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1.0 OBJECTIVES

The objectives of this program are to develop, test, characterize, and
evaluate materials for open-cycle, coal-fired MHD power generators. The
specific immediate goals emphasize electrode and insulator materials,
including: 1) testing and evaluation of the enhanced effects of alkali seed
on materials in a dc electric field; 2) development and testing of improved
electrodes and insulators with controlled micrqstructures, compositions and
properties; and 3) characterization and evaluation of materials relating to
both the US MHD Program and the US-USSR Cooperative Program for MHD power
generators.

2.0 SCOPE

The scope of this program encompasses the following areas:

e Reproducible laboratory testing of both ceramic and metal electrode
materials and insulator materials in alkali seed/slag under dc electric
current and voltages, as functions of temperature, and seed/slag
composition.

e Development and fabrication of electrodes, insulators, and other related
materials with controlled electrical, chemical, and physical properties,
including evaluation in laboratory tests in US MHD test facilities and as
part of the US-USSR testing program.

e C(haracterization and evaluation of materials tested under the US MHD
programs and the US-USSR including the measurement and analysis of
structural, chemical, and thermophysical properties of electrodes,
insulators, slag, and other related materials before and after testing.



3.0 TECHNICAL PROGRESS

3.1 ELECTROCHEMICAL TESTING OF ELECTRODE MATERIALS

Yttrium chromites have demonstrated in laboratory tests improved thermal
and electrochemical properties when compared to analogous lanthanum chromite

(1-3) The present electrochemical tests were made to evaluate why the

compositions.
electrochemical corrosion of YM90.05cr0.9503 is less in an Eastern, high-iron
coal slag, I1linois No. 6 (I11 #6-1) than in a Western low-iron coal slag,
Montana "Rosebud" (MR-1). Two magnesium-doped yttrium chromites of slightly
different compositions, but with similar structures and phases, were tested

under similar conditions (Table 1). Both contained MgCrO3 second phase uniformly
distributed in a matrix of YCrO3 equiaxed grains. The chromite contained some
irregularly shaped pores (~15 um) at the grain boundaries. No impurity con-
centrations were found at the grain boundaries.

TABLE 1. Properties and Corrosion of Yttrium Chromites

Current
Test Density, Temp., Density, Corrosion Rate, W /coul.
No. Composition g/cm3 Slag K Amp/cm Time “Cathode Anode
158 YMgO.OSCr0_9503 5.3 111-6-1 1723 0.8 47.5 hr 14 7
198 Y0.95M90.056r03 4.9 MR-1 1729 0.9 9 hr 35 m 75 42

The YMgy 5Crg 503 was tested in an electrochemical ce1(®) with
an anode, cathode, and Pt voltage probe immersed in the molten slag contained
in a sintered a-A1203 crucible. Because the corrosion in the I11. #6-1,
Test 158, was significantly less than in the MR-1, Test 198, the time of the
test was v5 times longer. However, the remaining test parameters, i.e.,
voltage, current, temperature and atmosphere,were nearly identical (Tables 2 & 3).
However, the time may have influenced the corrosion product morphology and
corrosion rate of the sample; therefore, the analytical compositions of the
reaction products and the evaluations may differ. However, these effects are
considered small compared to the large differences in the electrochemical
corrosion rates. It should be noted that electrical conductivity of the two
slags are significantly different, both in magnitude and in conduction

transport (transference number).(5'6)
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TABLE 2.

ILL No. 6 {Test 158)

(Reference Area)

Similarities

Comparison of Anodes/Cathodes From Test 158 and Test 198

MR-1 (Test 198)

ANODE : Granular (Mg,Cry)O, No Slag Granular (MgxCry)0,
Small quantities Overall composition same
Y25i,07 phase at
grain boundaries
CATHODE Phase contains Fe Mg-Cr rich phase Higher Si and Ca content in
and Tless Al siag near electrode
Grain boundaries Unknown phase at grain Electrode matrix higher in
contain less YpSip07 boundaries Si and lower in Y
More K near Pt More 2nd phase along
leadout grain boundary
Grain boundaries contain
more Y»S5i507
TABLE 3. Comparison of Anodes/Cathodes from Tests 158 and Test 198
(Reaction Zone)
ILL No. 6 (Test 158) Similarities MR-1 (Test 198)
ANODE - Metallic iron Matrix relatively unchanged Major product (CR gAl )03
except near slag interface
(Fe, A1, Cr)703 with Little grain boundary Dense Crp03 found in
Fe/A1/Cr = 2:2:3 penetration of slag reaction zone
S1ag single phase Slight increase Y/Cr ratio Slag multiphase with
Y251207 and
depleted in K
Reaction zone is discrete
granular particles surrounded
by slag
CATHODE Matrix relatively unchanged Slag surrounds reaction Slag matrix consists of

except at reaction zone

Massive K penetration and
interaction near Pt

Reaction product
(A1,Fe,Cr)203 with
Al/Fe/Cr = 2:3:4

Slag depleted in Fe

products

Slag content 1/2 of
starting value

isolated grains of Y and YCrOg

Y203 and Y5S5i707 at grain
boundaries

Mg (AT 4Crg. 6203



The voltage characteristics and variations at both anode and cathode were
monitored with a Pt voltage probe positioned in the slag equidistant from each
electrode. Fluctuations in voltage,up to z20% of the anode-cathode voltage,
occurred in the MR-1 low iron slag. The fluctuations are observed most
frequently and intense on the anode with a frequency of 0.1 to 1 hertz. As
discussed later, these fluctuations may result from the formation of either a
cation depleted boundary and/or the formation of oxygen gas bubbles in the
slag near the electrode interface.

The electrical potential through the electrodes and across the slag in
the I11 #6-1 high-iron slag (4 volts) during the entire test was lower than
in the MR-1 slag (7 volts initially rising to 14 volts at the termination of
the test). The difference between the two initial electrical potentials, 4 to
/7 volts in the I11 #6-1 and MR-1 slags, is undoubtedly due to higher
resistivity of the MR-1 slag. The increase in voltage with time in the MR-1
slag can be attributed to electrochemical decomposition of the slag and/or
ionic buildup in the slag near the slag/electrode interface, in particular at
the cathode. Thermodynamic data suggest that at these higher voltages, direct
decomposition of these silicates does occur with subsequent increased reaction
rates, specifically at the cathode.

The chromites were frozen in the slag and examined by optical and
scanning electron microscopy with EDX. The corrosion rates were determined
from the microstructural cross sections. These results are summarized in
Tables 2 and 3. A reference area was selected for each chromite near the Pt lead-

out and attachment where corrosion did not occur. Some reaction with
potassium seed was observed above the surface of the slag near the platinum
for Test 158.

The anodes and cathodes differed significantly. The anodes exhibited a
smooth reaction surface compared to the rough corroded surface of the cathode

(Figure 1). The reaction of the cathodes was significantly more severe,
although some similar reaction products were observed. These differences and

similarities are summarized in Table 2 and are illustrated in the detailed
microstructures (Figures 2-4.)

The Mg-Cr rich oxide second phase present in the original YCrO3 cathode
reacted with the Al and Fe of the slag, and in the MR-1 slag the yttrium

4
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FIGURE 1. Microstructure of YMgy 5Cr 0,, Test 158 (Cathode in MR-1
slag) and Test (Anode in 11?'28-? slag).
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FIGURE 2. Microstructure of YMg0 05cr0 9503 anode and cathode from Reference Area Test 158 in
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reacted with the silicate of the slag forming Y,Si,0, near the
slag/electrode surface and also in the cathode ara;n'boundaries where slag
penetrated. In the anode tested in MR-1 the leaching of yttrium from the
electrode near the reaction interface is almost complete, leaving an
(AT,Cr),05 or Mg(A1,Cr),04 spinel. In the high-iron slag (111 #6-1),

the reaction resulting in the formation of Y251'207 is less. The

resultant spinel also contains iron [(A],Cr,Fe)203]. In addition, free
metallic iron particles are found in the cathode-slag interface resulting from
the decomposition (reduction) of the high-iron slag. The source of alumina
for the spinel appears to be the slag. Some Al may have come from the
dissolution of the A1203 sleeve or crucible.

The potassium does not appear to be directly involved in the reactions.
Potassium did, however, migrate through the cathode of Test 158 (high-iron
slag) to interact near the Pt current attachment. However, no potassium was
found in the grain boundaries of the chromite matrix or in the reaction
products. Potassium is depleted from the slags in the reaction zones at the
anode with very slight depletion at the cathode, suggesting some potassium
migration.

The corrosion of the YCrO5 in the slag appears to result from the
reaction of silicon in the slag with the YCrO3 forming Y251207. The
Cr and Mg combine with the A1 and Fe to form stable spinels. The enhanced
corrosion at the cathode is attributed to the concentration of cations in the
slag adjacent to the cathode, either from migration or decomposition of the
slag. The slag penetrates the grain boundaries. This would suggest that the
K or Ca which can migrate most easily may be involved in the corrosion, but
does not form reaction products.

The enhanced corrosion in the Western low-iron slag (MR-1) compared to
the Tow-iron I11 #6 slag is attributed to 1) the higher electrical
conductivity of the slag, and 2) the lower ionic and higher electronic
conduction in the iron containing slags. This is equivalent to a decrease in
the ionic transport and results in lower voltages and less potential
decomposition of the slag, and lower effective number of coulombs experienced
by the YCrO3 and slag.



Further evaluation of Y(Mg0 05Crg.9503 Will be made in more
realistic MHD conditions in the Westinghouse MHD Test facility (WESTF).

Materials for this test are now being fabricated.

3.2 FABRICATION OF HAFNIUM-RARE EARTH OXIDE ELECTRODES
Hafnium-rare earth oxides demonstrated during laboratory tests

excellent thermal stability, adequate electrical conductivity,and high
electrochemical resistance in molten potassium seed and coal slags (]’7’8).
Further testing is planned under simulated MHD conditions in WESTF MHD Test
Facility (Westinghouse Research Center). However, use of reproducible and
high-density bars is required. Because these materials are not commercially
available and techniques for fabricating the compositions have not been

developed, it has been necessary to develop methods for fabricating powders
from the raw materials and for sintering dense compacts.

Simple techniques of mixing the individual oxides, pressing,and sintering
were not successful, resulting in Tow densities and multiphase compacts. Some
high-density single-phase compacts could be prepared by sintering above 2150K,
but the results could not be reproduced. In addition, it was desirable to
Tower the sintering temperature to <1875K so that Tower temperature hafnium
oxide based, current leadouts could be prepared as an integral part of the
highly refractory oxide.

A coprecipitation fabrication process is being developed which will yield
reproducible, high-density sintered bodies with uniform microstructure and
properties. The technique being developed involves the dissolution of rare
earth oxide powders in nitric acid with hafnium oxychloride in water,
mixing the solutions and coprecipitating using dilute NH40H, filtering,
washing,and drying. The salt is calcined to form the oxide. These powders
are ball milled, cold pressed, and sintered. The exact conditions for
fabricating a wide variety of hafnium-rare earth oxide compositions are being

developed. Emphasis is being concentrated on the following compositions which
will be tested in the WESTF facility. These include:

10



O.29Pr02°0.05Yb203'0.66Hf0

0.06Tb407°0.06Y203-O.88Hf0

2

2
O.10Er203'0.10Tb407-0.80Hf02

Final details of these methods for each of the above oxides will be reported
next quarter.

3.3 POST-TEST CHARACTERIZATION OF Mg0 INSULATING WALL FROM USSR U-02 PHASE
IIT MHD TEST

The Mg0 insulating wall from the USSR's U—O2 MHD generator used in the
test with US electrode/channel wa]ls(g) was evaluated. The hexagonally
shaped blocks removed from the U-O2 insulating wall were examined by
metallographic, SEM,and EDX methods, and the results compared with similar
evaluations of a USSR reference untested Mg0 insulating wall materia].(s)

The Mg0 blocks were taken immediately adjacent to cathode 1209 (UC-1209) and
1527 (UC-1527) and anodes 2209 (UA-2209) and 2577 (UA-2527). A small portion
of each insulator block used for the examination was covered with the
electrode/insulator walls. This created a variation in the surface
temperatures and profiles during the test. The cross sections for examination
were perpendicular to the plasma flow and to the channel walls.

The top portion of the insulators which was exposed to the plasma, one-third
of the area, was coated with a white-pinkish oxide carried downstream by the
plasma from upstream components and deposited on the Mg0 wall (Figure 5.) This
deposit was also found on the electrode-insulator surfaces. This once molten
coating has been identified as a-A1203 with smaller amounts of Ca
stabilized Zr02.

The initially white Mg0 insulator was colored by the combustion
products and K2CO3 seed. These colorations formed layers of white, yellow,
and brown, generally in that order from the top plasma surface.

The composite, polished cross sections of the Mg0 insulator pegs
exhibited very similar results with a few characteristic features common to
the four examined (Figures 6 and 7).

11
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FIGURE 5. Top and side view of Mg0 blocks from USSR UQ-2 Phase III.
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FIGURE 6. Cross section of MgO insulation

wall (UC-1209) adjacent to cathode
1209.

FIGURE 7.

Cross section of MgO insulation wall
(UC-2209) adjacent to anode 2209.



e The plasma surface was partially coated by the upstream, molten Al
plus ZrOZ.

203

* The Al1,0, coating reacted with the Mg0 resulting in the formation
of reaction layer.

e The high temperature Mg0 surface below the reaction layer
recrystallized forming large columnar grains.

e A crack occurred nearly parallel to the plasma surface, with the distance
from the surface varying with the Mg0 plasma surface temperature. This
crack contained K2c03 which penetrated into the open porosity of the
MgO.

The extent of these effects varied depending upon the surface
temperature. For example, the thickness of the recrystallized columnar grain
layer and the distance from the crack to the surface decreased toward the side
of the block covered by the US electrode wall, i.e., to Tower surface
temperatures. This was especially evident in UC-1209 and UA-2209. Similar
effects of lower surface temperatures were observed when comparing the lower
temperature UC-1527 and UA-2527 Mg0 insulator blocks with the higher
temperature UC-1209 and UA-2209.

The surface coating on the Mg0 surface near the entrance to the channel
was nearly pure A1203 with high porosity and a ZrOZ(CaO) second phase
suggesting solidification from a melt. Downstream, the coating also contained
increasing amounts of La, Mg, and Zr(Y) from the electrode walls which all were
LaCr0; based materials. This coating was generally retained on the surface
as large globules (1-3 mm in diameter), apparently resulting as the molten
A1203-Zr02 particles contacted the surface and solidified.

The top surface of the MgQ reacted with the coating forming a uniform

layer, ~0.5 mm thick (Figures 8 and 9). This layer was mostly MgA1204 with

some second phase Ca0 stabilized Zr0,. It was formed only on the surfaces
exposed to the plasma.

Below the reaction layer, the Mg0 recrystallized extensively forming
long columnar grain with lines of pores and second phase stringers at the grain
boundaries (Figures 8-9). This recrystallized structure varies up to 3 mm

14



PLASMA
SURFACE

MgAl20,

Mq0

Zr0C20)

MqO -

Ca, Al, K
SILICATE WITH La

CATHODE UC-1209

[—
100um

FIGURE 8. Microstructure near plasma surface of Mg0 insulator wall
adjacent to cathode 1209 (UC-1209).
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FIGURE 9.
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Microstructure near plasma surface of Mg0 insulator wall adjacent
to anode 2209 (UA-2209).
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thick in the Mg0 (which was operated at the highest temperatures). The second
phase had a composition near CaO-MgO-ZSiO2 with substantial amounts of K,

Al, Fe, and La. There is a gradual transition from the columnar grains to
large equiaxed grains, then to the original small grain structure which
contains K. The formation of the columnar and equiaxed grain structure such
as this is generally associated with a significant, high temperatures gradient.

The crack which formed about 4-6 mm below the surface appeared to be the
only crack in all the blocks examined. This area was high in potassium which
concentrated in the open pores of the Mg0 structure. The potassium
attacks the MgO-CaO-ZSiO2 phase in the small particles which bond the large,
dense particles together. The potassium concentration is substantially higher
and extends to greater depths below the surface in the Mg0 blocks adjacent to
the cathode wall than in those adjacent to the anode wall. Some growth along
the crack did occur suggesting that these fractures were formed near the start
of the test and not during shutdown. Generally, below this fracture, the Mg0
resembles that of the original structure. No microstructural features could

be resolved to distinguish between the colored layers.

The tin-lead solder used to bond the Mg0 to the copper cooling pins was
0.3 mm thick and showed no evidence of degradation.

The performance of the Mg0 from the USSR U0-2 jnsulating wall for the
Phase III test of a US Channel was good. The molten A1203 from the
upstream components of the U0-2 complicated the evaluation since it reacted
with the Mg0 (estimated to be ~1875K}. Surface temperatures were high enough
to cause extensive recrystallization near the surface. The overall resistance
to thermal shock was good; however, the formation of a large crack parallel to
the surface, with subsequent seed penetration and hydration lead to some
surface spalling. The potassium attack on the MgO'CaO'ZSiO2 phase, which
was the binding media between the large, high density grains of the periclase,
may be a problem for long-term performance stability.

17



4.0 WORK ANTICIPATED NEXT MONTH

4.1 ELECTROCHEMICAL TESTING

Electrochemical testing of potential electrode materials is being reduced,
and emphasis shifted to fabrication development of electrode materials.

4.2 MATERIALS DEVELOPMENT

The fabrication development of the hafnium-rare earth oxide electrode
materials will be accelerated. The goal is to develop fabrication methods
which can produce quality electrode bars of sufficient quantity for testing in
Westinghouse MHD Test Facility (WESTF). This test (WESTF-42) will evaluate the
thermal performance in coal slag and seed without electric current.

4.3 CHARACTERIZATION AND EVALUATION

4.3.1 The thermal diffusivity/conductivity of the hafnium-rare earth oxide
electrodes will be measured, with data being used for design of WESTF-42.
Similar properties will be measured for some Y203 stabilized ZrO2 )
prepared by Westinghouse for testing in WESTF-42.

4.3.2. The examination of the RFG refractory from the Montana State
University air-preheater test (MSU-#1) will be completed. The results of
metallographic, SEM and EDX characterization will be reported and possible
corrosion/erosion mechanisms described.

4.3.3 The examination of a platinum coated, copper electrode tested in
AVCO's Mark VII in coal slag and K2304 seed will continue.

18
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