Fortran unit 2. This unit number can be 
C redefined <see option 56). If the save option is on, . 
C this file must be opened <or declared> by the user prior to the 
C call to SPLP< >. A crude upper bound for the number of words. 
C written to this file is btnz. Here nz= number of nonzeros in A. 
C If SWITCH=O option is off; do not save l?artia.l results. 
C =1 option ·is on; save partial results. 
C data set = empty 
C LATP=3 
c 
c-----KEY = 58. Redefine the maximum number of iterations, I'IAXITR, to 
C be taken before returning to the user. 
C If SWITCH=O option is off; I'IAXITR=3*<NVARS~MRELAS>. 
C =1 option is on. 
C data set =MAXITR 
C LATP=4 
c 
C-----KEY = 59. Provide SPLP< > with exactly MRELAS indices which. 
C comprise a feasible, nonsingular basis. The basis must define a 
C feasible point: values for x and w such that Atx=w and all the 
C stated bounds on x and w are satisfied. The basis must also be 
C nonsingular. The failure of either condition will cause an error 
C message <INF0=-23 or =-24, respectively>. Normally, SPLP< > uses 
c identity matrix columns which correspond to the components of w. 
C This option would normally not be used when restarting from 
C a previously saved run <KEY=57). 
C In numbering the unknowns, 
C the components of x are numbered <1-NVARS> and the components 
C of ware numbered <NVARS+1>-<NVARS+I'IRELAS>. A value for an 
C index .LE. 0 or .GT. <NVARS+MRELAS> is an e~ror <INFO=-lb>. 
C If SWITCH=O option is off; SPLP< > chooses the initial basis. 
C =1 option is on; user provides the initial basis. 
C data set =MRELAS indices of basis; order is arbitrary. 
C LATP=MRELAS+3 
c 
c-----KEY = bO. Provide the scale factors for the columns of the data 
C matrix A. Normally, SPLP< > computes the scale factors as the 
C reciprocals of the max • norm of each column.· 
C If SWITCH=O option is offJ SPLP< > comput•s the scale factors. 
C =1 option is on; user provides the scale factors. 
C data set =scaling for column J, J=1,NVARS; order is sequential. 



C LATP=NVARS+3 
c 
C-----KEY = 61. Provide a scale factor, COSTSC, for the vector of 
C costs. Normally, SPLP< > computes this scale factor to be the 
C reciprocal of the max. ~norm of the vector costs after the column 
C scaling has been app1ied~ 
C If SWITCH=O option is off; SP~P< > computes COSTSC. 
C =1 option is on; user provides cost&c. 
C data set =COSTSC . • · 
C LATP=4 
c 
C-----KEY = 62. Provide size parameters, ·ASMALL and ABIG, the smallest 
C and largest magnitudes of nonzero entries in the dat~ matrix A, 
C respectively. When this option is on, SPLP< > will check the 
C nonzero entries of A to see if they are in the range of ASMALL and 
C ABIG. If an entry of A is not within this range, SPLP< ) returns 
C an error message, INF0=-22. Both ASMALL and ABIG must be positive 
C with ASMALL .LE. ABIG. Otherwise, an error .message is returned, 
C INF0=-17. 
C If SWITCH=O. pption is off;. no chec;king of the data matri>: is done 
C =1 option is ·on; checking is done. 
C data set =ASMALL· 
C ABIG 
C LATP=S 
t ,. 
C-----KEY = 63. Redefine the relative tolerance, TOLLS, used in 
C checking· if the residuals are feasible. Normal! y, 
C TOLLS=SQR,T<EPS>, where EPS.is the machine.precision. 
C If SWITCH=O· option is off; .TOLLS=SQ~T<EPS>. 
C =1 .option is on. 
C data set =TOLLS 
C LATP=4 
c 
C-----KEY = 6~. Use the minimum reduced cos~ pric.ing ·strategy to choose 
C columns 'to enter the basis. Normally, SPLP< ) uses the steepest 
C edge pricing strategy which is the best local move. The steepest 
C edge pricing strategy generally uses fewer iterations than the 
C minimum reduced cost pricing, but each iteration costs more in the 
C number of calculations done. The steepest ·edge pricing is 
C considered to be more efficient. However, this is very· problem 
C dependent. That is why SPLP< ) provides the option of either 
C pricing strategy. 
C If SWITCH=O option is off; steepest option edge pricing is used. 
C =1 option is on; minimum reduced cost pricing is used. 
C data set =empty. 
C LATP=3 
c 
C-----KEY = 65. Redefine MXITBR, the number of iterations between 
C recalculating the error in the primal solution. Normally, MXITBR 
C i~ set to ~o. The error in the primal solution is used to monitor 
C the error in solving the linear system. This is an expensive 
C calculation and every tenth iteration is generally often enough. 
C lf SWlTCH=O option is off;MXITBR=lO. 
C =1 option is on. 
C data set =MXITBR 
C LATP=4 
c 
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c-----KEY = 66. Redefine NPP, the number of negative reduced costs 
C <at most> to be found at each iteration of choosing 
C a variable to enter the basis. Normally NPP is set 
C to NVARS which implies that all of the reduced costs 
C are computed at each such step. This "partiill 
C pricing" may very well increase the total number 
C of iterations required. However it decreases the 
C number of calculations at each iteration. 
C therefore the effect on overall efficiency is quite 
C problem-dependent. 
c 
c 
c 
c 
c 
c 

if SWITCH=O option is 
=1 option is 

data set =NPP 
LATP=4 

off; NPP=NVARS 
on. 

:-----------------------------: 
:Example of Option array Usage: 
:-----------------------------: 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

To illustate the usage of the option array, let us suppose that 
the user has the following nonstandard requirements: 

a> Wants to change from minimization to maximization problem. 
b) Wants to limit the number of simplex steps to 100. 
c> Wants to save the partial results after 100 steps on 

Fortran unit 2. 

C After these 100 steps are completed the user wants to continue the 
C problem <until completed> using the partial results saved on 
C Fortran unit 2. Here are the entries of the array PRGOPT<t> 
C that accomplish these tasks. <The definitions of the other 
C required input parameters are not shown.> 
c 
C CHANGE TO A MAXIMIZATION PROBLEM; KEY=SO. 
C PRGOPT<01>=4 
C PRGOPT<02>=50 
C PRGOPT<03>=1 
c 
C LIMIT THE NUMBER OF SIMPLEX STEPS TO 100; KEY=Ss.· 
C PRGOPT<04>=8 
C PRGOPT<05>=58 
C PRGOPT<06>=1 
C PRGOPT<07>=100 
c 
C SAVE THE PARTIAL RESULTS, AFTER 100 STEPS, ON FORTRAN 
C UNIT 2; KEY=57. 
C PRGOPT<OB>=11 
C PRGOPT(09>=57 
C PRGOPT<10>=1 
c 
C NO MORE OPTIONS TO CHANGE. 
C PRGOPT<11>=1 
C The user makes the CALL statement for SPLP<"> at this point. 
C Now to restart, using the partial results after 100 steps, define 
C new values for the array PRGOPT<t>: 
c 

, 
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C AGAIN INFORM SPLP< > THAT THIS IS A MAXIMIZATION PROBLEM. 
C PRGOPT<01>=4 
C PRGOPT<02>=50 
C PRGOPT<03>=1 
c 
C RESTART, USING SAVED PARTIAL ·RESULTS; K~Y:SS. 
C PRGOPT<04>=7 
C PRGOPT<OS>=SS 
C PRGOPT<06>=1 
c 
C NO MORE OPTIONS TO CHANGE. THE SUBPROGRAM SPLP< > IS NO LONGER 
C LIMITED TO 100 SIMPLEX STEPS BUT WILL RUN UNTIL COMPLETION OR 
C MAX.=3*<MRELAS+NVARS> ITERATIONS. 
C PRGOPT<07>=1 
C The user now makes a CALL to subprogram SPLP< ) to compute the 
C solution. 
c :-------------------------------------------: 
C :End of Usage of SPLP< ) Subprogram Options.: 
c :-----------------~-~-----------------------: 
c 
c :----------------------------------------------: 
C lList of SPLP< > Error and Diagnostic Messages.: 
c :----------------------------~-----------------: 
C This section may be required to understand the meanings of the 
C =-INFO that may be returned from SPLP< ). 
c 
C-----1. There is no set of values for x and w that satisfy Atx=w and 
C the stated bounds. The problem can be made feasible by ident-
C ifying components of w that are now infeasible and then rede-
C signating them as free variables. Subprogram SPLP< ) only 
C identifies an infeasible problem; it takes no other actiqn to 
C change this condition. Message: 
C SPLP< >. THE PROBELM APPEARS TO BE INFEASlBLE. 
C ERROR NUMBER = 1 
c 
C 2. One of the variables in either the vector x or w was con-
e strained at a bound. Otherwise the objective function value, 
C <transpose of costs>tx, would not have a finite optimum. 
C Message: 
C SPLP< >. THE PROBLEM APPEARS TO HAVE NO FINITE SOLN. 
C ERROR NUMBER ; 2 
c 
c 
c 
c 
c 
c 
c 

3. Both of the conditions of 1. and 2. above have occurred. 
Message: 
SPLP< >. THE PROBLEM 
HAVE NO FINITE SOLN. 
ERROR NUMBER = 

APPEARS TO BE INFEASIBLE AND TO 

3 

C-----4. The REAL and INTEGER working arrays, WORK<*> and IWORK<l>, 
C are not lorry enough. The values <Ill and (12> in the message 
C below will give you the minimum length required. Also redefine 
C LW and LIW, the lengths of these arrays. Message: 
C SPLP< >. WORK OR IWORK IS NOT LONG ENOUGH. LW MUST BE <Il> 
C. AND LIW MUST BE <I2>. 
C IN ABOVE MESSAGE, Il= 0 
C IN ABOVE MESSAGE, I2= 0 
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c 
c 

ERROR NUMBER = 4 

C-----5. and b. These error messages often mean that one or more 
C arguments were left out of the call statement to SPLP< > or 
C that the values of MRELAS and NVARS have been over-written 
C by garbage. Messages: 
C SPLP< >. VALUE OF MRELAS MUST BE .GT.O. NOW=<I1>. 
C IN ABOVE "MESSAGE, I1= 0 
C ERROR NUMBER = S 
c· 
c 
c 
c 
c 

SPLP < > • VALUE OF NVARS MUST BE • GT. 0. NOW='( I 1 > • 
IN ABOVE MESSAGE, 11= 0 

ERROR NUMBER = b 

c-----7.~8., and 9. These error messages can occur as the data 
C matrix is being defined by either USRMAT< ) or the user-supplied sub-
C program~ "NAME"<>. They would indicate a mistake in the contents c:H 
C DATTRV<t>, the user-written subprogram or that data has been over-written. 
C Messages: 
C SPLP< >. MORE THAN 2tNVARStMRELAS ITERS. DEFINING OR UPDATING 
C MATRIX DATA. 
C ERROR NUMBER = 7 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SPLP ( > •. ROW INDEX 
IN ABOVE 
IN ABOVE 

ERROR NUMBER = 

SPLP< >. INDICATION 
EITHER 0 OR 1. 

IN ABOVE 
ERROR NUMBER = 

<I1> OR COLUMN INDEX <12> IS OUT OF RANGE. 
MESSAGE, 11= 1 
MESSAGE, I2= 12 

8 

FLAG <I1> FOR MATRIX DATA MUST BE 

MESSAGE, I1= 
9 

12 

c-----10. and 11. The type of bound (~ven no bound) and the bounds 
C must be specified for each independent variable. If an independent 
C variable has both an upper and lower bound, the bounds must be 
C consistent. The lower bound ~ust be .LE. the upper bound. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Messages: 
SPLP< ). INDEPENDENT VARIABLE <I1> 

. IN ABOVE MESSAGE, I 1 = 
ERROR NUMBER = 10 

IS NOT DEFINED. 
1 

SPLP< >. LOWER BOUND <R1> AND UPPER 
VARIABLE <I1> ARE NOT CONSISTENT. 

BOUND <R2> FOR INDEP. 

IN ABOVE MESSAGE, I1= 
IN ABOVE MESSAGE, R1= 
IN ABOVE MESSAGE, R2= 

ERROR NUMBER = 11 

1 
o. 
-.'1000000000E+01 

c-----12. and 13. The type of bound <even no bound> and the bounds 
C must be specified for each dependent variable. If a dependent 
C variable has both an upper and lower bound, .the bounds must be 
C consistent. The lower bound must be .LE. the upper "bound.• 
C Messages: 
C SPLP< >. DEPENDENT VARIABLE <I1> IS NOT DEFINED. 
C IN ABOVE MESSAGE, I1= 1 

, 
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c 
c 
c 
c 
c 
c 
c 
.c 
c 

ERROR NUMBER·= 12 

SPLP< >. LOWER BOUND <R1> AND.UPPER BOUND <R2> FOR DEP. 
VARIABLE <I1> ARE NOT CONSIST~NT. 

IN ABOVE MESSAGE, Il·= 
IN ABOVE MESSAGE, R~= 

IN ABOVE MESSAGE, R2~ 

ERROR NUMBER = .13 

,. 

1 
o. . .. 
-~1000000000E+01 

C-----14. - 21. These error messages can occur when. proc.essing the 
C option a·rray, PRGOPT<*>·, supplied by tf:'le ~;~ser. They would 
C indicate ~ mistake in defining PRGOPT<~> o~ t~at da~a has been 
C over-written. See heading Usage of SPLP< > 
C Subprogram' Options, for details·· on how'to de.fi.ne .PRGOPT<*>· 
C Messages: ·· . · · · 
C SPLP< >. THE USER OPTION.ARRAY HAS UNDEFINED DATA. 
C ERROR NUMBER = 14 ' 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SPLP < >. OPTION ARRAY PROCESSING ~S CY~LING •. 
ERROR NUMBER = 15 

SPLP < >. AN INDEX OF USER-SUPPLIED BASIS IS OUT ·oi= .RANG.E .• 
ERROR NUMBER = 16 

SPLP< >. SIZE PARAMETERS FOR MATRIX .M.UST .BE SMALLEST AND LARGEST 
MAGNITUDES OF NONZERO ENTRIES. 
ERROR NUMBER = 17 

' SPLP< >. THE' NUMBER OF REVISED SIMPLEX STEP!? BETWEEI\I CHE.CK-POINTS 
MUST BE POSITIVE. 
ERROR NUMBER = . 18 

SPLP< >. FILE NUMBERS· FOR SAVED D~TA AND .MATRI~ PAGES MUST BE 
POSITIVE AND NOT EQUAL •. 
ERROR NUMBER =· 19 

SPLP< >. USER-DEFINED VALUE OF LAMAT <I1> 
MUST BE • GE •. NVARS+ 7. : 

IN ABOVE MESSAGE, I1= 1 
ERROR NUMBER ·= 20 

SPLP< >. USER-DEFINED VALUE OF LBM MUST BE .GE. 0. 
ERROR NUMBER = 21 

c-----22. The user-option, number 62, to check the size of the matrix 
C data has been used. An element of the matrix doe~ not lie within 
C the range of ASMALL and ABIG, paramete~~ provide~ by the user. 
C <See the heading: Usage of SPLP( ) Subprogram Options,. 
C for details about this feature.> Message: 
C SPLP< >. A MATRIX ELEMENT'S SIZE IS OUT OF THE SPECIFIED RANGE. 
C ERROR NUMBER ~ 22 
c 
C-----23. The user has provided an initial basis that is singular. 
C In this case, the user can remedy this problem by letting 
C subprogram SPLP< > choose its own initial basis. Message: 
C SPLP< >. A SINGULAR INITIAL BASIS.WAS ENCOUNTERED. 

, 
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c 
c 

ERROR NUMBER = 23 

C-----24. The user has provided an initial basis which is infeasible. 
C The x and w values it defines do not satisfy Atx=w and the sta~ed 
C bounds. In this case, the user can let subprogram SPLP< > 
C choose its own initial basis. Message: 
C SPLP< >. AN INFEASIBLE INITIAL BASIS WAS ENCOUNTERED. 
C ERROR NUMBER = 24 
c 
C-----25. Subprogram SPLP< > has completed. the maximum specified number 
C of iterations. <The nominal maximum number is 3t<MRELAS+NVARS>.> 
C The results, necessary to continue on from 
C this point, can be saved on Fortran unit 2 by activating option 
C KEY=57. If the user anticipates continuing the calculation, then 
C the contents of Fortran unit 2 must be retained intact. This 
C is not done by subprogram SPLP< >, so the user needs to save unit 
C 2 by using the appropriate system commands. Message: 
C SPLP< >. MAX. ITERS. <11> TAKEN. UP-TO-DATE RESULTS 
C SAVED ON FILE <I2>. .IF ( 12> =0, NO SAVE. 
C IN ABOVE MESSAGE, 11= 500 
C IN ABOVE MESSAGE, 12= 2 
C ERROR NUMBER = 25 
c 
C-----26. This error should never h~ppen. Message: 
C SPLP< >. MOVED TO A SINGULAR POINT. THIS SHOULD NOT HAPPEN. 
C ERROR NUMBER = 26 
c 
C-----27. The subprogram LAOSA< >, which decomposes the basis matrix, 
C has returned with an error flag <R1>. <See the document, 
C "Fortran subprograms for handling sparse linear programming 
C bases", AERE-R8269, J. K. Reid, Jan., 1.976, H.M. Stationery Office, 
C for an explanation of this error.> Message: 
C SPLP< >. LAOSA< > RETURNED ERROR FLAG <R1> BELOW. 
C IN ABOVE MESSAGE, R1= -.5000000000E+01 
C ERROR NUMBER = 27 
c 
C-----28. The sparse linear solver package, LAOS*< >,·requires more 
C space. The value of LBM must be increased. See the companion 
C document, Usage of SPLP< >·Su~program Options, .for details on how 
C to increase the value of LBM. Message: 
C SPLP< >. SHORT ON STORAGE FOR LAOSt< > PACKAGE. USE PRGOPT<*> 
C TO GIVE MORE. 
C ERROR NUMBER = 28 
c 
c :------------------------------------------------------: 
C :End of List of SPLP< > Error and Diagnostic Messages. : 
c :------------------------------------------------------: 
c 
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