Models for gamma-ray holdup measurements at duct contact

PDF Version Also Available for Download.

Description

The use of gamma-ray measurements to nondestructively assay special nuclear material holdup in DOE processing facilities has increased recently. A measurement approach that is relatively insensitive to deposit geometry involves withdrawing the detector from the holdup-bearing equipment far enough to validate an assumed point-, line-, or area-source deposit geometry. Because of facility constraints, these generalized geometry procedures are not always followed, and some ducts are measured at contact. Quantitative interpretation of contact measurements requires knowledge of the width of the deposit transverse to the duct axis. Rocky Flats personnel have introduced a method to obtain data from which this width … continued below

Physical Description

7 pages

Creation Information

Sheppard, G. A.; Russo, P. A.; Wenz, T. R.; Miller, M. C.; Piquette, E. C. (Los Alamos National Lab., NM (United States)); Haas, F. X. et al. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The use of gamma-ray measurements to nondestructively assay special nuclear material holdup in DOE processing facilities has increased recently. A measurement approach that is relatively insensitive to deposit geometry involves withdrawing the detector from the holdup-bearing equipment far enough to validate an assumed point-, line-, or area-source deposit geometry. Because of facility constraints, these generalized geometry procedures are not always followed, and some ducts are measured at contact. Quantitative interpretation of contact measurements requires knowledge of the width of the deposit transverse to the duct axis. Rocky Flats personnel have introduced a method to obtain data from which this width can be deduced. It involves taking measurements in pairs, with the detector viewing the holdup deposit at contact from above and below the duct. The interpretation of the top and bottom measurements to give the deposit width at each location requires a model for the detector's response to radial source position and a model for the deposit geometry. We have derived a relationship between the top-to-bottom count rate ratio and the deposit width that approximates the detector response and models the deposit geometry as a uniform strip. The model was validated in controlled experiments that used thin foils of high-enriched uranium metal to simulate duct deposits. 4 refs., 5 figs., 1 tab.

Physical Description

7 pages

Notes

OSTI; NTIS; INIS; GPO Dep.

Source

  • 32. Institute of Nuclear Materials Management (INMM) annual meeting, New Orleans, LA (United States), 28-31 Jul 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91016317
  • Report No.: LA-UR-91-2507
  • Report No.: CONF-910774--38
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5432200
  • Archival Resource Key: ark:/67531/metadc1070906

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • June 2, 2020, 12:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 25

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sheppard, G. A.; Russo, P. A.; Wenz, T. R.; Miller, M. C.; Piquette, E. C. (Los Alamos National Lab., NM (United States)); Haas, F. X. et al. Models for gamma-ray holdup measurements at duct contact, article, January 1, 1991; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1070906/: accessed April 24, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen