MASTER

DEVELOPMENT OF ADVAVCED METHODS
 FOR PTANAIVG ELECTRIC ENERGY JISTRIBEION SYSEEMS

EINAL 3EPORT
3y.
Euran Bonen
Boooie Eooce
John C. Bompson

Sciooi oE Elec: zicai Ensineerinz and Computing Sciences in eooperation *ith Scicoi of Indust=Eai Engineering

Universi=y ó Ok̇ahoma
Norman, Dkıanoma $730 \vdots$

Ocsoje= :97?

Erepared Eor
GRE UITED SEATES DEPAZニTST DF EMERGY

Oivision ot Elect=ic Enezsy Sus=ens

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DEVELOPMENT OF ADVANCED :ETHODS

for planning electric energy distribution ststems

An extensive searcin has been made for the idencification and collection of reporss puolished in the open literature which describes distribution planning methods and techniques. In addition, a questionnaire has been prepared and sent to a large number of eleciric power utility companies. Also, a large number of these companies were risited and/or their distribution planners incerviewed Eor the idencificarion and description cí distribution system pianning merhods and ceciniques used by these electric power utility comparies and ocher commercia: enticies.

As a finse step, it was necessary $\mathbf{c o}$ detemine the present scope of computer applications in distribution syscem planning wichin the power utilicy industry. Through the Oklanoma Gas and Electric Company and consultancs on this project, many computer programs that could be used as a.part of che system planning were garhered. The need jor Large scale analysis as well as informarion ectieval and dispiay in choosing che best aleer.ative required an inceraccive problem, sclving environment, based on a data base management syscem and a library of application programs, with an analytical capabilicy that is Ear beyonc the convencional algorithms. This interactive environment provides a necessary man-machine interface to initiate any frogram tiat exists. in the Library.

However, the developed interactive design seeks to do nore chan just achieve a superiicial compatibility among the individual programs. Racher, what is sougne. is Eruly a syscem of farmoniously functioning parss winch assist the human planner. The system consises of Ghree major elemencs: (1) a colleccion of planning. prograns with capabi三ities similar to chose described previousiy, (2) a dasa乇̈ase supoorting =he indut-outout :„:uiremenes ot these prozams. and (j) a zeneralized -a=work.

The information basis for cine system is the database. The dacajase is iogicaliy organized as a relationai database in which the ateribuces are identifiers Eaken from a Einite set A_{1}, A_{2}, \ldots, A_{1}. Each A_{i} has associated wirh it a see of vaives calied domain, writcen as $\operatorname{dom}\left(A_{1}\right)$. A relation on the set of attributes, R(A_{1}, : $A_{2} . . ., A_{n} \bar{\prime}$ is a subset of the Cartesian prodiact

$$
\operatorname{dom}\left(A_{1}\right) x \operatorname{dom}\left(A_{2}\right) x \cdots x \operatorname{dom}\left(A_{n}\right)
$$

An element of this subset ($a_{1}, a_{2}, \ldots a_{n}$) is called a toole. A relation may be simple visualized as a taoie of rows and colums. The rows represent tuples while columns represent the values of a particular attribuce contained in the relarion. A database consists of one or more relations. Kevs are attribute values which uniquely speciry tuples.

The permissible operations on relations are the operations on sets familiar ircm set theory plus several additional ones. Operations on the data base are periormed by She Data Base Management System (D8is). These operations are diracted as the user leved by 3 language similar so che relational algebra of Codd. The operations of importance found in the relational algebra which are not nomaliy part of set theory are selection, projection, and join commands.

The collection of algorithms suitabie for implemer cation on a digital computer, which maintain the networx model and allow a designer to work interac:ively aith it, are divided into three classes. An overseer salled the sheli, which processes the planner's cemands, providing his access to a number of problem soiving programs, a network editor, which allows the planner to create and modify networks using conceprs and commands natural to the subject, and sinally, a data base management system which maintains. the data base. while the end resuits of the research is conceptuai in nature, seiected Eeatures of the Distributicn System ?lanning !odel have jeen impiemented. This impiementation provides a validity check of the notions and abstractions comprising the DSPM.

In addition, the distribution systems planning nodels have been reviewed and a set of new mixed-inceger programming modeis have been developed for tie opeimal expansion of the distribution systems. The models help the planner to select: (1) optimum substation locations; (2) optimum suoscation expansions; (3) optimum suostacion cransiormer sizes; (4) optimum load cransiers berween suosiacions; (5) optimum feeder routes and sizes suoject to a set of specified constraints. The models permit iollowing existing rightof -ways and avoid areas where ieeders and substations cannor be constructed. The results of computer runs were analyzed for adequacy in serving projecred ioads within regulation limits for bocin normal and emergency operacion.

DEVELOPMENT OF ADVANCED METHODS FOR PLANNING ELECTRICAL ENERGY DISTRIBUTION SYSTEMS

PROJECT STAFF
Principal Investigators: M. Earl Coumcil
Turan Gönen
Co-Investigators: Jonn E. Fagan
Bobbie L. Fooce
John C. Thompson
Subcontractors: Fred Glover
Darwin Klingman
Analysis, Research and Computation, Co.
Bradford E. Smith
C.H. Guernsey $\dot{\text { Co }}$ Co.
Special Consultants: John Ereed
L̇ester A. Burris
Oklahoma Gas \& Electric Co.
Project Technical Manager: Turan Gönen
Project Monitor: M. Earl Council
USDOE Project Yanager: Tobias Irygar

ACKOMREDGMENI

The authors wish to fiank Dr.d.A. Aly of the liniversity of Oklanoma for his efforts at the beginning of tis research and Eor various heipiul discussions. Also, the authors are indebted to Dr. S. Lakshmivarahan and the Eollowing graduate students for their valuable assistance in ciis project:
P. Enouen
D.C. Yu
R.M. Cubere
S. Dasananda
N. Kebriaei
A. Özduman
F. Banaii

A special chank you is extended to Oklahoma Gas and Electric, and Pubiic Service of Oklanoma for the contindous cooperation and encouragement. Several distribution system planning engineers, of the followfing companies, have consented to be available for personai interviews andor have made available to the researcin team specialized materials. Their help is also gratefull acknowiedzed.

Oklahoma Gas and Electric Co.	OKlahoma City, OK
Public Serrice of Oklahoma Co.	Tuisa, OK
Kansas Gas and Elecric Co.	Wichita, KS
Texas Electric Co.	Ft. Worth, TX
Texas Power and Light Co.	Dallas, TX
Dallas ?ower and Light Co.	Dallas, TX
C.H. Guemsey Co.	Oklahoma City, OK
drizona Puolic Serrice Co.	Phoenix, AZ
San Diego Gas and Electric Co.	San Diego. CA
Pacific Gas and Elecrric Co.	San Erancisco, CA
Northeast Utilities Service Co.	Hartford, CT
Georgia Dower Co.	Atlanta, Gis
Northern States Power Co.	Minneapolis, $\mathbb{N}^{(1)}$
Public Service Co. of New Mexico	Albuquerque, NM
Consolidated Edison of New York,	. New York, VY
Dayton Power and Light Co.	Dayton, OH
Pacific Power and Iight Co.	Portland, OR
Duquesne Light Co.	Pitesburgh, PA
Gulf States Utilities Co.	Seaumont, TX
El Paso Electric Co.	El Paso, TX
Sierra Pacific Power Co.	Reno, NV

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 1
TASK A. I: THE SURVEV OF LITERATLRE AND EXISTING COMPUTER PROGRAMS 6
TASK A. 2: THE IDENTIFTCATION AND DESCRIPTION OF DISTRIBUTION PLANLNG YETHODS AND IECHNIQUES IN USE BY ELECTRIC UTILITIES AND OTHER COMMERCIAL ENTITIES 9
TASK A. 3: THE DEVELOPMENT OF A CLASSIFICATION SYSTEM FOR DISTRIBLTION PLANNING AND ANALYSIS AND MODELS WHICH RECOGNIZE NIDE RANGE OF FUNCTIONS PERFORMED.BY THESE TECHNIQUES AND YODELS, DATA REOUIRE- MENTS AND WHERE DIGITAL COMPUTER CODES EXIST THEIR INPUT/OUTPUT PEQUTREMENTS. THE CLASSIFICA- IION OF THE TECHNIOIES AND MODELS IDENTIFIED TN•TASKS A. 1 divD A. 2, USING AFOREMENTIONED CLAS- SIFICATION SYSTEM 14
TASK 3.1: THE DEVELOPMENT OF CRITERIA FOR ASSESSING THE DEGREE TO 'NHICH EXISTING MODELS MEEI THE SPECI- FICATIONS DEVELOPED 33
TASK B.2: THE ANALYSIS OF MODELS IDENTIFIED IN TASKS A.1'AND A. 2 34
TASK 3. 3: THE SOLYABILITY OF MATHEMATICAL MODELS USED TO DESCRIBE DISTRIBUTION PLANNLMG YODELS 38
TASK 3.4: THE LDENTIFICATION OF DISTRIBUTION DESIGN TECKNIQUES USED IN PRACTICE 41
TASK 3.5: THE IDENTIFICATION AND CATALOGILG OF PLANNING OBJECTIVES, CONCEPTS, AND CONSTRAINTS ACCEPTED IN PRACTICE 46
TASK B.ó: THE SELECTION OF PLANNING AND NNALYSIS CONCEPTS AND METHODS CHIC: FORM THE CORE OF EFFICIENT DISTRIBUIION PLANNING METHODOLOGIES 47
IASK 3.7: THE DETERMINATION OF THE EXTENT TO THICH EXISTING DIGITAL COMPUTER PROGRAMS, IMPLEMENTING THE CONCEPTS AND GETHODS IDENTIFIED IN TASK 3.6 ARE SOFTNARE COMPATIBLE 74
TASK 3. 8: THE SELECTION OF A SET. OF EXISTING RROGRAYS WHICH BEST VEET. THE NEED OF IHE DISTRIBUTION ?LANIING UETHODOLCGIES AVD ARE SUFFICIENTLY SOFINARE COMPATIBLE TO PERMIT USE ON THE PROJECT 74
TASK 3.9: THE ANALTSIS OF THE DATA REOUIREMENTS OF ALL PHASES OF THE DISTRISUTION PLANNING PROCESS 75
TASK 310: THE CONCEPTUAL DESIGN OF A DATA BASE SUFFICIENT TO YEET TAE DATA REQUIREMENTS OF A DISTRIBU- IION PLANNING YETHODOLOGIES DEVELOPED 77
TASẢ $3.11:$ THE DETAILED DESIGN OF THE DATA BASE CAARACTERIZED IN TASK 3.10 35
TASK 3 12: THE IMPIEMENTATION OF DATA BASE ON A YODERN DIGFTAL COMPUTER IN A GANER WHICH MAXIMIZES THE TRAVSPORTABILITY OF THE DATA AND RELATED SOF:WARE AND IS COMPATIBLE WIIH OTHER SOFTNARE USED IN THE PLNNING METHODOLOGIES 95
TASK 3.13: THE EVALUATION OF THE DISTRIBUTION PLANNING YETHODOLOGIES DEVELOPED BY THE CONTRACTOR INCLUDING THE EFFECTS OF MAJOR ASSUMPTIONS IN THE MODELS AND TECHNIOUES AND THE AMOUNT OF EFEORT AND COST REQUIRED TO EXPAND THE EMPLEMENTED SOFTNARE PACKAGE INTO A PRODUCTION GRADE PROGRAM 104
APPENDIX A: BIBLIOGRAPHY OF DISIRIBUTION SYSTEMS PLANNTNG 107
APPENDIX B: A SAMPLE COPV OF THE OUESTIONNAIRE 115
APPENDIX C: RESEARCH ADVANCES LN SOLUTION YETHODOLOGY FOR DETERMINING MINIMUM COST EXPANSION OF SUB- STATION C.APACITY FOR POWER DISTRIBUTION SYSTEMS 117
APPENDIK D: AVALYSIS OF DISTRIBLTION FEEDER COSES 126
APPENDIX E: MUTT-OBJECTIVE EVALUATION 150
APPENDIX E: ELECTRIC ENERGY DISTRIBUTION DLANNING DATA BASE MANAGEMENT SYSTEM - PROBLEM SPECIFICATION 153

EXECUIIVE SUMMARY

The overall goal of this research project was the conceptual design of an interactive distribution pianning model for an electric power supply system. In order to reach chis overall goal, the contractor was required to perform the Eoliowing tasks:

TASK A

The contzactor should assess the present scate-of-the-art, in theory and practice, of electrical energy distribution system planning and analysis methods. This assessment sinall include:

1. The identification and collection of reports published in the literature which describe distribution planning methods and sechniques. For those techniques which are judged by the contractor to je of an advanced or unique nasure and winch have been coded for use of digital computer programs and their operating and data sequirements.
2. To the extenc possible, the identification and jescription of distribution planning methods and techniques in use by.electric utilities and other commercial entitites.
3. The development of a classification system for distribucion pianning and analysis teciniques and models which recognize wide range of Eunc rions oerEomed by shese techniques and nodeis, data requirements and where iigital computer codes exist their inpur/output requirements. Using this system, the contractor shall classify those eechniques and models identified in tasks $A 1$ and $A 2$.

TASK B

The contractor must develop specifications Eor models which are required in the distribution system planning and analysis process and shall deveiop speciEications for and a prorotype of a data base surficient to support such models. This task shall include:

1. The development of criceria for assessing the degree to which existing models meet the specifications developed;
2. The analysis of models identiffed in tasks il and 12 .
3. A characterizacion of the conditions ander which the models idenctEied in easks $A 1$ and 12 are solvacle.
4. The identification of distriburion Jesigr seciniques used in peacrice.
j. The identifícation and cataloging of planning objectives, concepts and constraints accepted in practice.
5. The selection of planning and anaiysis consepes and methods which Eorm the core of ėシiー cient discribution planning nechodologies.
6. The deremination of the extent to wich existing digital coupurer frograms implementing the concepes and methods identified in 26 are soitware iomparible.
7. The selection of a set or exiscing programs which best meer che need of the distribution planning tothodologies and are sufiticienty.
software compatible to permit use on chis project.
8. The analysis of the data requirements of aii phases of che distribution planning process.
9. The conceptual design of a data base suificient to meet the data reg̣irements of the distribution planning gechodologies developed;
10. A detailed design of the data base characterized in 310.
11. The implementation of data base on a modern. digital computer in a manner which maximized the transportability of the data and related software and is compatible wizh other software used in the planning methodologies;
12. The evaluation of the distzibution planning methodologies deveioped by the conrzactor including the effects of major assumptions in the models and teciniques and the amount of effort and cost required to expand she implemented sortware package into a production grade program.

Analysis of the literature, incerviews with utility engineers and discussions by the research team have decemined that the following functions must be performed by an integrated interactive distribution planning system based on deterministic data. The functional componencs of a complete interactive distribution planning systen, as shown in Eigure 1, are:

1. A distribution planning data base with an organization induced by models and salculations winich use the data.
2. A data base managemert system to organize the data, add to it, take data out, perform quality checks, and rectieve daca for operating nodules.
3. A zetwork editor module to create elecrical network representations at the =ommand of che planner from the dara base or from the plans generated by the plan generator.
4. A paramerer construction module which riil caiculate the parameters for analysis and oprimization programs from the data concained in the data base.
5. An analysis moduie which trill evaluate the planned network according to standari anaiyses such as reliability, voltage perfomance, ezc. as well as subjective evaluations by the planner.
6. An efficiency evaluation moduie which wili cale analyrical results from the analysis module and compute the efficiency of plans accozding =o each objective defined in the design of the system.
7. A plan generator module. This moduie will either intake plans generated by the olarner or create plans sy means of an oprimizarion modei.
8. An evaluation model which contains a general objective function taking into account $a 1 i$ vi the oojectives which will evaluate ?lans zenerated by the planner and optimization model if wore than one plan is created.
Э. A master program salled the shell which will

Figure 1
coordinate che above eigin modules at the behest of che planner and display the results at any stage ot the operation.

The preceding is a list of the nine functions which comprise the iesign of an interacrive distribution planning systam. The speration of this system.is the cognitive function of the "human" distribucion pianner. A function is defined here as a system element which "generaces" a specific sec of outputs, for a given specific sec of inpucs, according to a ziven ser of :uies.

Some of chese functions are explained in greater details in the individual task reports. However, some of them are not inciuded in the given tasks; and, siere tore, nuse je incluced here.

Rignt at che jeginning of the research it became apparent that the data jase connot concain direct daca elements or tne modeis, since these eiements change as
models shange and cannot be updated aucomatically wich changes in raw data such as cost of conductors without additional computations. The jest design then for the cotal system 'is to have a parameter computation function which uses the base data in the data base. The data case needs to be kept ippated and thus when a model is to run, a paramerer construction module is necessary to compute the =ecuired parameters which are updated.

The Eollowing exampies can be given to explain this point. . For example, Eeeder power loss curves are among she very important paramerers in che general opEimization models. The data jase must concain as basic daca she present coscs of power, carrying charge rates, the present line impedances of exiscing necwork arcs, taking into the account conductor sizes and loads, and oossible:voltage levels, Anocher example is the sost of incremental capacity additions. They are also importanc parameters and: constructed from the present
basic data on cransformers, labor charges; cost of conductors, additional equipment, and hardware required; present transformer sizes of chose transformers in place and/or available in invencory; other locations in the system where a "traded our" transformer can be used. A subprogram using this present raw data can compute the incremental capacity costs for each substation. Further, the power loss curves can be computed at a given voltage level by a subprogram using engineering econowy formulas which outputs the results in a format which can be directly usabie in the optimization models. For example, in the case of convex approximaEion, the results will be a series of slopes based on a preset number of grid approximations. As a further example, demand values must be aggregated based on a given grid approximation of the ?roblem from the raw data set of demands at each coordinate. Of course, the fixed costs of conductor installations must be compuced from the length of the feeder (network arc), conductor size, present cost of conductor per unit distance, costs of pole type selected and other hardware, and present labor costs with present estimates of installation time.

Function six and eight evolved from interviews with the distribution sustem planners. In general, the lowest cost plan is not always chosen and therefore the cost itself is not a prime detemanant. The interviews with discribution sustem planners provided the detailed information in terms of the planning objectives and constraints, which are given in task B. 5 , that must be taken into account. These objectives and constraints Eorce a multi-criteria evaluation to be a part of the Eunctions of the incegrated planning sustem.

A survey of the current literature indicates that the basic concept formulated by Churchman, et ali, is still the basis Eor solving multi-objective decision proolems. Goal programming, pareto optimaiicy, utility theory, and the basic procedure suggested by Churchman is currencly in use soday.

Both goal programaing and pareto optimality aperoaches :vere rejected because it would sequire the planner to reformuiate linear programming problems if his oojectives changed and wouid vioiace simolicity requirements on optimization approaches. The user is not expected to be an expert in mathematical programing. in addition, these approaches do not offer any valuade gain ir: accuracy of decision in the type of prooiem acidressed. The basic procedure as suggested by Churchman is:

1. Seate clearly independent and mucually exclusive objectives.
2. Order the vojectives.
3. Veight the objectives.

ذ. State ciear measures of actainment of the objective by means of efiiciency curves.

The third step can be done oy a decision tree approach suggested by Churchman or by a wore elegant approach suggested jy Saaty in 1977. The Saaty approach, aithough it was atrractive, was not used because subjective preference assessments must still be rade which require some additional subprograms to compute eigen values and again chere is no demonstrated superiority in decision accuracy. The Churchman method, on the otier hand, is simple and gives the user a control over the process. The Saacy process was rested by the research staff to check its performance.

The eificiency surves are deveioped oy the Churchman method also =ather than following a ueili=y ap-

[^0]proach. The utility curve approach is demonstrated by Crawford ${ }^{3}$, et al in 1978 but no advantage to using this more complex method was shown. Bamm14, in 1979, provided a typical example that simple approaches are still very successiul in both weighring and efficiency calculations. A summary of the details of the multiodjective evaluation process suggested by the research team is given in Appendix E along with the results of a crial run at OG \& E.

The functions six and eight require subprograms to allow the planner to construct the efficiency curve for a given measure using either exponential, parabolic or straight line curves and then subprograms to compute efficiency from given values of the measure which are either computed by other programs or input by the planner. Other subprograms are required to allow the planaer to determine the weights.

This leads to function seven. In tasks 3.6-B.13, a detailed description of the subprogram function which will represent a present or proposed distribution system network with appropriately defined nodes and arcs is described. This function will allow a planner to construct a proposed distribution plan of his own design which can be analyzed by the analysis module and then an overall evaluation computed by functions six and eigit.

Function seven would also require a subprogram which will construct the mathematical optimization model, ootain its parameters from the parameter module and then allow the planner to input starting solutions and advanced trial solutions to speed the proof of the optimalicy. The key to the design here is the planners concrol of the representation. The planner must be able 50 indicate possible feeder routes, subscation locations, the number of fonductor size possibilities, limit the number of incremental capacicies considered, and set routes where reconductoring wight be benericial The optimization model must be construcred off the suoset of the total number of possibilities indicated by the planner. This would impose a strong requirement on function nine. The planner must be able co interject at any step of che process and control the action step by step.

Implementation of chis system would require a large number of suborograms to de written with several large master programs with the capacity to zit in new subprograms at will. However, each individual program called for by che nine functions can de done with present computer technology and each compuration can be accomplished with methods known today. The oniy limit in some cases is the size of the planring problem except in one model. These limits are deait with in rask 3.3. The appropriate optimizacion models are described in Task $3 . \sigma$ and a model which requires new solution Eechniques is explained.

Conclusions

The preliminary results of a research effort to apply the lacest cechnology to the problem of energy distribution system planning has been described. The approach is a systems approach, characterized by an attempt to see the system of a network or directed graph, the vertices of which are described jy a number of parameters which bind each vertex to a physical component or collection of piysical components constituting che distribution system. Just as the network model

[^1]unifies the conceptual view of the distribution system, a relational data base model unifies presentations of all pertinenc data, including that data representing the network model.

The collection of algorithms suitable for implementation on a digital computer, which maintain the network nodel and allow a designer to work interactively with it, are divided into three classes. An overseer called the shell, which processes the planner's demands, providing his access to a aumber of. problem solving programs, a network editor, which allows the planner to create and modify networks using concepts and commands natural to the suoject, and finally, a data base management system which maintains the data base. While the end result of the research
is conceptual in nature, selested features of the Distribution System Planning Model have been implemented. This implementation provides a validity sheci oi the notions and abstractions comprising the DSPM.

Figure 2 and 3 disolav grapinically the tasks which the contractor agreed E perform. These tasks are shown as a part of an overall set of tasks that will result in an operating inceractive distribution planning system. Task blocks encased in solid lines represent the casks of chis project. The crossharching represents the complecion of the task.

In addition to the tasks required in the work statement, considerable progress has been made toward the protorype distribution planning system as is indicated by the dashed blocks partially crosshached in

Figure 2. Phase I

Eigure 3. Phase II

Figure 3. This prototype syster is described by the nine functionai olements presenced in che execurive summary plus cask reports B.б. 3.12, and B.13.

As a resulc of the research perfomed under tasins 3.12 and B.13, some progress ias been made toward che
implemencation of a prococype aistribucion planning system. The blocks entirely alosed oy che dotted lines represent che research efforts which require ite results of the present project but which currencly lie outside the scope or this project.

TASK A.1: THE SURVEY OF LITERATURE AND EXISTING COMPUTER PROGRAMS

TASK A.l(a): LITERATURE SURVEY

An extensive search has been made for the identiEicarion of papers and reports publisned in the open literature whicn describe the distriburion planning methods and techniques. The bioliograpiy is included at the end of this report. Rererences have been selected which deal predominantly with the distribution system. Emonasis is placed on references which illustrate practical as well as theoretical appiications of distribution system planning eechniques. The listing of the titles is subdivided into chree sections, namely; (1) analyses, (2) models, (3) cechniques, depending upon the general substance of each article. However, a ticle may be listed in more chan one section if the paper covers material that can be included in various sections.

The entries in each section are listed in alphabetical order. The last name of the first order author determines tine alphabetical position. Only the more readily available foreign publications are included. A list of the periodicals which have been cited and their place of publicarion is given following the bibliography.

TASK A. 1(b): THE COLLECTION AND EXAMINATION OF SELECTED COMPUTER PROGRAMS

Introduction
A questionnaire has been prepared and sent to a large number of electric power utility companies. Also, a large number of these companies were visited and cheir distribution planners interviewed by the authors for the identificarion and description of distribution syscem planning mechods and cechniques used by chese eleciric power utility companies and other comercial entities. The information gathered from the interviews will be seported in the future.

The Computer Programs Used for Distribution Svstem planning

Today, many electric distribution system planners in the industry utilize computer programs, usually based on ad hoc techniques, such as load flow programs, radial or loop load flow programs, short circuit and fault current calculation programs, voltage drop calcilation programs, and cocal system impedance calculation programs, as well as ocher cools such as load forecasting, volcage regularion, regularor setcing, capacitor planning, reliability and optimal siting and sizing algorithms, ecc. However, in general, the overall concept of using the output of each program as input for the next program is generally not in use. of course, the computers do perform calculations more expeditiously than other methods and free the distribution engineer from detailed work. The engineer can then spend his time reviewing results of the calculations, rather than actually making them. Nevertheless, there is no substitute for angineering judgment, based on adequate planning at every stage of the development of power systems, regardless of how calculations are made. In general, the use of these tools and their bearing on the system design is based purely on the discretion of the planner and overall company operating policy.

Collection and Examination of Selected Computer Program

In order to determine the present scope of computer applications in distribution system planning within the power industry, a large number of electrical power utility companies as well as other sources have been
contacted. In addition, the 1976 and 1977 editions of the "Computer Program Availability Reports" of the Edison Electric Institute (EEI) have been screened. The EEI reports list computer programs possessed by each of che member companies and which are readily available to any other member company on request.

Through the Oklahoma Gas and Electric (OG\&E) Company and consultants of this project, many computer programs that coulc be used in distribucion system planaing were gathered. Some additional informacion about the use of each computer program was also obtained. This ranged Erom simple inpur/ourput requirements to detailed user's manuals. Of the 28 programs chus gachered, 16 periormed circuir analysis. Although analysis itself is not planning, these programs are still of interest since any proposed system alternacive must be analyzed ta assure that requirements are satisEied. However, some of the analysis programs received offer a limited planning capability in the form of capacitor application or load growth. The analysis programs are compared in Table 1. Also, some additional information and the input/output requirements of the selected programs are given in Sections A. 2 and A. 3(b). Even though most of the entries are self-explanacory, the following addicional comments are pertinenc:
a) Most programs assumed balanced shree phase conditions; only three programs created unoalanced cases.
b) Two programs provided the option of inserting impedances in the fault pach before calculating fault currents.
c) Six programs provided losses for each line and the total system while three programs provided only for some form of total system.
d) Obviously, capacitor planning could be done in a primitive way with any analysis program simply by altering the input data to include, exclude or nove capacitors. The difficulty or the task would depend on the nethod of providing input data. Those programs noted as providing capacitor planning "by modifying input dara" are che ones which claimed capacitor planning capability in their documentation and altered the input data to accomplish it.
e) One program provided a very elegant and comprehensive treacment oi load growth. It allowed specificarion of different growth rates at four different levels of the system, namely: substation, feeder, any lines, and any nodes. These races could then chemselves be changed from year to year.
f) The programs all make some use of direct access scorage, mostly to preserve cable and device characteristics and system descripeion Eiles. However, some of the programs build arrays on a disk for processing; thus the problem size in this case is limited only by the amount of disk space provided.
g) Finally, there is only one program which can handle a loop or network system, the rest of the programs are restricted to only radial systems.

The other eleven computer programs collected are so diverse in application that comparison would be meaningless. Instead, the following brief descriptions are provided:

P5

This program uses load density on a grid basis to optimize location of a new substation among existing suostacions. It assigns load to new and existing suostations. [BM 370/145, lo0k nemory is required. Ic is

Table 1. A Periormance Sumary of Collected Distribution System Anaivsis Programs

20caur	81	82	73	84	P6	87	812	P14	P15	$P 16$	213	819	220	322.	223	225
Volcage Protila	Oy-Phaes	$3 \cdot$	$3 *$	$3 *$	$3 *$	39	31	3y-Phasa	31	3.	No	Subycia- sion Bus 4 only	No	נ	No	By-7hase
Pover flow	No	Ho	Tes	Yea	No	Yu	Nu	Yu*	Yes	Yew	So	\%o	No	Yas	So	Yea
Curtanc Fiou	8y-Phace	3.	31	$3 *$	31	3.	3)	No	$3 *$	3.	to	\%	No	31	:0	So
Pault Current	$\begin{aligned} & 34,4 \\ & s-6 \text { tre } \\ & \text { serced } \\ & \text { laped- } \\ & \text { ance } \end{aligned}$	It + $=-6$	\%	$\begin{aligned} & 34_{1}+4 . \\ & +b_{6},-6 \end{aligned}$	$\underset{\sim}{3 \phi . \infty}$	$34 . t-6$	Ho_{0}	$\begin{aligned} & \text { 14, 0-4. } \\ & \text { eciln- } \\ & \text { earcad } \\ & \text { fapedance } \end{aligned}$	$\underset{\sim}{3+\infty}$	Pawle fiva	34.05	$3 * . m$	$33_{0}+4$	36.06	14.7*	24.t.t. Fc
Hotor Stert Poltage DSp	No Lada sboultaheously	Y_{6}	So	\%o	Yee	\%	Mo	Tru hade steuliczceously. Load Nodet Ouly	No	Voles Dip por xva Ioruch	So	H	Ho	Ya	Yo	So
Torsh imoadnact To node	Yes	¢	\%	Yea	Yes	Yes	Yo	Yes	No	Yea	Yes	\%o	Yas	Ye:	30	\%
Lenes	Ten	Ta*	Yes	Yas	taclaszed ranual yulys \$	Tocale	\%	Yee	So	Yes	Ho	Ho	Ya	Ho	: 6	Sotal
Eegulator swecinge	780	No	Ko	Yee	Tee	Yee	Yea	Yes:	\%	Ho	Ho	So	So	Ho	*9	Yea
$\begin{gathered} \text { P.1anolag. A14s } \\ \text { Avaibide } \end{gathered}$																
Capsitior placolrat	Add. Chanye. Deice	\%	\%	\%	Hy Modifying :apuc Dace		No	8y Moditying inpuc Daca	8y Modilylag tapue Daca	No	So	Ho	:\%	צo	Ho	Y:4
Lead Grourb	Syacea Groven Facror, 20 Peri- 1 ode or Racet	Syeces Groveh taceor, l 7atiod	Bo	Mo	3y Chang- ing Deuad facsor	Sysces Croveh factor. lpariad	Syscse Growsh Facsor. 1 Pariod	Very Varsecile	Sa	so	Ho	No	No	No	So	Syc:en Grouci facror. 5 Perroda
Prooles sime	:000 :bulde 1000 Traga 2 C Cble:	15 Nodes 20 Brarthes	290 Hodas. 99 cosbes	150 nosea	500 50dasen 3000	3000 Nodus	20 O rades	2000 Nodes	140 Nodes	$\begin{aligned} & 100 \text { Nbete } \\ & 200 \text { Unae } \end{aligned}$	200 Lram	sbecacion Bue	Luded 3y 5 isk 5pace Only	$\infty 0$ Nades	150 Nodea	S00 sodes
Menory iequiteannca	$508 \times$	$130 \mathrm{x}$	$33 x$	66 I	238 K	$832 \times$	110 K	$214 \times$	$\begin{gathered} 29 \mathrm{~K}+180 \mathrm{z} \\ \text { DLei } \end{gathered}$	$210 \times$	100 x	$30 \mathrm{~K}$	100 K	26 K		$150 \times$ Boasivell
Gamucer Type	$\begin{aligned} & \mathbf{1 8 n} \\ & 370 / 158 \end{aligned}$	Lispace spectrs 20/63	0	$\operatorname{IEM}_{370 / 165}$	$\begin{gathered} \text { 294 } \\ 370 / 158 \end{gathered}$	$\underset{370 / 458}{i 89}$	$\begin{aligned} & p 09 \\ & 10 \end{aligned}$	$\begin{gathered} 134 \\ 370 / 255 \end{gathered}$	$\begin{gathered} 134 \\ 370 / 145 \end{gathered}$	$\operatorname{lam}_{370 / 158}$	$\underset{370 / 165}{134}$	$\begin{gathered} \text { IB4 } \\ \text { 160/65 } \end{gathered}$	$\begin{gathered} \text { IJM } \\ 370 / 165 \end{gathered}$	$\begin{array}{r} 58 R \\ 1800 \end{array}$	$\begin{gathered} \text { t8M } \\ 370 / 185 \end{gathered}$	ع6/22
Ioceractiva	Fvallable 4	dvailsale	N	Yo	Tes	Mo	Tee	No	Yo	No	Y4a	Yes	No	Yo	\%o	so
Resurky						Unem Tis 0aca tas Iapus				Nos hascricial to Redial syecest		Paule Cucranc AE Sub-	Daca zanen Mainto- asnce	Can Conoates co Backevup	Calesanp ploter: I:ce Dia-	
.												ccacioa Bun	Tool	$\begin{aligned} & \text { Syacon ot } \\ & \text { Sane Size } \end{aligned}$	grae of Faulc Eurrance tor Tuan curard103610a	

simple but could be very useiul in planning.

$\xrightarrow{98}$

It can be used as a distribution transformer load management (TLM) tool. It extracts demand data irom customer account record through account number. This program provides input data for analysis program 27. IBM 370/158, look memory is required.

$\underline{9}$

This program calculates overloadability of large pad-mount cransformers as a Eunction of ambient temperacure and allowable loss of life. IBM $370 / 158$, 100 K memory is required. Ic could have limiced application in planning.
$\underline{P 10}$
It generates loading and unbalance tables for different combinations or single phase and three-phase
loads. It chen selects transiormer sizes ror grounded Y-ungrounded Y transfiomers. IBM 370/158, look memory is required.
?11
It is the same as P10 except it is for open Y open Δ and open Δ - open Δ transformers.

P13
This program calculates the economic loading of pole-mounted transiormers. IBM 370/158, 192K memory is required.

917

It is for distribucion reliability analysis. The program quanticatively compares the periomance or distribution circuits for various alternatives. I3M 370/163, 96K memory is required. It could be very helpful in evaluating a proposed aircuic conriguration.

This program selects the most economical conductor三or a distriburion Eeeder, considering initial costs, maintenance costs, capitalization costs and losses throughout the expected ilic of the feeder. IBM 370/ 145. It appears to be a very useriul program.

? 21

It calculates and predicts loads on a substation transformer and up to six associared circuits. IBM $1800,24 \mathrm{~K}$ nemory is required. It has limited userulness. The same functions could be accomplished within other analysis programs.

P 24

It calculates the size and number of substations reauired for a rural system. Its output includes feeder lengths, and loading and total costs.

P29
This program uses system analysis techniques to oprimize expansion of an incerconnected sysiem of distribution substations. IBM 1130, l50K memory is required. The present daca input technique of the program is very much company oriented. It would be a valuable planning cool if modified for more general use.

Introduction

In 1953, an Edison Electric Institute subcommittee made the following definition of systems planning:
"System planning is the preparation of a rational program for the development of an electric power system, so that it can evoive in an orderly and economic manner. It includes forecasting and analyzing loads, rationalizing standards of service, anticipating trends in equipment design and coordinating the various elements of the system into a well-designed whole; it is particularly concerned with plans for changes and additions to generation, transmission, substations and distribution facilities. It is not concerned with the problems of day-ro-day operation or design except to the extent that chose problems affect future system development. Briefly, electric system planning is che process of determining when, in order to assure adequate electric serviçe at minimum average annual cost to the community." ${ }^{1}$

This definition has been widely accepted within the planning community. Long-range planning provides a conceptual framework to support eaci phase of future system expansion. Thus an orderly system development may be realized with each addition being an integral part of the future system. Effective long-range planning cannot be periormed independently on separate parts of the syscem since changes in one part can influence requirements of another part. In short, longrange pianning aelps co:
*Idencify the future system requirements.
*Derine the system constraints.
*Define the possibie planning alternatives.
*Evaluate each planning alcernative.
*Define the opcimum long-range system configuration:
Dillard and Seis ${ }^{2}$ concluded that system planning is necessary because systems grow. In any system, there comes a time when existing capacity is not sufficient to meer the future demand with an adequate margin for emergency situations. Thererore, the system planner must anticipate the future in such a way that service reliability is maintained with minimum revenue requirements. Planning in the presenc which does not lead to a near oprimum trade-ofif berween these competing factors will create highly undesirable situations in the furure.

Thus, system planning is essential to assure that the growing demand zor electricity can be satisfied by distribution system additions which are both technically adequate and reasonably economical. Even though considerable work has been done in the past on the application of some type of automation concept to generation and transmission system pianning, its application to distribution system planning nas unfortunately been somewhat neglected. In the future, more so than in the past, electric utilities will need a East and economical planning tool to evaluate the consequences of different proposed alcernatives and cheir impact on the rest of the system to provide the necessary economical, reliable and sare elecrris energy to

[^2]consumers.
The objective of distribution system planning is to assure that the growing demand for electricity, in tems of increasing growth rates and high load densities, can be satisfied in an optimum way by additional distribution systems, from the secondary conductors through the bulk power substations, wich are both technically adequate and reasonably economical. 111 these factors and others, e.g., the scarcity of available land in urban areas and ecological considerarions, can put the problem of optimal distribution systems planning beyond the resolving power of the unaided human minc. Distribution system planners must determine the load magnitude and its geographic location. Then the distribution substations must be placed and sized in such a way as to serve the load at maximum cost effectiveness by minimizing feeder losses and construction costs, while considering the constraints of service reliability.

In the past, the planning for the other portions of the electric power supply system and distriburion system frequently has been authorized at the company division level without review of or coordination with long range plans. As a result of che increasing costs of energy, equipment and labor, betrer system planning through use of efficient planning methods and techniques is inevitable and important. The discribution system is particularly important to an electric utility for two reasons: (1) its close proximity to the ultimate customer, and (2) its higi investment cosc. Since the distribution syscem of a power supply syscem is the closest one to the customer, its fallures affect customer serfice more directly than, for example, failures on the transmission and generating systems, which usually do not cause customer service interruptions.

Therefore, distribution system planning starts at the customer level. The demand, cype, load facror and other customer load characteristics dictate the type of distribution system required. Once the customer loads are determined, they are grouped Eor service from secondary lines connected to distribution transformers that step down from primary voltage. The distribution transformer loads are then combined to determine the demands on the primary distribution system. The primary discrioution system loads are then assigned to substarions that step down from transmission voltage. The distribution system loads, in tum, determine the size and location, or siting, of the substations as well as che routing and capacity or the associated transmission iines. In other words, each step in the process provides input for the step that follows.

Table 2 shows some of the power supply system components and factors which need to be considered in distribution system planning. Discribution system planning muse not only take into consideration substation siting, sizing, number of feeders to be served, voltage levels, and type and size of the service area, but also the coordination of overall subtransmission, and even transmission planning efEorts, in order co insure the most reliable and cost effective syscem design. The subtransmission system includes the major supply of buik stations, subtransmission lines from the stations to distribution substations and the hign voltage portion of the distriburion substations. of course, the expected reliability of the system design that supplies the customer, has an immense effect on the cost of serving the cuscomer.

In current practice, used by mose of the utility systems planning departments, the planning engineer partitions the cotal distribution system planning proolem into a set of suboroolems which can be handled by using availaole, usually ad hoc, methods and techniques.

Table 2. Power Supply System Components and Eactors Affecting the Distribution System Planning

POWER SYSTEM COMPONEETS		FACTORS
Bulk Power Supply System		*Number of Bulk Stations *Location of Bulk Stations *Size of Bulk Stations
Suberansmission System		*Subtransmission Voltage *Radial or Loop System *Economical Conductor Size *Number of Subs Per Group *Line Layout to Serve Various Groups
Distribution System	Substations	*Service Area *Size of Substations *Number of Substations *Location of Substations
	Primary System	PRIMARY MAIN EEEDERS *Conductor Size *Lengeh *kVA Rating *Voltage Level EXPRESS EEEDERS *Conductor Size *Length * ${ }^{*}$ VA Rating *Voltage Level PRIMARY LATERALS *Conductor Size *Length *kVA Rating *Volcage Level kNumber of Distribution Transformers Per Lateral CAPACITORS *kV Der Eeeder
	Secondary System	*Conductor Size *Number of Cuscomers *Transformer Size

The ?ianner, in the absence of accepted planning techniques, may restate the problem as an attempt to minimize the cost or suotransmission, substations, feeders, iacerals, etc., and sine cost of losses. In this process, however, ie is usually restzicred by permissaile voltage values, voltage dips, etc., as well as service continuity and reliability. In pursuing these objecsives, the olanner uitimately has a significant influence on additions to and/or modifications of the subtransmission network, locations and sizes of suostaEions, service areas of suostations, location of jreakers and switches, sizes of feeders and laterals, voltage leveis and voltage drops in the system, the location of capacitors and voltage regularors, and the loading of eransformers and Eeeders. There are, of course, some factors that need to be considered such as transformer impedances, insulation levels, availaility of spare transformers and mooile substations, dispatch of generation, and races charged to customers. Furcher informarion is given in Section 3.4

The ?=esent Computer ADolications

Figure $\dot{-}$ snows a basic functional biock diagram of a typical distribution system planning process that
is Eollowed currently by the utilities. The process san be repeated for each year of a long-range, e.g., 5-10 year, planning period. However, in the development of this diagram, no attempt has been made to represent the planning procedure of any one of the companies specifically, but rather to outline, roughly, a typical planning process. Furtiner information is presented in Section B. 4 .

Today, many electric distribution system planners in the industry utilize computer programs, usially based on ad hoc techniques, such as load flow programs, radial or loop load flow diagrams, short circuit and faule currenc calculation programs, voltage drop calculation programs, and cotal system impedance caiculation programs, as weli as ocher cools such as load forecassing, voltage regulation, regulator setting, capacitor planning, reliability and optimal siting and sizing algorithms, etc. However, in general, che overall concept of using the output of each program as input for the next program is generally not in use. of course, the computers do periorm calcularions more expeditiously than other methods and free the distribution engineer From detailed work. The engineer can then spend his time reviewing results of the calculations, rather than actuaily making them.

In order to give a better idea about the usage of

ミigure A. Block diagram of a typical distribution system planning process.
the computer programs by the power incustry, the following additional iniormation is given for the seiected and examined 23 programs following an index, as shown in Table 3, which associates the program codes, :Siven in this report for the purpose or comparison, i.e., P_{i} 's, with the EEI cacalog number and the source company.

Pl NORTHEAST UTILITIES SERVICE CO. IBM 370/ 158
DATA IN: Conducsor impedances; connected kVA; PF; DF; exact loads if known; phase connections: number of customers: line lenerhs. EransFormer impedances and ratings; transtormer connections and ratios; Eaulc inpedances; motor start ikV (or amps) and PF; load growth rate and period; capacitor changes.
DATA OUT: Fault current at every node, using impedance supplied above, or zero impedance if none supplied. Flicker voltage--two motors simultaneous scart, any aodes.
Load Elow: y-ç volrage each phase, \% drop, kW loss, kVAR loss, kW load, kVAR load, amps, PF, for every node.
Load growth: same as above for any 20
future years or growth rates.
Sumary of loads, losses, caps, max. voltage, min. voltage.
COMMENTS: Interactive version available.
Uses about 900 K .
2000 nodes, 1000 tranf./reg.
? 2
ATLANTIC CITY ELECRRIC CO. jinivac Spectra 70/45
DATA IN: Transformer impedance; system impedance; section length; wire types; aumber of phases; connected kVA; capacitor switch rype: cap or reg. controi limits; PF; DF; current limit: kW demand and PF at load centers.
DATA OUT: Voltage levels, current, kN loss, kVAR load; (all 3ϕ only) f fault currenis.

Tajle 3. Endex of the Selected and Examined Computer Programs			-
UU	EET		
Coce	Catalog		
No.	No.	Company	Function
? 1	0613H06	Northeast Utilities Serrice Company (MiSCO)	Analysis
P?	084C00 1	delantic Ciry Electric Company (ACE)	Analysis
23	100HDO2	Consolidated. Edison Company (Con Ėd)	Analysis
? 4	126CHO1	Central Hudson Gas \& Electric Corp. (CHGSE)	Analysis
P5	:25CH02	Central Hudson Gas \& Electric Corp. (CHG\&E)	Suostation Location
P5	1324C06	Viagara Yohawk Power Corp. (MP)	Analysis
P7	1398103	New York State Electric 5 Gas Corp. (NYSE\&G)	Analysis
P8	139BI04		Transformer Load Mgme.
?9	139 FDO 1	New York. Stare Electric \& Gas Corp. (NYSE\&G)	Transriormer Capaciry
P10	139 FL 03	New York State Electric \& Ģas Corp.' (NYSESG)	Transformer Loading
P11	139 FD04	New York State Electric \& Gas Corp. (NYSE\&G)	Transformer Loading
912	146 HCO 2	Rochester Gas \& Electric Corp. (RG\&E)	Analysis.
P13	196D803	GPU Services Corp. (GPU)	Transformer Loading
P14	303FD05	Souchern Company Services; Inc: (SCS)	Analysis
P15	443 DB06	Ohio Edison Company (OE)	Analysis
$\bigcirc 16$	482.4818	Detroit Edison Company (DE)	Analysis
? 17	549GC03	Wisconsin Electric Power Company (VEP)	Reliability
≥ 18	549 GCOS	Wisconsin Electric Power Company (WEP)	dnalysis
$? 19$	$554 \mathrm{BGO1}$	Northern States Power Company (NSP)	Analysis
?20	7310801	Oklanoma Gas \& Electric Company (OGSE)	Substation Expansion
221	Vone	Oklanoma Gas \& Electric Company (OGSE)	Analysis
P22	74 LGE0 3	?ublic Service Company of Oklaioma (PSO)	Analys is
223	None	? Pblic Service Company of Okianoma (PSO)	Conductor Size
P24	968 BKO 4	Hawailan Electric Conpany, inc. (HE)	Substation Load
? 25	968 BKO 7	Hawaiian Electric Company, inc. (HE)	Analysis
-26	$972 \mathrm{DLO5}$	Pacific Power i Ligit Company (PPSL)	Analysis
P27	Yone	C.H. Guernsev Company	Economic Secondary System
?23.	None	Iowa SEate University	

COMMENTS: Limited 2020 branches, 75 loads, 3ϕ only.

DATA IN:	Circuit load; circuit Pr; system R and X; bus. load; bus load PF; capacitor kVAR; bus P and Q; line code; line lengrh; regulator rating.	com	Uses Cal-Comp plotter to produce graph of faule currencs for use in fuse coordination.
DATA OUT:	Line $k N$, $k V A R$, amos and losses; line voltages; load sumary; total R and X, fault MVA, and volts drop per 1000 kVA for each bus; Z bus matrix.	DATA IN: DATA OUT:	Present kiN; growth rate; existing area size; total system load levels; costs; impedances; system. data; power factors for areas. Substations required; kVA per substation;
COMMENTS:	dllows for jumper connections to anocher circuit. 200 Iines, 100 buses, 10 =egulators.	COMMENTS	feeder lengths and loading; feeder construction and loss costs; new substation costs. A planning tool fór a rural distribuiton
217	WISCONSIN ELECTRIC POWER CO. IBM 370/165		points.
DATA IN:	Outage rate per mile, percent outages sustained and average repair time for 20 different system types (i.e., OH'vs. JG, number of phases, voltage); branch, lengths; number of customers; kiv loads; protective devices; alternate sources.	$\begin{aligned} & \text { P2S } \\ & \text { DATA IN: } \end{aligned}$	OKLAHOMA GAS AND ELECTRIC CO. IBM 1130 Substation transiormer voltages, rating and impedance; power factor: conductor data; conductor coníguration; connected capacitors, eransformer, reactor and breaker
Data OUT:	Frequency and duration outage indices; by customer and load.		data; line lengchs; growth rates; system data.
COMMENTS:	Can be run consecutively with circuic changes to permit comparison of options. Handles several types of fuses, breakers. and reclosers.	DATA OUT COMMENTS	Voltage profile: load analysis; capacitor placement; regulator placement: thermal overload flag; fault currencs. 3ϕ or 1ndividual phase output. 500 line sections.
-P18	WISCONSIN ELECTRIC POVER CO. IBM 370/165		Variable growth races.
DATA IN:	System impedance; substation transformer impedance and rating; line code and lengths.	P? 26	PUSLIC SERVICE COMPANY OF OKLAHOMA IBM
DATA OUT:	Symmetric and asymetric currents for: 3¢ and $L-G$ Eaults; X / R ratios.	DATA IN:	370/145 Cable data;. circuit conriguration; projected
COMMENTS :	200 line sections.		demand; cable installation and maintenance costs; company financial data.
P19	NORTHER S STATES POWER CO. . IBM 360/65	DATA OUT:	Most economical conductor seiection.
DATA IN:	Type of feed to substarion; cransiormer connections; impedances of feed lines; 3o and L-G fault :NV available at source buses.	COMENTS:	Considers initial costs, maincenance costs, capitalization costs and costs of losses for entire life of conductor.
DATA OUT:	rault current and MVA at boch high and low low sides, for 30 and $L-G$ faults.	P27 DATA IN:	OKLAHOMA GAS AND ELECTRIC CO. . IBM 1130 Transformer Load Management data; load
220	PUBLIC SERVICE COMPANY OF. OKLAHOMA IBM 370/143		growth multiplier; substation expansion options;'substation data.
DATA IN:	Line coniigurations; phase•and neutral conductors; device sizes and Eypes.	DATA OUT:	Substation load forecast; optimum system transformer capacity; load cransfer for
DATA OUI:	Shore circuit report for iuse coordination.		optimum utilization.
COMMENTS:	This data base is a versatile model of discribution feeder lines.	COMMENTS:	Uses linear analysis and integer programming techniques. Data input is company peculiar.
221	HAWAIIAN ELECTRIC CO. IBM 1800	P28	IOWA STATE LNIVERSITY [BM 370/158
DATA IN:	Substation reans末ormer voltages and ratings; substation power factor; growth rate; peak demand $K W$; circuit and oreaker racings in amps; circuit power Eactor and growth race; circuit currents by phase; amount or change in load; compound growth rate.	DATA IN:	Load data: secondary line patterns; transformer data; installed costs of transiormers and Its hardwares; installed costs of secondary line conductors; instialled costs of seryice drop; secondary line electrical data; service drop electrical data; fixed charge
DATA OLT:	Substacion and circuit loads up to five future years.		rate: cost of pole, hardware, or secondary pedestal: cost of unswitched primary voltage
COMMENTS:	Limited to six circuits per substation trans former.		shunt capacitors; distribution transformer exciting current; power system investment cost; etc.
P22	HAWAIIAN ELECTRIC CO. IBM 1800	DATA OUT:	Most economical secondary systems.
data in:	Substarion transformer impedance añ ratings; system impedances: current ratings of secondary ous, disconnect, circuit breaker, current transformer, and voltage regulator; demand in ikVA; current ratings of conductors; load power factors; span lengths: wire impedances: connected load; metered load; circuit configuration.	COMMENTS:	The program checks all designs against userfurnished criteria for conductor ampacity, voltage drop, motor starting voltage dip, and maximum allowable overloading of distribucion cransformers. Only chose designs which are close to the minimum cotal annual cost and which also meet all design criteria are outputed.
DATA DUT:	Voltage levels; line loads; short circuit currents.		
P23	PACIFIC POWER AND EIGHT CO. IBM 370/185		
DATA IN:	Source impedance; transformer impedance; circuit MVA; circuit configuration; Eeeder impedances; line lengtis. 30, L-L and L-G fault currents.		

task a. 3: the deveiopment of a Classification systey for distribution planning and analysis techniques and modELS WHICH RECOGIIEE WIDE RANGE OF FUNCTIONS PERFORMED BY THESE TECGNIOUES AND MODELS, DATA REQUIREMENTS AND :NHERE DIGITAL COMPUTER CODES EXIST THEIR INPUT/OUTPUT REOUIRENENTS. THE CLASSIFICATION OF THE techniques and yodels identified in tasks a. 1 and a.2, using the aforement oned classification system

Task a.3(a): the development of a Classification system for distribution planning and analy SIS TECHNIQUES AND MODELS NHICH RECOGNIZE WIDE RANGE OF FUNCTIONS ?ERFORIED BY these techniques and models

For these tasks a classification system was to be developed in order co examine the state-of-che-art of the current literature addressing electric power distribution planning models and techniques. Since the conceptual design being addressed in this report focused on the cotal sec of decisions that need to be integrated, it was clear that the models of the current literature should be classified by the subsec of planaing decisions addressed. This would provide to capcure, at a glance, the focus or a particular model or rechnique. This does not, of course, give any insight about the approach in tertos of the criteria, modeling approach, solution method, or success in reaching the stated goals, as they have been described in the relavant liferature. These aspects have been addressed, to a certain extent, in TASKS 3.1 and B. 2.

In general, the developed classification system has been presented by a 16 x m matrix. Each row of the matrix represents a specific model or technique identified by its reierence number Erom the bibliography which is included at the end of chis report. An X in a given cell of the matrix denotes that the decision of that row of che matrix is addressed by the paper.

Analysis rodels such as reiiability and prorile computations are not required to be addressed in this task by definition. The iollowing is a list of the deiisions needed to be made in a given distribution system, as derined jy the group:
i. The decision of whecher a ziven system's capacity is or is nor exceeded.
2. The decision of whether the present configuration can or cannot serve the demand.
3. The decision of whether reconductoring is needed and if needed when it should be done.
4. The decision of whether or not to change the primary discribution voltage and if it is needed winen it should be done.
5. The decision of whecher or not to add new sircuits connecting demands and if it is needed when it should be done.
6. The decision of if, where, and when to transter loads.
a) under normal operating conditions, b) under emergency operating conditions.
7. The decision of if and when to upgrade the rating of a substation by exchanging the existing transformer with a larger eransformer.
3. The decision of when and where to locate a new substation.
9. The decision of when and where to add power facror compensacion and how much.
10. The Jecision of when, where and how many volrage regulators so place.
11. The decision of conduczoi size in circuit added.
12. The decision of when, where and ac what roltage to add a feeder line.
13. The decision or what route to select ior a given new Eeeder.
14. The dectsion of the effects of demand increase on transmission system.
15. The decision of whether underground service is or is not needed.
16. The decision of whether power losses are or are not acnieved.

TASK A.3(b): THE IDENTIFICATION AND TABULATION OF INPUT/OUTPUT DATA REQUIREMENTS OF THE EXISTING OR OBTAINABLE COMPUTER PROGRAMS

The identification and tabulation of input/output data requirements of the 28 computer programs are presented in Tables 4-19.

TASK A.3(c): THE CLASSIFICATION OF THE TECGNIQUES AND MODELS WHICH ARE IDENTIFIED IN TASKS A. 1 AND A. 3

The classification of the techniaues and models which are identified in the previous tasks, in relation to the list of the fundamental decisions that has been presented in the section of TASK A.3(a) is given in Table 20 .

Table a

Table 5

Tuble 6

Tuble 7

Table 9

rable 10

Table 1.1

Table 12

Table 13

Table 14

Table 15

Table la

Table it

Table 18

Table 19

T! !n.I. -0

	DECTSIONS Reached by Inplementing Lhe Models and Techolques)	Momel.S anir TECINDIUES (By 'Thelr Hibliography Numbers)																			
No.	Description of the Dectston	2-51	2-40	2-70	2-71	2-79	2-24	2-61	3-3	2-8	2-52	2-31	2-16	2-38	2-2	2-41	2-37	2-44	2-60	2-55	2-54
1	System Capacity is or is Not texceeded	X	X	X	X	x	X	X	X	X	X	X	X	X	X	X		X	X	X	X
2	The Ireseat Configuraldon Can or Cannot Serve the Demamid		X	X	X	X	X	x	X	X	X	X			x	X		X	X	x	x
3	If and When to Reconduct					X						X	X			X	X		X	x	X
4	If and When to Change Distribution Voltage											X		X							
5	If and When to Add Clrcuits Comitecting Demands		X	X	X	X	X			X	X	X			X	X	X	X	X	-	X
6	It, Where, ami When to Transfer loads under: a) Normal Operation b) Emetgency Operation	X		X	X	X	X		X	X	X	X	X	x	X	X	X	X			
7	If and When to lipgrade Substation Rating by a) Iransformer Change onc b) Transfotmer Addition	X		X	x	x					x	X		X				x			
8	When and Where to Build New Sulstation			X	X	X				X	x	X	X	X	X			X			
9	Prower lactor Correction: a) When b) Whete c) How Much												.							.	
10	Voltage Regulation a) Whell b) Whete c) How Hach							X	x		x		x	X		X	X	x			
11	Optimization of New Conductor Size					X						X	X	X	x				x		
12	Vultage level Selection for Primary Systems		X									X									
13	Stication of Feeder Ronte			X	X	X	X	X	X	X	X	X	X	x	X		X		X	X	X
14	Effects of Demand Increase un Transmission Syblem									X								X			
15	Undergromad Service lis ut is Nose Neceded																				
16	Mlaimon Power l.osses are or are Not Achfeved							X		K		X	X	X	X		X	x			

task b.l: the development of criterla for assessing ihe decree to which EXISTING MODELS MEET THE SPECIFICATIONS DEvELOPED

The following criteria were developed to assess the utility of existing models. It is necessary, however, to clarify that two words have special meanings when used with respect to a model criterion: "must" means that a model which fails to meet the criterion as speciEied is cotally unacceprable, and is rejected irrespective of its performance relative to other criteria; "should" means that a measure is developed to express the degree of acceptability which a model manifests with respect to the eriterion, and that overall model utility is expressed in terms of individual criterion measures.

The criteria fall into two categories: those which relate to the model itself, and those which relace co the computer program which is the implemencation of the model.

a. Model-Related Criteria

1. The model must functionally fit within the scope of the tocai distribution planning model being proposed under the DOE Contract.
2. The model must address relevant planning decisions or support other analysis leading to planning decision processes included within the distribution planning tool "shell".
3. The criteria wichin the model which form the basis for decisions made by the model should be acceprable (e.g., a cost criterion which uses only capital investment may be incompiece).
4. The model should address in Eull the complexity of the decision. A model which addresses only part of the complexity of the decision should be readily expandable in scope to include a larger portion of the decision-making process.
5. Models should obtain optimal or exacr solutions; however, models which produce near-optimal (heuris-cically-obtained) solucions or approximate solutions way be acceptable (at a lower value of performance measure).
6. All data required jy the zodel must reside within a data base administered by the data base management system deiined oy the contract, and must be readily :vailable and cost-erifective to obtain within the seilicy industry soday.

b. Implementation-Related Criteria

1. Model implementacion should run on at least a class of machines roughly equivalent to the IBM System/370 Model 148; that is, the implementation should not require zreater capabilicy of an operating syscem chan that found on this class of machines.
2. Model implementation should be amenable to operation in an interactive environment within the machine class defined in criterion 1 above.
3. Model implementation must be restricted in core storage utilization to a maximum of 128 K bytes, in order that codels be portable across a sufficiently wide variety of machines (implementations which exceed 128 K in size may still satisfy this criterion via overlay eechniques).
4. Model implementation should be efficient in terms of usage of peripheral devices, in two respects: space efficiency and access efficiency. Space efficiency means that record and block sizes are chosen in a manner which minimizes wastage of che scorage capabiliry of the peripheral device. Access efficiency means that block size is chosen large enough, consistent with ocher constraines, such that the number if $1 / 0$ requests is minimized; and that frequently-used information is retained by the program in core instead of obtained from peripieral storage each time it is needed.
5. The implementation language should be commonly available and transportable (e.g., EORTRAN). Assembly language programs are therefore rated very poorly on this criterion.
6. Implementation must provide answers in "real time", jy wich is meant that the implementation, if operating interactively, should have a reasonable response time at the terminal; and, if operating in a background or batcin mode, must provide its answers in time to contribute to the information availaole to the planner at or prior to the time at which he makes his decision.
7. Information display should be acceptaiole from a human factors perspective; it siould comminicate using the vocabulary of the distrioution planner; it should disolay only that infomation, which is relevant; and it should operace so that information is easily iocared by and clearly displaved for the pianner.

TASK B. 2: THE ANALYSIS OF MODELS IDENTIFIED IN, TASKS A. 1 AND A. 2

In TASK 8.1, two different groups of criteria were set up to evaluate models proposed in the literature of the distribution systems planning. Using the developed criteria, the models are evaluated for this task. The evaluation is represented by a matrix with thirteen rows and m columns. Each row represents one of the criteria derived in TASK B. 1 . Each colum represents a specific model or technique identified by its reference number grom the bibliograping. A symbol in each given cell evaluated the model or technique; described in a speciflc paper, relative to the criteria. The Eollowing list describes the symbols used in the matrix.

Evaluacors of the Model-Related Criteria

```
    FM \equiv satisfies criteria l
    NFM \equiv does not satisfy criterla l
    RPD 三 satisfies criteria 2
    NRPD \equiv does not satisfy criteria 2
    MC \equiv model criteria expresses total system.
        measures
    MCP \equiv model criceria is acceptable
    MCU \equiv model criteria is unacceptaile
OPTSLN \equiv optimal solutions obtained
HEUSLN \equiv good solutions obcained
APPSLiN \equiv only approximate solutions are obtained
    DA \equiv data abailable
    DCE \equiv daca cosc effective
    DACE \equiv daca available and cost effective to
        obtain
Evaluators of Implementation-Related Criteria:
    I1S \equiv satisfies criteria
    ITR \equiv relevant information
```


ITU ミunsatisfaccory on all counts

The following tables present the evaluation of the models and techniques according to the given criteria. In addition to the cables, comment illuminating research needs are included.

Some Comments on the Selected Models:

Enver Masud (2-51)

Masud has developed an innovative approach to planning substation capacities. The model optimises the substation capacities subject co a variery of constraints on cose, load, voltage and reserve requirements. It has been successfully applied to 1600 square mile urban area served by 70 discribution substations.
M. Juricek, et al (2-40)

This paper presents a eransportarion model for feeder modification to alleviate undervoltage conditions and substation expansion plans. It provides a quick but not too accurate guideline planning and as the authors admit, perhaps it could be used to generate good initial or starting plans for better and final propoṣals.

Crawford and Holt (2-24)

This paper discusses the optimal location and sizes of substations and optimises service boundaries, given the altemative locations for substations and other contraints such as reliability. It uses the well known shortest path algorithm and transportation model. However the model is currently being used on small computers in batch mode only.

Shelton and Mahmoud $(2-71)(2-70)$
A mized titeger programming approach to distribution planning is given. The example given in the paper is confined to a specially contrived case in which there are only three substations catering to four neighboring areas. A nore realistic model with few tens of substations should be considered to really evaluate the capability of such models. in real planning situations. The present implementation needs more core space and it takes.about 20 minutes to get feasible solutions.

Carson and Comrield (2-16)
A route finding frocedure whose theoretical basis is derived from calculus of variarions is used for the design of necworks supplying housing estates. A practical design of tapered radial necwork. for 500 housing estates is given.

Hindi, et al (2-38)
A jranch and bound. / capacitated transhipment model for determining the optimal layout of a radial distribution network is given. The authors have developed a special purpose package with emphasis on the compu-
tational efficiency and modest storage requirements so that the method can be used on medium size computing machines.
Garrett; et al (2-27)
It discusses only a sadial sub-cransmission system which is only a part of the :ural elecrical poverty system. Hence, it nay not be of great use for the overall design objective.

Hindi, et al (2-37)
This paper only considers methods for the determination of the optimum profile for the cables for lowvoltage distrioution system.

Adams, et al (2-2)
It presents a mixed-integer linear progzamming approach and elaborates Eixed-sost-transportation-rype models. A variecy of illustrative examples are given.

Okada and Jenosono (2-50) (2-59)
Using a shortest parh anaivsis, this paper presents a procedure Eor oprimai design of distribution systems in the context of long range development pianning.

3oardman (2-i0)
Ic discusses a heuriscic simularion model for iong range planning of sub-cransmission and distribuciun systems. However the details of the implemencacion are not avaiiaole.

Lawrence, et al (2-44)
It describes a
ls are not jiven

Goldfield and Lang (?-51)
They apply dynamic programming to long range planning decisions out impiamentation details are not given.

Converti, et al (2-19)
They have developed a sequence of compurer programs $三 0$ or optimum design oi discribution systems. However no derails of the mathemarics involved in the optionisation process are ziven.

Munasinghe, et al (2-55)
It presents a heuristic approach for long range distribution system planning in the context of capital scarce developing countries. The approact is essentially heuristic and the detalls of the implementation are not given but good examples are given.

Kujszczyk (2-42)
It is not a fuil scale model for distribution planning though the methods have been used for medium size housing estace distribution networks.

criteria	monels and technfigues (By Their Bibliugraphy Numbers)										
	2-79	2-51	2-40	2-24	2-3	2-71	2-70	2-31	2-16	2-38	2-27
M1*	FM	FM	Fri	in	m	FM	Fin	Fin	FM	Fri	NrM
M2	RPI)	kro	kPD	RPD	R1P)	RPD	RPD	RPD	RPD	RPI)	-
M'	MCP	MCP	MCP	MCP	mCP	mcr	MCP	MCP	мсР	M(1)	-
M4	MPC	MFC	MPC	M1PC	MPC	MPC	MPP'	MPC	MPC	M1'C	-
MS	OPTSI.N	oprsin	oprste	OPTSIN	OPTSEN	apestin	APPSLIN	OPTSLN	APPSLin	OPTSIN	-
$\mu 6$	DA	da	dece	dCE	-						
[121**	IIS	I1s	1.15	IIS	IIS	I1s	115	115	115	115	-
1 R2	12 s	I2S	[2S	I2U	125	12 S	-				
1R3	1315	138	iss	13 s	135	135	I 3 s	130	135	135	-
114	14SA	14SA	14, ${ }^{\text {S }}$	14SA	145 A	14	14	14SA	14SA	14SA	-
11:5	15 s	15 s	ISSA	15s	iss	15S	158	1.5s	ISS	15 S	-
118	16 s	16 S	-	16 S	16 s	160	1611	165	165	16 S	-
IR7	-	17 VRC	-	-	-	-	-	-	I 7VRC	-	-

*MI denotes the first cercecton of the model-ralated eriteria.
**IRI denotes the first criterion of the iuplementation-related criteriat.

AMI denotes the first criterion of the model-related criteria.
**|ki dellotes the first critecion of the lmplementation-telated cotteria.
task b-3: the solvability of mathematical
models used to describe distribution planning yodels

3.3.1. Introduction

One of the basic tasks of this research project was to assess the solvability of the planning models, especially the two basic models proposed by Masud in 1974 (2.41-43). One of the modeis proposed was a siting-sizing model which required solution of a ($0-1$) integer program. As part of this research project, Analysis, Research and Computation (ARC) Company has developed an algorithm which, if implemented, should allow a 20-30 substation proolem to be solvable. A 30 substation problem with 10 plans for each substation would result in 300 integer variables ($0-1$) with 90 constraints. As it can be seen later chat some of the current iiterature shows that problems with $1 / 3$ this number of $(0-1)$ variables could not be solved. However, the algorithm proposed should solve the problems described by Masud in less than 30 CPU minuces. A solution time of lass chan 10 CPU minutes is not uncommon. A 10 substation problem with 10 plans should solve in less than 7 minutes. This is based on a run time of a 113 variable MIP of 28 CPU minutes to optimality. The ARC report, which is given in Appendix C envisions approximateiy a four time decrease in this time.

The cransportacion model proposed by Masud was expanded $=0$ a transshipment model oy Wall, et al. (2.64). They have solved a proolem with 981 demand points, 22 substations in 0.662 seconds on a CDC 7600 . This is ciearly within inceractive $=$ ime constraints.

Running these proolems separately, of course, is a suboptimal approach. As part of this research project, some general approacines have been Eormulated. They have a much higher prodability of being optimal.

The basic general model with a one period planning base would zequire in a worst case estimate for a 10 substation, 100 demand point problem, and straight line aporoximation of loss curves, 3,341 rows and 11,600 concinuous variables and $11,520(0-1)$ variables. A similar fype problem solved by Mairs, et al.* with ?,500 pius rows, 3, $700(0-1)$ variables and $: 3,000$ olus continuous variables vas solved in 90 CPlj ⿴inates wich an adcitional 22 CPU minutes to prove optimality on an I3M 370/168 using YPSX-MIP/370.

However, the probiem size used in this zesearch project is based on the worst case. If an inceractive program is used to build the model, arcs jetween demand points winich vouic have a very small likelihood of being connecred 三or transsinipment purposes couid be eliminated as a potential network arc. Similarly, many possible reconductoring possibilities couid be eliminated, as well as arcs between substations. The model :vas written with variabies dfstinguisning these cases so that this possioility could be easily exercised. An actual case of the size proposed wouid be less than the problem of Mairs and is clearly solvable.

If the cost surves are not approximated jy linear Eunctions of power cransmitced, but instead by a piecewise linear approximation with grid size equal to four, the number oi rows rises to 97,151 and the number of continuous variables rises to 95,920 and the number of $(0-1)$ variables rises to 60,150 for a cen sice, 100 demand point proolem. This problem is not solvable without new work on data handling techniques and approaches related so the structure of this particular proolem. Again, however, an inceractive approach which builds the model arc at a time using the pianner's knowledge wouid insure a problem of this size would not have to be soived. In chis case, for example, removai

[^3]of a transshipment arc removes eight constraints plus 5 continuous variables and Eive ($0-1$) variables. Thus the interaccive model building approach, allowing the planner to construct a potential network from winich the model selects a realized network, will pay powerful dividends in solvability.
ds an example, a chree suostation, eight demand point centers problem wich transshipment and with straight line approximation of the loss function was soived. The problem had 310 continuous variables, 113 $(0-1)$ variables and 111 rows. It was solved in 28 CPU minutes on an IBM $370 / 158$ using MPSK-MIP and needed an additional 14 minutes to prove optimality. A proolem with 110 ($0-1$) variables, 66 continuous variables and 140 rows was attampted by Shelton and Mahmoud (2.56) on an IBM 370/168. They achieved Eeasible solutions after five hours of CPU sime, but did not find an optimal solution, even though they were using a faster machine. The solution time has been enhanced by submitting the planner's solution as a starting solution. in interactive capability clearlyenhanced solvability here. (Note: The package we used was a slower version than used by Mairs. MPSX-MIP vs. MPSX-MIP/370. Mairs found a four fold difference in run time.)

The dynamic version will be approximately of a size Tin times the size of the one period model where I_{h} is the length of the planning period. At this stage a problem of this size would not be solvable.

The new aigorithm proposed by ARC is in Appendix C as well as their report on its effect on solvabilfty. The following table gives the maximum problem size for the general planning model, one period, and piecewise linear approximation with no arcs eliminated.

The size of the problem is approximately given by

$$
\text { Rows } \cong k_{1}\left(7 m^{2}\right)+k_{2}(7 n m)+k_{3}\left(n+m+k_{4}\right)
$$

$0-1$ variables $\cong c_{1}\left(4 m^{2}\right)+c_{2}(4 n m)+c_{3}\left(n+m+c_{4}\right)$
continuous $\cong d_{1}\left(7 \mathrm{~m}^{2}\right)+d_{2}(7 n \mathrm{~m})+\mathrm{d}_{3}\left(\mathrm{n}+\mathrm{m}+\mathrm{d}_{4}\right)$
where $n=$ NS.
Thus it can be seen that increases in n and m are the primary determinants of size. Increasing the number of cemand points will reguire less complexity in jower loss approximation. Going beyond Ewency demand points will requize a simpler loss structure, i.e., losses will be represenced by power loss on route $i, j=$ constant x power transmitted $x ;$ of miles of route $=$ (TVC) ${ }_{i j} \mathrm{X}_{\mathrm{ij}}$.

The Eoliowing table demonstrates the sizes of some reasonably large distribution planning probiems and compares them in size with the Mairs' model which has been solved.

Table 22. A comparison oi the problem sizes of the models

	OU Model			Mairs' Model
	NS $=4$	NS $=5$	NS $=10$	
	$\underline{\text { Ha }}=10$	$\mathrm{n}=20$	m= 100	
	$\mathrm{G}=4$	$G=4$	$\mathrm{G}=4$	
	$\mathrm{R}=8$	$\mathrm{R}=8$	$\mathrm{R}=8$	
\% of 0-1 variables	950	3.050	60, 150	3,700+
* of continuous				
variables	910	:3,000	95,920	13,000+
\% of rows	2.507	5,481	97,151	2,500+

B.3.2. Convex Approximation

Some Eurther fimprovements in solvability can be ootained if convex representation of the cost $=$ urves can be assumed. The envelop curve is not a convex
curve. It seems, however, that a convex approximation is not out of line since the envelop curve is an envelop of convex curves, as shown in Figure 5.

- Figure j. The convex approximation

If all curves are convex, a tremendous reduction in constraints and ($0-1$) variables can be obtained. Of course ($0-1$) variables present the most difficult barriers to solution. The following small program illustrates the approach:

$$
\begin{aligned}
\text { Min } X_{0}= & \sum_{i=1}^{4} C_{1} X_{1}^{i}=x_{1}^{1}+3 x_{1}^{2}+5 x_{2}^{3}+10 x_{3}^{4} \\
\text { Suoject }= & \sum_{i=1}^{4} X_{1}^{i} \geq 5 \\
& \cdot x_{1}^{1} \leq 2, x_{1}^{2} \leq 2, x_{1}^{3} \leq 2, x_{1}^{4} \leq 2 \\
& x_{1}^{i} \geq 0
\end{aligned}
$$

Since the simplex seeks the cheapest costs, $X_{1}{ }^{1}$ will come inco solution first. Ehen X_{1}^{2}, then $X_{1}{ }^{3}$. The soiution will be

$$
\begin{aligned}
& x_{1}^{1}=2 \\
& x_{1}^{2}=2 \\
& x_{1}^{3}=1
\end{aligned}
$$

and $x_{0}=1(2)+3(2) \div 5(1)=13$
The objective function is convex as shown in Figure б. The slopes of the piecewise linear tems are 1 , 3, 5, 10 .

Let us consider $X_{0}=k_{0} X_{1}{ }^{2}, Z_{1} \leq 7$. Let us use a grid size of 5 . Since there is an exponent, let us use subscripts for the grid indexing. $X_{11}, X_{12}, X_{13}, X_{15}$ are the grid points. Let $X_{11} \leq 2, x_{12}^{11} \leq 2, X_{13} \leq 2$, $X_{14} \leq 2, X_{15} \leq 2$. The curve and its approximation are shown in Figure 7.

The grid sizes can be non-uniform. The approximacion would result in a regligible error. In our approximation the slope of the ine segments are 1,3 , $5,7,9$. The unicormity is due to, of course, the
nature of a parabola. The curve is then represented for the purpose of linear prograuming by

$$
1 x_{11}+3 x_{12}+5 x_{13}+7 x_{14}+9 x_{15}
$$

Figure 6. The objective function

Figure 7.
Thus, if X_{l} is power cransmitced, chen X_{1} can be replaced oy the above sumation. The number oi variables have been multiplied by five, but no new constraints and no ($0-1$) variables have been added. To judge the impace, let is recount the rows and variables
for the case inS $=10$, $m=100, G=4, R=8$. In this approximation variables $X_{i j}, Z_{i j}, Y_{i j},(R S)_{1 j}$ would
be replaced by

$$
\sum_{g=1}^{4} X_{i j g}, \sum_{g=1}^{4} z_{i j g}, \sum_{g=1}^{4} Y_{i j g}, \sum_{g=1}^{4}(R S)_{i j g} \text { with upper }
$$

tounds on each or the variables. Table 23 illustrates some specific examples of using the convex approximation on the model developed in this research.

Table 23. The Effects of the Convex Approximation

	Non Convex Approximation	Convex Approximation
Continuous		
Variables	95,920	47,960
$0-1$ Variables	50,150	11,090
Rows	97,151	13,221

Size of Base Model (NS $=10, m=100, G=4, R=8$)
Now, as it can be remembered that an interactive approach which would eliminate arcs Erom the distribution network would result in a much smaller problem. In chis case, removing a transshipment arc would remove four continuous variables, a zero-one variable and a constraint. Removing a reconductoring are would remove four continuous variables, a zero-one variable and two constraints. In an interactive approach many reconductoring arcs would be removed since many of the Eeeder routes would have no conductors in place. For 100 demand centers many points would have no connecsions as it would be obvious to the planner that no connections should be made. Most demand centers would have transshipment possibilities to four or five other demand points, not the full one hundred. If each demand center could sinip only to five others then the number of variables would be reduced by (4) (9,900) $\dot{4}(500)=37,600$ and 9,400 constraints wouid be removed. The new problem would have 10,360 continuous variabies, 1.960 zero-one variables, 3,321 rows. The limit on rows in MPSX-MIP is 13,000 . Problems of this rype with 3,700 zero-one variables have been solved. Thus this problem is solvable in an interactive model building mode with the planner making decisions throughout the process. The planner's solution will also enhance computation time.

3.3.3. A New Solution Merhod

The new solution method developed by ARC (See dppendix C) for LP/GUB krapsack problems improves the ability to solve the least cost substation capacity expansion proolem several ways:
(1) The substation capacity expansion problem. formulated as a $0-i$ integer programoing problem is a "multiple choice" integer program whose chofces are identified by GUB sets. It is possible to incorporate all of these GUB sets and any selected capacity conscraint of the original IP problem into an LP/GUB relaxation of the IP problem. This relaxation yields: (a) new triai solutions, (b) new fathoming tests, (c) new choice rule information. These are important components of an effective soiution approach for the substation capacity expansion problem.
(2) The LP/GUB knapsack relaxation becomes still more poweriul by means of surrogate constraint solution strategies. These strategies generace a strong linear combination of the capacity constraints to take the role of the knapsack constraint. This increases the effectiveness of the fathoming tests, as well as providing better rial solutions and improved choice rule information.
(3) The urilization of subgradient optinization
techniques makes it possible to generate sharpened surrogate knapsacks at intermediate solution stages, as well as at the outset of the overall solution effort. The modification of the surrogate knapsack, however, can be exploiced by using an advanced start for the LP! GUB knapsack problem based on the preceding solution to this problem, Eollowing the methodology of the new algorithm.
(4) The solution of the $0-1$ substation capacity expansion problem, incorporating the strategies indicated, requires the solution of the LP/GUB knapsack problem many hundreds or thousands of times. Thus, it is especially important to be able to solve this problem efficiently, as the new algorithm makes it possible to do. The efficiency of the new method, furthermore, does not rest simply on intuitive evaluation, but is confimed by the derivation of computational bounds that strictly dominate the best previously known bounds for this problem. The new bounds are increasingly attractive relative to previous bounds as the size of the problem increases, therefore providing the IP solution method the increased ability to solve substation capacity expansion problems that were too large to handle efficiently in the past.

This new development is expected to result in a several-fold improvement in the speed of solving problems in the range of $10-15$ substations, with $5-10$ plans each. In addition, it provides the ability to solve problems larger chan feasibly possible with previous methods. It is anticipated that problems involving roughtly twice as many suostations as the $10-15$ substation problems should be solvable within ertirely reasonable solution times, although the eifort to solve these larger problems with previous mechods is exponentially greater chan the effort to solve the $10-15$ substation problems.

Reports indicate that the $10-15$ substation problems are the largest feasibly solvable to date. The new method should be able so solve these problems Eive to ten times faster chan berore, and also be aole to solve problems with $20-30$ substations in about the same amount of time currently required to solve problems with $10-15$ substations.

TASK 3.4: the identification of distribution design
techniques used in practice

3.4.1. Introduction

In order to identify the distribution design techniques used in practice by the utility industry a questionnaire has been prepared and sent to a large number of electric power utility companies. Also, a large number of these companies were visited and their distribution olanners interviewed by the authors for the identification and description of distribution system planning mechocs and cecrniques used by these electric power urility sompanies and other commerctal entities. Some of the information gathered from the incerviews and the questionnaires are presented in this section. A sampie copy of the questionnaire is included in Appendix 3 . The companies contacred are:
Oklahoma Gas and Eleceric Co. Oklahoma City, OK
Public Service of Oklanoma Co. Tulsa, OK
Kansas Gas and Electric Co.
Texas Electric Co.
Texas ?ower and iignt Co.
Dallas Power and Ligit Co.
C.H. Guernsey Co.
Arizona Pubiic Service Co.
San Diego Gas and Elecrric Co.
Pacific Gas and Eiectric Co.
Northeast Utilities Serrice Co.
Georgia ?ower Co.
Sorthern Stares Power Co.
Public Service Co. of New Yexico
Consolidated Edison of New York, inc. New York, NY
Dayton Power and Light Co.
Pacific Power and Light Co.
Duquesne iight Co.
Gulf States Utilities Co.
El Paso Electric Co.
Sierra Pacific Power Co.
Daycon, OH
Portiand, $O R$
Pitrsburgh, PA
Beaumont. TX
El Paso, TX

As a result of the information gathered irom these sources as well as others, a flow diagram of the distribution system planning was developed as can be seen in Figure 4 or IF . However, in developing chis iiow diagram, no actempt has been made to represent any one of these companies specifically, but ratiner to outline the thinking process involved in the distribution system planning in general. Several companies used some sort of compurerized historical file as a base for load projection. Each company had a system analysis program, one of which sized and placed capacitors and regulators, provided for conductor changing and the load growth. It was evident that there is room for improvement in distribution planaing.

The distribution systems planner partitions the cotal distribution system planning problem into a set of subproblems which can be handled by using available, usually ad hoc, methods and cechniques. The planner, in the absence of accepted planning teciniques, may restate the problem as an attempt to minimize the cost of subtransmission, suiostations, feeders, laterals, etc., and the cost of losses. In this proness, however, he is usually restricted by permissabie voltage values. voltage dips, flicker, ecc., as well as service continuity and reliability. In pursuing these objectives, the planner ultimately nas a significant influence on additions to and/or modifications of the subtransmission network. locations and sizes of substarions. service areas of substations, location of oreakers and switches, sizes of feeders and laterais, voltage levels and voltage drops in the system, the location of capacitors and voltage regulators, and the loading of transformers and feeders.

There are, of course, some other factors that need to be considered such as cransformer impedance, insulation levels, availaoillty of spare transformers and mobile substations, dispatci of zeneration, and the rates that are charged to the customers. Furthermore, there are factors over which the distribution syscem planner has no influence, but, nevertheless, have to be considered in good long-range distribution systems planning, e.g., the timing and locarion of energy demands, the duration and.frequency of ourages, the cost of equipment, labor and money, increasing fuels costs, increasing or decreasing prices of alternative energy sources, changing socioeconomic conditions and trends such as the growing demand ior goods and services, unexpected local population growth or decline, changing puolic behavior as a result of technological changes, energy conservation, changing environmental concerns of the puolic, changing economic conditions such as a decrease or increase in gross national products (GNP) projections, inflation and/or recession, and regulations of federal, state and local governmencs.

3.4.2. Factors Affecting Suscem P1anning

The number and complexity of the considerations affecting system planning appears initially, to be scaggering. Demands for ever-increasing power capacity, higher distriburion volcages, more automation and greater control sophistication constiture only the beginning of a list of such factors. The constraints wich circumscribe the designer have also become more onerous. These include a scarciry of available land in urban areas, ecological considerations. limitations on fuel choices, the undesirability of rate increases and the necessity to minimize investments, carrying charges and production charges.

Succintly, the planning probiem is an atcempt to minimize che cost of subtransmission, substations. feeders, laterals, etc.. as well as the cost of.losses. Indeed, this collection of requirements and constraints has put the problem of optimal distribution systems planning beyond the resolving power of the unaided human mind.

3.4.2.1. Load Eorecasting

The load growth of the geograpiical area served by a utility company is the most important factor influencing the expansion of the distribution system. Therefore, forecasting of load increases and syscem reaction to these increases is essential to the planning process. There are two common tire scales of importance to load forecasting; long-range, with time horizons on the order of fifteen or twenty years away and short-range, with time horizons of up to five years distant. Ideally, these forecasts would predict future loads in detail, extending even to the individual customer level, but in practice, much less resolution is sought or required.

Figure 8 indicates some of the factors which influence the load forecast. As one would expect, load growth is very much dependent on the community and its development. Economic indicacors, demographic data and official land use plans all serve as raw input to the forecast procedure. Output from the forecast is in the form or load densities (kVA/unit area) for long-range forecasts. Short-range forecasts may require greater detail. Densities are associated with a coordinate grid for the area of interest. The grid data is then available to aid configuration desicn.

The outputs from a load forecasting program can be detailed as much as desired and feasibie. Further,
a master grid is developed on a suitable scaled map of the complete service area under study. The master grid presents the load forecasting data and it provides a userul planning tool for checking all geograpinical locations and taking the necessary actions to accoamodate the system expansion patterns. Thus, the master grid facilitates coordination or more detailed informarion on local area maps. This mechod provides fast and accurate information and a display or overall future system requirements.

An excellent source of present load data is a Transformer Load Management (TLM) oprogram. Output of a TLM contains a list of all che distribution cransformers in the system by their numbers. Once each transformer has been assigned grid coordinates, the TLM file can be an excelient geographical display of the present load and can be used as a starting point for the dara base.

By ising the energy consumption data, which are readily available from the customer account files, typical demand curves are scaled and the resultant information is used to estimate the peak loading on specific equipaent of the system, e.g., distribution transformers, feeders, and ultimately substations.
after establishing the grid system, the next step in a load projection is co fill in the load data using the TLM data and the projected load growth of each square. The grid squares can be classified into three basic types:

1) The ones which are heavily filled with customers. Here the sources of information are the iniscorical ILM data, markering projecíions, and demographic dara.
2) The ones which are lightly loaded with room for known, or forecasted, expansion.
3) The ones with relatively large vacant areas for which there is no certain load potential or for which forecasting of the timing of fucure load connections is difficuit.
Official land use plans can be used as an additional source of information in forecasting the future load densities in any given area. Also, aerial phocography has been used by some utilities to set up the grid system. Furthermore, actempts have been made co develop patcern recognition procedures to aid in reading maps and automarically interpret and process the information.

Three additional code designators covering the remaining facrors are assigned to each grid. They are the planning code, saturation code, and class code. The planning code is a district number which is established by metropolitan planning commissions and designates twenty-six different types of districts, each with different growth patterns and rates. The saturation code is assigned by the planning engineer and indicates now "fuil" the grid is. The class code is also assigned by the planning engineer and reilects the demand expected for each customer in the grid. The initial assignment of these three factors is tedious and unfortunately somewhat subjective. However, once it has been done, the saturation code is updated by the program itself, and the planning code and the class code need to be changed only as a result of some substantial change in the original conditions, e.g., when some new industrial or residential development plans are revealed. The output of the load forecasting prograll is a forecasted power demand for a given grid area for a specifled time period. It becomes a part of the data base management system, where it is available to the other programs.

If, for example, the planner desires to analyze the system periormance, the required data is given in the form of grid coordinates, connections, element code numbers, and zelated parameters. All the physical and electrical characteristics of the system are stored
in the dara base. Eor instance, for the primary system the stored parameters are:

1) Conductor: The description, ampacity, positive/zero sequence resistances and reactance.
2) Node: The points on the system for different branches and wire sizes.
3) Secrion: The parameters for line length, ampacity, positive/zero sequence resistances and reacrances, load data (kW, kVAR), growth rates, and special equipment data (capacitors, auto transformers, regulators, etc.)
4) Sequence: The sequence of the incerconnections between nodes and sections, the locations of the branches and the terminal points of branches.

B.4.2.2 Substation Expansion

Figure 9 presents some of the factors affecting the expansion of the presenc system decision to handle the forecasted load. Here, of course, the planner can make the decision himself, without using any of the planning tools, based on information aither intangible or difficult to qualify'in terms of some suitable form of compurerized analysis.. Examples are a recent top management decision to delay all new construction projects indefinitely, or an announcement of a substantial number of residential development projects. The forecasted load, load density, load growth, and the distance to the nearest substation may indicate that eventually a substation has to be built to serve the expanding load. Also, under some circumstances it might be advantageous to build the substation right away to prevent some future adversary situations, e.g., complaints oy the property holders in the immediace vicinity claiming that the construction of the substation would reduce the value of their property substantially. There might also be some other intangible factors that need to be considered by the planner as he directs the planning process. For instance, the protection liaitations are not precisely known until a new system configuration is designed and only at that time can the aecessary protection scheme be designed to eliminate any coordination problem.

Figure 8. Factors affecting load forecast

Figure 9. Factors affecting substation expansion
In the system expansion plan, of course, che present system configuration, capacity, and the forecasted loads play major roles. For instance, piysical limitations may preclude the installation of any additional feeders. In that case some of the load can be shifted to adjacent substations if the tie line and substation capacities are adequate. Also, the physical size and the availability of adjacent land help to determine whether a particular substation can be expanded. The ultimate substation size limitations, as dictated by company poiicy and/or other factors, may contribute to this decision. \therefore Iransmission stiffness, i.e., the conductor capacity of the transmission line, the source capacity, and adequace voltage support for normal and emergency conditions, indicate wherher the transmission or subtransmission system can support the additional load in the area.

3.4.2.3. Substation Site Selection

Eigure 10 shows the factors that affect substation site selection. The distance from the load centers and from the existing subtransmission lines, as well as other limitarions, such as availability of land, its cost, and land use regulations, are imporcant.

The substation siting process can be described as a screening procedure chrough which all possible locations for a site are passed as indicaced.in Figure 11 . The service region is the area under evaluation. It way be defined as the service territory of the utility. An intrial screening is applied using a set of considerations, e.g., safery, engineering, system planning, institutional, economics, aesthetics. This stage of the site selection mainly indicates the areas that are unsuitable for site development. Thus. the service region is screened down to a set of candidate sites. for substation construction. Further, the candidate sites are categorized into three basic groups: (1) sites filat are unsuitable for development in the foreseeable future; (2) sites that have some promise but are:not selected for detailed evaluation during the planning cycle; and. (3) candidate sites that are to be stüdied in more derail.

The emphasis put on each consideration changes from level to level and from utility to utility. Three basic altemative uses of the considerations are: (1) quantitative versus qualitative evaluation, (2) adverse versus benericial aifects evaluation,
(3) absolute versus relative scaling of efeects. A complete site assessment. should use a mix of all alternatives and attempes to treat the evaluation irom a variety of prospectives.

Figure 10; Factors affecting suostation siting.

Figure ll. Suiostation site selection procedure.

B.4.2.4, Other Eactors

Once the load assignments to the substations are determined, then the remaining factors; as shown in Figures 12-16 need to be considered. In general. the subtransmission and distribution system voltage levels are determined by company policies and they are unlikely to be subject to change at the whim of the planning engineer unless he can support his argument
by running test cases to show suostantial benefits that can be achieved by selecting different voltage levels.
rurther, because of the standardization and economy that are involved, the planner may not have that much ireedom in choosing the necessary sizes and types of capacity equipment. For example, he may have to choose a distribution transiormer out of a fixed list of cransiormers that are presently stocked by his company =or the voltage levels tinat are already established by the company. Any decision regarding addition of a feeder or adding on co an existing Eeeder will, within limits, depend on the adequacy of the existing system and the size, location, and timing of the additional loads that need to be served.

PRESENT DISTRIBLTION SYSTEM PLANNING TECTNIQUES

In order to gather information on present distribution system planning and design techniques, a questionnaire was distributed to a large number of electric power utility companies. Furthermore, a number of these companies were visited and their distribution planning engineers were interviewed by the authors to identify and obcain descriptions of distribution system planning methods in use.

Figure 12. Eactors affecting primary voltage selection

Zigure 13. Factors aifecting Eeeder route selection

Figure 14. Fantors affecting number of feeders

Figure 1.5. Factors affecting conductor size selection

Figure 16. Factors affecting total cost of the discribution suscem expansion

Today, many electric distribution system planners in the industry utilize compurer programs, usually based on ad hoc cechniques, such as load flow programs, radial or loop lead flow programs, short circuit and fault current calculation programs, voltage drop calculation programs, and cotal system impedance calculation programs, as well as other tools such as load forecasting, voltage regulation, regulator setting, capacitor planning, reliability and optimal siting and sizing algorithms, etc. However, in general, the overall concept of using the output of each program as input for the next program is not in use. Of course, the computers do perform calculations more expeditiously than other methods and free che distribution engineer from detailed work. The engineer can then spend his time reviewing results of the calculations, rather than actually making them. Nevertheless, there is no substitute for engineering judgement, based on adequate planning at every stage of the development of power systems, regardless of how calculations are made. In general, the use of these tools and their bearing on the system design is based purely on the discretion of the planner and overall company operating policy.

Figure 17 shows a functional block diagram of che discribution system planning process currently followed by the most of the utilities. This process is repeared for each year of a long-range ($15-20$ year) planning period. In the development of this diagram, no attempt was made to represent the planning procedure of any specific company but rather to provide an outline of a typical planning process. As the diagram shows, the planning procedure consists of two major activities: ioad forecasting, distribution system. configuration design, substation expansion, and substation site selection.

Configuration Desizn

Configuration design starts at the customer level. The demand, type, load factor and other customer load characteristics dictate the type of distribution system required. Once customer loads are determined, secondary lines are defined which connect to distriburion transformers. The latter provide the reduction from primary voitage to customer-level voltage. The distribution transformer loads are then combined to determine the demands on the primary distribution system. The primary distriburion system loads are then assigned to subscations that scep down fzom subcransmission voltage. The distribution system loads, in turn, determine the size and location (siting). of the suostations as well as the routingand capacity of the associared suotransmission lines. It is clear. that each step in this planning process provides input for the steps that follow.
?erhaps what is not clear is that in practice, such a straignt-forward procedure may be impossible to follow. A much zore cotmon procedure is the following. Upon receiving the relevant load projection data, a system performance analysis is done to determine whether the present system is capable of handing the new load increase with respect to the company's criteria. This analysis, constituting the second stage of the process, requires the use of cools such as a distribution load flow program, a voltage profile and regsiation program, etc. The acceprability criteria, representing the company's policies, obligations to the consumers, and additional constraints can include:

1) Service continuity.
2) The maximum allowable peak-load voltage drop to the most remote customer on the secondary.
3) The maximum allowable voltage dip occasioned by the starting of a motor of specified starting current characteristics at the most remote point on the secondary.
4) The maximum allowable peak load.
5) Service reliability.
6) Power losses.

As illustrated in Figure 17, if the results of the performance analysis indicate that the present system is not adequate to reet future demand, then either the present syscem needs to be expanded by new, relatively minor, system additions or a new substation may need to be built to meet the future demand. If the decision is to expand the present systems with minor additions, chen a new additional network configuration is designed and analyzed for adequacy. If the new configuration is found to be inadequate, anocher is tried, and so on until a satisfactory one is found. The cost of each configuration is calculated. If the cost is found to be too high, or adequare performance cannot be achieved, then the original expand/build decision is reevaluated. If the resulting decision is to build a new substation, a new placement site must be selected. Further, if the purchase price of the selected site is too high, the expand/build decision way need further reevaluation. This process terminates when a satisfactory conriguration is attained which provides a solution to existing or future problems at a reasonable cost. Many of the steps in the above procedures can feasibly be done only with the aid of computer programs. A osief catalogue of some of the available rools is presented in Table I.

The program names, in Table I, are accompanied by a general description of the actions performed. No one utility is in possession of all of these programs and generally there has been no attempt to coordinate the input of one program with the output of anorher. The capabilities summarized in Table I are surely not indicative of the present state of technology with respect to distribution planning tools. There are no doubt other tools available from research institures, universities and consultants. It does accuracely reflect the tools which are presently available to and in use by the nation's utilities and the power industry.

Figure 17. A block diagram of a typical distribution system planning process
task b.5: the identification and cataloging of planning objectives, CONCEPTS, and CONSTRAINTS ACCEPTED in PRACTICE

Introduction

The objective of distribution system planning is to assure that the growing demand for electricity, in terms of increasing growth rates and high load densities, can be satisfied in an optimum way by additional distribution systems, from the secondary conductors through the bulk power substations, which are boch eecinically adequate and reasonaoly economical. Table 24 presents some additional planning objectives. Distribution system planners must determine the load magnitude and its geographic location. Then the distribution substations must be placed and sized in such a way as to serve the load at maximum cost effectiveness by minimizing feeder losses and construction costs, while considering the constraints of service reliability.

As is well known, distribution system planners have used computers for many years to perform the tedious calculations necessary for system analysis. However, it has only been in the past few years that technology has provided the means for planners to truly take a "systems approach" to the total design and analysis. It is reasonable to assume that the development of such an approach will occupy planners in the 1980's and will significancly contribute to their meeting the challenges previously discussed. In the future, more so than in the past, electric utilities will need a fast and economical planning $t 001$ to evaluate the consequences of different proposed altematives and their impact on the rest of the system to provide the necessary economical, reliable and safe electric energy to consuwers. The planner, in the absence of accepted planning cechniques, may restate the problem as an attempt to minimize the cose of subtransmission, substations, feeders, laterals, etc., and the cost of losses. In this process, however, he is usually restricted by permissable voltage values, voltage dips, ecc., as well as service concinuity and reliability. In pursuing these objectives, the planner ultimately has a significant influence on additions to and/or modifications of the subtzansmission network, locations and sizes of substations, service areas of substations, locations of breakers and switches, sizes of feeders and laterals, voltage levels and volzage drops in the system, the location of capacitors and voltage regulators, and the loading of transformers and feeders. There are, of course, some Eactors that need to be considered such as Eransformer impedances, insularion levels, availaoility of spare transformers and mobile substarions, disporch of generation, and rates charged to custowers.

Taole 24. Distribution System Planning Objectives
Service continuity
Service reliability
Quality of service
Yeeting demand
Cost minimization
Aesthetics

Impacts of Load Management

In the past, the power utility companies of this nation supplied electrical energy to meet all customer demands at the time the demands are occurred. Recently, however, because of the Einancial constraints (i.e., high cost of labor, materials, and incerest rates), environmental concems, and the recent shortage (or aigh cost) of fuels, this basic pinilosopiy has been reexamined and customer load management investigated as an aitemative to capacity expansion.

Load managemenc's benefits are syscem-wide. Alteration of the electrical energy use patterns will affect not only the demands on systen generating equipment,
but also alter the loading of distribution equipment. The load management may be used to reduce or balance loads on marginal substations and circuits, thus even extending their lives. Therefore, in the future, the implementation of load management policies may drastically affect the distribution of load, in time and in location, on the distribution system, subrransmission system, and on the bulk power system. Since distribution systems have been designed to interyace with uncontrolled load patterns, the systems of the future will necessarily be designed somewhat different to benefit from the altered conditions. However, the benefits of load management cannot be fully realized unless the. systems planners have the cools required to adequately plan incorporation into the evolving electric energy system. The evolution of the system in response to changing requirements and underchanging constraints is a process involving considerable uncertainty.

Table 25 presents some of the distribution system planning constraints that are encountered in the practice. Further, it would be appropriate to examine what today's trends are likely to portend for the futura of the planning process. The central purpose of doing this is to stimulate ideas about how to best meet the increasingly difficult challenges of the near future.

Table 25. Distribution System Planning Constraints

```
Economic and Einancial
Environmental
Institurional (company policies)
Codes, standards, and ordinances
Geographical and physical boundaries
Planning deadlines
Equipment and component standards
Service continuity
Service reliability
Presenc facilities
Data availability
Compucacional (as a result of the lack of compre-
    hensive planning models)
Maximum permisable peak-load voltage irop
Maximum permisaole voltage dip
Maximum permisable peak load
Power losses
Feeder getaway, routing, and right-of-ways
Voltage levels
```


Economic Eactors

There are several economic factors which will have significant effects on distribution planning in the 1980's. The first of these is inflation. Fueled by energy shortages, energy source conversion cost, environmental concerns and government deficits, inflation will continue to be a major factor.

The second important economic factor will be the increasing expense of aquiring capital. As long as inflation continues to decrease the real value of the dollar, attempts will be made by government to reduce the money supply. This in cum will increase the competition for attracting the capital necessary for expansions in distribution systems.

The third facror which must be considered, is increasing difficulty in raising customer rates. This rate increase "inertia" also stems in pare from inflation as well as from the results of customers being made more sensitive to rate increases by consumers activist groups.

Demographic Factors

Important demographic developments will affect distribution systam planning in the near future. The
first of these is a crend which has been jominant over the last fifty years: the moverent of the population Erom the rural areas to the metropolitan areas. The forces which initially drove this migration, economic in nature are still at work. The number of single Eamily farms has continuously declined during this century and there are no visibie trends which would reverse this population flow into the larger urban areas. As populacion leaves the countrysides, population must also leave the smaller towns which depend on the countrysides Eor economic life. This trend has been a consideration of distribution planners for years and represents no new effect jor which account must be taken.

However, the migration from the suourbs to the urban and near urban areas is a new trend attribucable to the energy crisis. This trend is just beginning to be visible and ft will resulc in an increase in multifamily dwellings in areas which already have high popalation densities.

Technological Factors

The final class of factors, which will be imporcant to the distribution system planner, has arisen from technological advances. These advances have been encouraged by che energy crisis. The first of these is the improvement in fuel cell technology. The output power of such devices has risen to the point where in the areas with higi population density, large banks of fuel cells could supply significanc amount of the cotal power requirements. Ocher nonconventional energy sources which might be a part of the total energy grid could appear at the customer level. Among the possible candidates wouid be solar and wind-driven generacors. There is some pressure from consumer groups to force utilities to accept any surplus energy from these sources for use in the cotal distribution network. If this trend becomes important, it would ciange drastically the encire nature of the distribution system as is it known today.

EUTURE NATURE OF DISTRISUTION PLANNING

Predictions about the future methods for distribution planning must necessarily be extrapolations of present mechods. Basic algorithns for nerwork analysis have been known for years and are not likely to be improved upon in the near iuture. However, the superstructure which supports chese algorithms and the problem-solving environment used by. the system designer is expected to change significantly to cake advantage of new methods which technology has made possible. Before giving a detailed discussion of chese expected changes, the changing role of distibution planning needs to be examined.

Increasing Imporeance of Good Planning

For che economic reasons lisced above, distribucion system will become more expensive to build, expand and modify. Thus ic is particularly important that each distribution system design be as cost effective as possible. This means that the system must be optimal from many points of view over the time period from first day of operation to the planning
time horizon. In addition to the accurate load growth estimates, components must be phased in and out of the system so as co minimize capical expendicure, meet performance goals and minimize losses.

These requirements need to be met at a time when demograpinic trends are veering away from what have been their norms for many years in the past and when distribution systems are becoming more complex in design due to the appearance of more active components (e.g., Euel cells) instead of the conventional passive ones.

Cost/Benefit Ratio for Innovation

In the utility industry, the most powerfui Eorce shaping the future is that of economics. Therefore, any new innovarions are likely to be adoped for their own sake. These innovarions will be adopted only if they reduce the cost of some activity or provide something of economic value which previously had been unavailable for comparable costs. In predicting that certain practices or cools will replace current ones, it is necessary that one judge their acceptance on this basis.

The expected innovations which satisfy chese criteria are planning tools implemented on a digital computer which deal with discribution systems in aetwork terms. In TASKS A. 1 and A.2, a list of currently available such planning tools was given, and one might be tempted to conclude that these tools would be adequate for industry use throughout the l980's. That this is not likeiy to be che case may be seen by considering the trends judged to be dominant during this period with those which held sway over the period in which the cools were developed.

New Planning Tools

Tools to be considered fall into two categories: network design cools and network analysis cools. The analysis cools may become more efficienc but are not expected to undergo any major changes although the environment in which they are used will change significantly. This environment will be discussed in the next section.

The design tools, however, are expected to show the greatest development since better planning could have a significant impact on the utility industry. The results of chis development will show the following characteriscics:
(1) Vetwork design will be optimized with respect to many criteria using programming methods of operations research.
(2) Network design will be only one facet of distribution system management directed by human engineers using a compurer system designed for such management functions.
(3) So-called network editors will be available for designing trial networks; these designs in digital form will be passed $c o$ extensive simulation programs which will determine if the proposed network satisfies performance and load growth criteria.
task b.6: the selection of planning and analysis concepts and yethods which form the core of efficient distribution planning :ethodologies

Incroduction

The assessment established in TASKS A.3, B.1, and B. 3 make it clear that a comprehensive mathematical planning model was not available in the literature. The assessment indicated that the major gaps in the literature nad to do with the decisions on voltage levels, accomodation of non-linear terms in the objective function, reconduccoring decisions, fixed charges on transinipment, locaEion of substations from a givenser of prospective sites. and conductor size selection. The literacure contained explicit models which address transhipment, incremental substation capacity, variants on site location, fixed charges for substations, and one which purports to track individual transformers. The major gap in the literaEure was the lack of Eull exploitation of mixed integer formulations of the distribution networks to analyze these decisions simultaneously.

As a result of this analysis a full scale mixedinteger model for both a siagle period and dynamic planning horizon has been formulated. Some small scale tests have been run on IBM $370 / 158$ computer to assess the solvability. In TASK B. 3 a complete assessment of the solvaioility problem is presented.

The decision on voltage levels are implicit in these models. By use of the interactive approach, these models can be reformulated by computing the values of parameters at new voltage levels. The voltage level which gives the minimum cost can be selected. Most parameters are unchanged, but of course all power loss curves are affected.

Historical Background

Distribution systems planning requires a complex procedure because: (1) large numbers of variables are involved, (2) the mathematical representation of many requirements and restricting conditions specified by systems configuration is a very difficult cask. Some of the approacnes used in performing this task in the past inciude:

1) The altemative policy mechod, which compares a Eew alternative policies and selects the best of them.
2) The decomposition approach in whici a large problem is divided into several smaller subproblems, and each is solved separately.
3) The linear programing and the integer programming methods which linearize constraint conditions.
4) The dynamic programing approach.

Each mechod has its own advantages and disadvantages. In long cerm planning, in particular, a large number of variables is involved and there can exisc a number of feasible alternarive plans which make the selection of the oprimum altemative a very difficult task. The approach used by tawrence, et al. [i], in their model of "Aucomated Distribution Syscem Planning", is a good example of the ad hoc sodels. They included all facilities from the bulkpower transmission lines to the customer's meter. In recent years, there have been a number of advances in the applicacion of mathematical programming to the distrioution systems planning models [2-5]. Oniy recently the srate-of-the-art in computer technology has reached the point where the speed and storage capabilities are sufficient to solve a problem of such magnitude as distribution planning, where the interacrive nature of
the decisions, coupled with the cumbersom amount of data, presents a formidable cask even to the most skilled and experienced planner. Juricek, et al. [4], deveioped a model which employs a load flcw analysis to determine tuture system conditions based on load growth projections and present conditions. A ser of possible system modifications composed of combinations of substation expansion or construction and Eeeder constuction is proposed. This set of modificarions is generated by a transportation analysis secinique which nodels the distribution network as a transportation system.

Masud [3] developed a model which included a zeroone integer programming approach to optimize substation transformer. capacity, and a linear programming approach to optimize load transfers. The procedure involves first minimizing substation transformer capacities for each year and then optimizing substation transformer capacities for each year and then optimizing load transfers. However, it does not minimize the present value of expansion costs. Recently, Shelton and Mahmoud [6] treated the same cask by an interesting approach, combining financial modeling with distribucion system expansion decisions, e.g., expanding substations, opening new sites, expanding circuits, and decisions on transformer incerchanges.

Each of these models makes approximations, in varying degrees of detail, in che primary feeder network. However, the greatest ievel of detail is reached by the Adams and Laughton approach [2] which represents each feeder line segment in terms of capacity and linearized cost, and also considers multiple elme periods. They used the model to solve smail problems (involving a single substation, 34 small feeder segments and 24 demand locations) [o\}-Later, others, e.8.,"Masud [3] and Juricek, et al. [4], developed models that achieved results which involved more realistically sized problems having $10-15$ substations. However, in each of these later models, the feeder network was approximated in cerms of load transfer capadilities berween substation service areas or primary feeder service areas. These approximations, therefore, reduced the capability of such models to include feeder ne=work, variable cosrs directly inco the ootimization process[$[9]$.

Juricek, et al. [4], and Crawford and Holt [5] recognized che importance of including the load points to represent non-uniform load distribution and feeder cost directly in the optimization process. Crawford and Holt [5] have developed a linear programming approach which utilizes also a transportation algorithm to optimize substation service areas by ainimizing tine product of demands and distances from substations. The model determines the required lvading for each substation one year at a time. Thus, the required substation transformer capacity is determined indirectly. While this technique minimizes distribution feeder losses, it does not aecessarily arrive at the optimal expansion plan, since it does not minimize the present vaiue of costs associaced with expansion.

A dynamic programming approach to distribution systems planning has been developed by Oldfield and lang [7] and also by Adams and Laughton [8]. As a compromise between the difficulties due to the large number of variables, plus the complexity of the design process, and the economics to be gained by a search Eor optimality, Oldfield and Lang have suggested a twostage planning mechod; the intention is to provide a method in which to processes of design and optimizacion are applied consecutively rather than simultaneously. The model, used by Adams and Laughton, determines load transfer schemes and substation installation dates by minimizing the cost of substation transforner losses. Their dyamic programing technique examines all possible combinations of expansion alternatives ex-
plicitly for each stage of the study. This approach does not necessarily derive the optimal expansion plan, since minlmizing the costs ior each year does not necessarily uinimize the presenc value of all costs throughout the study period. Wall, et ai. [9]; devised a model that contains all the details of the Adams and Laughton model [8] for a single time period, except. for the fixed charges on feeder segments. A.higily efficient transshipment code is used to solve the model. which incorporates several recent signigicant advances, thereby decreasing the =ime of solution of such problems. They claimed that their model utilizes inear approximations of non-linear cost functions but the explicit equations to achieve that claim were not given.

Distribution Design Techniques Used in Practice

In a given distribution system the existing distribution of demand centers, i.e.; demand locations, defines fixed routes along which feeders are located. In order to represent the non-uniform load distribution, a grid system nas been devised for a given distribution area, therefore, the centers of each grid represent a demand center. The existing substations, feeders, and feeder routes must be included in the design. Further, any existing or possible interconnecting routes, i.e., tie lines; between existing or potential substation sites must be specified. Thius, the planning engineer, based on the given information, his past experience, and his engineering judgement, selects a radial network configuration by using the available substarion sites and Feeder routes. Here, the substation may be expanded in some increments where each increment represents either an expansion of an existing substacion capacity or the installation of a new substation with an adequate capacity to meet the cotal syscem demand. The necessary feeder and transformer sizes are chosen from standardized sets according to thermal rating and voltage regulation restrictions.

Daca Preparation

The foundation of the data base of the system for the computer application is the system description in which each significant element of the system is located via grid coordinates, using, auxilary files and code numbers as appropriate. Connections between elements are identified and the loads are also assigned by grid coordinates. Therefore, the system model is derived by the standard approach of dividing the geograpinical distribution area into a system of grids.

The dimension of che grid can be flexible and adjusted according to the need. For rural areas a large grid dimension with a small scale can be used. since the loads will be sparsely distributed. For areas where the load density is high, on the other hand, a small grid represents the loads more accurateiy. A common used grid is a quarter section or 40acre parcel.

In the system model, each distribution circuit serves a certain number of grids or each grid may be fed by several circuits, depending upon the characteristics of each service area. The present maximum capacity for each circuit is recorded by tabulating the grids served by the circuit, and the total KVA ratings of all transformers in those grids which are fed by that circuit. Table 26 illustrates a sample listing, in which each grid number identifies the grid coordinates of the grid. Thus, the load ratings for each circuit are found by multiplying the total KVA rating by a utilization Eactor that can be derived from actual measurements of the present loading conditions, 1.e., the actual load (in KVA) connected to the circuit divided by tine rated KVA capacicy of each circuit divided by the rated KVA capacity of each circuit. The future load is then obtained by increasing each of the present loads at she forecasted growth
rate. The cotal present load for each circuit is found by addirig the loads connected to that circuit and dividing the total amount of the load by the rated voltage.

TABLE 26. A SAMPLE LISTING

Circuit $\#$	Grid $\%$	Cotal KVA Rating
172	041067	50
172	041069	175
173	042046	410
173	042048	222
173	043036	65.

Feeder Network Data

The feeder network can be represented by means of grid coordinates and the auxiliary data base which provides descriptions of the possible and common line types that can exist in the nerwork. The auxiliary data base also provides information of the demand centers that are connected by the same feeder, the length of each feeder segments connecting che demand centers, and the existing or possible line cyfes that can be used as part of the feeder segment in the operation or design process.

Substation Data

Each existing or potential substation of the system is described by its location, using the grid coordinates, and by its total transformer capacity. In order to simulate and study the system behavior under concingencies, the rated capacity, 1.e., its total transformer capacity, of the substation can be reduced to represent the emergency, e.g., loss of feeder segment, loss of number of feeders, the loss of suostation transformers, or inadequace substransmission supply, etc.

New Feasible Subscarion Sites

The substations with their associated Eeeders make up different substation service areas. The optimal locations or a single substation can be determined using che squared Euclidean distance measure for a given ser of service demands by:

where:

$$
\begin{aligned}
& i=1,2, \ldots, N S \\
& j=1,2, \ldots, N F \\
& X S_{i}=X-\text { coordinate of substation } i \\
& \text { YS } X_{i}=Y \text { - coordinate of substation } i \\
& X F_{j}=X-\text { coordinate of feed point, i.e., } \\
& \text { first customer bus served by the feeder, } \\
& \text { of feeder service area } j \text {. } \\
& Y F_{j}=Y \text { - coordinate of feed point of feeder }
\end{aligned}
$$

$$
\begin{aligned}
& \text { service area } j . \\
D F_{j} & =\text { total demands of feeder service area } j \\
S_{i} & =\text { substarion } i \\
N F & =\text { number of substarions } \\
N S & =\text { number of feeders }
\end{aligned}
$$

For a rectilinear distance measure XS_{i} is a point such that Eifty percent or few load values ${ }^{1}$ are located on X coordinates which are greater than or equal to $X S$, and fifty percent or fewer load values are located on ${ }^{i} X$ coordinates which are less than or equal to $X S_{i}$. A similar rule applies for the YS_{i}.

MATHEMLATICAL MODEL

The distribution system expansion costs can be caregorized inco two groups: (1) the substation expansion costs, and (2) the feeder expansion costs. Let the number of existing substations be NEW and NPS be the number of possible sites on which to build suostations. Therefore, an electric distribution system can effectively be modeled as a mixed integer programming problem with che substations as sources and the loads on the feeders as demands. Here, the objective function is the minimization of the present worth of the capital, i.e., Eixed cost of the distribution syscem expansion and the present worth of the variable costs associared with the power losses, subject $=0$ restrictions whicn relate substarion cransformer capacities and feeder ratings to system Load projections.

In order to set up the model the jollowing notation is introduced:

Eor ?aramerers

$\begin{aligned} \sin C_{1}= & \text { present worth of Eixed cost of con- } \\ & \text { structing suostation } i,\end{aligned}$
$F F C_{i j}=$ present worth of constructing a feeder from substation i to demand center j,
$\mathrm{TEC}_{i j}$ a present worth or constructing a tieieeder from substation i to substation j,
$D F C_{i j}=$ presenc worth of fixed cost of constzucting a reeder from demand cencer i to demand center j,
$E R C_{i j}=$ present worth oi reconductoring feeder from substation i to demand center j,

FBC ${ }_{i}=$ present worth of fixed cost of adding a bay at substation i (if facility already exists, the Eixed charge is zero),
$C_{i k}=$ presenc worth of Eixed cost of adding incremental capacity k to substation i,
$\left(a_{s}, b_{s}\right)=$ coordinates of points on the envelope curve of the feeder variable cost curves,
$\left(a_{i j s}, b_{i j s}\right)=$ coordinates or a point s on the envelope curve of the suostation variable cost Eor route ij,
$\left(a_{i j s}, b_{i j s}\right)=$ coordinares of a point s on power loss eurve Eor a specitic conductor placed
in route ij,
$\mathrm{NF}=$ number of feeders emanating from the initial size of a substation,
$N F_{B}=$ number of feeders per bay added to a substation,
$\mathrm{NB}_{\text {max }}=$ maximum number of bays that can be added to a given substation,

NES $=$ number of existing substations,
NPS $=$ number of potential substation sites,
NS = number of existing substations and potential substation sites thus,

NS $=$ NES + NPS
$m=$ total number of existing demand centers,
$D F_{j}=$ total demand of demand center j,
SIC $_{i}=$ initial capacity of substacion i,
$d_{K}=$ incremental capacity size k chat can be added to a given substation,
$U_{i j}=$ rated capacity of a feeder connecting origin i to destination j,
$G=$ tocal number of points required to approximate a given nonlinear curve.

Eor Power Flow Variables

$X_{i j}=$ quantity cransported from substation i co demand center j,
$Y_{i j}=$ quantity transported Ërom substation i to substation j,
$Z_{i j}=$ quantity transported from demand center i to demand center j,
$(R X)_{i j}=$ quantity transported Erom suidstation i to demand center j over a reconducrored feeder.

Gor Becision Variables
$j_{i}=$ binary integer variable which denores the decision to select or not to select site i ,
$S_{1}=0$, if a substacion does not exist at the site i or will not be built,
$j_{1}=1$, if a substation is to be built at the site or already exists,
$j_{i j}=0$, if a feeder does not exist between substation i and demand center j,
$j_{1 j}=1$, if a feeder does exist or is to be built between substation i and demand center j,
$\gamma_{i j}=0$, if a tie-feeder does not exist between substation i and suostation j,
$Y_{i j}=1$, if a tie-feeder does exist or is to be built between subscation i and substation j,
$\partial_{i j}=0$, if a Eeeder does not exist between
demand center 1 and demand center f,
$\vartheta_{1 j}=1,1 f$ a feeder does exist or is 50 be built between demand center 1 and demand center f,
(R δ)
if $=0$, if reconductoring of tie-feeder between substation i and substation j will not be done,
$(R \hat{S})_{i j}=1$, if reconductoring of $\mathrm{ile-feeder}$ between substarion f will be done,
μ_{1} number of bays to be added to the substation at site i,
$a_{i k}=1$, if incremental capacity k is to be added to substation i,
$a_{i k}=0$, otherwise.

For Linearization Variables

The following variables are used to approximate a nonlinear curve with. straight line segments.

$$
\begin{aligned}
& \tau_{i j s}=\text { representarion variables for } f\left(X_{i j}\right) \text {, } \\
& (t y)_{i j s}=\text { representation variables for } E\left(Y_{i j}\right) \text {, } \\
& (\mathrm{tz})_{i j s}=\text { representation variables for } f\left(Z_{i j}\right) \text {, } \\
& (t R)_{\text {ijs }}=\text { representacion variables for } E\left[(R X)_{i j}\right] \text {, } \\
& \begin{aligned}
(\mathrm{XX})_{\text {ijs }}= & \text { decision variabla to force selection of } \\
& \text { as most two } \mathrm{E}_{\text {ijs }} \text { to be nonzero, }
\end{aligned} \\
& \text { at most two } E_{i j s} \text { to be nonzero, } \\
& (B Y)_{i j s}=\text { decision variable to force selection of } \\
& \text { at most two }(t y)_{\text {ijs }} \text { to be nonzero, } \\
& (B Z)_{\text {if }}=\text { decision vartable to force selection of } \\
& \text { at most two }(t z)_{\text {ijs }} \text { to be nonzero, } \\
& \begin{aligned}
(B R)_{i j s}= & \text { decision variable to force selection of } \\
& \text { at most two (} \mathrm{tR})_{\text {ijs }} \text { to be nonzero. }
\end{aligned}
\end{aligned}
$$

The oprimization problem includes choosing the sites to locate substations; deternining the optimum amount of incremental capacity to add to existing and/ or newly buiit substation; determining the optimum number of feeders emanating from substations; finding the optimum number of bays required to support the number of feeders chosen; connecting the substations Ehrough tie feeders; selecting the connections between demand cencers; selecting the connections between substations and demands: the optimum conductor size of each connecing feeder: and the feeder, between substations and demand cencers, which should be reconductored in such a way as to winimize the present value of costs and meet the forecasted demands. Two concepts are necessary to introduce which are not fully defined in a machematical programing format in the previous power system planning literature; (1), decision variables and (2) power loss envelope curves.

A decision variaile is a variable whose values are restricted to either zero or one. The one represents a yes decision and the zero represents a no decision or status quo. For example, suppose that the cost of constructing a number of substarions ar cercain sites, out of eight potential substacion sites, needs to be represented, then the proposed cost would be equal to

$$
\sum_{i=1}^{o} S F C_{i} \cdot j_{i}
$$

If the deciston is to build two substations at the
potential substation sites three and seven, then
and

$$
\begin{aligned}
& \delta_{3}=\delta_{7}=1 \\
& \delta_{1}=\delta_{2}=s_{4}=\delta_{5}=\delta_{6}=\delta_{8}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\text { Cost }= & S F C_{1}(0)+S F C_{2}(0)+S F C_{3}(1)+\ldots \\
& +S F C_{7}(1)+S F C_{8}(0) \\
= & S F C_{3}+S F C_{7}
\end{aligned}
$$

Thus, the cost of any combination of decisions can be represented by the general sumation. However, this cost function is subject to some logical constraints dictated by the technology of the problem. For example, no feeder emanating can be buile from a substation if the substation does not exist. This can be assured by a constraint of the form

$$
\sum_{j=1}^{\mathrm{m}} \delta_{i j} \leq N F \cdot \delta_{i} \text { for every substation } i
$$

This works in che following way. If substation i does not exist, then $\hat{S}_{i}=0$. Since $S_{i j}$ can be only zero or one for each j. The equation ${ }^{i j}$

$$
\sum_{j=1}^{m} i_{i j} \leq 0
$$

implies that each $\delta_{i j}=0$. Since zero represents the decision not to act, ${ }^{i j}$ no feeder is to be builc. If $s_{i}=1$, then a substation exists or will be built and

$$
\sum_{i=1}^{m} s_{i j} \leq N F
$$

Then up to the number of NF of the $S_{\text {ij }}$ can be one, and up so the number of $N F$ demands can be ${ }^{i j}$ served from substation 1 .

The cost of power losses in feeders varies with the conductor size and the power transported. For a given load there is a conducror size which gives the minimum total cost of power losses, lost feeder capacity due to power losses and investmenc. Figure 18 illustraces the concept.

Figure 18. Envelope curve representing minimum cost of transporting power X

In the figure, each of the three curves represent
the sumation of the cost of investment in an instalied feeder, the cost of lost energy due to $I^{2} R$ losses in the feeder, and the cost of demand lost (i.e., the cost of lost capacity) due to the $I^{2} R$ losses for a given conductor size [10]. If the power transported is X_{1}, then the least expensive conductor size is the conductor one, given by $C_{\text {, }}$ curve. Similarly, the cost of the conductors two and Ehree, given by curves C_{2} and C_{3}, are minimum if the transporred power are $x_{2}{ }^{2}$ and $X_{3}{ }^{3}$, respectively. It is assumed that the conductor giving optimum cost will be selected in installing a new feeder. Therefore, the variable cost of conductor can be represented by the function.

$$
f(X) \equiv \min _{i} f_{1}(X)
$$

where

$$
f_{i}(X)=\text { installed feeder investment cost plus lost }
$$ energy cost due to power losses in feeder plus lost capacity cost of feeder due to the power losses in the feeder for a given conductor size i.

The function $f(X)$ gives the envelope curve which is represented by the heavy line in Figure 19. It is a noninear and nonconvex curve. This envelope curve can be approximated by straight line segments and represented by a continuous and zeromone variables. The method by which this can be done is given in the following section.

For a feeder that already exists, the cost of power losses is given by the single curve defined by the given conductor size. This curve is a convex curve and can be represented by straight line segments as shown in Figure 7.

ت̄igure i9. Inear approximation of cost curve $f\left(X_{i,}\right)$ which represents the present worth of cost of investment, lost energy in the feeder and cost of lost feeder capacity as a Eunction of power flow over route (1,j)

Plecewise Linearization of Nonlinear Cost Functions

In Figure 19, a nonconvex and nonlinear curve has been approximated by line segments between six chosen points on the curve. The curve represents the present worth of installed feeder investment cosc, lost energy cost due to power losses in feeder, and lost capacity cost of feeder due to the power losses in the feeder for the optimin conductor size for a ziven load transporced.

The following equations are given to demonstrate the concept of how a piecewise linear approximation of a nonlinear function is done, as shown in Figure 19.

The approximation rests on the idea that if

$$
a_{i j 1} \leq X_{i j} \leq a_{i j 2}
$$

then $t_{1 f 1}, t_{i j}$, the surrogate variables used to represent $f(\cdot)$, can ${ }^{2} b e$ chosen such that the value of

$$
x_{i j}=a_{i j 1} \cdot c_{i j 1}+a_{i j 2} \cdot t_{i j 2}
$$

where $t_{i j 1}$ and $t_{i j 2}$ have to satisfy $t_{i j 1}+t_{i j 2}=1$ and $t_{i j 1}, t_{i j 2} \geq 0$. Note the fact that if $t_{i j 1}+t_{i j 2}>1$, one cannot find the surrogate variables $t_{i j 1},{ }^{t}{ }_{i f 2}$ such that the value of

$$
x_{i j}=a_{i j 1} \cdot t_{i j 1}+a_{i j 2} \cdot t_{i j 2}
$$

lies between $a_{i j 1}$ and $a_{i j 2}$. Now consider the points

$$
\begin{aligned}
& \left(a_{i j 1}, b_{i j 1}\right) \text { and }\left(a_{i j 2}, b_{i j 2}\right) \text {. If } \\
& \quad a_{i j 1} \leq X_{i j} \leq a_{i j 2} \text { and } t_{i j 1}+c_{i j 2}=1
\end{aligned}
$$

where

$$
t_{i j 1}, t_{i j 2} \geq 0
$$

then

$$
x_{i j}=a_{i j 1} \cdot t_{i j 1}+a_{i j 2} \cdot t_{i j 2} \text { is }
$$

such that the point $\left(X_{i j}, b_{i j 1} \cdot t_{i j 1}+b_{i j 2} \cdot t_{i j 2}\right)$ lies on the line segment connecting $\left(a_{i j 1}, b_{i j 1}\right)$ and $\left(a_{i j 2}, b_{i j 2}\right)$.

If a curve is approximated by several points, $X_{i j}$ would lie between a specific pair of coordinates $\mathrm{a}_{\mathrm{fjs}-1}$ and $\mathrm{a}_{\mathrm{ifs}}$. Therefore, the $\mathrm{t}_{\mathrm{j} j}$, corresponding to this pair, must be greater than or equal to zero and all other $t_{i j}$ s must be forced to be zero. For example, consider the following equations where the $3_{i j s}$ carry out the aforementioned function.

$$
\begin{align*}
& x_{i j}=\sum_{s=1}^{6} a_{i j s} \cdot t_{i j s} \tag{2}\\
& \sum_{s=1}^{5} 3_{i j s}=1 \tag{2}\\
& \sum_{s=1}^{6} t_{i j s}=1 \tag{3}\\
& \text { Cost }=\sum_{s=1}^{6} b_{i j s} \cdot t_{i j s} \tag{4}\\
& t_{i j 1} \leq 3_{i j 1} \tag{5}\\
& t_{i j 2} \leq 3_{i j 1}+s_{i j 2} \tag{6}\\
& t_{i j 3} \leq s_{i j 2}+s_{i j 3} \tag{7}\\
& t_{i j 4} \leq s_{i j 3}+3_{i j 4} \tag{8}\\
& t_{i j 5} \leq s_{i j 4}+3_{i j 5} \tag{9}\\
& t_{i j 6} \leq s_{i j 5} \tag{10}
\end{align*}
$$

where
$t_{i j s} \geq 0$ and $3_{i j s}=$ either zero or one.
Here, it is desired to find

$$
\begin{equation*}
\operatorname{Cost} \cong E\left(x_{i j}\right) \tag{11}
\end{equation*}
$$

In order to find the cost, using equation (4), set

$$
3_{i j 2}=1
$$

then equation (2) would force that

$$
3_{i j 1}=3_{i j 3}=3_{i j 4}=3_{i j 5}=0
$$

Thus, equarions (5-10) would allow only $t_{i j 2}$ and $t_{i j 3}$ to be non zero. Hence, equations (1) and ${ }^{1}\left(\frac{3}{3}\right.$) can be reduced to

$$
x_{i j}=a_{i j 2} \cdot c_{i j 2}+a_{i j 3} \cdot c_{i j 3}
$$

$$
\text { and } \quad 1=t_{i j 2}+t_{i j 3}
$$

these last two equations can be solved for $t_{i f 2}$ and $\mathrm{t}_{\text {fj }} 3$ and the approximate cost value can be found from equation.(4).

Therefore, in summary

$$
\begin{equation*}
a_{i j g-1} \leq x_{i j} \leq a_{i j g} \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
x_{i j}=\tau_{i j g-1} \cdot a_{i j g-1}+\tau_{i j g} \cdot a_{i j g} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{:}{ }\left(X_{i j}\right) \cong c_{i j g-1} \cdot b_{i j g-1}+c_{i j g} \cdot b_{i j g} \tag{14}
\end{equation*}
$$

Thus, the double surmation of $f\left(X_{i j}\right)$, which would be the present worth of cost of investment, lose energy in the feeder and cost of lost feeder capacity as a function of power flow over route (i, j), can be represented by the following term, that is

$$
\begin{equation*}
\sum_{i=1}^{N S} \sum_{j=1}^{G} b_{i j s} \cdot c_{i j s} \tag{15}
\end{equation*}
$$

and the cotal of the variable costs of substations can be represented by

$$
\begin{equation*}
\sum_{i=1}^{\operatorname{i}} \sum_{j=1}^{m} \sum_{s=1}^{G} d_{i j s} \cdot t_{i j s} \tag{16}
\end{equation*}
$$

a.j must equal zero in order chat $X_{i j}$ equai zero can 3ASE MODEL

The following is the complete mathematical nodel which, when solved, gives the optimum decision in each of the aforementioned categories. The definition of each term in the objective function and the definition of each constraint are given following the model.

$$
+\sum_{i=1}^{\operatorname{NS}} \sum_{\substack{k=1 \\(G)}}^{R} C_{i k} \cdot \alpha_{i k}+\sum_{\substack{i=1 \\ i \neq j}}^{m} \sum_{j=1}^{m} \theta_{i j} \cdot D F C_{i j}
$$

$$
\begin{aligned}
& \operatorname{Cost}=\sum_{i=1}^{\text {NS }} S F C_{i} \cdot j_{i}+\sum_{i=1}^{\text {NS }} \sum_{j=1}^{m} \sum_{s=1}^{g} t_{i j s} \cdot d_{i j s} \\
& \text { (A) } \\
& +\sum_{i=1}^{\text {VS }} \sum_{j=1}^{m} F F C_{i j} \cdot j_{i j}+\sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{s=1}^{g} t_{i j s} \cdot b_{i j s} \\
& \mathrm{i}, \mathrm{j} \in \mathrm{NE} \\
& \text { (C) } \\
& \text { i,j } \in \operatorname{NE} \\
& \text { (D) }
\end{aligned}
$$

$$
+\sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{s=1}^{s}(t R)_{i j s} \cdot b_{i j s}
$$

$$
i, j \leq R E C
$$

(K)

$$
+\sum_{i=1}^{N S} \sum_{j=1}^{n} \sum_{\substack{n=1 \\ 1, j \in E}}^{G} t_{i j s} \cdot b_{i j s}+\sum_{i=1}^{N S} \mu_{i} \cdot F_{i B C}
$$

(L)
(M)
where
$E=\{i, j \mid$ route i, j has a feeder in place j
$R E C=\{i, j \mid$ route i, j has a potential cost saving by reconductoring
$N E=\{i, j \mid$ route i, j has no feeder in place
$E \mathrm{~V} \mathrm{NE}=\{i, j \mid \sec$ of all rouces $i, j ;$
Any fixed cost term in the above objective function is zero if Eacility is already in place. The oojective function is subject to the following constraints:

$$
\begin{equation*}
\sum_{i=1}^{\operatorname{NS}} x_{i j}+\sum_{\sum_{i \neq 1}^{m} z_{i j}}^{m}-\sum_{\substack{i=1 \\ j \neq i}}^{M} z_{j i}+\sum_{\substack{i=1 \\ 1, j \in R E C}}^{N S}(R X)_{i j} \geq D F_{j} y_{j} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& j=1, \ldots, m \\
& \delta_{i j}=1-(R \delta)_{i j} \quad Y_{i j} \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
& i, j \leq R E C \\
& (R X)_{i j} \leq(R J)_{i j} \cdot U_{i j} \tag{20}\\
& \sum_{j=1}^{n} X_{i j} \leq S I C_{i} \cdot j_{i}+\sum_{\substack{j=1 \\
i \neq j}}^{N S} y_{j i} \leq R E C \tag{21}\\
& -\sum_{i, j}^{N S} Y Y_{i j}+\sum_{k=1}^{R} \Delta_{i} \cdot \alpha_{i k}
\end{align*}
$$

where

$$
i=1, \ldots, N S
$$

$$
X_{i j} \leq U_{i j} \cdot i_{i j} \quad \forall_{i j}
$$

where

$$
\begin{align*}
& i=1, \ldots, N S \\
& j=1, \ldots, N
\end{align*}
$$

where

$$
\begin{aligned}
& +\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{s=1}^{\frac{3}{i}}(t z)_{i j s} \cdot b_{i j s}+\sum_{i=1}^{N S} \sum_{j=1}^{m}(F R C)_{i j} \cdot(R S)_{i j} \\
& \text { (I) } \\
& \text { (J) }
\end{aligned}
$$

$i=1, \ldots, N S$

$$
\begin{align*}
& \sum_{j=1}^{N S} j_{i} \leq N S \tag{24}\\
& Y_{i j} \leq U_{i j} \cdot Y_{i j} \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
& i=1, \ldots, N S \\
& j=1, \ldots, N S \quad i f j \\
& r_{i j} \leq \hbar_{2}\left(\delta_{1}+s_{j}\right) \tag{26}
\end{align*}
$$

${ }_{i j}$
where

$$
\begin{aligned}
& i=1, \ldots, \text { NS } \\
& j=1, \ldots, \text { NS } \quad i \neq j
\end{aligned}
$$

$$
\sum_{k=1}^{R} \alpha_{i k} \leq \delta_{i}
$$

where

$$
\begin{align*}
& i=1, \ldots, \text { NS } \\
& z_{i j} \leq U_{i j} \cdot \vartheta_{i j} \tag{28}
\end{align*}
$$

${ }^{7}{ }_{i j}$
where

$$
\begin{aligned}
& i=1, \ldots, m \\
& j=1, \ldots, m \\
& i \neq j
\end{aligned}
$$

$$
H_{1} \leq s_{1} \cdot N B_{\max }
$$

${ }_{i}$
where

$$
i=1, \ldots, N S
$$

$$
z_{i j}=\sum_{s=1}^{G}(t z) a_{i j s}
$$

$$
\sum_{s=1}^{G}(t z)_{i j s}=1
$$

$$
\sum_{s=1}^{G=1}(\rho z)_{1 j s}=1
$$

$$
(t z)_{1 j 1} \leq(\beta z)_{1 j 1}
$$

$$
(t z)_{i j 2} \leq(\beta z)_{i j 1}+(\beta z)_{1 j 2}
$$

$$
(t z)_{i j g} \leq(\beta z)_{i j g-1}+(\beta z)_{i j g}
$$

$$
(t z)_{i j C} \vdots(3 z)_{i j G-1}
$$

where

$$
\begin{aligned}
& i=1, \ldots, m \\
& j=1, \ldots m \\
& \quad(R X)_{i j}=\sum_{s=1}^{G}(t R)_{i j s} \cdot a_{i j s}
\end{aligned}
$$

$$
\begin{align*}
\sum_{s=1}^{G}(t R)_{i j s} & =1 \\
\sum_{s=1}^{G-1}(B R)_{i j s} & =1 \tag{31}\\
(t R)_{i j 1} & \leq(B R)_{i j 1} \\
& \vdots \\
(t R)_{i j G} & \leq(B R)_{i j-1}+(B R)_{i j G} \\
(t R)_{i j G} & \leq(3 R)_{i j G-1}
\end{align*}
$$

where
$1 f \in \operatorname{REC}$

$$
X_{i j}=\sum_{s=1}^{G} e_{i j s} \cdot a_{i j s}
$$

$$
\sum_{s=1}^{G} \dot{t}_{1 j s}=1
$$

$$
\sum_{s=1}^{G-1}(\beta X)_{i j s}=1
$$

$$
t_{i j 1} \leq(\beta X)_{i j 1} \quad \forall_{i j}
$$

$$
r_{i j 2} \leq(B X)_{i j 1}+(B X)_{i j 2}
$$

$$
\begin{aligned}
& \vdots \\
& \leq(3 X)_{i j G-1}+(3 X)_{i j G}
\end{aligned}
$$

$$
\epsilon_{i j G}{\stackrel{\vdots}{\leq}(\beta X)_{i j G}}
$$

where

$$
\begin{align*}
& \begin{array}{l}
i=1, \ldots, N S \\
j=1, \ldots, m
\end{array} \\
& Y_{i j}=\sum_{s=1}^{G}(t y)_{i j s} \cdot a_{i j s} \\
& \sum_{s=1}^{G}(t y)_{i j s} a_{i j s}=1 \\
& \sum_{s-1}^{G-1}(B y)_{i j s}=1 \\
&(t y)_{i j 1} \leq(B y)_{i j 1} \tag{33}\\
&(t y)_{i j 2} \leq(B y)_{i j 1}+(B y)_{i j 2} \\
& \vdots \\
&(t y)_{i j G} \leq(3 y)_{i j G-1}+(B y)_{i j G} \\
&\left((c y)_{i j G}\right. \leq(B y)_{i j G-1}
\end{align*}
$$

where

$$
\begin{aligned}
& \quad \begin{array}{l}
i=1, \ldots, N S \\
j=1, \ldots, N S \\
i \neq j
\end{array} \\
& X_{i j} \geq 0 ; \quad t_{i j s} \geq 0 ; \quad(t y)_{i j s} \geq 0 ; \quad(t z)_{i j s} \geq 0 ;
\end{aligned}
$$

$$
\begin{aligned}
& (C R)_{i j s} \geq 0 ; \quad z_{i j} \geq 0 ; \quad y_{i j} \geq 0 ; \quad(R X)_{1 j} \geq 0 ; \\
& (\beta X)_{i j s}=0,1 ; \quad(B y)_{i j s}=0,1 ; \quad(3 z)_{i j s}=0,1, ; \\
& (B R)_{i j s}=0,1 ; \quad \delta_{1}=0,1 ; \quad \delta_{1 j}=0,1 ; \\
& \theta_{i j}=0,1 ; \approx_{i k}=0,1 ; \quad \gamma_{i j}=0,1 ; \\
& u_{i}=1,2,3, \ldots N B_{\max }
\end{aligned}
$$

The complete procedure is ouriined in flow-chart form in Figure 20. The inequalities can be converted to equalities by addition of slack variables, however, the program used does chis automatically.

Figure 20. Flow diagram of mixed-integer program-
The following are the explanations of the terms in the objective function.

Term A.: gives the fixed charges for constructing a substarion on site i.

Term B: gives the cost of power losses in substation equipment, represented by a plecewise linear
approximation of power transported over route (i,j).

Term C: gives the fixed charges of an installed feeder on the route from substation 1 to demand center j.

Term D: gives the cost of power losses when power quantity $X_{i j}$ is transported, represenced by a piecewise Innear approximation of the nonlinear cost curve.

Term E: gives the fixed charges of an installed tiefeeder between substation.

Term F: gives the cost of power losses in tie-feeders between substations as a result of transshipment, represented by a piecewise linear approximation of the nonlinear cost curve.

Term G: gives the cost of adding incremencal capacity at the various substations.

Term H: gives the fixed charges for installed feeders between demand centers.

Term I: gives the cost of power losses in transshipment between demand centers with piecewise linear representation of the nonlinear cost curve.

Term J: gives the fixed charges of reconductoring a feeder over route ($1, \mathrm{j}$).

Term K: gives the cost of power losses in feeders over reconductored route (i, j), represenced by a piecewise Iinear approximation of the nonlinear cost curves.

Term L: gives the cost of power losses over a route ($1, j$) with a feeder in place, represented by a piecewise linear approximation of the nonlinear cost curves.

Term M: gives the fixed charges for adding bays 50 a substation.

The following are the explanations of the constraints used in the model.

Constraint (18): assures that each demand is met.
Conseraint (19): is a logic restriction assuring that decision variable for power flow is zero if reconductoring occurs and vice versa.

Constraint (20): assures that there is no power flow over reconductored route if reconduccor decision variable is zero.

Constraint (21): assures that the total quantity transported from substations to destinations is less than the substation capacity plus power transfered irom orher substations.

Constraint (22): stops the power flow if feeder decision variable is zero.

Constraint (23): limits the number of feeders built to the amounts specified by the number of bays available.

Constraint (24): limits the number of sites available.
Constraint (25): assures that the power flow berween
substations is zero if no feeder exists between substations.

Constraint (26):
stops a feeder from being built between substations unless both substations exist (i.e., $j_{i}=1$ and \hat{i}_{j} $=1$).

Constraint (2i): assures chat incremental capacity cannot be added unless the substation exist (i.e., $j_{i}=1$).
Constraint (28): assures that there is no power fiow between demand centers unless the connecting feeder exists (i.e., $\exists_{i j}$ $=1$).

Constraint (29): assures that no bay can be added unless the substation exists (i.e., $\delta_{i}=1$).
Constraint (30): computes piecewise Iinearization variables for $f\left(Z_{i j}\right)$.
Constraint (31): computes piecewise linearization variables for $f\left[(R X){ }_{i j}\right]$.
Constraint (32): computes piecewise linearization variables for $f\left(Y_{i j}\right)$.
In order to demonscrate how the constraints are tormed consider the restriction (18). This constraint simply states the fact that the sum of the power flows irom all substations, that is

plus the power flow received from all other demand centers, that is
$\sum_{\substack{i=1 \\ i \neq j}}^{m} z_{i j}$
minus the power flow sent to ocher demand centers. chat is
$\sum_{\substack{i=1 \\ j \neq 1}}^{Z_{j i}}$
plus the power flow Eransmitted through all reconductored feeders, that is

$$
\sum_{i=1}^{N S}(R X)_{i j}
$$

$$
i, j \leqslant R E C
$$

must be 3reater chan or equal to the demand of the demand cencer $j, i . e ., D F_{j}$.

Also, consider the restriction (19) which is a "cut off" consctaint. That is, if

$$
(R X)_{i j}=1 \quad \text { then } j_{i j}=0
$$

and by constraint (22) X_{ij} becomes zero. If

$$
s_{i j}=1
$$

chen the same result is obcained using restriction (20).

Further, consider the restriction (27). If the
substation does not exist than the substation decision variadle is

$$
\delta_{i}=0
$$

Then

$$
\sum_{k=1}^{R}{ }_{i k} \leq 0
$$

that is

$$
a_{i k}=0 \quad \forall_{k}
$$

and no incremental capacity is added. If, for example,

$$
x_{i 3}=1
$$

then term (G) in the objective function becomes equal to $C_{i 3}$ because all other terms in the sumation have a zero ${ }^{\text {Eactor. }}$

Apolications of the Model

To test the solvability of the model a problem was devised and soived. Tae probiem had three different cases that eacn. included power transshipment, feeder routing and substation site selection using linear approximarion of nonlinear cost curves, and substation incremental capacicy. The data used in determining parameters of the model were provided by the Oklahoma Gas and Electric Company. Each case had three substation sites and eigite demand zenters. Table 27 gives the description of each individual case. The variable Eeeder costs were based on the rectilinear distances between points. Using the "sunk cost" concept of engineering economy, Eixed coscs of existing facilities were assumed to be zero. In estimating future Eixed and variable costs a carrying charge race of 21.88 percent was used and also an inflation rate of ten percent was considered.

Case	Initial Condisions	$\left\|\begin{array}{c}\text { Mo. Ot } \\ \text { Sateger } \\ \text { hirizbles }\end{array}\right\|$	No. ot Corcinuous 	No 3 Constraints
:	ho rxisitiny zee jers or suis:zations	113	1.37	111
2	ons axiscinz sunscation :nt $\because=0$ exis=tns faeciers	$1: 3$	2\%	1i1
3	Jne existing sủstathon and cinree exisc fng Eeeders	113	1)7	112

The cases were run on an [BM 370/158 computer usfng the YPSX mathematical programming system. The soIution results are shown in Figures 21,23 , and 24 . The sumary of the computer output data of case aumber one is shown in Figure 22. The cost of the computer runs, the CPU time, and the value of the optimum solution for each case are given in Taile 28.

Table 20. Computational Resules

Case	Cost of Computer Run (in s)	$\begin{gathered} \text { CPU Time } \\ \text { (in Minutes) } \end{gathered}$	Upcimun Soiution Value (in 3)
1	284	41.5	2.675.000
2	21	17.67	1.471.700
3	115	17.05	1. +16.750

In case number one, the computer run time exceeded She allocated CPU time without achieving an optimum solution. Therefore, case number one was restarted with
a planner's solution and an optimal solution was achieved. The optimal solution saved ninety-eight thousand dollars in comparison to the planner's solution. The optimal solution was found in twenty-nine minutes, however, twelve additional minutes were required to prove optimality. Previous problems of this size reported in the literature were not solved even after a five hour CPU time despite the fact that a faster computer was utilized.

Sensitivity analugis of case number one were performed. The resules of chree different sensitivity analyses for case number one are shown in Figures 2527. Figure 25 shows the results of changing incremen-
tal capacity step sizes to two chirds of cheir original values. Figure 26 shows the results of changing the number of feeders emanating from substation two from four to two. Figure 27 shows the results of changing the demand of demand center two from 2.4 MVA to 6 MVA. Note the difference in feeder connections of Figures 25 and 26 in comparison with Figure 21. However, the change in demand did nor force a change in feeder connections, as shown in Figure 27: This study indicates the fact that incorporating all the major distribution planning decisions into a comprenensive planning model is now computationly feasible and some major cost savings can be achieved.

Figure 22. The summary of the input data of the case it solution

Figure 23. Çase $\$ 2$ solution results

Figure 24. Case :3 solution results

Figure 25. Resules of sensitivity analysis \#1 for case \#1

Figure 26. Results of sensifivity analysis \#2 for case ! 1

Eigure 27. Results of sensicivicy anaivais it 3 Eor case \#l

REFERENCES

[1] R.F. Lawrence, et al,. "Automated Distribution System Planning," IEEE Transactions on Power ADparatus and Svstems, Vol..PAS-33, pp. 311-316; April 1964.
[2] R.N. Adams, and M.A. Laughton, "Mathematical Programming Systems in Electrical Power Generation, Iransmission, and Distribution Planning," in Proc. of 4 th PSCC, Grenoble, Erance, 1972 , Paper 1.1/13.
[3] E. Masud, "An Interactịve Procedure for Sizing and Timing Distribution Substations Using Optimization Techniques," A Paper, Presented at the IEEE PES Winter Meeting, New York, NY, January 27-Feoruary 1. 1974.
[4] M.J. Juricek, et al., "Transportation Analysis of an Electric Power Distribution System," A Paper, Presented at the IEEE PES Winter Meeting, New York, NY, January 25-30, 1976.
[5] D.M. Crawford and S.B. Holt, Jr., "A Mathematicai Optimization Technique for Locating and Sizing Distribution Substations and Driving Their:Optimal Service Areas," IEEE TRansactions on Power Apparatus and Systems, Vol. PAS-94, No. 2, pp. 230-235, March/April, 1975.
©6] S.E. Sheiton and A.A. Mahmoud, "A Direct Optimization Approach to Distrioution Substation Expansion," A Paper, Presented at the IEEE PES Sumer Yeeting, ius tngeles; Ca, July 16-21, 1978.
[7] J.V. Oldfieid and I. Lang, "The Long Term Design of Electrical Power Distribution Systems," A Paper, Presented at the IEEE Power Industry Conputer Appifcations (PICA) Conference, May 1965.
[8] R.N. Adams and M.A. Laughton, "A Dynamic Programming/Network Flow Procedure for Distribution System Planning," A Paper, Presented at the IEEE PICA Conference, June, 1975.
[9] D.L. Vall and J.E.D. Northcote-Green, "An Optimization Model for Planning Radial Distribution Networks, "A Paper, Presented at the IEEE Summer Meeting, Los Angeles, CA, July 16-21, 1978.
[10] D.C. Yu, "A Study of Computerized Modeling Approach for Distribution Systems Planning", λ Master Thesis, University of Oklahoma, Norman, OK, 1979.
[11] T. Gonen, et al., "A Research Progress Report for Electrical Energy Distribution Systems," University oí Oklahoma, Norman, OK, Feb. 1979.
[12] T. Gonen, et al., "Toward Aucomated Distribution System Planning," A Paper, Presented at the IEEE Concrol of Power Systems Conference, Texas A \& M University, College Station, TX, March 19-21, 1979.
[13] B.L. Foote and T. Gonen, "Application of MixedInteger Programing to Reduce Sub-Oprimization in Distribution Systems Planning, "A Paper, Presented at the Modeling and Simulation Conference, University of Pittsburgh, Pittsburgh, PA, April 25-27, 1979.

GENERAL DYNAMIC YODEL

The parameters of the dynamic model are different than the ones used in the previous base, model since the envelope cost curves cannot be used. In the dynamic model, as can be seen in Figure 28, power transmitted over the same feeder route can be different. Therefore, utilization of the same conductor may not give the optimum cost. Thus, all the material costs are included in a fixed cost. As a resule of this, all the cost curves for transmitting power are to be based on power losses only.

Figure 28
The cost curves required to be calculated as a function of conductor size and time. The cost curves look different with zespect to time because the present worth of costs varies with time. The last year of the planning horizon T_{h} has a curve which includes the present worth of all costs from I_{h} to I, the last year of the useful life. The cost of power losses must be brought back to T_{h} and then to time zero. The assumption made here is that for a given power transmission of $X_{i j}(T) \quad I=I_{h}, T_{h}+1, \ldots, L$ is constant

Figure 29 presents the various power loss curves as a function of conductor size and time. Here, of course, $\bar{i}_{c}\left(\mathrm{~T}_{\mathrm{h}}\right)$ is an exception since it includes $L-T_{h}+1$ years in its cose accumularion. Whereas, $\bar{F}_{c}(I)^{h}$ for the value of T.

$$
1 \leq T \leq T-1
$$

only accumulates coses "for one year. In chis model costs can be completely accounced for in the feeder fixed charge.

[^4]| $\begin{aligned} \left(a_{i j s c I}, b_{i j s c I}\right)= & \text { coordinates of a point s on the power } \\ & \text { loss curve for a specific conductor } \\ & \text { placed in route ij of conductor size } \\ & c \text { in year } T, \end{aligned}$ | |
| :---: | :---: |
| $C=$ index number of maximum conductor size, | |
| $G=$ total number of points required to approximate a given nonlinear curve, | |
| ```U }\mp@subsup{i}{ijc}{}=\mathrm{ raced capacity of a feeder of conductor size c and connecting origin i co desti- nation j,``` | |
| ```NF = number of feeders emanating from the initial size of a substation,``` | |
| $N F_{B}=$ number of feeders per bay added to a substation, | |
| $N B_{\text {max }}=$ maximum number of bays that can be added to a given substation, | |
| SIC ${ }_{i}=$ initial capacity of substation i, | |
| $\begin{aligned} C_{i k T}= & \text { present worth of fixed cost of adding } \\ & \text { incremental capacity } k \text { to substation } i \\ & \text { in year } T . \end{aligned}$ | |
| Eor Power Elow Variables | |
| $\begin{aligned} \mathrm{X}_{i j c}= & \text { quancity transported from substation } i \text { co } \\ & \text { demand center } j \text { with concuctor size } c \text { in } \\ & \text { year } \mathrm{I}, \end{aligned}$ | |
| ```Y ijcT = quantity transported from suostation i to suostation j with conducsor size c in year T,``` | |
| $\begin{aligned} Z_{i j c I}= & \text { quantity transported from demand center } i \\ & \text { co demand center } j \text { with conductor size } c \\ & \text { in year } I . \end{aligned}$ | |
| ```(RX) ijcI = quantity Eransported from substation i to demand cencer j over a reconducrored feeder with new conducior size c in year I.``` | |
| For Decision Variables | |
| ```i if = binary integer variable which denoces che decision to select or not to select size i in year T,``` | |
| $\delta_{i T}=0$, if a substation does not exist at the site i or will not be built in year i , | |
| $\dot{d}_{\text {iI }}=1$, if a substation is to be built at the site or already exists in year I, | |
| $j_{i j c T}=0$, if a Eeeder aith conductor size c does not exist between substation $:$ and demand center j in year r, | |
| $S_{i j c T}=1$, if a feeder with conductor size c does not exist or is to be buiit between substation i and demand center j in year T, | |
| | $=0$, if a fie-rieeder wich conductor size c does not exisc between substacion i and substation j in year I, |

$\begin{aligned}\left(a_{i j s c I}, b_{i j s c T}\right)= & \text { coordinates of a point } s \text { on the power } \\ & \text { loss curve for a specific conducror }\end{aligned}$
placed in route ij of conductor size
placed in ro,
c in year T,
$\overline{\mathrm{DF}} \mathrm{j}_{\mathrm{T}}=$ total demand of demand center j in year T ,
$C=$ index number of maximum conductor size,
= cotal number of points required to approxi-
mate a given nonlinear curve,
size c and connecting origin i co desti-
number of feeders emanating from the initial
number of feeders per bay added to a sub-
maximum number of bays thar can be added
co a given substation,
$C_{i k T}=$ present worth of fixed cost of adding
incremencal capacity k to substation i
incrementa
in year I .
Eor Power Elow Variables
$X_{i j c T}=$ quancity transported Erom substation 1 co
demand center j with concuctor size c in
year T ,
substation j with conductor size c in year
quanticy transported from demand center
to demand center j with conductor size c
- quantity Eranspored from substation ito
demand cencer j over a reconducrored
feeder with new conductor size c in year
t.

Eor Decision Variables

$i_{i T}=$ binary integer variable which denotes che decision to select or not to select size i in year T .
$\varepsilon_{i T}=0$, if a substation does not exist at the site i or will not be built in year $\bar{\imath}$,
$j_{i I}=1$, if a substation is to be built at the site or already exists in year I,
$j_{i j c T}=0$, if a Eeeder aich conductor size c does not exist between substation $:$ and demand center j in year r,
$\delta_{i j c T}=1$, if a feeder with conductor size c does not exist or is to be built between substation i and demand center j in year T, does not exisc between suostation i and substation \dot{j} in year T,
$x_{i j c T}=1$, if a tie-feeder with conductor size c does exist or is to be buile between substation 1 and substation j in year i,
$\vartheta_{i j c I}=0$, if a feeder with conductor size c does not exist between demand center i and demand center j in year T,
$\vartheta_{i j c T}=1$, if a ieeder with conduccor size c does exist or is to be built between demand center i and demand center j in year T,
$(R)_{i j c T}=0$, if reconducting, with conductor size c, of a tie-feeder between suostation i and substation j will not be done in year T,
(RO) ${ }_{\text {ijeT }}=1$, if reconductoring, with conductor size c, of a tie-fieeder between substation 1 and substation f will be done in year T,
$\alpha_{i k T}=1$, if incremental capacity to be added to substation in year T,
$\alpha_{i k T}=0$, otherwise.
$U_{\text {iI }} \neq$ number of bays to be added to the substacion at site i in year T. -

For Linearizacion Variables

The following variables are used to approximate a nonlinear curve with straigite line segments.

$$
c_{i j s}=\text { representation variables for } f\left(X_{i j}\right)
$$

$(t y)_{i j s}=$ representarion variables for $f\left(Y_{i j}\right)$,
$(t z)_{i j s}=$ representacion variables for $E\left(Z_{i j}\right)$,

$\begin{aligned} &(3 X)_{i j s}= \text { decision variable to force selection of } \\ & \text { at most two } t \text { to je nonzero, }\end{aligned}$ at most two $t_{i j s}$ to be nonzero,
$\begin{aligned}(S Y)_{i j s}= & \text { decision variable }=0 \text { Eorce selection of } \\ & \text { at most two (tY) ijs to be nonzero, }\end{aligned}$
$\begin{aligned}(B Z)_{i j s}= & \text { decision variable to force selection of } \\ & \text { at most two (tZ) }{ }_{\text {ijs }} \text { to be nonzero, }\end{aligned}$
$\begin{aligned}(3 R)_{i j s}= & \text { decision variable to Eorce selection of } \\ & \text { at most cwo (tR) }\end{aligned}$ at most two (tR) ${ }_{i j s}$ to be nonzero.
In the above derinitions $t \geq 0$ and

$$
\begin{aligned}
& (B X) \propto t \\
& (B y) \propto(t y) \\
& (B z) \propto(t z) \\
& (\beta R) \propto(t R) \\
& (t y) \propto Y \\
& (t z) \propto z \\
& (t R) \propto(R X)
\end{aligned}
$$

The optimization problem includes the timing of choosing the sites to locate substations; deteraining the optimum amount of incremental sapacity to add tc existing and/or newly built substations; decermining the optimum number of feeders emanating from substations; finding the optimum number of bays required to support the number of feeders chosen; connecting the substations through tie-feeders; selecting the connec-
tions becween demand centers; selecting the conmections between substations and demands; the optimum conductor size of each connecting feeders; and. the Eeeders berween substations and demand centers which should be reconductored in such a way as to minimize the present value of costs and meet the Eorecasted demands.

DYNAMIC PLANNING MODEL

The following model is the complete mathematical model which, when solved, gives the oprimum decision in each of tine aforementioned categories. The
definition of each term in the objective function and the definition of each constraint are given following the model.

(A)
(B)

$$
+\sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{T_{2}}^{T_{n}} \sum_{c=1}^{C} F F C_{i j I c}{ }_{i j T c}
$$

$i, j \in N E$
(C)
$+\sum_{s=1}^{G} \sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{T=1}^{T} \sum_{c=1}^{C} t_{i j s T c}: b_{1 j s c T}$
(D)

(E)
$+\sum_{s=1}^{G} \sum_{i=1}^{N S} \sum_{j=1}^{N S} \sum_{c=1}^{C} \sum_{T=1}^{T_{h}}(t y)_{i j s T c} \cdot b_{i j s c r}$
(F)
$+\sum_{i=1}^{N S} \sum_{k=1}^{R} \sum_{T=1}^{T} C_{i k T} \cdot a_{i k T}$
(G)
$+\sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{c=1}^{C} \sum_{T=1}^{T} \hat{G}_{i j c I} \cdot D F C_{i j c I}$
(H)
$+\sum_{s=1}^{G} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{T=1}^{T h} \sum_{c=1}^{C}(t z)_{i j s T} \cdot b_{i j s c T}$
(I)
$+\sum_{i=1}^{i S} \sum_{T=1}^{I_{h}} i T \cdot F B C_{i T}$
(J)
$+\sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{C=1}^{C} \sum_{[=1}^{\Gamma_{h}}(F R C)_{i j c T} \cdot(R)_{i \leq i c I} \quad i, j \in R E C$
(K)
$+\sum_{s=1}^{G} \sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{T=1}^{T h} \sum_{c=1}^{C}(t R)_{i j s c i}^{C} \cdot b_{i j s c I} i, j \in \operatorname{REC}$
(L)

$$
+\sum_{s=i}^{G} \sum_{i=1}^{N S} \sum_{j=1}^{m} \sum_{T=1}^{T h} \quad i, j \in E
$$

(M)

$$
t_{i j s c T} \cdot b_{i j s c}
$$

where

$$
\begin{aligned}
E & =\{i, j \mid \text { route } i, j \text { has a conductor in place }\} \\
R E C & =\{i, j \mid \text { route } i, j \text { has a potential cost saving } \\
& \text { by reconductoring } j \\
N E & =\{i, j \mid \text { route } i, j \text { has no conductor in place }\} \\
N E & =\{i, j \mid \text { set of all routes } i, \dot{T}\}
\end{aligned}
$$

Any fixed cost term in the above objective function is zero if facility is already in place. The objective function is subject to the following constraints:

$$
\begin{align*}
& \sum_{i=1}^{N S} \sum_{c=1}^{C} X_{i j c T}+\sum_{i=1}^{\infty} \sum_{c=1}^{C} z_{i j c T}+\sum_{c=1}^{C} \sum_{i=1}^{N S}(R X)_{i j c T} \geq 0 F_{j T} \\
& 1 \neq \mathbf{j} \\
& \text { if } \underset{ }{\boldsymbol{p}} \\
& i, j \in \operatorname{REC} \tag{}\\
& \text { where } \\
& \mathrm{j}=1, \ldots, \mathrm{~m} \\
& T=1,2, \ldots, T_{h}
\end{align*}
$$

$$
\begin{equation*}
\hat{\delta}_{i j \mathrm{c}, \mathrm{~T}} \leq \sum_{T=1}^{T} \dot{\delta}_{i T} \quad Y_{i, j, c, T} \tag{35}
\end{equation*}
$$

where

$$
\begin{aligned}
& c=1, . \quad . ., C \\
& \text { i=1,. . .,Ns }
\end{aligned}
$$

$$
\begin{equation*}
X_{i j c T} \leq \sum_{T=1}^{T_{h}} U(c) \cdot \hat{o}_{i j c T} \exists_{1, j, c, T} \tag{36}
\end{equation*}
$$

where
$\mathrm{c}=1, . \quad ., \mathrm{C}$
$\mathrm{T}=1,, \mathrm{T}$
$\mathrm{j}=1, . . ., \mathrm{n}$
$\mathrm{I}=1,$.

$$
Z_{i j c T} \leq \sum_{T=1}^{T} U(c) \cdot \theta_{i j c I} \quad \forall_{i, j, c, T}
$$

wière

$$
\begin{aligned}
& \text { i申j }
\end{aligned}
$$

$$
\begin{equation*}
Y_{i j c T} \leq \sum_{I=1}^{T} U(c) \cdot Y_{i j c T} \quad Y_{i, j, c, T} \tag{38}
\end{equation*}
$$

where

$$
\begin{align*}
& \sum_{C=1}^{C} \sum_{j=1}^{m} X_{i j c T} \leq S I C_{i}{ }_{i=1}^{T} \sum_{i=1}^{T} \delta_{i T}+\sum_{C=1}^{C} \sum_{j=1}^{N S} Y_{j i c T}- \\
& \sum_{C=1}^{C} \sum_{j=1}^{N S} Y_{i j c T}+\sum_{k=1}^{R} \sum_{T=1}^{T} C_{i k T^{\alpha}}{ }_{i k T} \quad Y_{i, T} \tag{39}
\end{align*}
$$

where

where

$$
\begin{align*}
& i=1,2 \ldots v_{n} \\
& T=1,2 \ldots T_{h} \tag{41}\\
& \sum_{T=1}^{T} \hat{o}_{i T} \leq 1 \quad \forall_{i, T}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{i}=1,2 \ldots \mathrm{~N}=\mathrm{NS} \\
& \mathrm{~T}=1,2 \ldots \mathrm{~T}
\end{aligned}
$$

$$
\sum_{j=1}^{m} \sum_{c=1}^{C} \sum_{T=1}^{T} j_{i j c T} \leq N F \cdot \sum_{T=1}^{T} \hat{j}_{i T}+N F_{B} \cdot\left(\sum_{T=1}^{T} u_{i T}\right)
$$

$$
\begin{equation*}
{ }^{y_{i, T}} \tag{42}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\begin{array}{l}
i=1,2 \ldots \\
T=1,2 \cdots
\end{array}\right] T_{h} \\
& \dot{S}_{i j c T}=1-\sum_{T=1}^{T}(R \delta)_{i j c T} \quad \forall_{i, j, c, T} \tag{43}
\end{align*}
$$

where

$$
\begin{aligned}
& i, j \equiv \operatorname{REC} \\
& \mathrm{~T}=1, \ldots \cdot \mathrm{I}_{h}
\end{aligned}
$$

$$
\begin{equation*}
\sum_{c=1}^{C} \sum_{i=1}^{T_{h}}(R \delta)_{i j c T} \leq 1 \quad \forall_{i, j} \tag{44}
\end{equation*}
$$

wnere

$$
\begin{align*}
& i, j \equiv R E C \\
& (R X)_{i j c T} \leq U(c) \sum_{t=1}^{T}(R S)_{i j c t} \quad y_{i, j, c, T} \tag{45}
\end{align*}
$$

where

$$
\begin{align*}
& i, j \leq R E C \\
& T=1, \ldots, I_{h} \\
& \sum_{C=1}^{C} \sum_{n=1}^{T_{n}} \dot{C}_{i j c I} \leq 1 \quad, \quad Y_{i, j} \tag{46}
\end{align*}
$$

$$
\begin{align*}
& \underset{T=1,2 \ldots}{T=1, T_{n}} \\
& \sum_{K} \alpha_{i k T} \leq \sum_{T=1}^{T} \delta_{i T} \quad \forall_{i, T} \tag{40}
\end{align*}
$$

where

$$
\begin{align*}
& i=1, \ldots \ldots, N S \\
& j=1, \ldots, N^{\prime} \\
& \sum_{c=1}^{C} \sum_{T=1}^{T_{h}} S_{i j c T} \leq 1 \tag{47}
\end{align*}
$$

where

$$
\begin{aligned}
& i=1, \ldots . ., m \\
& \substack{j=1, i \neq j}
\end{aligned}
$$

$$
\begin{equation*}
\sum_{c=1}^{C} \sum_{T=1}^{T_{h}} Y_{i j c T} \leq 1 \quad Y_{i, j} \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\sum_{\sum_{c=1}^{c}} \gamma_{i f c T} \leq \frac{T}{\frac{T}{2}} \sum_{T=1}^{T} \delta_{i T}+\sum_{i=1}^{T} \delta_{j T}\right) y_{i, j, T} \tag{49}
\end{equation*}
$$

where

$$
\sum_{T=1}^{T} \mu_{i T} \leq\left(\sum_{T=1}^{T} \delta_{i T}\right) \cdot \mu_{\max } \quad \quad_{i, T}
$$

where

$$
\begin{aligned}
& \mathrm{i}=1,2 \ldots \mathrm{NS} \\
& \mathrm{~T}=1,2 \ldots \mathrm{~T}_{\mathrm{h}}
\end{aligned}
$$

$$
z_{i j c T}=\sum_{s=1}^{G}(t z)_{i j c T s} \cdot a_{i j c s t}
$$

$$
\sum_{s=1}^{G}(t z)_{i j c T s} \leq 1
$$

where
where

$$
\begin{align*}
& \sum_{S=1}^{G-1}(B z)_{S i j C T} \leq 1 . \quad y_{i, j, C, T} \tag{51}\\
& (t z)_{1 i j c T} \leq(B z)_{1 i j c T}
\end{align*}
$$

$$
\begin{aligned}
& { }_{\left.(t z)_{G i j} E I \leq(B z)_{(G-1) i j c T}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& 1=1, \text {. . ., NS } \\
& \underset{\substack{j \neq 1 \\
i \neq 1}}{ } \text {. } \because, ~ N S
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { i=1,2 . . . Ns } \\
& \mathrm{j}=1,2 \text {. . . NS } \\
& \mathrm{T}=1,2 \ldots \mathrm{~T}_{\mathrm{h}} \\
& \text { c=1,2 . . . C }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{s=1}^{G}(t R)_{s i j c T}=1 \\
& \underset{S=1}{\underline{I}}(B R)_{s i j C T}=i_{i}^{i} \quad \forall_{i, j, c, I} \\
& (t R)_{1 i j c T} \leq(B R)_{l i j c I}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{(t R)_{G i j c T} \leq}{ }^{(\beta R)_{(G-1) i j c T}}
\end{aligned}
$$

wnere

$$
\begin{aligned}
& \{, j=\operatorname{REC} \\
& c=1,2 \text {. . . C } \\
& T=1,2 \cdot \cdots T_{h} \\
& Y_{i j c T}=\sum_{s=1}^{G}(t y)_{s i j c T} \cdot a_{i j s c T} \\
& \sum_{s=1}^{G}(t y)_{\text {sifct }}=1 \\
& \underset{s=1}{G-1}(R y)_{s i j \in I}=1 \quad y_{i, j, C, I}
\end{aligned}
$$

$$
\begin{align*}
& i=1 \text {, . . ., NS } \\
& j=1 \text {, . . ., VS } \\
& c=1, \text {. . ., C } \\
& \underset{\substack{i \neq j}}{ }=\cdots I_{h} \\
& X_{i j c T} \leq U(c) \cdot \dot{o}_{i j c T} . \quad \forall_{i, j, T} \tag{55}
\end{align*}
$$

$$
\begin{aligned}
& i, j \in E
\end{aligned}
$$

$$
\begin{align*}
& \sum_{s=1}^{g} E_{s i j c I}=1 \\
& \sum_{s=1}^{g-1} t_{\text {sijcT }}=1 \\
& r_{1 i j c T} \leq(3 X)_{1 i j c T} \quad y_{i, j, c, T} \tag{56}\\
& { }^{E_{g i j c T} \leq(B X)}(g-1) i j c T+(B X)_{g i j c T} \\
& t_{g i j c T} \leq(B X)(g-1) i j c T \\
& \text { where } \\
& 1, j \in E, c \text { is known } \\
& \text { and } \\
& T=1, \cdots \cdots T_{i} .
\end{align*}
$$

Also

$$
\begin{aligned}
& X_{i j c T} \geq 0 ; Y_{i j c T} \geq 0 ; Z_{i j c T} \geq 0 \\
& (R X)_{i j c T} \geq 0(t y)_{\text {sijc }} \geq 0 ;(t z)_{\text {sijcT }} \geq 0 \\
& r_{\text {sijcT }} \geq 0 ;(t R)_{s i j c T} \geq 0 \\
& (3 X)_{s i j c T}=0,1:(3 Y)_{\text {sijcT }}=0,1 ;(B Z)_{\text {sijcT }}=0,1 \\
& (B R)_{\text {SijCI }}=0,1 ; \delta_{i T}=0,1 ; \delta_{i j C T}=0,1 \\
& (R \delta)_{i j c T}=0,1 ; \theta_{i j c T}=0,1 ; \alpha_{i k I}=0,1 \\
& Y_{i j c I}=0,1 ; \mu_{i T}=1, \ldots . . N B_{\max }
\end{aligned}
$$

The following are the explanations of the cerms in the objective function:

Term A: gives the fixed charges for constructing a substation on site i over the time norizon T_{h}.

Term 3: gives the cost of power losses in substation équipment, represented by a piecewise Inear approximation of power transported over route (i, j) over the time horizon I_{h}.

Term C: gives the fixed charges of an installed feeder of size C on the route from substation i to demand center j over the time horizon T_{h}.

Term D: gives the cost of power losses when power quantity $\mathrm{X}_{\text {ij }}$ is transported over conductor C represented by a piecewise linear approximation of the nonlinear cost curve over che rime horizon I_{h}.

Tern E: gives che fixed charges of an installed tiefeeder of size C berween suostarions over the time horizon T_{h}.

Term E: gives the cost of power losses in tie-feeders between substations as a result of transshipment over conductor C, represented by a piecewise linear approximation of the nonlinear cost curve over the time horizon I_{h}.

Term G: gives the cost of adding incremental capacizy at the various substations over the time horizon T_{h}.

Term H : gives the fixed charges for installed feeders of size C between demand centers over the time horizon T_{h}.

Term I: gives the cost of power losses in transshipment between demand centers over conductor C with piecewise linear represencation of the nonlinear cost curve over the time horizon T_{h}.

Term J: gives the fixed charges for adding bays to a substation over the time horizon T_{h}.

Term K: gives the fixed charges of reconductoring a Eeeder over route (i, j) over the time horizon T_{h}.

Term L: gives the cost of power losses in feeders over reconductored route ($1, j$), represented by a piecewise linear approximation of the nonilnear cost curves during the time period T_{h}.

Term M: gives the cost of power losses of conductor C over a route (i, j) with a feeder in place, represented by a piecewise linear approximation or the nonlinear cost curves during the time horizon T_{h}.
The following are the explanations of the constraints used in the model:

Constraint (34): assures that each demand is met during the time horizon T_{h}.

Constraint (35): stops a feeder, connecting suostation 1 to demand center j, Erom being built unless the substation has been built by time T.

Constraint (36): assures that no power flow over a feeder route connecting i to demand center j can occur unless the feeder has been built by time T.

Constraint (37): assures that there is no power flow between demand centers unless the connecting feeder exist (i.e., $\hat{v}_{i j c I}=1$).

Constraint (38): assures that the power flow between substations is zero if no feeder
exists between substations.
Constraint (39): assures that the total quantity transported from suostations to destinations is less than the substation capacity plus power transferred from ocher substations for any given time during the time horizon I_{h}.

Constraint (40): assures that incremental capacity cannot be added unless the suostation exist (i.e., $\delta_{i T}=1$) oy time T.

Constraint (40): assures that the number of feeders be built, if at all, by time T.

Constraint (41): assures that the number of Eeeders allowed at time T is less than or equal to the number of inftial teeders plus the number of feeders per bay times the number of bays added by the time T.

Constraint (42): assures that there is no power fiow over old feeder if a new reconductored feeder has been placed in time period I.

Constraint (43): assures that only one conductor size is used to reconductor the feeder and that the reconductoring occurs only once.

Constraint (44): assures that power flow over reconductored ieeder route occurs only if a reconductoring decision has been made.

Constraint (43): assures that only one conductor size can be chosen for a given feeder between substation 1 and cemand center j during the time horizon T_{h}.

Constraint (46): assures that only one conductor size can be chosen for a given feeder between demand center \ddagger and demand center j during the time horizon T_{h}.

Constraint (47): assures that only one conductor size can be chosen for a given tiefeeder between substation 1 and substation j during the cime horizon T_{a}.

Constraint (48): assures that no feeder can be built between substations at time I unless both substations exist (i.e., $\delta_{i T}=1$ and $\delta_{j I}=1$) by cime T.

Constraint (49): assures that the number of bays are limited and that bays cannot be added at time T unless a substation exists by the time T .

Constraint (50): computes the piecewise linearization variables of the power flow between demand centers for $E\left(Z_{i j}\right)$ i.e., the term (I) in the objective function.
$\begin{aligned} \text { Constraint (51): } & \begin{array}{l}\text { assures that the number of bays are } \\ \\ \\ \text { limited and that bays cannot be }\end{array}\end{aligned}$ added at time I unless a substation exists by the eime T.

Constrainc (52):
computes the piecewise linearization variables of the power flow between demand centers for $\mathrm{E}\left(\mathrm{Z}_{\mathrm{ij}}\right)$ i.e., the term (I) in the objective function.

Constraint (53): computes the piecewise linear approximation of che power loss cost function of the power transmicted over reconductored feeder routes in conjunction with the terll (I) in the objective function.

Constraint (54): computes the piecewise inear approximation of the power loss cost function of the power transmitted over feeder routes between substation i and demand center j at time T over conductor size C in conjunction with the term (D) in the objective function.

Constraint (55): computes the piecewise linear approximation of the power loss cost function of the power transmitted over tie-feeder routes between substation i and substaticn j at time T over conductor size C in conjunction with the term (F) in the oojective function.

Constraine (56): stops the power flow if feeder decision variable is zero.

Constraint (57): computes the piecewise linear approximation of the power loss cost function of che power loss curves for conductors in place with a given conductor size in conjunction with term (M) in the objective function.

OPTIMIZATION MODEL FOR DISTRIBUTION PLANNING USING REAL AND REACTIVE POWER FLOWS

Let the number of existing substations be NES and the number or possible sites on wich to build substations be iPS, as were previously. Assume that the planner has to make a number of decisions. $\bar{r} 0$ r example, building a new substation, or suostations, capacity additions to existing substations, addition of feeders from substarions to demand cencers, installation of new capacicor banks, and jetermining optimum conductor sizes.

Assume that real and reactive power requirements of each demand cencer are known. Then the model can be developed in such a manner to include the aforementioned properties at the minimum cost. Therefore, let $S_{i j}, Q_{i j}$ and $Q_{i j}$ be the cotal appearant power, real ${ }^{i}$ powe $\frac{1}{r}$, and reactive power cransmitted from suostation i to demand center j, respectively. Thus, the rollowing equation relates the three variables as

$$
\begin{equation*}
s_{i j}^{2}=P_{i j}^{2}+o_{i j}^{2} \quad \forall_{i, j} \tag{57}
\end{equation*}
$$

Assuming that the utility company's policy diccates to achieve a power factor of 0.9 , as is the usual case, the following restriction can be written as

$$
\begin{equation*}
p_{i j} \geq 0 . \exists_{i j} \quad y_{i, j} \tag{58}
\end{equation*}
$$

Since the total real power transmitted from all of the substations must satisiy the real power demand of the demand centers

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i j} \geq D P_{j} \tag{59}
\end{equation*}
$$

where

$$
\begin{aligned}
n & =N E S+N P S, \\
D P_{j} & =\text { total real power demand of demand center } \\
& j .
\end{aligned}
$$

Since the reactive power demand of the load cen-, ters is met by transmitting reactive power from the substations and by installing capacitor banks, the following restriction can be written as

$$
\begin{equation*}
Q_{j}+\sum_{i=1}^{n} Q_{i j} \geq D Q_{j} \quad Y_{j} \tag{60}
\end{equation*}
$$

where
$j=$ magnitude of the reactive power supplied by the capacitor bank located at demand center j ,
$D Q_{j}=$ total reactive power demand of the demand center j.
The power transmitted from a substation rust be less or equal to the capacity of the substation plus any additions to the capacicy. Therefore

$$
\begin{equation*}
\sum_{j=1}^{m} S_{i j} \leq C A P_{i} \cdot \hat{S}_{i}+\sum A_{k} \cdot \alpha_{i k} \quad v_{i} \tag{61}
\end{equation*}
$$

where
$C A P_{i}=$ initial capacity of the substation,
$\delta_{i}=0$, if a substation does not exist at the site i or will not be built,
$\delta_{i}=1$, if a substation is to be builc ac the site or already exists,
$\Delta_{k}=k$ 'th incremental capacity size available to increase the capacity of a given substation,
$x_{i k}=$ a zero-one decision variable.
Since only one capacity addition is allowed to be made at any given time

$$
\sum_{k=1}^{k} \alpha_{1 k} \leq 1
$$

Assuming that the permissable voltage drop is limited to 5 percent or base voltage (or to 0.05 pu V)

$$
\begin{equation*}
\frac{\sqrt{S_{i j}{ }^{Z_{i j}}{ }^{i}}}{V_{B}} \leq 0.05 \mathrm{pu} v \tag{63}
\end{equation*}
$$

or

$$
\begin{equation*}
\sqrt{s_{i j} \mid Z_{i j}{ }^{i}} \leq 0.05 v_{B} \tag{64}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{i j}\left|z_{i j}\right| \leq 25 \times 10^{-4} v_{B}^{2} \tag{65}
\end{equation*}
$$

where
$S_{i j}=$ apparent power, in kVA,
$\begin{aligned}\left|z_{i j}\right|= & \text { nagnitude of the Thevenin equivalent } \\ & \text { impedance, in ohms, }\end{aligned}$
$V_{B}=$ base voltage, in $k v$.
where

$$
\left|z_{i j}\right|=R_{i j}^{2}+x_{i j}^{2}
$$

$R_{i j}=$ resistance of the Thevenin equivalent impedance, in ohms,
$X_{i j}$ - reactance of the Thevenin equivalent impedance, in ohms,
In a system of overhead lines tine reactive component of the Thevenin equivalent is much larger than its resistive component, contrary to a system of underground cables. However, by installing fixed and variable capacitor banks at the substation and/or load centers to comply with the restriction (58), the mangnitude of the reactive component of the Thevenin equivalent impedance may be negligible, with a smail error involvement. Therefore,

$$
i z_{i j} \mid \cong R_{i j}
$$

Hence

$$
S_{i j} \cdot R_{i j} \leq 25 \times 10^{-4} v_{B}^{2}
$$

05

$$
s_{i j} \leq \frac{1}{R_{i j}} 25 \times 10^{-4} v_{3}^{2}
$$

where
$\begin{aligned} \mathrm{S}_{i j}= & \text { resistive component of the Thevenin equiv- } \\ & \text { alent, in ohms per mile, } \\ S_{i j}= & \text { apparent power Eransported from origin i to }\end{aligned}$ demand cencer j in $k V d$,
$v_{3}=$ base roltage, in kv.
Of course, as a result oi the installment of the capacitor banks, the copper losses or I^{2} R losses of the system decreases considerably.
A1so,

$$
\begin{equation*}
s_{i j} \leq j_{i j} \cdot Y \tag{66}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{i j}= & \text { apparent power } \begin{aligned}
& \text { co destination } j, \text { in kVA. }
\end{aligned} \\
S_{i j}= & 0, \text { if a feeder does not exist between } \\
& \text { origin } i \text { and destination } j, \\
S_{i j}= & 1 \text {, if a feeder does exist or is to be } \\
& \text { built between origin } i \text { and destination } j, \\
Y= & A \text { very large number. }
\end{aligned}
$$

Since Eeeders cannot be built unless a substation exirs,
where
$\mathrm{NF}=$ number of feeders that can emanate from a bay, at a substation,
$\delta_{i}=0$, if a substation does not exist at the site 1 or will not be built,
$\hat{o}_{i}=1$, if a substation is to be built at the site or already exists,
$\theta_{i}=$ the number of bays allowed per bay,
$\theta_{i}=1,2,3=\theta_{\text {max }}$
The following restriction keeps a bay from being added unless a substacion exists or is to be built,

$$
\begin{equation*}
\theta_{i} \leq \hat{o}_{i}\left(\theta_{\max }\right) \quad y_{1} \tag{69}
\end{equation*}
$$

Since additional capacity cannot be added unless bays are added, thus

$$
\begin{equation*}
x_{1 k} \leq \theta_{i} \quad \forall_{i} \tag{70}
\end{equation*}
$$

In general, che costs involved are
$S F C_{i}=$ present worth of fixed costs of substation (including land, :ight-of-ways, and some construction costs),
$S V C_{i}=$ present worth of variable costs of substation i,
$B A C_{i}=$ present worth of fixed costs of adding a bay at substation i,
FFC ${ }_{i j}=$ present worth of fixed costs of a feeder connecting origin i to destination f,
$C_{i k}=p r e s e n t$ worth of cost of the k 'th capacity increment to the i 'th substation (withour including the cost of bay),
$C A P_{j}=$ cost of adding capacicor bank at j.
Assuming the cost of power losses has a noniinear function, the total cost or objective function which needs to be minimized is

$$
\begin{aligned}
& z=\sum_{i=1}^{n} \mathrm{SFC}_{i} \cdot j_{i} \operatorname{Smax}_{i=1}^{\mathrm{max}} \mathrm{BAC}_{i} \cdot \vartheta_{i}+\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{FFC}_{i j} \\
& \cdot \delta_{i j}+\sum_{i=1}^{n} \underset{k=1}{k} C_{i k} \cdot a_{i k} \\
& +\sum_{i=1}^{n} S V C_{i} \cdot S_{i j}-\sum_{i=1}^{n} \sum_{j=1}^{m} E V C_{i j} \cdot S_{i j}+\sum_{j=1}^{n} \operatorname{CAP}_{j} \cdot Q_{j}
\end{aligned}
$$

where

$$
0_{j} \geq 0 ; S_{i j} \geq 0 ; P_{i j} \geq 0 ; Q_{i j} \geq 0
$$

and

$$
\begin{aligned}
s_{i} & =0,1 ; \quad \hat{s}_{i j}=0,1 \\
\alpha_{i k} & =0,1 \\
\varepsilon_{i} & =1,2 \ldots, \theta_{\max }
\end{aligned}
$$

The model developed is a non-linear mixed-integer programming model. There may be several refinements. For example, a fixed charge can be used for the installment of capacitor banks by defining (FQ)
and requiring

THE CONCEPTUAL DISTRIBUTION SYSTEM PLANNING MODEL

Introduction

In general, the ultimate criteria for a good distribution syscem planning decision are: (1) the one which provides the best result from a set of alternatives, and (2) the one which is reached most quickly and economically. Therefore, the planning engineer has to use some computerized analytical techniques to evaluate the technical and economic merits of alternative plans. There is a need for large scale analysis as well as information retrieval and display, in choosing the best alternative required an interactive problem solving environment based on a data base managemenc system and a library or application programs, with an analytical capability that is far beyond che conventional algorithms. The syscems approach would enable the planning engineer to simulate the distribution system in order to develop and evaluate, using cost sensitive evaluation models, plans for a given year or to treat the planning activity as a continuous process. Currently, only a few electric utility companies organize cheir planning activities in a way similar to this conceptual system. Most of them still treat the planning process not on a integrated system basis, but rather, on the basis or a partitioning of the cotal system into subproblems which, in turn, results a nonopeimal system planning.

Future Nature of Distribution Planning

'Predictions about the Euture methods Sor distrioution planning must necessarily be extrapolations of present methods. Basic algorithms for network analysis have been known for vears and are not likely to be improved upon in the near future. However, the superstructure which supports these algorithms and the problem-solving environment used by the system designer is expected to change significantly to take advantage of new methods which technology has made possible. Before giving a detailed discussion of these expected changes, the changing role of distribution planning needs to be examined". ${ }^{2}$

Increasing Importance of Good Planning

Because of the economic reasons, distribution system will become more expensive to build, expand and modify. Thus it is particularly important that each distriburion system design be as cost effective as possible. This means that the system must be optimal from many points of view over the time period from first day of operation to the planning time horizon. In addition to the accurate load growth estimates, components must be phased in and out of the system so as to minimize capital expendlturt, meet perfomance coals and minimize losses.

These requirements need to be met at a time when demograpinic rends are veering away from what have been their norms for many years in the past and when distri-

[^5]Thus, the following term needs to be added to the objective Eunction,

$$
\begin{equation*}
\Sigma(F Q)_{j} \cdot C F C \tag{73}
\end{equation*}
$$

where
CFC $=$ fixed charge for capacitor bank installation.
bution systems are becoming more complex in design due to the appearance of more active components (e.g., fuel cells) instead of the conventional passive ones.

Cost/Benefit Ratio for Innovation

In the utility industry, the most powerful force shaping the future is that of economics. Therefore, any new innovations are not likely to be adopted for their own sake. These innovations will be adopted only if they reduce the cost of some activity or provide something of economic value which previously had been unavallable for comparable costs. In predicting that certain practices or tools will replace current ones, it is necessary that one judge their acceptance on this basis.

The expecred innovations which satisfy chese criceria are planning tools implemented on a digital computer which deal with distribution systems in network terms. In TASK A. 1 and TASK A. 2 , a list of currently available such planning tools are given, and one might be tempted to conclude that these tools would be adequate for industry use chroughout the 1980 's. That this is not likely to be the case may be seen by considering the trends judged to be dominant during this period with chose which held sway over the period in which the tools in were developed.

New Planning Tools

Tools to be considered Eall into two categories: network design tools and network analysis tools. The analysis tools may become more eificient but are not expected to undergo any major changes although the environment in which they are used will cinange significantly. This environment is discussed in the next section.

The design tools, however, are expected to show the greatest development since betrer planning could have a significant impact on the utility industry. The results of this development will show the following characteristics:
(1) Network design will be optimized with respect to many criteria using programing methods of operations research.
(2) Network design will be only one facet of distribution system management directed by human engineers using a computer system designed for such management functions.
(3) So-called network editors ${ }^{4}$ will be available for designing trial networks; these designs in digital form will be passed to extensive

[^6]simulation programs which will determine if the proposed network satisfies performance and load growth criteria.

The Central Role of the Computer in Distribution planning

As is well known, distribution system planners have used computers for many years to perform the tedious calculations necessary for system analysis. However, it has only been in the past few years that technology has provided the means for planners to truly take a "systems approach" to the tocal design and analysis. It is the central theses of this section that the development of such an approach will occupy planners in the 1980 's and will significantly contribute to their meeting the challenges previously discussed.

THE SYSTEMS APPROACH

A collection of computer programs to solve the analysis problems of a designer does not necessarily constitute an efficient problem solving system nor
even does such a collection when the output of one can be used as the input of another. The systems approach to the design of a userul tool for the designer begins by examining the types of information required and its sources. The view taken is that this information generates decisions and additional information which pass from one stage of the design process to another. At certain points, it is noted that the human engineer must evaluate the information generated and add his inputs. Finally, the results must be displayed for use and stored for later reference. With this conception of the planning process. the systems approach seeks to automate as much of the process as possible, insuring in the process that the various transformations of information are made as efficiently as possible. One representation of this information flow is shown in Figure 30. Here, the outer circle represents the interface between the engineer and the system. Analysis programs forming part of the systam are supported by a database management system which stores, rerrieves, and modifies various data on distribution systems.

The Database Concept

Figure 30. A schematic view of a distribution system planning system

As suggested in Figure 30 , the database plays a central role in the operation of such a system. It is in this area that technology has made some significant strides in the past five years so that not only is it possible co store vast quantities of data economically, but it is aiso possible co retrieve desired data with access times on the order of seconds. The database management system provides the interface between the process which requires access to the data and the data itself. The particular organization which is likely to emerge as the dominant one in the near future is based on the idea of a relation. A more detalled discussion of such a scheme is presented in TASK 3.10 and Appendix E.

Networks

The second key element of the conceptual model is the generalized notion of a network. For purposes of logical economy, it is required chat all important quantities be associated with components of the distribution network. At first chougint, it may appear that this is not desirable since conventionally, much of the system description has been associated with a coordinate grid system. In the model, however, a component of che distribution system is represented as a vertex in a direcred grapin. Connections berween syscem components are represenced as arcs in the graph.

Consider, for example, the cotal load in some area of the serrice grid. It may consist of resistive, inductive and capacitive elements, winch are distributed over the area. This load may be modeled as a vertex which has parameters such as coordinate position, area, and load coefficients associated with it. This idea is. illustrated in Figure 31. Figure $31(a)$ represents the load for a given area modelled by a graph vertex and Figure $31(b)$ shows that vertex and other similar verrices combined to form a subnetwork. Other network components, such as substations, transformers, distribution lines, etc. are modelled in a similar way.

The relational data base scheme is flexible enough that a network can be stored conveniently as a collection of relations. Thus, the entire model of a distribution system is represented as a network and all daca pertaining to the model is stored in a collection of

(a)

(b)

Figure 31. Network representation: (a) "Lumped" network components, (b) a sample network
relations, including the network representation itself.

Planning Programs

The third important ingredient of the model consists of the planning programs in TASK A. 2 and TASK A. 2. The system has been designed to incorporate the funccions of all che programs presented in Table 1 plus additional programs which extend the system's capabilities beyond those in use by the nation's utilities. Some of the required programs are:

Load forecasting program, Primary network expansion program, Substation expansion program,
New substation siting program,
Economic secondary distribution program, Transformer load management program, Distribution load flow program,
Primary voltage selecrion program,
Voltage profile and regulation program, Voltage flicker program,
Capacicor allocation program,
Power loss program,
3. Protective device coordination program
14. System reliability program
15. Toral economic cost program,
16. Necwork editor.

The load forecasting program is a set of programs to predict demands by various customer classes from available data. The primary networi expansion program, the substation expansion program, and the new substation siting program are the subset programs of the aforementioned distribution system planning models utilizing mixed-integer programing. The economic secondary distribution program of the distribution transformer and secondary combination subsystem checks all designs against user-furnished criteria whici may include: (1) allowable voltage drops and voltage flicker, (2)allowable maximum Eransformer overloading, (3)power losses in the distribution transformer and secondary system, (4) phase-load balance for the primary system, (5) investment cost of the secondary system, and (6)other engineering and economic considerations.

The transformer load management (TLM) program provides a computerized data base for distribution transformer loading pattems from which area load growth projections can be developed. The distribution load flow program calculates the real and reactive power flows and flows and bus voltage levels in a given distribution network. The program can be improved to perform fault and phase-balance studies as well as the computation of current flows, voltage profiles, and power factors. Further, the program can be designed to provide ratings for sectionalizer or recloser and regulators.

The primary voltage selection program performs an economic study by generating rapidly the various cost elements of alternative system designs suggested by the planner and based on load densities, voltage control requirements, power losses in conductors and transformers, the effects on overall system rellability, procection schemes, and possibly a number of external and internal factors to choose the most economic distribution voltage levels.

The voltage profile and regulation program calculates the voltage profiles along primary feeders to decemine voltage drop deviations and the requirements for voltage regulation. The voltage flicker program computes the voltage fluctuations and temporary voltage dips below the minimum allowable voltage level due to customer utilization apparatus, e.g., motor starting, welding, electric furnaces, etc.

The capacitor allocation program calculates the optimum size of capacitor banks and their locations along a primary feeder circuit: The power loss programs computes the power losses of alternative system designs.

The protective device coordination program computes the optimum ratings of fuses, the ratings and settings of reclosers and sectionalizers, and the pickup current and time delay settings oi overcurrent relays.

The system reliabilty program computes the system reliability indices of altemative system designs based on geographical location, weather conditions, customer mix, primary voltage level, overall system configuracion, and a number of ocher factors. The total econoaic cost program calculates the cost of alternative system designs.

System Organization

A schematic diagram of the system is shown in Figure 30. The major functional components are the shell program, i.e. and executor or overload program; the planning programs which run under its control; a network editor which ailows the distribution system planner to construct and modify networks; and finally, the data base management system which both supports the network editor funcrions affecting the data base as well as supplying additional capabillties for data organization, retrieval and input-output.

The Shell

One of the design goals of the implemented system was to make its operation as independent as possible of the host hardware/software. In order $t 0$ achieve this portability, given the present technology, it was necessary to simulate many of the functions of a computer's operating system with the distribution system planning model (DSPM) itself. These functions are located in the shell program winich provides an interactive interface jetween tie distribution system planner and the functions and programs of the DSPM. Some of the important functions of the shell are sumarized in Table 29.

Table 29. Shell Commands

COMMAND	FUNC:ION
Invoke	Connect the shell to a particular data dase which supplies all data required by programs running under control of shell.
exceute	Segin the execution of a program under controi of the shell.
PIPELINE	Execute a series of programs; the output of a previous program becomes the input of a succeeding program.
EXECUTE CONTROL FILE	A file containing shell commands is executed.
Create	Create a file for use by programs under the shell's control.
OPEN	Prepare a file for reading or writing.
CLOSE	Terminate processing for a file.
UNLINK	Remove a file from the system.
SAVE	Permanently retain a Eile.
LIST FILES	List all files assigned to a parEicular user name.

The Network Editor

Among the processes subordinate to the shell is the necwork editor. In planning power distribution systems, it is necessary to have a model of the distribution network. For the purposes of this discussion, such a model consists of a graph, whose vertices are network components such as transformers, loads, etc., and edges which represent connections among the components.

An engineer involved in planning will need to have the capability of constructing network models and will also need to modify such models. Additionally, the investigator may wish to construct several related models to explore alternatives in power system design. The network editor serves to facilitate and supporr the construction and modification of power system network models.

The features of the network editor is discussed in terms of network obfects, control mechanisms and command functions. A primitive network object is comprised of a name, an object class description and a connection list. The name, uniquely identifies the object class description contains a list of parameters which specify the object class and a list of input and output ports. The connection list defines the components to which the object of interest is connected.

Several control mechanism features provide the planner with natural tools for correct construction and modification. The first of these is that of state variables. These are used to identify a particular setting of a control. State variables are inciuded in the object class description of an object and may have either numerical or boolean values. In the case of a variable capacitor, the capacitance would be considered a numerical state variable. In the case of a switch, the setting (off, on) is a boolean state variable. The values of state variables may be changed under the engineer's control without modifying the network by replacing one component by another. This is not the case for object class parameters winich are not stare variables. A numerical state variable may be assigned any arithmeric expression whose operands are numerical state variables or boolean constants.

A second important control mechanism feature is that of the design switch. A design switch may be inserted into any network object. The resulting object is then controlled, made to "appear". and "disappear" by a boolean state variable corresponding to the design switch. If a design switch is included in an object class description, then all objects which are instantiations of the object class change state whenever the corresponding boolean stare variable is changed. Several design switches may be controlled by a single state variable; accordingly, several alcemarive network configurations may be obtainable by altering one or two state variables.

In order to correctly and automatically connect several input ports of one device to several "corresponding" output ports of a second device connection descriptors are used. These may be thought of as polarized. connectors which permit connections to be made only one way. During object definition, each port gets a "pin number", and this number determines the corresponding port on all other devices.

In order to manipuiate connections, the network editor provides a facility for assigning cursors to network objects. A cursor is a pointer which specifies a particular network object. Some cursors point to objects within the network of interest while others point co "parts" i.e., objects which are not currently connected to the network. These parts may be primitive or composite objects.

Composite objects are objects formed from network objects by including them.in a subnecwork. Such composite objects have object class descriptions which consists of the union of object class descriptions of
their components and connection lists representing the unspecified portions of the connection lists of their components. A composite object is co a network as a FORTRAN subroutine is to a program. The major network editor comands which the user has at his disposal are shown in Taole 30 . Also see Appendix \bar{F} for a complete functional description of the network editor.

The final major suosystem running under the aegis of the shell is the data base management system (DBMS) All transactions against the data base are processed by the DBMS. This insures that the integrity of the data base is maintained, regardless of which process initiates a transaction, be it the designer himself via the snell, the planning programs or the network editor. The capabilities of the DBMS are primarily those found in any current relational data base. The most important are summarized in Table 31.
rransactions are specified in cerms of a dialog based on the relational algebra introduced by Codd ${ }^{5}$. This form was preferred over others such as the relational calculus ${ }^{\circ}$ because of its procedural nature and the relative ease of implementation. All of the

Table 30. Necwork Editor Commands

At this point, the planner may, using the network editor, inspect various network components to obtain a feeling for the probable effects of the increased load. Alternatively, he may simply elect to execute. a shell command to obtain a volcage profile for the network. This command terminates with a list of network components which exhibit overvoltage or undervoltage. conditions. If no such conditions are derected, the planner may then proceed to perform a reliability assessment. In the simplest case, this consists of executing a fuse coordination program.

If an abnormal voltage condition was detected by the voltage profile program, the planner mayproceed
to modify the network in order to correct the problem. Suppose for simplicity, that low voltage is indicared on one particular bus. The planner would first examine the neighborhood within the NETWORK, containing the problem bus. This is done 'y invoking the network editor, supplying the bus designacor and specifying. that a display is wanted of the network surrounding that bus. The display not only outputs the network topology but, in addition, the voltage and load levels of the components. From these data, the planner: may detemine the best way to correct the problem.
task b. 7. the determanation of the extent to whice extsting digital computer programs, mmplementing the concepts and methods identified in task b. 6 are software compatible

The system view which resulted in the planning distribution model described in the section on Task B. 6 has eliminated the concern with which the present task was charged. This is because the Data Base Management system (DBMS) acts as an intermediary between all analysis programs. All input data is formatted by the DBMS so chat it coniorms to the requirements of
the individual program and similarly, all output data Erom a given program is transformed into a canonical form before being stored by the DBMS. Thus, all char is required to satisfy comparibility conditions for any program is a description of its input and output formats. By construction then, all analysis software is compatible.
task b.8: the selection of a set of extsting programs which best meet the need of the distribution planning :Methodologies and are sufficiently software compatible to permit use on the project

In TASK B. 1 criteria were defined to aid in selecting models, both conceptual and implemented computer programs, to carry out the task of generacing a production version of an interactive distribution planning cool. Programs that pass chis criteria'are eligible for the assesscrent.

Once a program or a model has passed the criteria defined in TASK $B .1$, selections among eligible programs must be made on criteria which are design oriented and/ or ease of implementation considerations. The design considerations are the size of network that can be analyzed and nonrestrictive assumprions which allow more general use of the program. The implementation considerations exclude company-peculiar data entry and good cocumentation that facilitates cransferability.

The functional system defined in the executive summary plus the models defined in TASK $B .6$ set up requirements which efiectively eliminate current implemented systems plarning models as suboptimal. This system forms a total economic cost package.

None of the above considerations which eliminated implemented programs that were assessed imply that the rejected prograws were either incorrect or poorly conceived. They simply did not meet the design requirements posed by chis research in TASK B.ó.

The computer, programs described in TASK A. 1 and TASK A. 2 did not meet all the implementation-related criteria and all the design and transferability-related criteria. However, some programs meet most of the criceria and therefore should be pointed out.

The computer program P1 exceeded the core storage requirements, as described in TASK B.1, even arter extensive reductions in core storage have been made by overlay techniques. However, this program is in an inceractive mode and performs a number of important analysis functions. It can be used to study distribution load flow, voltage profile and regulation, voltage flicker, capacitor allocation and power loss based on the system growth. Tajle 30 presents the results of the analysis and selection process.

Table 30. Compucer Program Selection and Analysis

COMPUTER PROGRAM FUNCTION	PROGRAM	COMMENTS
Load forecasting		***
Primary network expansion		**
Substation expansion		**
Suostation siting		**
Economic secondary distribution		***
Transformer load management	P8	*
Distribution load flow	P1, P14	P1=R, P14 $=$ *
Primary voltage selection		**
Voltage profile and regulation	P1, P6, P25	$\mathrm{Pl}=\mathrm{R}, \mathrm{P} 6={ }^{\text {a }}$, P25=*
Voltage flicker	P1, P6, P25	P1mR, P6m*, P25=*
Capacitor allocation	P1, P25	P1-R, P25=*
Power Loss	P1, P14	P1=R, P14=R $=$ *
Protective device coordination	P20, P23	***
System reliability	P17	***
Total economic cost		**
Network editor		**

[^7]task 3.9: the analysis of the data requirements of all phases of the distribution planning process

INTRODUCTION

The purpose of this task was to identify all of the relavent data necessary for distribution system planning. In chis section of che report, an overview of the required data will be provided so that when the detailed data base is presented in the section describing TASK B:Il, the major outlines will still be visible.

Sources of Data

The three primary sources of data considered by the present analysis were the following:
(1) Information obtained by direct contact. with utility companies.*
(2) Data requirements of computer programs available to this project.
(3) Data requirements of the conceptual models considered by this project.

Iypes of Data

The data considered can be grouped under two major classifications. Data on the distribution system itself, and planning data about forces and effects which may change the distribution system in the future. Diseribution system data consist of inventories of hardware with accompanying status and topological or network daca wich defines the energy distribution system itself. Planning data consist of descriptions of fusure demographic trends and anticipated political action (e.g., zoning changes, bond issues; etc.) which will change distribution requirements from their present values.

Data Organdzation

Although there are many possible ways to analyze and organize distribution system data, the approach taken here was to concentrate on a hardware/network description. This decision was suggested by the fact that most distribution engineers tend to view the system in this way. The natural hierarchy within this organization consists of substation descriptions, primary distribution system descriptions, secondary distribution syscem descriptions, and network terminal descripeions. The description of hardware componencs does not vary 500 much from one component to another regardless of which element of the hierarchy, contains the components. Thus while the total amount of data is large, it can be organized in a logically parsimonius way by regarding it in this manner. In the Eollowing sections, each element of the hierarchy will be examined.

GENERIC COMPONENT DESCRIPTIONS

All of the electrical components of the networks can be described using the descriptors listed in Table 31. In this section, the significance of eaci entry in the table will be examined.

Organizational Descriotion. Each utility has. certain designations which it assigns to its equipment. This information would be contained here. e.g., substacion number, division code, ecc.

Network Data. In the section which discusses TASK

[^8]B.10, the explicit form which network data takes for each component. will be presented. Suffice it to say here that all che information necessary to place the substation in the network wouid be included in this descriptor.

Electrical Description. A complete elecrical description of the component is provided by this descriptor.

Automation Code. Many network components are subject to having cheir parameters modified by automatic planning programs. This descriptor indicaces what limitations in this regard are in force for the given equipment.

Operating Status. This descriptor indicates whether the component is presently in service or is undergoing repalr, modification etc.

Service Code. This descriptor destinguishes between network components which are actually in the network, planned for the network or being experimenced with, using simulation tools, by the designer.

Inscallation Data. Used for both engineering and accounting purposes, this descriptor tells the job number, the number of man-hours required, and last change required for installation.

Coordinates. Geographic coordinates; either nap numbers or street address are in common use.

Manufacturing Data. Typical information provided by this descriptor would include manufacturer, model type, serial number and a orief functional description.

Physical. Description. Physical characteristics, such as dimensions, weignt, ecc. are described.

Reliabilicy Data. Data useful for estimating mean time between Ėailures.

Cost Daca. Installation costs, replacement costs, depreciation, interest, maintenance expense, taxes, insurance, and in some cases, operation costs are provided by this descriptor.

Record Status. This descriptor relates to the data base rather than the component. It reflects the currancy of the information, data of last update and who among the user community has access to the information.

Time History Data. Energy use as a function of time is required for some equipment; e.3., cuscomer meter records. This descriptor captures that data.

Table 31. Generic Component Descriptors
Organizational Description
Network Data
Electrical Description
Automation Code
Operating Status
Service Code
Installation Data
Coordinates
Manufacturing Data
Physical Description
Reliaoility Data
Cost Data
Record Status
Time History Data

With the generic description defined, attention will be focused next on the different elements in the distribution system hierarchy.

SUBSTATION DAIA

Physically and electrically speaking, the typical substation consists of the components shown in Table 32.

Table 32. Substation Components

Transformers

Breakers/Relayed Reclosers
3us Configuration
Vacuum Switches
Manual Switches
Capacitors
Reactors
In our view, there is a description of the substation based on the generic descriptors of Table 31, just as chere is such a description for each component shown in Table 32. The decailed description is presented under TASK 3. 10.

As a brief illustration of how the generic description applies to the substation, consider the descriptor Eiectrical Description. For the substation, it is Table 32 suitably expanded to include the detailed properties of each such component, as well as cotal capacity, existing load, etc. The descriptor, Network Data, describes the bus configuration within the substation. The descriptor, Physical Descripeion, supplies service area size, getaways and so on.

The applicabilicy of the generic descripetion is just as comprehensive for the ocher elements in the hierarchy as is discussed beiow.

LINE DATA

Line data can be separated into primary and secondary distribution catagories. In this overview, however, that will not be done. Instead, the listing of device types shown in Table 33 will be presented.

Each element shown in this table can be described using the generic description. Since detailed expansions for each of these devices in given in the sequel, no further discussion will be provided here.

Table 33. Line Section Elements
Line Section
Distribution Transformer
Step-up/Step-down Transformer
Boost and Buck Transformer
Shunt Capacitor
Serfes Capacitor
Step Regulator
Induction Regulator
Line Sectionalizing Device
Line Recloser
Staric Recloser
Line Reactor
Tie Sectionalizing Device

METER DATA

Meters represent the reminf of the distribution network. The meter is the component closest to the cuscomer and provides a measure of consumption on a per customer basis. As are the other major classes of network elements, a meter associated with an active customer is described by the generic descriptors of Table 31.

The time history data contained in the meter
gives a consumption for any major section of the distribution system. Since these sums directly correlate with geograpinic areas, a measure of consumption as a function of area may je calculated. This consumption function is important for use by the various planning programs which attempt to predict load growth in given areas of the network

PLANNING DATA

The planning data, as it is presently collected and used in practice, is the only signigicant portion of the data that is not explicitly network-oriented. Some preliminary zesearch concerned with relating even load growth forecasts directly to a network model has been attempted by this research group but chese eiforts are at such an eariy stage that any consideration of them in this report would be inappropriace.

Planning, as it is currently practiced, requires energy consumption data, which, as discussed above, is carried on individual equipment in the network. In addition, it requires data on the geographical area in which the distribution system is located. This data, compiled for every element of a grid system covering the system is shown in Table 34 .

Table 34. Planning Data
Land Use Plans
Planning Code
Saturation Code
Class Code
These daca are explained below.
Land Use Data. This category includes community environment factors such as developer's plans, zoning ordinances, and the attractiveness of the area for further development.

Planning Code. This darum is a measure which is established by metropolitan planning commissions and designates twenty-six different growth patterns and rates.

Sacurarion Code. Assigned by the planning engineer, this number indicates how nuch "room" exises in a grid element for further growth.

Class Code. Also assigned by the planning engineer, che class code is compured based on a projection of future demand by each present customer in the grid.

SUMMARY

The object of chis cask was to examine the data classes pertinent to the distribution system pianning process. This examination yielded a generic description which applies to all of the data related to a distribution network. The only data which is not subsumed under this classification scheme is the planning data which must be treated separately. The generic description will be expanded in the section descrioing TASK B. 11 to fully describe the complece data base required by the distribution planner.

task 3.10: the conceptual design of a data base sufficient to met the data requirements of a distribution planntig methodologies developed

INTRODUCTION

The purpose of this section is to explain the conceptual basis for the detailed database that will be presented in the section of TASK B. 11. Actually, this section will discuss considerably more than just the ideas underlying the database, since it is important to explain the concepts underlying the other major components of the methodology identified by this research.

For chis reason, the present section is divided into subsections, the first three of which discuss issues directly related to the database. The last one discusses a program called the Network Editor. This discussion has some thoughts in common with that found under TASK B.6; however the point of Wew rests firmiy on the foregoing discussion of the database and thus is able to clarify a number of points which could not be adequately covered in the treatment of TASK 3.6 .

The introduction to databases begins with the inspection of the state-oi-the-art.

Present Stare of Database Technology

Today's Database technology can be described in cerms of three distinct daca organizations: the relacional model, the network model and the hierarchical mode $1^{1,2}$.

The relational model, which is the scheme chosen as the basis of the conceptual model for this study was introduced by Codd ${ }^{3}$. It may be developed by considering attibutes to be identifiers taken from a finite set $A_{1}, A_{2}, \cdots, \ldots, A_{n}$. Each A_{1} has associated with it a set of values called a domain, written as dom $\left(A_{1}\right)$. A relation on the set of attributes, $R\left(A_{1}\right.$, A_{2}, . . , A_{n}), is a subset of the Cartesian product

$$
\operatorname{dom}\left(A_{1}\right) x \operatorname{dom}\left(A_{2}\right) x \cdot . \cdot x \operatorname{dom}\left(A_{n}\right) .
$$

An element of this subset $\left(a_{1}, a_{2}, ., \ldots, a_{n}\right)$ is called a tuple. A relation may be simply visualized as a table of rows and columns. The rows represent tuples, while columns represent the values of a particular attribute contained in the relation. An example is shown in Table I, where partial data on transformers of a particular class have been used to construct a relation. A darabase consists or one or more relations. Kevs are attribute values which uniquely specify tuples. For example, in Table 34 the serial number is a key because no two transformers have the same serial number. In some relations, more than one attribute must be specified to obtain a unique tuple.

Table 34. The Relation Transformer

seriat 1	x.r 20080	valiage anitite (LILE/AOAD)	poier loss - (5o loroffull lono	poris (LIRE SECTIO:/SOURCE)
11724818	296-015	12.5/2.4	140/210.	418/12715
59371140	112.431	12.5/2.4	140/2t0	121/5521
74765312	030-030	2.4/3.6	250/400	25/4374
46184229	075-340	12.5/0. 22	20/30	1147/2745
24279531	215-009	12.5/214	140/210	44819293
11761697	317 -4.45	12.3/0.22	20/30	3141/12112
3447378	075-110	2.4/3.6	250/400	312/5541
00217110	015-200	2.4/3.6	250/400	$312 / 5595$

[^9]The oldest form of database organization or data model is the hierarchical model. The concept is illustrated in Figure 32 where an employee database ordered by organization level is shown. The major levels in the hierarchy are university, colleges, departments, employee classification and employee. The key or pathname uniquely identifying Professor Jones in the Math Department is:
university.arts $\&$ science.math. Faculty.jones.
stored under this key might be the professor's salary, number of dependants, social security number and so on.

The shape or topology of the storage structure is that of a tree. Each of the incerior nodes (e.g., those on the levels university, colleges, departments, and employee classification) can have any number of descendants. Note however, that in the hierarchical scheme, if a professor holds an appointment in pore than one department, the data model has serious problems since the structure to represent that is no longer a tree.

The network model was introduced to gencralize the hierarchical model and eliminate the above difficulty*. Figure 33 illustrates a network data model for a colleccion of authors, (Fezziwig, Wilkins, Crachet, and Dickens), scholarly papers, (denoted as PF1, PF2, PW1, etc.) and Journals in which these papers appeared (CACM, BIT, EBL). Consider the succession of arrows shown in Figure 33 which begin and end with Fezziwig. They serve to associate the papers PF1 and PF2 with Fezziwig. IE the circuit which includes the bottom portion of PFL is examined, it will be seen that it also contains PW1 and the journal designator CACM. Thus it relates the papers PFI and PWI with the journal CACM. In like manner, each of the other papers is related to both an author and a journal. At the same time, a single author is related to many papers and a single journal is related to many papers. It is the ability to represent the many-co-many relationship which makes the network data model more flexible than hierarchical model.

Before justifying the choice of one of chese models over the others, one of the key concepts of the proposed methodology must be examined. Only afizer this discussion. will it be possible to evaluate all of the factors to be considered.

The Network as the Fundamental Basis for the MechodoIOgY

One of the conventional ways of describing distribution systems is via a system of geographical grids. The methodology and technology to be discussed here is based on a different representational approach. The most prominant feature of a distribution system is that its components can be represented as elements of a graph. Specifically, each element may be considered to be a node in a graph. This includes line sections and other components which might otherwise be thought of as constituting edges in the network graph. If all the physical components of the network are considered to be nodes, then the edges serve merely to associate network elements with each other as the topology of the physical necwork requires.

Mathemarically speaking, a graph consises of a 4tuple $G(N, E, S, 5)$, where N is a finite set of nodes, E
*The use of the term "network model" for a data model is unfortunate since in later discussion, the term "network model" will refer to a conceptual scheme central to our preferred methodology. The nomenclature is quite well-established in the database literature however, and is the only one appropriate.

$$
s: E \rightarrow N
$$

which maps each edge $e \leqslant E$ onco an element $n \in \mathbb{N}$ Saying it in an alternative way, $s(e)$ is the node in from which the directed edge e originates.

```
t is the target map
t: E > N
```

which defines on which node a given edge terminates. Consonent with the mathematical description, each physical component of the network must have source ports and target ports. In general, target ports will be at a higher electric potential than source ports.

Figure 34 (a) shows the conventional description for part of a distribution system and Figure $34(b)$ shows the equivalent graph representation.

For every node in the network, chere is a set of generic component descriptors* which can only be speclalized to describe that particular component type. Thus, this network model and the accompanying component descriptors serve to describe the entire distribution system.

CHOICE OF THE RELATIONAL MODEL

As discussed above, there are three well-known data models in use. Upon what basis should one make a decision favoring the adoption of one over the others? The answer lies in the form of the data to be processed. Other considerations being equal, the model which "naturally fits" the data is the one which should be chosen. In the present case, each model will be superposed on the data to decermine which should be the most sat isfactory.

Non-hierarchical Nature of che Data

If the totality of data required to describe the distribution system is considered, it is difficult to discem a hierarchy, particularly if one adheres to the directed graph conception. This icself is a many-comany relation and as such is not amendable to being cast in a hierarchical mold.

Even if one elects to represent the distribution system with two different data models--one for the graph description and the other for the component de-scriptors--it is not clear that the hierarchical model has much to offer. Network components are not usually chought of as being subordinate to each ocher and since it is the subordinate relationship which must be present for a hierarchical view to succeed, this model does not appear feasible.

Difficulties with the Network Data Model

One might be inclined to think that because the conceptual model of the distribution system is that of a graph (newwork), the correct data model would be the network model. In some database schemes for distribution system planning, this is indeed the case ${ }^{4}$ but the choice is difficult to justify based on the most curreat technology.

The basic problem is the complexity of the specification description. To retrieve a given record of. information, one must essentially traverse the network, until arriving at the data required. In the simple scheme portrayed in Figure 33 this would present no real problem but for retrieval and update in a system
末See the previous section describing TASK 3.9 for the definition of component descriptors.
4 Fagan, J.E. and O'Dell, M.D., private communication on the Oklahoma Gas and Electric Company Database Management System, Spring, 1979.
with realistic complexity, it is feit that the system imposes an unnecessary burden on the engineer or other user who considers the dataoase and its latabase management system to be just a tool to support his work.

Figure 32

(b)

Figure 34

TUE RELATIONAL ALGEBRA

Accompanying the relational model are two language vehicles for encoding queries and other operations against the database．Both were introduced by Codd ${ }^{5}$ and have since been widely accepted．One language is called the relational algeora and the other，the rela－ Eional calculus．Because there is considerable differ－ ence in the level of difficulcy encountered in imple－ menting one of these relative to the ocher and since this affects the implementation efforts discussed in the section on TASK B．12，the distinction between the two will be drawn below．

Relational Algebra vs．Relational Calculus

In the most fundamental sense，relations are sets． To specify subrelations（suosets）of relations（sets） there are，therefore，two approaches：either specify a set of operations which can selectively be used to extract the suoset of interest or define the desired subset by stating all of the constraints which distin－ quish the subset from the set in which it is contained． The first approach is the basis for the relational al－ gebra；the second approach is the basis For the rela－ cional calculus．

A complece ser of operations for the relational algebra is to be found in Appendix F ．The discussion presenced here will consider only three of the most importanc．

Selection．Selection specifies a suoset of tuples within a relation for which a particular predecate is true．For example．performing a selecrion over the relation TRANSFORMER of Table 34 for the predicate

VOLTAGE RATING $=12.5 / 2.4$＇
yields the relation shown in Table 35.

Table 35

statal．	1－r 520 a 2			$\begin{gathered} \text { Pars } \\ \therefore \text { ait sembusourct } \end{gathered}$
1732415	296－015	12．5／2．9	：40／210	4：2رミ11
5931149	112.311	12．5／2．4	：40／210	321／5521
26279531	215.009	：2．5／2．4	140／210	408／4493

Projection．The projection of a relation $R\left(A_{1}\right.$ ， $\left.\lambda_{2}, \ldots \cdot, A_{1}\right)$ over tine set of attributes $i_{i}, A_{j}, \ldots, A_{k}$ is che relation
$R p\left(A_{1}, A_{j}, . . ., A_{k}\right) \equiv R\left(A_{1}, A_{2}, . . ., A_{n}\right)$.
TRANSEORMER（SERIAL $i f, X-i \quad$ COORD，VOLTAGE RATING，WATTS LOSS，PARTS）
shown in Table 34 over tine set of actributes

gives the relation shown in Tabie 36.
join．The operation join is used to make a con－ nection between attribures that appear in different relations．Let $R\left(A_{1}, A_{2}, \ldots ., A_{n}\right)$ and $S\left(A_{1}, B_{2},\right.$. ,, 3_{m} ）be two relarions．Then

$$
\operatorname{JOIN}(R, S) \text { EOR R.A }=\text { S.A. }=
$$

$\therefore\left(a_{1}, a_{2}, \ldots, a_{n}, b_{2}, \ldots ., j_{n}\right)\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

[^10]Table 36
p＝project（：ran：sforner，serialif．yoltage matheg，poner loss）：

SERIAL ！	voltmge rating （LIH：C／LOND）	PO：SER LOSS （HO LOAD／FULL LOAD）
17324816	12．5／214	140／210
59311148	12．5／214	140／210
74266312	2．4／3．6	250／400
46164229	12．5／0．22	20／30
24279531	12．5／214	$140 / 210$
17761697	12．1／0．22	20／37
33473748	2．4／3．6	250／400
00271410	2．4／3．6	250／400

```
\(\in R\left(A_{1}, A_{2}, \ldots, A_{n}\right)\) and \(\left(a_{1}, b_{2}, \ldots, b_{\text {II }}\right) \in\)
    \(\left.S\left(A_{1}, B_{2}, \ldots, B_{m}\right)\right\}\)
```

For example，JOIN（P，COST）FOR P．SERIAL $\#$＝COST．SERIAL； Eor the relations in Tables 36 and 37 respecrively， yields the relation of Table 38 ．

In contrast to the relarional algebra，the rela－ tional calculus does not consist of a set of operations but instead is comprised of statements winch define the qualifications which the required relation must satisfy． The general form for the query is

GET 〈new relation name〉（ 〈tuple specification〉）：〈attribute predicate〉
where＊

$$
\begin{aligned}
& \text { (tuple specification) :: }=R_{1}, A_{1}, R_{2}, A_{2}, 111 \\
& \text { łattribuce predicate〉 ::= expression invoiving the } \\
& \text { logical operacors }>,>3 \text {, } \\
& =, f,<=,<, \text { and, } O \text {, } \\
& \text { not and operands, } \frac{R_{-}}{R_{2}} \cdot A_{1}
\end{aligned}
$$

it is understood that A_{1} is an attribute name of rela－ $\operatorname{tion} \mathrm{R}_{\mathrm{i}}$ ．
ds specific examples of reiational calculus state－ ments，the scatements equivalent to the operations il－ Iustrated for the relational aigeora will be given．

Table 37

COST	
SERIAL	S－COST
74250312	5000
24279531	3500
3347.3748	5000
17704697	1500

Consider Eirst

GEI S（TRANSFORMER．SERIAL ；F，TRANS FORMER．X－Y COORD， TRANS FORMER．VOLIAGE RATING，TRANS FORMER．PONER LOSS，TRANS FORMER．PORTS ）：TRANS FORMER．VOLTAGE RATING＇12．5／2．4＇

[^11]This statement generates the relation shown in Table 35．Notice that the attribute names i．e．，SERIAL非，X－Y COORD，ecc．，specified in the parentheses are che at－ tributes which appear in the new relation s（the＜tuple spectfication）is a paradigm for cuples of the new re－ lation）．The 〈attribuce predicate〉

```
TRANSFORMER.VOLTAGE RATING = '12.5/2.4',
```

acts just as the predicate in the selection operation does．

A calculus statement which produces the relation shown in Table 35 is the following：

GET P（TRANSFORMER．SERIAL ；，TRANSFORMER．VOLTAGE RATING，TRANSFORMER．POWER LOSS）

This statement has no 〈attribute predicate〉．This means there is no qualification which the attributes in the paradigm must meet．Thus P contains all such tu－ ples．

The join example which produced Table 38 can be ef－ fected by means of the statement

As a final example of the power of the relational calculus，suppose it is sequired to decermine which of the transformers listed in Table 34 have been in service less than six months．Also，the coordinates of such transformers are required．Assume that in addition to Table 34，Table 39 is available，showing transformer serial number，status（in or out of service）and date when Eransforme：first acquired this status．Using an existentiai quantifier and a RANGE statement，the query may be formulated as

RANGE SEEVICE X
GET NEW（TRANS FORMER．SERIAL ，TRANSFORMER．X－Y COORD）：
3（X．SERIALi：$=$ TRANSFORMER．SERIAL／f and X．STA－ TUS DATE－CURRENT DATE＜ 180 and X．STATUS ＊＇In＇）

This query may be understood as follows．The RANGE statement specifies that the variable X is to range over all tuples in the relation SERVICE（Table 39 ）． new relation named NEW（Table 40 ）is to be created with attribute names SERIAL $\%$ and $X-Y$ COORD．The condi－ ＝ions which the tuplas in TRANSFORMER，from which these values are to be drawn are：
（1）There aust be a tuple in SERVICE which nas the same SERIALIF．
（2）The arithmetic difference of STATUS DATE less CURRENT DATE ：ust be less than six months（180 days）．
（3）The transformer must be in service．
Assuming that CURRENT DATE is 79300 ，the resuleing rele tion is shown in rable 40 ．

To obtain the same relation NEW，using the rela－ tional algebra would require the following sequence of operations．

```
JTS = JOIN(TRANSFORMER,SERVICE) FOR TRANSFORMER.
        SERIAL| = SERVICE.SERIAL;
SLT = SELECT JTS WHERE SERVICE.STATUS = 'In' and
        SERVICE.STATUS DATE - CURRENT DATE < 180
    NEW = PROJECT SLT OVER SERIAL\,X-Y COORD
```

This series of operations can be combined inco one
statement as

DROJECT（

SELECI
JOIN（TRANS FORMER，SERVICE）
FOR TRANSFORMER．SERIALIF＝SERVICE．SERIAL；
WHERE SERVICE：STATUS＝＇In＇and
SERVICE．STATUS DATE－CURRENT DATE＜180
OVER SERIAL $;$ ，X－Y COORD．
Table 39

SERVICE		
SERIAI：	STATUS （In OI OUE）	STATUS DATE （Julian）
17324816	In	75001
59371148	In	79250
74266312	Out	79297
46164229	In	71155
24279531	In	69042
17764697	In	76091
33473748	Out	79297
00277410	In	65300

Table 40
NEW

SERIAL；	X－Y COORD．
59371.148	$112-431$

It is clear，however，that the Relational Algebra scacements even when combined as above，are procedural in nature rather that specification statements．

Implementation Difficulties

Though the features of the relational calculus are highly desirable because of their power and con－ ceptual simplicity，the question of their implementa－ tion is quite anocher matter．In fact，as far as is known，no database management systems have fully imple－ menced the relational calculus（such，work is preceding but the technical problems are severe ${ }^{6,7}$ ）．

For this reason；all of the implementation effort associated with this project centered around a rela－ tional model based on the relational algebra．The details of this effort will be found in the section on IASK B．12．More involved examples using che relaticnal algebra for distribution pianning will be found in Apperidix G．

The last sopic which rightfully belongs with the conceptual underpinnings of the research effort is the

[^12]work to develop a program model for manipulating network objects. This model is considered next.

THE NETWORK EDITOR

The Network Editor is one of the important conceptual tools in the methodology espoused by this report. In fact, the system as it is seen here consists of these major components: The applications/ analysis programs, the Data Base Managemenc System, the Network Editor and the Shell program. The system view which places each of these in the proper perspective has already been presented in the section on TASK B.6. In this part of the Report, a fuller description of the Network Editor will be given with an emphasis not so much on its operational capabilities but rather on its conceptual bases.

The Need For Such A System

As was explained above in this section, one of the chief concepts of the methodology is that of a network. The intention is that since the engineer/ planner is used to thinking in terms of network concepts, the dialogues with the planning system should be in network terns. For this reason, two ideas were amalgamated: a vehicle for manipulating network objects combined with concepts irom the single most successful interactive computer tool available, the text editor. Therefore, the incent behind the Network Editor is to create a tool which figuratively speaking, feels natural in the planners hand, which allows him to create or alter networks as easily as text editors allow their users to manipulate text.

Another important reason for wanting to include the Network Editor in the methodology is just the sheer diversity of network objects and the complexity of their interconnections. The designer's representational abilities must span the range from simple components such as individual transformers or customer meters to entire substations which consist of subnets. For this task, one would like to have a conceptually elegant and simple to use tool.

To understand the Network Editor as it is proposed here, it is first necessary to examine the concepts upon which it rests.

Guiding Conceptions

There is an important distinction between primitive network objects and compound network objects. Descriptions of the former require no subnet information. Thus the individual transformer or capacitor or even line element is not comprised of a network but is to be found in a network i.e., is atomic from the viewpoint of the network being described. On the other hand, a substation, consisting as it does, of a collection of transformers, busses, meters, etc., can only be described by the inclusion of network information. For this reason, it must be considered a compound object.

As has already been described briefly, a network is modeled by means of a directed graph whose nodes or vertices are physical components and whose edges are descriptors which define how the physical components are interconnected. Edges connect one node to another via ports. Ports mav or may not have an internal structure of their own. If a feeder carries three phases, the source and load ports will be described by triples, each element of the triple being referred to as a "pin." In some cases, a single multiport may join two or more ports with a smaller number of pins. For example, in a urban residential neighborhood, a chree-phase feeder may divide into tinree single
f phase feeders, each of which serves say, twenty-five families. Thus an edge is defined not oniy by the source and target functions described above, but also by the type of port found at each end of the edge. In this way some integrity constraints may be built into the system, preventing the user of the Network Editor from joining network objects with incorrectly specified ports.

In a graph theory sense, each edge has a color as do most nodes. Some colors represent single phases. Let us say that red, green, and blue each represent a distinct phase while white arbitrarily represents a three-phase component. In addition, define the "sum" of the colors red, green and blue to be the color white and the sum of any two of the colors to be a color which is not one of any of the four. Junction rules for the way in which ports can connect may be expressed very simply (for most components): an edge with a given color must connect two network objects with that same color. In cases where there is a separation of phase (as in some residential areas) then the "color sum" must be constant on either side of the junction. Thus a white feeder can meet chree subfeeders so long as one is red, one is green and one is blue. In this way the Network Editor prevents any phase confusion.

Some network components have their non-topological parameters completely defined by constants. For example, a capacitor may have its rating fixed at 20 kVA . Typically however, many network components have one or more variable parameters; the tap settings on a transformer may be variable; the level for a voltage regulator may be adjustable. This means that specifying the class to which such a network object belongs does not specify the values for its variable parameters. One way these parameters may acquire their values is to have them defined when the object, an instantiation of an element from an objecr class, is created. The other way these values may be set is for them to be associaced with state vartables. Such state variables may assume integer, Floating point or Boolean values. Hore than one object may have its parameters specified by the same variable. Thus the designer may alter the setting of several devices by changing the value of a single state variable.

State variables are clearly useful for defining the settings of switches. A generalization of this notion however, leads to an even more powerful idea, that of design switches. Suppose it is required to consider the effects on performance of making some relatively minor modificarions to a network. For example, suppose there are several alternative locations in the network for a combination of voltage regulators and capacitor banks. The question to be answered is which combination at which locations, gives the best performance. The straightionward way to determine the answer is to make a list of all the possibilities to be cested and then implement the network corresponding to each in turn. A more elegant solution makes use of the nocion of a design switch. At the time an object is created (becomes the instantiation or an element from an object class), a state variable can be assigned as a design switch. When the switch is "on," the object appears in the network just as any other normal ooject. When the design switch is "off." the object is virtual and for all application purposes, disappears. Thus by turning design switches off and on, the coniiguration of the network can be grearly varied. In the above example of capacitors and voltage regulators, these objects may be placed in the network all at one time to be controlled by design switches. By successively turning switches off and on the various alternatives may be created and analyzed by the applications programs.

Another important concept incorporated into the Network Editor is that of che cursor. A cursor or pointer is used as a variable in a program to allow the planner to reier to various elements in the network. When, for example, an object is created, a cursor variable is associated with the object. The operations to be described below all use cursors to reier to the objects upon which they operate.

Underlying the notion of an editor for a network is the fact that networks can be described in terms or text strings. These strings, which are known as k formulas, permit one to visualize some network operations as operations on text string. 8 In particular, one may specify some particular collection of network components and invoke the Vetwork Editor to ind all places in the network where this configuration is present. Figure 35 illustrates the general situation. The subner shown in the insert is sought in the larger network. When it is found, it may be replaced by another network configuration, fust as one text string may be substituted for another by a text editor. For example, suppose one has identified a particular subnetwork as something to be represented by a compound object. Using context searching, the Necwork Editor can locate all locations where the subnet apoears then replace the collection of network objects comiprising it with compound objects. This migit be done to study the variation of several parameters in the compound object and could be done more easily this way than by direct variation of all occurrances of the subnet in the original network.

The last important concept associaced with the Vetwork Editor is the relation of network objects to entires in the database. This problem is solved by treating a network as a relation. The relation has attributes corresponding to name, object class, and a list of connections to other objects in the network. A primitive object is just a tuple in such a relation, while a compound object is represented by an entire relation.

The cominands which the Verwork Editor accepts are listed in detail in Appendix F, Section 3.3.3. An abridged description of them also apoears in the section discussing TASK B.6,Table 30). No further discussion of the operations will be given here. Instead, consideration will be given to che last major component of the syscem representing the planning methodology, the Shell.

THE SHELL PROGRAM

Every system has its executor or monitor. For the Distribution Planning System, that overseer is called the Shell. Its general purpose is to serve as a command line interpreter to which the user directs his commands and inquiries. In effect, however, it is a winiature operating system, implementing some of the more basic functions traditionally associated with operating systems. Some of its features have been borrowed from the Unix operating system developed at Sell Laboratories. 9 In what follows, the basic notions incorporated into the Shell will be discussed.

Purpose of the Shell

In concept, the Planning Sustem is to be highly portable. However, standing in an almost dichotomous position to this requirement are the necessities for

[^13]

(b)

Figure 35
create iiles, execute programs in fixed sequences, monitoring exceptional conditions and supporting several interactive users simultaneousiy. These latter functions conventionally have been assumed by operating systems, which logically speaking exist at a lower level than so-called user or applicarions programs.

When one considers raising what have generally been operating system functions to the applications program level, as the methodology suggested here proposes, the first question to be examined is whether that is even possible. The answer which one can make to this question is weakly dependent on time--our views concerning operating systems ten years ago were much different than they are today--but to be oojective, any answer given must be in the present tense. 10 In ronsequence, the answer coday is that it depends on the native operating system on top oi which, the Planning System is to run. All of the prototype system implemented to date has been implemented on a Unix-based system (TASK 3.12 of this report describes the implementarion effort in decail). As a result, few actual difficulties have been encountered. Implementing the system on an operating system native to IBM 360 or 370 machines would be considerably more difficult might not even be possible unless performance goals were grearly compromised. Thus winile portability remains a laudable ideal, it appears at present to be an unreachagle one. Conversely, it is expected that in the next five years, as general understanding of what consticutes a hospitable user environment becomes more widespread, that implementation difficulties which coday might exist for an arbitrarily chosen operating system will be greatly overcome and this time scale is sufficiently short
${ }^{10}$ The greatest change in thinking about operating systems has been due $c o$ the impact that Unix and :Iultics have had on the computer science community. See Feiertag, R.J., and Organick, E.I., "The Multics input-output System", Proc. Third Symposium on Operating Systems Principles, Oct. 18-20, 1971. dCM. New York, pp. 35-41.
that considerations expressed here might have a inmely erfect on emerging technology. Seen from this view, the Shell represents a collection of functions which the distribution planner needs to have available and which form an umbreila covering the other system components discussed in this report.

Shell Functions

Each user is known to the Shell and as a result to the Data Base Kanagement System via a userid. This is an alpinanueric string which serves to associate all ifies, relations, networks, and database with che user. The Sinell authenticates a userid by receiving a password from the user. Presenting the proper password allows a user to receive all of the privileges associated with his useric. If his userid is that of the Dataoase ddministrator for a Database then all of the commands reserved for the DBA are available for his use.

The Shell allows the user to create files and remove files which are associated with his userid. This file processing is done in such a way that the user is isolated from the normal file handling features of the native operating system. Thus, the user is nor burdened with learning the syntax winch accompanies file processing on the native system. He has only to learn the simple syntax accepted by the Shell.

One of the most significant problems solved through use of the Shell mechanism is that of software compatibility with respect to the applications/ analysis programs. Since these programs were written by different individuals at different companies and institutions, chere is no uniformity of format For input and output data. In some cases, the same data is required by different programs but in different units: Two approaches suggested themselves. In one, the plan would be to modify the iaternals of each program so that data requests were programmed as calis to the DBMS. This clearly would be a difficult task, requiring the intimate understanding of the internals of eacn program. The other approach required the use of a filter which would be placed between the program and the DBMS. The filter wouid Eunction as a very sophisticated FORNAT statement specifying queries to the database and conversion of data from the Eorm stored in the database to a form corpatible with the requirements of the program. The process is represented in rigure 36 . A request to the Shell by the user for the execution of a program results in the identification by the Shell of the proper filters to be used. The Eilter programqueries the darabase and creates a file which matches the demands for the input data to the applications program. The Shell then causes this program to execute using the input file created by the user. The output from the applications program is collected on a file which is run through a second Eilter program which reformats the data into a form acceptable to the database. The oniy data necessary for this filtering to take place are the specifications on the formats for input (outpur) to (irom) the applications program. These specifications are of course part of the

database. They are stored in a relation owned oy the

 Shell itself.In general, the situation will be more complicated, since the actual sequence which the planner will often want to execute will involve using the output of one program as the input or partial input to succeeding programs. It is clear, however, that the same principle is involved, only the details are more complicated. For such a case, a number of filters are

Figure 36
required. The situation is reflected in Figure 36. The concept is an adaptation of the notion of pipes, found in Unix. ${ }^{1 l}$

The other important feature borrowed Erom Unix is that of asynchronous command processing. Processes winch consume consideraile processor time may be allowed to run "In the background," while the planner submits other commands to the Shell.

The functional descriptions of all the Shell commands are to be found in Appendix F. The interested reader will find there a number of commands which have not been discussed here.

SUMMARY

This section has discussed each of the major systems upon which the pianning methodology rests. It differs Erom the information in the section on IASK B. 6 , since there an effort was made to outline a systems view of the entire methodology. In this section, the emphasis has been placed on explaining the concepts underlying each of the systems.

The Data Base Management System has as its data model, a relational scheme. Its query language is based on a variant of Codd's relational algebra. The relational algebra was preferred over che relational calculus because of implementation difficulties.

The Network Editor, perhaps the most innovative of the systems envisioned by this project, is an interactive program which allows the planner to deal with networks in a manner similar to the way in which one deals with word processing using a text editor. One may define, modify or delete networks using simple commands. Of particular power are the features which permit context searching in the network, modification of object status using state variables and the forming of compound oojects from simpler network components.

[^14]The last major systam is the Shell winch makes available to the planner many of the Eeatures of a real-time operating sustem. In principie, these features would be independent of the machine on which the Planning System were running and would provide a fully portable basis for executing planning programs.

INTRODUCTION

NETMORK DATA

The database presented in this section is divided into two major parts: one consisting of network data and the other consisting of planning data.

The network data is comprised of fourteen tables. The first thirteen describe a particular component of the distribution system network and the last describes the substation. Each such table is to be considered as a relation. All of the tables together form the network database. The planning data is presented in Table 55. All of the data is correlated with planning activities in Figure 41 .

Basic Assumptions

In agreement with the discussion given in the section on TASK 3.10, it is assumed that each network component (Tables 41554) forms a vertex in the system network graph. To realize this, each component has associated with it Necwork Data which establishes its place in the network. As a result, there is no separate tade (relation) which serves as a network topology description. The topology description has been "distribuced" among the network somponents. If the planner requires a consolidated topological descripcion, then it may, of course, easily be obtained but it is not retained in the database as a separate entity.

In the same way, other data such as some cost data have been distributad throughout the network and associated with individual pieces of equipment. This results in a smaller but no less complete database coniizuration.

Two other assumptíuns deserve Jention, both conzerned wich the boundaries of the network. The first is that the Distribution System begins with the breakers, reclosers, capacitors and reactors on the low voltage side of the substation and does not inciude the Low voltage bus bar network of the substation. This view which is not universaliy neld within the indus \quad y vas adopred in part because the bus network did not conform to the generic descriptions proposed in IASK 3.9 .

The second assumption made regarding the extenc of the distribution system was that the network description should include the meter at the customer sice. This convention, which is $31 s 0$ aot standard within the industry, was made so that consumption data would also fit inco the necwork description of the syscem.

The complete database is presenced in the next =wo sections. To ?reserve the outline sketched in the :aterial on TASK 3.9. zeneric descriprors are included in all the tables as subtitles. Explanations of terms not thought to be part of the industry's standard vosabulary are explained in footnotes placed at the botzom of the tables in which the terms are found.

Table :1. Jata Descripctun of a Line section
Device ifentifict
hao Scetion :denciftar
Organizacional Dascripecion
orvisicn code
Ofstrict Code
Nacuotk Daca
Source theatister
Load Idonctifer
Ctreuic :"ubber
subscation ident:fier
Electrical Descripe:on
phase cuide
KVA Load abc (wincer)
KVA Lata ABC (Suerer)
KVA Dugand ABC (Hintar)
KVA Denand abc (Sumer)
Voltage lifite gode
Automation Code
Operactag Stacus
Service Code
Installacion Daca
aire fnscallacion jaca
job wo.

> orig. :nstall.

Lase Chunge
Mose infilficane Job
coordinates
$x-y$ Coords (suurse)
$x-y$ coords (l.asd)
: anufacturting Daca
physical oescription
Lengeh (ft)
Expressitie code
3ranch or End Coris
:lo. vi zranches
Pr1. Wire Conde
Neut. Mire Cide
Pri. Cod
Duplicate End PE.
No. Branches
Rellabilicy Jace
Cost Daca
Mo. Customers
aecord Stacus
fige history Jaca

Table 42. Dtactibution iramatormer

Device Identifier
Dhactibution ifangformer Idenclfier
Orgentzactonal Deacription
Division Code
Discrict Code
Network Jata
Source idencitiar
Lond tdaneifiar
cireule so.
Substatson tancifter
Elecerical Description
Phase code
Voltage Ratiog (Line kV)
Voltage Reting (Lood kV)
Volcage Ratiog (Kame Place)
20
R
x
Wates Loss full Load $30+10$
Weres Loss No Load io + !
Ausomation Code
Operating Scatus
Service Code
Installation Data
Enstallation Daca
Job Nurber

Original tastallation Purchase Order	
Last Change	Maincenance Record

Must Shanifleant
atre Enscallactun Data
Coordinaces
$x-Y$ Coordinaces
Location Address
Manufaceuring jaca
Manufacturees Year
Model/type
Scrial No.
jrauing Ref.
Phygical Juscifpecion
Connection code
Youncing type
Hideh
Dept:
Heighe O.A.
Woighe
Insulation
Anoune si 011
Rellabilicy Data
Cost Data
Cost
Record Stacus
TIE History

Eable 43. Boast and 8uck teanaformar

Device ldencsfler
Sasse and Buck Transformer

serial so.

Organizational Descripeicn
Division Coda
Discrict Code
Secvork Data
Source Idencifier
Load Identifice
Cireuit No.
Substacion Identifier
Scacion Idencifier
Elecerical Duseription
Phase Code
Voleage Raciag (Line kV)
Voleage Racing (Lfine kV)
xVA Rating
2Boosc/isuck
2
R
I
Automation cude
Operating Stacus
Service Code
Inecaliacion Daca
inscallacion Mantuurs
Job Number
Original Inscallacion
Lanc Change
Mase Significanc
Purchase Order
Maincenance Racord
Wire Inctablation Data
Coordinaces
x-Y Coordinates
Locat ion Address
Menufacturing Daca
Kanufacturer \& Year
Model or type
Seriai No.
Draving Rez.
Phyatical Dascription
Connection Code
Mouncing Type
didth
Dopch
Helght
reight
Insulacion
aellabilicy Daca
Cost Daca
Cost
Record Scacus
Tige History

Table 44. Shunt Capacieor

Dovice Idencifiat
Shume Capacitor Idenctiter
Orgenizactional Dascripeton
Diviaion Code
Districe Code
Network Data
Load idenesfler
Cireuse Mo.
Subucacion Idencifler
Station Idencifiet
Blectrical Description
Phase Code
Voltage Rating
No. of Unit $1^{\prime \prime}$: (A)
KVar Racing of Unit 1 (A)
No. of thise 2': (8)
XVAR Raciag of unie 2 (B)
No. of Jait J's (C)
kvar Racing of tuit 3 (c)
Automation Code
Cperating Stacus
Service Coda
Inscallation Data
fastallation thanours
Job simber
Original Inscallacion
Last Change
Mose significant
Purehase Order
Maincenance Record
Coordinaces
$x-y$ Cuordinates
Locerion Addresa
Dinesnce tron Load Polne
Stanufacturing Jata
Equiponent Manuinceurer \& :̈ear (Unit l)
Equipmine Monufacturer a year (linie 2)
Zquipment Mandiocturer \& Year (Unit J)
Concrel minuiacturer 6 Year
Physteal Descriptien
C.uo cinntrol ciste

Cap Override Code
concrols Oa
Concrols ofil
Blocked 1
3locked 2
Controle - Max
Contrale - Min
Control Styla Coda
Inaulacion
Rallatilicy jacz
Cone Data
Racord Stacus
Tie blacory

Table 65. Sertan Capacitor

Devica Identifler
Serleg Capacitor Idencifier
Organizat fonal Jescription
oivision Code
Distriet Code
Nacvork Daca
Load Identifier
circuit No.
Substacion tdencifier
Station Idencifier
zleetrical Description
Phase Code
Volcage Rating of Equipmanc
No. of Unics in Serics
So. of Units in Paralled
Voltage Racing - Parallel
kVAR Rating - Series
xyar Rocing - parallaz
dutomation Coce
Operating Scacus
Service Code
Inacallaction Daca
Inseallacion mannours

Job Number
Orig. Inatallation
Lase Change
Yose Stgnyficanc Change
Purchase Order
Maincenance pecord
Coordinates
$\mathbf{x}-\mathrm{Y}$ Goordinates
Distance trow toad ?e.
Locacton ddácess
Manufacturing Daca
Kanufacturer s Year
Mocel or Type
Sarial so.
Draving Rofurance
Physical Descripcion
Insulacion
Mounting type
Ducy Code
Rellability Daca
Coac Data
Cost
Record Status
time ilisrory

Table 65. Line Regulator
Device [Jentifler
Line Regulacor Identffier
Organizacional Jescripeton
Division Code
Dratrict Cose
Necvork Daca
Load Idenctfier
Scation idoncifier
Subscaction ldentifier
Circult Ṅo.
Electrtcal Dessifition
Phase Code
Vo:tage Racing
KVA Racing - Ftom Nameplata
CT Racia
PT Racto
1 Regulation - Fron Nameplace
R
,
: Regulacion - From Maseplace
R
x
: Regulation - From Namepiace
8
x
: Regulaction - As Set
Regulacer sectine - kVA - As Sec
Compensacion sectenss per:
2(A.B.C)
$x(A, B, C)$
3and wideh (A, B, C)
time Delay (A, B, C)
No Load Voltage (A, a, C)
Aucomation Code
Operating Scacus
Service Code
inscallaction Daca
Inneallacion Manhours
job Number
Original installation
Last Change
Mose SIgnificant
Purchase Order
Melatenance Recoris
Coordinates
$X-Y$ Coordinatas
Locaeton Addrese
Manulaceuring Deca
Manufacturer 5 Year (d.3. C)
Model or Type (A.S,C)
Serial so. (A,b,C)
Drawiog Ref.
Phyatcal Sescripetion
Mouncing type
Uidth (A, B, C)
Dapch (A, B, C)
Heighe O.A. (A, B, G)
Wetghe ($A, 3, C$)

Table 46. (coot'd)

Table 67. Soccionalizing device
Device idencl:ter
Sectionalizing Device tdentifter
Organizational Descripeion
Jivision Code
Diserict Code
Network Data
Lodd ldencifier
Stacion Idencifier
Subscacion idencitier
Clecuic No.
Electrical Jegcripction
zhase Code
Voleage Rating
Ampre Razing (it fuse)
Fault Currenc Rating
Aucomacion Code
Operacing Seatua
Servsec Code
fnacallacion Daca
tnacallacion manhours
Job No.
Original Enscallation
tase Ghange
Mose Signtfleane
Purchase order
Malntenance Record
Coordinaces
x-Y Coordinates
Locacion Address
Manufaceuring Data
Manufacturet $\&$ Year
Model/Type
Seriai No.
Physical Descripeion
Connection Code
Fuseiblade type Code
TCC Curve Reference Code
Younts sur Type
Rellabillty Data
Conc Daca
Record Stacus
tize hiscory

Table is. Lane Reclouer
Table 49. Scacic recloaet

Dowice Idencifier
Line Recioser :Sencifier

Organizacional Description

Sivision cude
Discrice Code
Mecwork Jata
tose t dencifier
Clecuite Yo.
Subacation Idencifiar
Station tdencifiar

Eleccrical Eata

Phase Code
Volcage Racing (from Name place)
Ampere lacing (ffow Name Plate)
F.C. Incerrupeing Rating

Sorten Fuse Racing
Sertes Fuse Iype Code
3ypass Roting
3ypase Fuse Type Code
No. of Cyeles
Recloser Code
Quick Irip Curcent.
Mo. of Quick irips
Recarded Trip Current
Quick, Recarded, Exe Recarded Curve Ref. Code
No. of Rec, Ext Recarded Trips
Aucomsition Coda
Operating Scacua
Data 5 Readiag of Counters
Enscallocion paca
Inccallacion Manhours
Job No.
Oripinal Inscallacion
Lase Changa
Mose Signtficant
Purchase Ordur
Maincenanca Record

Coordinates

$X-Y$ Coorstances
Locarion Address
manufacturing daga
Manufacturar s Year (A, S,C)
Model/iype (A, B.C)
serial No. (A.B.G)
Physical Description
No. of Vaics In Stacion
Mouncias Type
Widen (A, B, C)
Dopch (A, B. C)
Heiche (A.3.C)
Noighe ($A, 3, C$)
Gal. of tasulation (A, 3,C)
Rellabilley Daca
Coae daca
Cose (A, B, C)
Toral seacton Cose
Record Scasua
Time hiscory

Device Idenclitar
Stacic Recloser idencifier
Orgarizational Description
Diviaion Cada
Diserice Codo
Network Daca
Load Idencitier
Clreuse No.
Subacacion Identifie:
Scacion Idencifiar
Electrical Descripcion
Phase Code
Voltage Ratiog (Naze Plate)
Ampare Rating (fame placa)
F.C. Tacortupting Racing (Name Plase)

No. of Cycles
Bypass :usa sucing
3ypass fuse Type Code
Ampere Rating as Sas
Current Transt. Rasio
Amperage Tap
Amperage Plug
Ground Relay Plus
Ground Relay Curve Ref.
Ground Relay Ampe ae Se:
Seacfe Recloser Code
Recloaing Tlmaz
Resetring time
Operactions to Lockout
Quick Trip Curtanc
Recarded Telp Gurtene
Inatantancoua Curve Ref.
Retasted Curve Rel
IIme Dolay Type
No. of gutek Tifpe
No. if qecarded tripg
Automaclon cece
Operaeing statua
Service Code
tancabliaetion Daca
tascallectioa Manhours

- ab No.
original thacillacion
Last Ciange
Mose slgolficant
Purchase ordar
Maineanance Record
Coordinates
$\mathrm{X}-\mathrm{Y}$ Coordinates
Locacion Addrass
Manufacturing Data ,
Manufacturer 6 Yaar
Model/ $/$ ype
Serial No.
Physical Descetipetion
Yoltage Source Code
uldth
Dapeh

Table 49. (eanc' d)

Table so. Reaceor
Device Identifier
Rozetor Idencifier
Organizacional Description
Division Code
Diacrice Code
Vatwork Jata
Lond Idearifier
Clecule No.
Substacion Idancifier
Stacion Identifier

Eiecerical Jemeripeion
Phase Cote
Vollage Racing
Ampato Rating
a
x
No. Unite in StaElon
KVAR Raciag Per Phase (A.B.G)
aucomaction code
Operaciñ Scatur
Service Gude
inacallacion Data
'tnacallation Mathours
Job Mo.
Originat :nscaliacion
Lase Change
Yose Sigolficant
Purchasa Orcer
Maintceance Record
Coordinazes
$x-y$ Coordinates
Locacicn addrese
Manufacturing Data
Manufacturer 3 Year (A), (B), (C)
Model/Type (A), (B), (C)
Serial No. (A), (B), (C)
Drawiag Reference
Physical Deacripeion
Mouncing Fype
aldth (d), (B), (C)
Depth (A). (B). (C)
Hoighe (A). (B). (C)
Welghe (A). (B), (C)
Inaulation

Table so. (cont'd)

Rellability Data
Cose Dac:
Cost (A), (B), (C)
Tocal seation Cost
Record Stacus
tlam HLscory

Table si. Tie Sectionaliaing devica
Device Idencifier
Sectionalizing Jevice idancifies
Organizacional Deseription
Division Code
Discrice Code

Network Daca

Load Identifies
circuic No.
Subatacion Idancifiat
Station tienciller
tie subacaction tencifier
til circule No.
Tie Load Idencifier
Connection Code
Qlecerical Dancription
Phees Code
Voltage Recing (Name Place)
Arpere Rucing (Fuse)
Faute Gurene Ractng
Sulech Group Code
Fuba/Bladu Type codo
TCC Curve Roference Code

Automation Code

Operating Stacue
Sorvice Code
taseathacion Daca
Date of thatallation
tascallacton tanhours
Job No.
Origianl inscallation
Caze Change
Yauz Significane
Purchase Ordar
Malarazane: Record
Coordinate:
m-1 Coordinates
Lacacson Address
Manufaceuring Daca
Manulacturar 6 Yast model/Type

Phyifeal Description
Mounclag Type
Rellabilley Data
Coat Data
Record Stacus
Time Riseoty

Device Itantifier
 Gusemater Mecar Idencifier

Organsactonal Doscesption
Division Cede
Recrice cude
Gustomer No.
Nacwork Deta
Source Identifier
Circuit Mo.
Subscacion Idencifier
Elecerical Description
Phase Code
Voltage Rating
Ampere Ratins
Deand $/ x_{\text {in }}$
Aucomation coce
operacing starus
Callb:acion Dace
Service Code
tnataliaction daca
Inscallation gate
Inscallation Maniours
Job to.
Oŕbinal inscallacion
Lasc Change
Coordinates
$x-y$ cnordinates
Locection Addre:
Manufacturing Data.
sanufacturar i Year
model/Type
Sertal io.
Phyelcal Description
Mounting Type
didein
Jepe 1
Helght
deighe
2alimbility Data
Cose Daca
Cose
Record Stacua
The Biscory
Customer Recotan for Leat Im Years by Moath

Table 53.

Dovice Idencifier
Rechoaer Identifier
Orgonizacional Joscripeion
Division Cada.
District Code'

Necuork Daca

Lond Idenelfier
cireutt No.
Subacation tuencisfer
Stacion Idencifice
Electrical Dascripeion

Pheae code

Voltege Racing (Mamie place)
Ampera Racing (Natw Place)
T.C. Incerrupeing Ract (lase plate)
so. 'of Cyciee
Bypase fuxe sating
Sypasa, fuse Type Code
TEC Curve
Ampere Racing.(As Sec)
Ampere Racing (Maximum Posetble)
Curtenc tranaf: Rafio
Low :ascancancous iap
aigh inscancaneous Fap
T1me Delay Type
Tite Delay Tap
tied Lever Curve
Recloaing Relay type
Ground Relay Type
Ground Relay Tap
Ground Relay Tixe Lever Curve
Ground Relay ampere (de Sec)
Recloaing ilites (3)
Rasecting inmos
Operztions to Lackout
Low instancaneous Current
High-Instancaneous Current
Tloe Delay Currone
, No. of Inserantanoous :tipa
so. of Time Delay iripe
Autogacion Eude
Oporacing Scatus
Service Code
tiseallacion Data
triscallation Date
Installation Manhours
Job No.
Original tascailacion
Lase Change
Mose Signtificant

Parchase order

Malncenance accord

Coordinates

$x-Y$ Coordiances
Locacion dideress
Manufacturiag jaca
Menutacturer of Year

Table 33. (cone'd)

model/iype

Sertal Yo.
Phystcal Description
Voltage Source Code
wheh
Depth
Ha1ght
Welghe
tnautacton
Ges. of Insulacion
Rollabilley Data
Cose Daca
Cosc
rotal scation cost
Record Seacua
Tive hlacosy
Coordinacea
$x-Y$ Coordinates
Locacion Address
Manufacturiag Data
Contractor Idancification Liet
Physical descripecion
Service drea Slze in Square :ulias
Yard Dtmenaions
Cetauay type Code
No. of Gecavay:
Draving Re?.
Rellabllity Data
coss
Original Construction Cose
Replacemant Cosc
Deprectacion Race
Annual Coses
Incerese
Doprectacion
[nsurance
Taxis
Operacion s Matatenance.
Tocal cost of Subnervorik
Record Scacus

Davice Idenctilier
Subscacion Identifier
Orgmizacional Doocripcion
Orvirion Code
bractice Code
Secwork Daca
Arazker/Relayed Recioser tdencifier Lige
Capacieot Idencifier ilse
Reaceor ldeneffier thec
Electrical Descripetion
Capacicy (in kVA or iva)
Primary 6 Sceondary Voleage Levela
Lond in Kw, kvar
Autometion Gode
Operating Stacus
Service code
Installation Data
Year of Inszallacion
Inseallation thnhours
Maincenance Record
Time history

> Cose of Purchasea Pover (By Menth)

Canc of Cenaraced Power (3 y Monch)
Demand Cost in $5 / \mathrm{kH}$

planning data

There is some data associated with the distribution system which are not directly related to the network. These data arc generally classified as planning data. For the purposes of this report, they have been scparated into two tables, one ifsting general planing data (Table 55) and the second shows parameter construction modules and their parameters (Table 56). Table 57 shows the applicacions appropriate for each general data, classification.

Tabie 55. Planning Data
Land Use Plans
Planning Code
Saturation Code
Class Code
Company Policies
Transformecer Load Managemenc Daca
Righe of Way acquisition Coses
Demographic influences
Innovarion Trends
Economic Condicions
:tole 56. Data Requirements of the Subprograms

SLBPROCRAM		input jata
\pm	Name	
:		a) cose oi land b) substacion conseruction cose
2	${ }^{\mathrm{FFC}}{ }_{\text {if }}$	a) 3 rid vaiues ot endipoincs b) cost of material and labor jer feeder gile
3	${ }^{5} \mathrm{FC} \mathrm{if}^{\text {f }}$	a) 3 rid values of SS_{i} and $\mathrm{SS}_{;}$ b) cose of macertal and labot per ele-Eeeder mila
4	$\mathrm{DFC}_{i j}$	a) $\mathrm{grid}^{\mathrm{id}}$ values of demand cencers i and j b) sost of macerial and tabor ger feeder mile
5	$\mathrm{FRC}_{i j}$	a) 8 rid values of femand cencer j and 55 . b) cose of material and labor jer feeder mile
${ }^{\circ}$	${ }^{5 B C}{ }_{1}$	Value oi E3C ${ }_{\text {i }}$
7	$c_{i k}$	a) Transformer sizes b) Transformer costs c) Iransformer invencorv
${ }^{8}$	pover ioss Curves	a) energy cose b) demand cost due to fast sapacity as a sesult of eaergy losses in feeders c) grid values of endpoints.

Table 57. Application and Sumary of Data Requitrements

Table 5\%. Cont'D

task 3.12: the mplementation of the database on a modern digital computer in a manner which Maximizes the transportability of data and reldted sofiware and is COMPATIBLE NITH OTHER SOFTWARE USED IN THE PLANNING METHODOLOGY.

Da habt ihr's nun! mit Narren sici beladen
Das komme zuletzt dem Teuf̃el selbst zu Schaden.

INTRODUCTION

Faust, Part II, Act 1.

Portability is a requirement having two major aspects. The first is the portability of the data itself; this is the easiest condition to satisty. Data in character form may be ported easily from one computing environment to another. The second is the portability of the software which processes the data and this is complicated by the nature of the application to which the software is to be devoted. A database management system generaliy requires the use of the full repertoire of machine instructions for a given computer. Current software rechnology suggests that only high-level languages be used to develop a database management system but the most widespread high-level languages were not seen as satisfactory for such an effort. As a solution to the implementarion language problem, the language C was chosen. 1 Once the software was Eully implemented, it was then translated (by hand) into Ratfor, which in turn, is transiated into Fortran IV by the Ratfor translator. Finally, the resulting Fortran source is optimized, using an approach suggested by Knuth. ${ }^{3}$

This effort has resulted in the implementation of th see software products: a canonifier program which allows the database to be software-compatible with all of the application programs; a database management systam supporcing the suggesced database; an optimizer progran whicn transforms the Fortran output of the Ratfor translator into efficient code; and lastly, a breadboard version of the Shell program (described under Tasks 3.ó and B.10).

THE CANONIFIER PROGRAM

A systems view of the Canonifier is shown in Figure $3 \dot{7}$. The program runs under interactive control via the cerminal but che usual source of control data is from the input specification file: This file contains statements which may be thougint of as very general format statements. The program functions in two modes. In one mode, it reformats data which has been extracted from the database using queries. Arter being =eformatted, the data may serve as input to an analysis program. Thus this mode is called input mode. The other mode is the converse of input mode. It accepts output from an analysis program and reformats it so that it may be incorporated into the dacaoase.

The error file (Figure 37) is used to note any specification errors encountered either in the terminal input or in the data found in the input specification file. If any errors are detected, no outpur file is generated. Instead, the user uses the text editor to correct the input specification flle or re-enters data Erom the cerminal (or both) until no further errors are found.

[^15]

Figure 3.7.

Detailed Description

Input specification records can be classified into five different types. These are listed and explained in Table j8. The general form of the format specification is shown in Table 59. Conversion characters and their meanings are shown in Table 60.

Table 5.8. Input Specification Record Types

Stacemenc Type	Firsc Characeer In Statement	Statement Sody	Meaning
Yessage	¢	<message>	Character String message cerminated by newline character displayed on terainal
Data Record	d	<string>	scring teminaced by newline characcer vritten unaltered so oucout Eile
Query Request	9	<query 119t>	One or wore queries passed to DBtIS
Query Format	b	<format specification>	characterscring cerminaced by newline characcer considered as <formas specificazion> for database butfer file
Terminal Format	a	<Cormas specificution>	characterstring terminased by nerline characcer considered as cformac specification for terminal input deta

Tabie 39. General Form of <format specification>

$\left\{\begin{array}{c}c \\ <r f a c 1>\end{array}\right.$	- $\left\{\begin{array}{l}\text { d } \\ \langle r i a c ~ 2>\end{array}\right\},\left\{\begin{array}{l}\text { <char> } \\ \langle\text { enspec> }\end{array}\right\} \ldots \ldots$
\#ac 1>	- integer spectfying the number of lines to be expected by the Canonifler Program; if " C " is used, value read from teminal ria <f_spec> of type C.
ac 2>	- integer specifying number of times the format specification following the comma is so be repeated; in "d" is used, value read from terminal via <f_spec> of type d.
ar>	Any ASCII character except "\%" or newline
<t_spec>	- if "\%\%," copied to output buffer as "\%"; if \%[-][<f_width>][.<precision]<conchar> then a data item from the terminal is expected;
	- optional minus sign specifies left adjust ment of data in output field
-width>	- field width specifies total number of characters data item is to occupy on output file.
recision>	- iE the number is to be interpreted as a floating point number, <precision> specifies number of digits to right of decimal point. Otherwise, it specifies the number of non blank characters comprising the data object. See succeeding table.
con_char>	see succeeding table

Table 60. Conversion Characters
<can_char> may be any of tite following:

Character	Type	Meaning
i	integer	Yaximum number of digits which may be accepted; if input exceeds this number, an error will result.
c	<riact 1>	Same as above.
d	<riace 2>	Same as above.
f	Eloating point	Number of digits to rigin of decimal point; if input exceeds this number, least significant digits truncated.
e	floating point with scaling factor	Same as above
s	string	Maximum string length; if input soo long, truncate on right; if too short, pad

As an example, suppose it is required to output an n by m matrix of real numbers. Elements on the same row should be separated by comas. Each integer should be no longer than four digits, and should occupy five spaces on the outpur line. All integers are to be read from the user tarninal. A possible input specificacion record is:

[^16]a c.d, \%5.4i,

THE DATABASE MANAGEMENT SYSTEM

The database nanagement system, implemented in Ratior, uses the pATRICIA data structure as the basis of its directory. ${ }^{4}$ The simplest description of PATRICIA can be given as follows. ${ }^{5}$

Let the generalized K-romula $x a b$ indicate that nodes a, b are joined together by an $a-l i n k$ in that order, i.e. from a to b. An S-System is a symbol system or defining scheme which resembies a grammar. In distinction to the usual phrase structured grammar, however, the producrions in an S-System frequenty empioy unique cerinnal symbols in each application of a given production. Symbols so treated are written for example, as $a_{[j]}$ where the brackets indicate an entire set from which a symbol is to be drawn (the drawing process has a memory; once a symbol has been removed from the set it may not appear in the production when applied later in the derivation). Accompanying this convention is one winich says that ir such symbols are enclosed in French quotes, ("<<", ">>") and have the same index then they are to be replaced by same symbol.

These conventions permit the following description of PATRICIA:

with $\alpha, 3$ standing for the left and right links respectively. Hueristically, these productions have the graph grammar forms shown in Figure 2.

The struceure is recognizable by a Push Down Automaton. Its description is as follows.

$$
\begin{aligned}
& \underline{P}(\$): d\left(q_{0}, \bar{z}, \xi\right)-\left(q_{1}, \$\right) \\
& d\left(q_{1}, a_{j}, \xi\right) \rightarrow\left(q_{2}, a_{j}, \delta\right) \\
& d\left(q_{2}, a_{j}, a_{j}\right) \rightarrow\left(q_{3}, e\right) \\
& d\left(q_{3}, e, s\right) \rightarrow\left(q_{f}, s\right) \\
& d\left(q_{0}, \alpha, s\right) \rightarrow\left(q_{4}, s\right) \\
& d\left(q_{4}, a_{j}, s\right) \rightarrow q_{2}: \underline{R}\left(a_{j} \$\right) \underline{L}(z) \\
& d\left(q_{4}, a_{j}, S\right) \rightarrow q_{2}: \underline{L}\left(a_{j} S\right) \underline{\tilde{R}}(z) \\
& \underline{L}(z): \quad d\left(q_{0},-, z\right) \rightarrow\left(q_{1}, z\right) \\
& d\left(q_{1}, a_{j}, z\right) \rightarrow\left(q_{f}, a_{j} z\right) \\
& d\left(q_{0},, z\right) \rightarrow\left(q_{2}, z\right) \\
& d\left(q_{2}, a_{j}, z\right) \rightarrow a_{E}: \underline{R}\left(a_{j} z\right) \underline{I}\left(z^{\prime}\right) \\
& d\left(q_{2}, a_{j}, z\right) \rightarrow q_{f}: \underline{L}\left(a_{j} z\right) \underline{\tilde{R}}\left(z^{\prime}\right)
\end{aligned}
$$

Knuch, D.s., The drt of Computer Programming, vol. 3, Addison-Wesley, Reading, Mass., 1973 pp. 490f.
${ }^{5}$ Thompson, J.C., and Ackins, G.E., A Syntactical Specification of the Data Structure PATRICIA, to appear in a rechnical journal.

Figure 38

$$
\begin{array}{rll}
\underline{L}(z): & d\left(q_{0}, \bar{x}, z\right) & \left(q_{1}, z\right) \\
& d\left(q_{1}, a_{j}, a_{j}\right) & \left(q_{f}, e\right) \\
& d\left(q_{0}, \ddot{a}, z\right) & \left(q_{2}, z\right) \\
& d\left(q_{2}, a_{j}, a_{j}\right) & q_{E}: \underline{Z}(e) \tilde{L}\left(z^{\prime}\right) \\
& d\left(q_{2}, a_{j}, a_{j}\right) & q_{\tilde{i}}: \underline{I}(e) \underline{R}\left(z^{\prime}\right)
\end{array}
$$

The notation $q_{f}: \underline{R}(\ldots)$, appearing on the right side of a cransition rule means that the present automaton returns to state q_{f} after invoking machine $?$ and \underline{R} has teminated. R and $E_{\hat{R}}$ are obtained Erom \underline{L}, \underline{E} jy replacing every occurrance of a by $;$ and vice versa.

The face that the structure is recognized by a PDA is very important because this means that basic integrity checking of the structure can be automated.

Node Relations

The desctiption oi patricit is not complese without a careful statement of the defining relations among the data stored in the nodes. To nake the deiinitions as general as possible, consider the following. Lee the set $j=\hat{K}_{i}$ of elaments \ddot{i}_{i} be keys. In the sequel, a mapping will be defined jetween nodes in the structure and elements of S; this mapping will be written $K_{a_{j}}=K_{i}$. For the present, this mapping will be ignored. Let \dot{j} 首; be an indexed ser of equivaience relations over s and let $;, \frac{\pi}{<},>$ b be an indexed ser of precedence =elations. Then consider the axioms:
(i) $\quad K_{p}{ }^{0} K_{q}, K_{p}, K_{q}=S$
 inplies $K_{p} \equiv k_{q} \quad \pi \leq \eta^{\prime}$
(iii) Let m be the least such value appearing in (ii) ior given K_{p}, K_{q} (and greater than zero) ; then either
(iv) If $K_{p} \stackrel{m}{\equiv} K_{q} \& K_{p} \stackrel{m+i}{\ddagger} K_{q}$
and $K_{p} \stackrel{m}{\equiv} K_{r} \quad \dot{*} K_{p} \stackrel{m+1}{ \pm} K_{r}$ then $k_{q}^{m+1} K_{r}$ and $\pm f K_{p}^{m+1} K_{q}$ then $K_{p}{ }^{\text {u+1 }} k_{r}$

Select an arbitrary element $K_{5} \approx S$. For any other element $K_{q} \leq s$, we have

$$
\begin{equation*}
K_{r} \stackrel{2}{\equiv} K_{q} \quad 0 \leq i<\pi \tag{i}
\end{equation*}
$$

In general, w depends on K_{q}. Eix m; label the suoset of S Eor which (1) holds ${ }^{Q}{ }^{\pi}\left(k_{r}\right)$. Then S can be written

$$
S=E^{m_{1}}\left(K_{\Sigma}\right): E^{m_{2}}\left(K_{r}\right) \text { リ } \ldots
$$

It is clear that the \bar{E} 's are disjoint

$$
E^{m_{i}}\left(K_{r}\right): E^{m_{j}}\left(K_{r}\right)=\emptyset \quad m_{i} \neq m_{j}
$$

Each $E^{\mathrm{m}_{i}}\left(\mathrm{~K}_{5}\right)$ which contains more than one element, in tura may be partitioned into sub-equivalence classes

Continuing this process, each key $\mathbb{R}_{p} \varepsilon S$ may be considered the root of some equivalence class $E\left(K_{p}\right)$.
It may be seen that this partitioning process m_{j}. It may be seen that chis partitioning process does not generate a unique partition since the choice of roots is arbitrary within a given subclass.

Algorithms

The PATRICIA structure not only has the advantage of a precise mathemarical description (and chus is subject to careful analysis) as well as being recognizable, but in addition, may be manipulaced and implemented by simple algorithms. Algorithms for key search and key insertion are shown in Figures 39 and 40 respectiveiy. This simplicity makes the task of implementing a practical system much easier than it might otherwise be.

As an example, a PATRICId tree will be constructed for the text

HUNPTY DUMPTY SAT ON A WALL,
treating each of the phrases
HUMPTY DUAPTY SAT ON A WALL.
DUMPTY SAT ON A WALL.
SAT ON A VALL.
ON a NALI.
A VALI.
WALL.
as a key in the directory. To keep the example simple, assume that the data $=0$ be stored with the key is the part of speech of the leading word in the pirase. The relation thus has the zorm shown in Figure 41 . The node structure of the ?ATRICIA tree has the form shown in Figure 42 where the fields have the following significance: ${ }^{6}$

AEY, a pointer to the text of the phrase. (Represented by K in the K-formulas.)

LIINK and RLINK, pointers within the tree. (Represented oy $\alpha, 3$, respectively in the K formulas.)

LTAG and RTAG, one-bit tields which tell whether or not LLINK and RLINK, respectively, are pointers $c o$ sons or ancestars or che node. (ITAG $=1$, RTAG $=1$, represenced oy $\bar{y}, \frac{\overline{3}}{}$ respectively, in che K -formulas.)

```
procedure P_SEARCH (HEAD, KEY, LLINK, RIINK, LTAG,
RTAG, SKIP, K);
pointer array LIINK, RLINK;
integer array KEY;
string \(K\);
    bezin
        procedure P_PROBE (HEAD, KEY, LLINK, RIINK, LTAG,
                            RTAG, SKIP, K, n);
        pointer array LLINK, RIINK;
        inceger array LTAG, RTAG, SKIP;
        string arrav KEY;
        string \(K\);
        integer \(\quad n\);
            begin comment: \(p, q\), ssum are global variables;
                Inceger dot;
                \(\mathrm{P}:=\mathrm{HE} A D ;\) ssum \(:=0\); dot \(:=1\);
                \(q:=p ; p:=\operatorname{LINNK}(q)\)
                1f LTAG \([\mathrm{q}] \neq\) dot then
                    begin
                ssum : \(=\) ssum \(+\operatorname{SKIP}\{p\} ;\)
                while ssum \(\leq n\) do
                    begin
                        if BIT (ssum, K) \(\neq 0\) then
                        begin
                                    \(\mathrm{q}:=\mathrm{p} ; \mathrm{p}:=\) RIINK [q];
                                    if RTAG \([q]=\) dot then
                                    securn
                                    end
                                    else
                                    begin comment: \(\mathrm{BIT}=0\);
                                    \(q:=p ; p:=\) LLINK [ \(q]\);
                                    if LTAG [q] \(=\) dot then
                                    end;
                                    ssum : s ssum + SKIP [ P\(]\)
                end
            end
        end \(p \frac{\text { end }}{\text { PROBE }}\);
    pointer \(p, \bar{q}\);
    integer \(n\), ssum;
        n : \(=\) LENGTH (K);
        P_PROBE (HEAD, KEY, LiINK, RLINK, LTAG, RTAG,
                SKIP, \(K\), a\()\);
    if SEQUELS ( \(n, \operatorname{KEY}[p], K\) ) then return ( \(p\) )
                                    else return (i)
end P_SEARCH
```

Eigure 39
SKIP, a number which tells how many bits to skip when searcining, as explained in che algorithm (SKIP corresponds to the value of m in the equivalence relations exhibited above.)

The PATRICIA tree for this example is shown in Figure 43. The reader will note that in the case where two or more attribute values are required to determine a key into the relation, the PATRICIA structure is particularly useful, since the character strings forming the desired key may be concatenaced and the search performed on the resulting string. Thus the same algorithms serve to locate the desired tuple, regardless of the key structure.

Relational Algebra Language

As discussed in the section on Task 3.10 , the query language is based on the relational algebra of Codd. The form adopted for this implementation is shown in Table 61. A prefix format was chosen to that command composition that would be straightsorward. The query exhibited in the section on Task 3 . 10 can be writien as

[^17]procedure ?_INSERT (HEAD, KEY, LLINK, RLINK, LTAG, RTAG, SKIP, K);
pointer array LLINK, RLINK;
integer array LTAG, RTAG, SKIP;
pointer HEAD;
string array KEY;
sering K;
begin
procedure P_PROBE (HEAD, KEY, LLINK, RLINK, LTAG,
RTAG, SKIP, K, n);
pointer array LLINK, RLINK;
integer array LTAG, RTAG, SKIP;
seriny arsiay KET;
string K;
1nteger n;
begin comment: p, q, ssum are global variables; integer dot;
$p:=$ HEND; ssum := 0; dot := 1;
$q:=p ; p:=\operatorname{LLINK}[q]$
if LTAG $[q] \neq$ dot chen
begin
ssum :r ssun + SKI? [p];
while ssum \leq n do
begin
if BIT (ssum, K) $\neq 0$ then begin
$q:=p ; p:=$ RLINK [q]; If RTAG $[q]=\operatorname{dot}$ then else
begin comment: $B I T=0$; $q:=p ; p:=\operatorname{LLINK}\{q] ;$ if $\operatorname{LTAG}[q]=\operatorname{dot}$ then
end;
ssum := ssum + SKIP [P]
end
end
end P_PROBE;
pointer $p, q, \quad 5$;
integer $\ell, n, r, s s u m, ~ s o l i d:$
string Kop;
bit ${ }^{\text {b; }}$
IE HEAD $=A$ Ehen
begin HEAD : $=$ AVAIL;
KEY [HEAD] := K;
LIINK [HEAD] := HEAD;
[TAG [HEAD] : $=1$;
RLINK [HEAD] :=A
end
else
begin
solid : = 0 ;
$\mathrm{n}:=$ LENGTH (K);
P_PROBE (HEAD, KEY, LLINK, RLINK, LTAG, RTAG, SKIP, K, n);
comment: search must be unsucessĩul... no key is prefix of another;
Kp : = KEY [p];
for $2:=1$ to n do
if BIT $(\bar{\ell}, K) \neq \operatorname{BIT}(\ell, K p)$ then exit;
$b: B \operatorname{BIT}(\ell, K)$;
P_PROBE (HEAD, KET, LIINK, RLINK, LTAG, RTAG, SKIP, K, 2 - 1);
r : $=$ AVAIL;
KEY [r]: $=$ K;
if LIINK $[\mathrm{q}]=$? then
begin
LLINK [q]: $=\mathrm{r} ; \quad \mathrm{t}:=\operatorname{LTAG[q];}$
LTAG [$q]:=$ solid
end
else

```
    begin
        RLINK [q] :m r; t := RTAG [q];
        RTAG [q] := solid
        end
        if b}=0\mathrm{ then
        begin
        LTAG [r] := 1; LLINK [r] := r;
        RTAG [r] := t; RLINK [r] := p
        end
    else
    begin
        RTAG [r] := 1; RLINK [r]:= r;
        LTAG [r] := t; LLINK [r]:= p
        end;
if t=1 then SKIP [r]:= \ell - ssum
else
    begin
        SKIP [r] := 2 - ssum + SKIP [p];
        SKIP [p]:= ssum - \ell
    end
end P_INSERT
```

 Figure 40
 | KEY | PART OF SPEECH |
| :---: | :---: |
| Humpty | Subject |
| Dumpty | Subject |
| Sat | Verb |
| On | Preposicion |
| A | Article |
| Wall | Direct Object |

Figure 41

Eigure 42

PROJECT(

SELECI

JOIN (TRANSFORMER, SERVICE)
FOR TRANSFORMER.SERIAL:\%=SERVICE.SERIAL (f)
WHERE SERVICE.STATUS='IN' and
SERVICE.STATUS DATE-CURRENT DATE < 180
OVER SERIALiF, X-Y COORD.

Table 62. Relational Algebra Statements

<select> iunction

syntax specification.

```
<input relation name> s <qualification>
    <output relation name>
<qualification> ::= <tuple relation><qualification>
    | <tuple relation>
<tuple relation>::= <attribute value><boolean
                    operator> <tuple function>
```

Coments. <output relation name> is either a relation name or the symbol \%. In the latter case, \% stands for a temporary relation name. If \% has been previously defined, it may be used as an <input relation name>.

Example.
Eransformer s serial\# = 1775453%
<join> function.
syntax specification.
<inpur relation name ${ }_{1}><$ input relation name ${ }_{2}{ }^{\text {s }} j$
<bi-tuple boolean relation> <output relation name>
<bi-cuple boolean relation>::= <attribute value ${ }_{1}$ >
<boolean operacor>
<attribute value ${ }_{2}$ >
<project>function. syntax specification.

```
    <Input relation name> p' <actribute name list>
        <output relation name>
    <attribute name list> ::= <attribute name>
                                    <attribute name list>
                                    | <atrribute name>
<divide> Eunction.
```

 syntax specification.
 <input divident relation name> <input unary
 divisor relation name> © <output unary quotient
 relation name>
 <minus> function.
syntax specification.
<input subtrahend relation name><input minuend
 relation name> m <output result relation name>
<union> function
syntax specification
<input relation name ${ }_{1}$ ><input relation name ${ }_{2}$ > u
<output relation name>
<intersect> function
symtax specification
<input zelation name ${ }_{1}$ <<input relation name $\boldsymbol{2}^{>}$i
<output relation name>
<multiply> function
syntax specification
<input relation name ${ }_{1}><$ input relation name ${ }_{2}>\mathrm{mu}$
<output relation name>
<Invoke database management system> iunction.
syntax specification
<databasa name> rodni <password>
comment

The name oi the database managemenc system is Eelation oriented database network information. <destroy database> function syntax specification.
<database name> dsdb <create relation> function.
syntax specification.
<schema specificarion><access method>

C <relation name>

<schema specification> ::= (<attribute list> : <key ilst>)
<attribute list> : : $=$ <attribute name><domain specification><attribute lise>
| <attribute name><domain specification>
<key lisc>: : = <actribuce name><key list> <attribute name>
<domain specification> :: $=$ <attribute type> (<fleld length>)
<attribute type> : := <int>! <float> i<char>
<access method> ::= pat
<destroy relation> function.
syntax specification.
<relation name> dsr
<copy> function
syntax specification
<external database name><external relation name>
<local access method> cp. <local relation name> <modify> function
syntax specificarion
Not Implemented.
coutput relation> Eunction

syntax specification

<relarion name> wrr
comment. Output is directed to DBMS burfer
Canonifier formats output for delivery to proper outpur medium/device. <output schema> Eunction
Syntax Specification
<relation name> wrs
<inpur relation> function
syntax specification
rdr <relation name>
Coument
Data is placed in DBMS ouffer in a format compatible witi schema definftion of the canonifier. <delegate> function. syncax specification

```
<relation name list> dl <access list>
<relation name list> ::= <relation name>
    <relation name list>
    |<relacion name>
<access list> ::= <schema specification><permission>
            <user id list><access list>
            |<schema specificarion><permission>
            <user id list>
<permission> ::= rdiwr;ex
<user id list>::= <user id><user id list>
            |<user id>
```

<save> function
syntax specification
<retention status> SV <relation name>
<zerention status> $::=$ <julian datè \%
Comment

The zetention status designated by \% is temporafy, the relation being destroyed when the current session with the DBMS terminates.
<purge> function
syntax specification

pu

<assign> function

```
Syntax Specification
<input relation name><assignment list> asg
    <output relation name>
<assignment list> ::= <attribute name> = <tuple
                                    expression>
                                    ; <assignment list>
                                    - |<attribute name> = <tuple
                                    expression>
                                    FORTRAN SOURCE OPTIMIZER
```

The portability requirements place a heavy burden on the system designer. The only suitable language which is truly portable at the present time is FORTRAN IV. However, FORTRAN's somewhat primitive control structures make the programming of an application such as a database management system extremely difficult. Such programming tends to be difficult even in a language such as Algol, which has much more powerful control structures. A glance at Figure 40 will illustrate why this is so. To obtain more powerful control structures within a FORTRAN context, the implementers on this project turned to Ratfor, a dialect of FORTRAN which has powerful control structures. Portability for Ratfor is obtained by translating those Ratfor statements which are not in themselves FORTRAN statements into FORTRAN statements. Ite major drawback to this translation process is that the resulting FORTRAN program is nor nearly as efficient as an equivalent program coded by hand would be. Since the database software is extensive (it is comprised of more than rorty subprograms), it is not feasible to do the translation by hand.

Thus, it is clear that what is needed is a cool to assist the programmer and that tool is the FORTRAN Source Optimizer.

Major Features

The information flow is illustrated in Figure 44 . The opcimizer acceprs FORTRAN starements generaced by the Ratfor processor and performs the following actions.
(1) Detects any syntax errors. The Ratfor processor does little or no syntax checking. Any statement which it does not zecognize is assumed to be a FORTRAN statement (not a Ratior statement) and is passed as it was encountered to the output file, which in turn is passed to the Optimizer.
(2) Finds common subexpressions. Many expressions can be "factored" so chat certain arithmecic expressions need to be evaluated only once.
(3) Detects "dead" code. Some portions of a program may not be reachable during normal execution because the programmer has made errors in his algorithm design or because the algorithm was not faithfully translated into a correct Ratfor program.
(4) Eliminates redundant control transfers. The Ratfor control starements which are all single entrance-single exit constructs are implemented using FORTRAN goto statements. The implementation is done in a simple-minded way with the result that no cesting is done for situations such as a transfer to statement number 10 winch is itself a goto statement jumping to number 30 . This kind of redundancy is eliminated.

Figure 44
(5) Allows interactive program restructuring. The programmer executes the Optimizer interactively. After initial processing of the FORTRAN source, the optimizer is prepared to accept commands from the programer and rearrangement of the source can be done. This rearrangement may result in more sophisticated code than the optimizer could produce unassisted. At the same time, the routine processing referred to above has already been done and is chus not a concern of the programer.

Underlying Principles

Many of the optimizing steps depend on the generation of the flow graph which is a digraph whose edges represent transfers of control within the source program and whose vertices represent groups of source statements in which there are no transfers. The creation of such graphs is, well-understood and standard methods are available. These graphs permit the detection of loops, and unreachable (dead) code. Anocher graph construct wich is important which the optinizer constructs is the DAG or Directed Acyclic Graph. ${ }^{7}$ This graph is used to analyze the vertices of the flow graph. Such analysis shows how the values computed in one such basic block are used in subsequent blocks. This leads to the detection of common subexpressions and loop optimizacion.

The syntax analysis is done using. simple precedence methods for expression valiation and recursive descent parsing of stacements. After the programmer has modified the source program, he may again run both the syntax checker and the analyzer. This allows inim to check for errors which might have inadvertantly crept in when the modifications were made.

SHELL I:PLEMENTATION

The Shell program implemenced by the work reported here did not meer the portability goals originally set for it. The diversity and peciliarities or several operating systems under which the cotal system might be expected to function demanded of the staff far 7 Aho, A.V., and Ullman, J.D., Principles of Compiler
Design, Addison-Wesley, Reading, Mass., 1977.
greater resources of time and effort than were available. This was recognized early in the ilfe of the project and that recognition prevented any large expenditures of manpower which ultimately would have been wasted. Instead of tilting with such a windmill, the staff decided to implement the shell using the inherent features of Ünix on an available PDP-11/70. It is possible for a programme co write his own command processor (shell) to drive the underlying functions of Unix and this was what was done. It was felt that it was important to experiment with the features proposed in the original functional description and these were the ones implemented. The syntax for the Shell is shown in Table 62 . They may be compared with their functional descriptions in dppendix \bar{F}.

Table 62 Shell Commands
<execution> Eunction
syntax specification

| <ampty>
<execute control file>
syntax specizication

$$
\sin -\text { control ifile name> }
$$

<create> Eunction
syntax specification
<file pointer> $=$ cr <file name>
<open> Eunction
syntax specification
<file pointer> op <file name>
<close> function
syntax specification
cl <file pointer>
<unlink> iunction
syntax specification
fn <file name>
<list files> function
|s

Table 63 Major System Component Status

System	Implementation Status	Portability Status
Shell	\checkmark	x
Analysis Programs	v^{\prime}	v^{\prime}
Network Editor	x	x
Canonifier	v^{\prime}	v^{\prime}
Optimizer	v^{\prime}	x
$v^{\prime}=$ implemented/portable $\quad x=$unimplemented $/$ nonportable		

SUMMARY

Table 63 sumarizes the major components of the syscem which have been implemenced. The Shell program itself is the only one winich has not been implemenced in a portable manner.

The canonifier program has proven to be the key to making all or the apolications/analysis programs compatibie without requiring any substantial modification or chem.

The canonifier program works well as a front end. to tie database management system (DBMS) which was implemented using the ?ATRICIA data structure. Not only is PATRICIA a practical directory scheme but its benavior is susceprabie to cheorecical study winich shows how to check the structure's incernal consistency using teciniques from Formal Language theory.
ds part of the DBMS, a user language was implemented based on the relational algebra. Inis language allows one to write queries in prefix form so that nesting is straightforward.

Lastly, as part of the approach taken to achieve portaíility, a EORTRAN source optimizer was implemented which allows the system programmer to optimize the portable but inefficient code produced by the Ratfor transiator. Jsing Ratfor allows one to program in a more comrortable language tian standard FORTRAN.
task b.13: the evaluation of the distribution planning methodologies developed by the contractor including the effects of maior assunptions in the MODELS AND TECHNIQUES AND THE AMOUNT OF EFFORT aND COST REQUIRED TO EXPAND THE IMPLEMENTED SOFTNARE PACKAGE INTO A PRODUCTION GRADE PROGRAM
A. the evaluation of the distribution planning methoDOLOGIES DEVELOPED BY THE CONTRACTOR INCLLDING THE EFFECTS OF MAJOR aSSUMPTIONS IN THE MODELS AND THE techniques

A major accomplishment of this research design has been the use of the integrated data base, data base management system, representational approach, and functional definitions to achieve an optimal planning approach, in theory, which was not possible in previous approaches and to use this system to increase the dimension of the proolems that can be solved. The key design elements whicn accomplish this system are:

The design switches which permit che planner to select possible feeder routes, substation sites, incremental capacities, conductor sizes, etc. The advantage gained here is that the pianner can eliminate obviously non-optimal alternatives efficiently and thus significantly reduce the search tree in the MIP solution procedure.

The usage of the data base to reduce the number of variabies required in the oprimization model. This is accomplished by the design of parameter computation modules which make use of the structure and relevance of the data base. For example, the cost of the substation incremental capacity additions can be computed with knowiedge of the current installed cost of transformers, and relevant hardware and the exchange possibilities present in the system. These exchange possibilities are decision variables in other appraches. This approach assumes the optimal solution achieved will not involve more exchanges than were assumed by the parameter optimization program. It is possible that incremental capacity allocations will exceed the number of transformers in invencory and thus some errors will be made in the cost calcuiations as the program will not je able to account for all the interaction possibiliEies for a given inventory state and tradeout set. Jowever, most of the small to medium size planning probiems will be unafiacred. This problem will je addressed in the impiementation by using the overall denand increase as an estimate of the incremental capacity required and estimating tie number of substations fiat will be involved. This will allocate to each subscation of iinice set of tradeout and invencory possibilitias.

The cost assumptions made in the models by others in the iiterature on power loss values are eliminated in the models developed in this research by use of the actuai power loss curves. The cost of power losses has a signiEicant effect, and has much more importance than variations in the incremencal cost figures. The completeness of the data base and its organization allow these curves to be computed and expressed as MIP parameters very efficiently. For large probiens, the convex approximation used is still much more accurate than the linear approximations used in the litera:ure. This is a particular example of what is meant jy the data elements induced by the planning model. The cost of power losses calculation requires the cost of sonductor per foot, grid points for the ends of the Eeeder, cost of labor, cost of line components, cost of energy, impedances, cost of taxes and maintenance, interest rate, and saivage vaiues. All of these elements are contained in she data base.

Another major accomplishmenc of this research has bean to integrate the siting and seizing, distribution, conductor size selection, =outing and timing decisions al: within one modei. Current (1979) approaches still address these individually and then cycle chrougn the calculations iteratively. it is an approach which precludes any optimality guarancee.

A further accomplishment has been to recognize, for the first time in the literature, a more realistic model of the electrical nature of the electrical distribution problem by esplicitly including real and reactive power flows as variables. This allows capacitor and regulator allocation decisions to be modeled as mathematical programming decisions. In this approach, however, furtiner research is needed into the solvability of the model and the determination of the degree of extension of the basic model.

In order to accomplish che integrated design, some unique features were developed for the database management, control and analysis system. The features are:

1. The graphical representation of the distribution network which uses line sections as nodes rather than edges.
2. The integrity constraincs involving color coding to prevent designer errors.
3. The network editor whose design perilt the distribution network to be searched for subnetwork configurations efficiently by treating subnetwork configurations as a text string
4. The data base induced by the parameters of the optimization and analysis models.
5. A data model and form unique to the electric utility industry data systems. So far, no counter examples have been found as a result of the search in the literature or in the industry surveys.

Other than the assumptions previously discussed, no major assumptions are made'. The assumptions implied in the analysis programs chosen which are the standard assumptions made to perform load Elow, fault current, voltage profiles, etc., calculations. The thrust of the research has been to model more realistically and atcempt to determine solution limitations. The major difference in this research work has been the use of the full modelling power of the MIP techniques as opposed to network flow models and dynamic programming approaches.

3. THE AMOUNT OF REOUIRED EFFORT TO EXPAND THE LMPLEIENTED SOFTWARE PACKAGE INTO A PRODUCTION GRADE PROGRAM

As was discussed in TASK 3.12, on Iy part of the conceprual model has jeen implemented. The major system components and their status is shown in Table 63. The effort to be spent upgrading the prototype system should be concentrated in four areas:

1. . Making the shell program truly portable.
2. Implementing the network editor.
3. Restructuring some of the applicarions/analysis programs to take advantage of the network concepts built into the system.
4. Improving the performance of the database management system (DBMS).

The shell program Eunctions as a minioperating system, providing file handling capabilities to the planner. Most operating system environments do not support such foatures. A notable exception is Unix, deveioped by Bell taboratories. The availability of Unix to the research group permited the realization of the shell functions Eor the prototype system. However, transporting the shell to another environment such as the IBM 370 vs environment would be a difficuit =ask but one which should be undertaken to meet the original goals of the metiodology.

The network editor is perhaps the most innovative concept to emerge from the syscems research done by this project．Lack of resources prevented its 1 mple－ mentation but given the DBMS，the implementation would be straightforward．

Some of the algorithms used by the analysis pro－ grams stould be changed to take advantage of the net－ work orientation of the planning system．In particu－ lar，an investigation should be begun to determine if the network methods currently being studied are appli－ cable to the planning problems－discussed in TASK B．6． It appears that if they are applicable，speed improve－ nents of as much as an order of magnitude could be anticipated．

Lastly，while the DBMS works efficiently with the protorype database，as the size of the database grows， the size requirements for real memory（as opposed to virtual memory）will also grow，resulting in slower access times．To counter this degradation，alternate access methods should be incorporated into the DBMS． This will improve performance and provide a more flexi－ ble system．Another feature which to date has not been included in．the DBMS is an automatic restructuring capability to improve the way the data is organized internally．This Eeature should also be developed．

C．the cost estimate to expand the implemented soft－ WARE PACKAGE INTO A PRODUCTION GRADE PROGRAM

In order so design，develop and implement．a pro－ duction grade program，it is estimated that a two－year ：ine schedule and a total estimated budget of $\$ 327,537$ are required．The details of the estimated budget are siven in the following．tables．

ごこac：－̇jor	Escinaced そここと	aace／：our	$\begin{gathered} \text { Esci-mased } \\ \text { Cose } \end{gathered}$	```Tocal Zsc:maced Cost```
T－inetpal－ivescigacor	$\cdots, 320$	3：3．88	525，265	
2 こo－？＝fncipul investizator	¢， 30	：3．á	56，289	
\＃？ 2 seasch tssacinees	2，530	15.08	31，359	
？Researci nissistanes	0，260	5.37	36，000	
：Secretary	2，080	4.29	8，929	
Toral istect Lagor Cost ．．．．．．．．．．．．．．．．．．．．				
Tocai Esavel．			－• • •	\＄8，00n
Behaz Oisect Costs				
E＝inge Sentitss			\＄28，412	
Computar Coscs（120 hes．A	250／hr）		20，300	．
Sいことごes			5，000	
cura－iticacions			1．300．	
	－•－	－	\therefore.	．333i，254
presteac				
OLi or 3i5\％，3－2	－••••	－•	－．	．S56，－3j
TJTAL ESTPAIES COS：	－• • •	－•••	－•••	． 3327.537

The following table presents tne cost by individual． Eiscal years．

Cost Detail oy Eiscal Year

	Year I	Year II	Total
Direct Labor	\＄76，020	581，82i	5157，842
Travel	\＄4，000	34，000	58，000
Other Direct Costs	S112，204	5119，050	\＄231，204
Overhead	S 46,372	5168，961	596，283
TOTAL ESTIMATED COST	S158，576	5168，961	5327，537

The details of the requirad budget for the Eirst Eiscal year are：

I．Salaries and Nages
d．Principal Investigator 9 montis 0.25 FTE ．． 55,156
3 summer monchs 1.00 FTE ．．\＄6，375
3．Co－Principal Investigator
9 academic months 0.25 FTE ．． 55,150
3 summer months 1.00 FTE ．．\＄6，866
C．Co－Princidal Investigator
9 academic months 0.25 FTE．．．$\$ 6,338$
3 summer months a 1.00 FIE ．．$\$ 8,450$
D．Research Associate－I
12 months © 0.25 FTE ．．．．$\$ 7,300$
E．Research Associate－II
12 months＠ 0.25 दिTE ．．．．．$\$ 7,633$
F．Research Assistant－I
12 monchs＠ 0.50 FTE ．．．．．$\$ 6,000$
G．Research Assistant－II
12 months＠ 0.50 FTE ．．．．．$\$ 6,000$
4．Research Assistant
12 months © 0．50 FTE ．．．．．$\$ 6,000$
I．Secrecary（ $\$ 4.12 / \mathrm{hr}$ ）
12 monehs A．0．50 FTE ．．．．．S4，252
Total ．．．．．．．．．．．．．．．．$\$ 76,020$
II．Fringe Benefits
18% of the salaries and wages ．．$\$ 13,684$

III．Indizect Costs
61\％of the salaries and wages ．．$\$ 46,372$
IV．Computer Ugage
60 hours of CPU time＠$\$ 250 / \mathrm{hr}$ ．．$\$ 15,000$
ท．Miscellaneous

TOTAL（For Year I）
57,500
$\$ 158,5.75$
The details of the required budget for the second fiscal year are：

I．Salaries and Wages

A．Principal Investizator
9．academic months o 0．25 FTE ．．S5，672
3 ṣumer months a 1.00 FTE ．．S7，562
B．Co－Principal Investigator
9 academic montis 0.25 FTE ．．$\$ 5,665$
3 summer monchs \mathfrak{l} 1．00 FTE ．．Si， 353
C．Co－Princidal Investigator
9 academic months © 0.25 FTE ．．$\$ 6,972$
3 summer monchs 1.0 FTE ．．．$\$ 9.255$
D．Reseazch Associace－I

[^18]E. Research Associate - IE

12 moncis ! 0.25 FIE. 88,396
F. Research Assistant - I

12 tontis ${ }^{\text {a }} 0.50$ FTE $\$ 6,000$
G. Research Assistant - II

12 months @ 0.50 FTE S6,000
4. Research Assistant - III 12 montins a 0.j0 ETE 36,000
$\$ 81,322$
II. Fringe Benefics
13% of the salaries and wages $\$ 14,728$
III. Indirect Costs

61\% of the salaries and wages $\$ 49,9$ in
IV. Computer isage

60 hours CPU time © $\$ 250 / \mathrm{hr}$. $\$ 15,000$
V. Miscellaneous
Comunication 5500
Irave 1. $\underline{s i}_{4,000}$
TOTAL (For Year II). .
$\$ 1 \overline{68,961}$

INTRODUCTION

This section presents a jibliography of seleced references pertaining to electrical distribution system planning. The objective is to encourage and facilitace broade: use of automation concept in the distribution systems planning. References have been selected which deal predominantly with the distribucion system. Emphasis is placed on references which illustrate practical as well as theoretical applications of distribution system planning techniques.
dn extensive, but not necessarily comolete, search has been made ₹or the identification or papers and reports published in the open literature which describe the distribution. planning methods and techniques. The listing of the titles is subdivided into three sections, depending upon the general substance of each article. However, a title may be lisced in more than one section if the paper covers material. in various sections.

The entries in each section are listed in alphabetical order. The last name of the ifisst order author determines the alphaberical position. Many of che articles are available in abstract form in Science dóstracts, Section B, of the Engineering Index, and digesting or indexing periodicals, as well as in. the original magazines listed. Only the more readily available foreign publications are included. A.list of the periodicals which have been cited and their. place of publication is given following the bibliograpiy.

CIASSIFICATION OF LISTINGS

1. Analyses
2. Models
3. Tecinniques

1. ANAL YSES

1. Baughman, M.L., and D.J. Bottaro, "Electric Power Transmission and Distribution Systems: Costs and Their Allocation," IEEE Trans. on PAS, Vol. PAS95, No. 5, May/June, 1970, pp. 782-790.
2. Benson, R.U. and J.Z.D. Northcote-Green, "Develooment of a Data Base for Distribution Systems Planning," Conference Paper C73; pp. 374-376. IEEE PES Sumer Yeeting, July 15-20, 1973.
3. Billinton, R. and M.s. Grover, "Reliability Assessment of Transmission and Distribution Schemes," IEEE Trans. on PAS. Vol. PAS-94, No.: 3 , May/June, 1975, pp. 726, 732.
4. Billinton, R. and M.S. Grover, "Quantitative Evaluation of Pemanent Outages in Distriburion Systems," IEEE Trans. on PAS, Vol. PAS-94, No. 3, May/June, 1975, pp. 733-741.
5. Burstall, R.M., "'Design of Electricity Distribution Networks--A Heuristic Approach;" Interim Report of Univ, of Birmingham, Dept. of Ergineering Production, March, 1964.
6. Campbell, H.E. and H.Z. Sinnott, "Economic Analysis of Residential Secondary Distribution Sustems," AIEE Iransactions Pt. IV (Power Apparatus and Systems), Vol. 76, Aug., 1957, pp. 574-585.
7. Campbell, R.E., "Economic Analysis of Distzibution Systems," AIEE Iransactions Pt. III (Power Apparatus and Syscems), Vol. i9, Aug.; 1962, p. 423-440.
8. Chang, N.E., 'Determination of Primary Feeder Losses," IEEE Trans. on PAS, Vol. PAS-87, No. 12, Dec., 1968, Pp. i991-1994.
9. Chang, $\mathrm{N} . \mathrm{E} .$, "Determination and Evaluation of Distribution Transformer Losses of the Electric System Through Transiormer Load Monitoring," IEEE Trans. on PAS, Vol. PAS-89, No. 6, July/Aug., 1970, pp. 1282-1234.
10. Chang, N.E. "Evaluation Distribution System Design by Cost Reliability Indices," Presented at the IEEE PES Winter Meeting, Feb., 1977.
11. Connor, R.A.W.,.er al., "Operational Statistics in the Management of Large Distribution Systems," Proc. IEE, Vol. 113, No. 11, Nov.; 1966, pp. 18231834.
12. Converti, V., et al., "Optimized Distribution and Subtransmission System Planning by Digital Compurer,". I-System Philosopiny, IEEE Trans. on PAS, Vol. PAS-83, April, 1964, pp. 341-347.
13. Cooper, J.M., "Optical Density Displays for DisEribution in Planning," Rochester Gas and Electric Corporation Report, April, 1974.
14. Copland, F.G., "The Economics of Low-Voltage Electricity Supplies to New Housing Estates," Proc. IEE, Vol. 99, Paper No. 12365, Jan., 1952, pp. 95-101.
15. Eddy, F.N., "Communications Alternatives for Automated Distribution Systems," Control of Power Systems Conference; March 10-12, 1976, Oklahoma City, OK, pp. 128-133.
16. Eichenberger, Paul H. and F.M. Fine, "What Role Can Simulation Play in the Subtransmission and Distribution Planning Process?' Paper No. A754853 presented at the IEEE PES Summer Meeting, San Fransisco, CaliE., July 20-25, 1975.
17. Ender, R.C., et al., "Opeimized Distribution and Subrzansmission Planning by Digital Computer," at the IEEE Sumner Meeting, Toronto, Ontario, Canada, June 16-21, 1963.
18. Ender, R.C., G.G. Aver and R.A. Sylie. "Digital Calculation of Sequence Impedance and Fault Currents for Radial Primary Distribution Circuits," AIEE Iransactions ?t. III (Power Apparatus and Systems), Vol. 79, Ēeb., 1961, pp. 1264-1277.
19. Gangel, M.W., et al., "Opitimized Distribution and Suotransmission Plenning oy Digital Computer, Part IV-Primary Main Design,". IEEE Trans. on DAS, Vol. PAS-84, December, 1975, pp. 1150-1164.
20. Gaussens. P.. "Digital Computers in Distribution Network Studies.". A Paper, Presented at Conference on Digital Computation for Electric Power Systems, Queen Mary College, London, September, 1963.

21: Gonen," I., et al., "A Research Progress Report For Electrical Energy Distribution Systems," University of Oklanoma, Noman. OK, Sept., 1978.
22. Gonen, T., F.E. Fagan; J.C. Thompson and C.M. Council, "Toward Automated Distribution. Systems Planning." IEEE Control of Power Syscems Conference, Texas A\&M University, College Starion, Texas, March 19-21, 1979.
23. Griscom, S.3., and R.Z. Lawrence, "Residential Distribution--An Analysis of Systems to Serve Expanding Loads," AIEE Tiansactions Part IV (Power Apparatis and Systems), Aug., 19j6, po. 535-542.
24. Grover, M.S. and R. Billinton, "Quantitative Evaluation of Overload Condition in Substation and Subtransmission Systems," Presented at the IEEE PES Winter Meeting, January; 1976.
25. Grover, M.S. and R. Billinton, "Quantitative Evaluation of Maintenance Policies in Discribution Systems," C75112-8, Presented at the IEEE PES INInter Meering, New York, N.Y., Jan. 26-31, 1975.
26. Hassounch, Awwad S., "Load How Analysis of Power System Distribution Planning and System Modification," M.S. Thesis, The University of Texas at Arlington, May, 1974.
27. Hill, O.L. and W.A. Wittenberg, "Distribution Feeder Planning Technique," Transmission and Distribution, Vol. 26, October, 1974, pp. 66-6́9.
28. Hoescenioach, R.D., "Load Flow Analysis of Electrical Distribution Systems Using the Digital Computer," IEEE Trans. on Industry ADolications, LA-12, No. 2, March/Apri1, 1976, pp. 152-160.
29. Jomier, R., et al., "Concrete Experiment on the Administration of a Rural Network Using a CompuEer," Proc. Eifth Power System Compuration Conference, Tol. 2, Paper 4.1/3, Cambridge. 1975.
30. Juricek, Michael J., Atsuhi Fukutome, and M.S. Chen, "Iransportation Analysis of an Electric Power Distribucion Sustem," Paper No. A76052, presented at the IEEE PES Winter Meeting, New York, N.Y., January 25-30, 1976.
31. Kidder, A.A. and J. H. Nener, "?ower Discribution System Parameters," AIEE Iransaction (Power Apparatus and Systems), dpril, 195j, pp. 125-141.
32. Klinmann, Amikar H.R., "Maintenance of Voltage in Distribution Systems," Paper No. C75130-0, presented at tine IEE PES Ninter Meeting, New York, N.Y., Jan. 26-31, 1978.
33. Larson, P.E., "Economics of Distribution Systems," Electrical Engineering, Vol. 75, 1956.
34. Le Gal, "Recherche Automatique de Schemas de Secours Dans les Reseaux de Distribution Amoyonne Tension," Third Power Sustems, Computation Conference, Rome, 1969.
35. Lemoine, J.C., "Planning the Development of High and Low Voltage Distribution Networks," Electricite de France, No. i, 1975, pp. 5-18.
36. Mitchel, C.F., et al., "An Economic Analysis of Distribution Transformer Application," Paper No. 59-783, AIEE Sumer Meeting, Seattle, Nash., June 21-26, 1959.
37. Morris, J.A., "Optimization of Power Line Conduccor Through the Use of a Computerized Feeder Network Program," Yodeling and Simulation Conierence, University of Pittsourgi, PA, dpri1 25-27, 1979.
38. Navas, E., H. Duran, M. Alvaro, "Studies in Power System Generation and Distribution Planning," Conference on Circuits, Syscems, and Computers, Pacific Grove, Ch, Vov. 27-29. 1973.
39. Northcote-Green, J.E.D., "Sparial Effects on Feecier Optimization in Distribution Planning," Modeling and Simulation Conference, University of ?1ttsburgh, PA, April 25-27, 1979
40. Ossman, 'N.R., "Substation Expansion, Reliability and Transformer Loading Policy Analysis," IEEE Trans. on PAS, Vol. PAS-88, No. 8, August, 1969, pp. 1195-1205.
41. Rural Electrification Administration, "Voltage Drop Calculations," Sulletin 45-1, March, 1957.
42. Sarikas, R.H. and H. S. Thacker, "Distribution System Load Characceristics and Their Use in Planning and Design," AIEE Transactions Pt. III (Power Apparatus and Systems), Vol. 76, Aug. 1957, pp. 564-574.
43. Senupta, J.K., "A Generalization of Some Distribution Aspects of Chance-Constrained Linear Programing, Intemational Econ. Review, June, 1970.
44. Smith, J.A., "Determination of Economical Distribution Substation Size," AIEE Transactions ?art III (Power Apparatus and Systems), VoI. 80, Oct. 1961, pp. 663-669.
45. Smith, J.A., "Economics of Primary Distribution Voltages of 4. 15 Through $34.5 \mathrm{kV}, "$ AIEE Transactions Part III (Power Apparatus and Syscems), Vol. 80, Oct., 1961, pp. 670-682.
46. Sonmerfield, G., "Forecasting Load Growth," Trans mission and Distribution, Vol. 26, Oct., 1974, pp. 44-46.
47. Stuart, T.A., "A Study of the Rochester District Based on Estimated Loads and Voltage Drops for 1977 and 1982," Rochester Gas and Elecsric Corporation Report, August, 1975.
48. Taylor. L.D., "The Demand Eor Electricity: A Survey," Bell J. Econ. Vol. ó, spring 1975, pp. 74-110.
49. Van Normer, E.C., "Some Aspects or Distribution Load Area Geometry," AIEE Transactions Part IIIB (Power Apparatus and Systems), Vol. 3, po. 13431349.
50. Wilde. R.J., J.T. Boardman, and D. Earguhar, "CAD System for Distribution Network Planning," IEE Conference Publicarion, No. Lil, University or Southampton, Hamps, England, April 8-11, 1974, pp. 85-91.
51. Woodley, N.i.. et al., "Subcransmission and Distribution Systems Expression by Simulation," A Paper, Presented at the 1969 American Power Conference.
52. Zimmerman, R.d. and H.E. Lokay, "Economic Comparison of Secondary Voltages $1-\phi$ and $3-\dot{p}$ Distribution for Residential Areas," AIEE Transactions Part III, (Power Apparatus and Systems), Vol. 78 , Aug., 1956, pp. 542-560.

2. MODELS

1. Adams, R.N., et al., "Mathematical Programming Syscems in Electrical Power Generarion, Transmission and Distribution Planning," in Proc. of 4th PSCC, Grenoble, France, 1972, Paper 1.1/3.
2. Adams, R.N. and M.A. Laughton, "Optimal Planning of Networks Using Mixed-Integer Programming,'
?roc. IEE, Vol. 121, No. 2, Feb., 1974, pp. 139143.
3. Adams, R.N. and M.A. Laughton, "A Dynamic Prog:auming/Nerwork Flow Procedure for Distribution System Planning," Proceedings Power Industry Computer Applications Conrerence, June, 1975.
'4. Anderson, D., "Models Eor Determining Least Cost Investmencs in Electzicity Supply," Bell J. Econ., Vol. 3, spring 1972, pp. 267-301.
4. Armstrong, H.R., Z.A. Elliott, and H.O. Steolting "Designing Discrioution Lines Eor Better ?erformance," presented at tie IEEE PES Winter Meeting, New York, NY , January 30-Feb. 4, 1966°.
5. Avvakumov, V.G., A.I. Rybinnik, "Yodels of MultiPurpose Optimization of the Quality of Electric Power in a Three-Phase Four-Conductor System." Izy Yyssh Uchebn Zaved Energy, No. 8, Aug., 1975, pp. 42-47.
6. Avvakumov, V.G., and A.M. Volotskii, "Concerning One Lexicograpinical Problem of Xultiple-Target Optimization of Electric Power Ouality," Izv Uyssh Uciebn Zaved Energy, Vol. 7, July: 1977, pp. 8-12.
7. Baldwin, C.J., "Tecinniques for the Simulation of Subtransmission and Distribution System Expansion," Proceedings Power Industry Corputer Apolications Conference, May, 1969.
Q. Benson, R.U. and J.E.D. Vorthcote-Green, "Deveiopment of a Data Base for Distribution Sustems Planning," Conference Paper No. C 73 374-6, IEEE PES Summer Meering, july 15-20, 1973.
8. Boardman, J.I., and B.N. Yogg, "Computer Method Eor Design of Electricity-Supply Networks," Proc. IEE, Voi. 119, 19i2, pp. 851-856.

1!. Soardman, J.T. and R.J. Silde, "Interactive Design ỗ. Electricity-Distriburion Networks," Proc. IEE, Yol. 120, io73, p. 1006-i011.
12. Joess, M.R., Jr.. et ai.. "Optimized Distribution and Subcransmission Planning by Digital Computer: V-The Tocal System," IEE5 Tzans. on PAS, October, 1966.
13. Jurandt, R.3., 'Optimizing Distribution Iransformer and Secondary Design; Present-Worin Approach," AIEE Tzans. Pt. III (?ower Apparatus and Svstems), Atguse, 1961, PP. 345-355.
14. Burandt, R.?., et al., "Present North Approach For Optimizing Distribution Fzansformer and Secondary Designs to Serve Growing Loads," AIEE Iransactions Part IV, (Power Apparatus and Systems), 7ol. 80, Auguse, 1961, pp. 345-350.
15. Burstall, R.M., "Computer Design of Electricity Supply Networks Using a Heuristic Method," Comot. j. Tol. 9, 1966, pp. 263-274.
16. Carson, M.J. and G. Comfield, 'Design of LowYoltage Distrioution Networiss; Interactive Compurer Yerhod Based on the Calculus of Variations," Proc. EEE. Voi. 120, i973, po. j85-592.
17. Chen, M.S., N.D. Dickson and iA.C. Cheng, "Simulation Iecinique ior Rural Electric Power System Planning," IEEE Trans. on Incustrial Apoitications. Vol. 1A-9, 1973, 00. 98-105.
18. Chia, C.S., "Optimized Distribution Design," A Ph.D. Thesis, University of Manchester, Yanchester England, 1971.
19. Converti, V., et al., "Optimized Distribution and Subtransmission System Blanning by Digital Compurer, I-System Fhilosophy," IEEE Irans. on PAS, Vol. PAS-85, dpril, 1974, pp. 341-347.
20. Cooper, J.M., et al., "Distribution Load Model of the Rochester Gas and Electric Corporation Report," July, 1973.
21. Cooper, J.M. and T.A. Stuar:, "A Computer Grapinics Aporoach to Distribution Planning," Paper No. C 14 345-4, Presented at the IEEE PES Summer Meeting, July, 1974.
22. Cornfield, G. and M.J. Carson, "Design of Low-Voltage Distribution Necworks," Inst. Elec. Eng., Paper 6918 P. Nov., 1972.
23. Couch, G.H. and I.F. Morrison, "Substarion Switch-ing-An Approach to the Determination of Optimal Sequences," in Proc. 4ch PSCC, Grenoole, France, 1972, Paper 2.1/1.
24. Crawford, Dale M. and S.3. Holt, Jr., "A Marhematical Optimization Technique for Locating and Sizing Distribution Substations and Driving Their Optimal Service Areas," IEEE IEans. on PAS, Vol. PAS-94. No. 2, March/April, 1975, pp. 230-235.
25. Denton, M.J. and D.N. Reps, "Distribution Substation and Primary Feeder Planning," dIEE Transactions ?r. III (Power Apparatus and Systems). Vol. 74, June 1955, pp. 484-498.
25. Garretr, G.?., "Expansion Planning of Radiai Suitransmission Systems," Thesis. University of Texas at Arlington, May, 1974.
27. Garrett, Gary P., Atsushi Fukutome, and M.S. Chen. "Expansion Planning of Radial Subtransmission Sustens," IEEE Trans. on PAS. Yoi. PAS-96, No. 5, Sept./Oct., 1977, pp. 128-153.
23. Giovannini, M. Reynand, G., Salvaderí, L., "Selection of Substation iayout in Power Systems," IEE Reliability Conference of ?ower Supply Systems, London, England, Eed., 1977.
29. Gonen, T., et al., "A Research Progress Report Eot Electical Energy Distrioution Systems," University of Oklanoma, Norman, OK, Sept., 1978.
30. Gonen, T., J.C. Thompson, and R.M. Cubere, "dn Interactive Distribution System Planning Model," Modeling and Simulation Conference, University of Pittsburgh, PA, April 25-27, 1979.
31. Gonen, T. and 3.L. Foote. "Applications of MixedInteger Programming to Reduce Sub-乌ptiaization in Distribution Systems ?lanning," Yodeling and Simulation Conference, University of Pittsburgh, PA, Apri1 25-27, 1979.
32. Grimsdale, R.L. and P.H. Sinclare, "Design of Housing Estate Distribution Systems : נsing a Digital Computer." Droc. Inst. Elec. Eng., Pt. A, Yo1. 33, 1950.
33. Hassounch, A.S., "Load Elow Analysis of Power Svstem Distribution ?lanning and Svseen Modification," $4 . S$. Thesis. The University of Texas at Arlington, May, 1976.
34. Hill, O.i., and N.A. Wittenberg, "Distribution Feeder Planning Technique," Iransmission and Diseribution, Vol. 26, October, 1974, pp. 66-69.
35. Hindi, K.S., "Distribution Networks Design," A M.S. Thesis, University of Manchester, Manchester, England, 1972.
36. Hindi, K.S., "Optimization of Gas Storage and L.V. Distribution System," A Ph.D. Thesis, University of Manchester, Manchester, England, 1975.
37. Hindi, K.S. and A. Brameller, "Optimal Cable Profile of L.V. Radial Distributors: : Two Mathematical Programming Methods," Proc. IEE, Vol. 123, No. 4, 1976, pp. 331-334.
38. Hindi, K.S. and A. Bramellar, "Design of LowVoltage Distribution Networks: A. Mathematical Programming Method," Proc. IEE, Vol. 124, Jan., 1977, pp. 54-58.
39. Juricek, Michael J., "Application of the Digital Computer to Substation Planning." M.S. Thesis, The Cniversity of Texas at Arlington, August, 1974.
40. Juricek, M.J., Atsusihi Fukucome, and M.S. Chen, 'Transportacion Analysis of an Electric Power Distribution System," Paper No. A 76 052-1, Presented at the IEEE PES Wincer Meeting, New York, NY, Jan. 25-30, 1976.
4. Knight, U.G.w., "The Logical Design of Electrfcal Vetworks Using Linear Programming Methods," Proc. IEE, Vol. 107A, 1960, pp. 306-314.
42. Kujsyczyk, S., "dutomatic Design of HousingEstate Distribution Networks," ?roc. IEE, Vol. 121, 1974, pp. 488-490.
43. Lawrence, R.F., et al., "Distribution System Planning Througn Oprimized Design. IV-Choice of Voltage Reguiation Point in the System," Paper No. 60813, AIEE Meeting, 1960.
44. Lawrence, R.F., et al., "Automated Distribution Syscem Planniag," IEEE Trans. on PAS, Vol. PAS83, April, 1964, pp. 311-316.
45. Lawrence, R.z., D.N. Reps, and A.D. Patton, "Distribution System Planning, Through Optimized Design: ?art I-Distribution Transformers and Secondaries," AIEE Transactions, Part III, Vol. 79, June, 1960, pp. 199-204.
46. Lawrence, R.F., D.X. Reps, and A.D. Patton, "Distribution System ?lanning Through Optimized Design: Part II-Comparative Economics of System VolEages," Ibid., pp. 204-223.
47. Le Gal, "Recherche Automatique de Schemes de Secours dans les Reseaux de Distribution a Moyenne Tension," Third Power Systems Computation Conference, Rome, Italy, 1969.
48. Lemoine, J.C., "Development Planning of High and Low Tension Distribution Networks, Optimal Investment Research Sume General Ideas in Regard to Merhods," EDF Bulletin De La Directions Des Etudes. et Recherecies, Series 3 Resauss Electriques, ERDA-TR-23i, 1975.
49. Lemus, J.L., H.F. Rutz and F.A. Viramontes, "Conductor Optimization and Optimal Capacizor Location in Distribution Systems," Mexicon i7: Cont. Ine. y Expo Sobre Invest Desanolloy tol je la

Ing. Electr. y Electron., Mexico City, Mexico, Nov. 9-12, 1977, publisined by IEEE, New York, NY.
50. Lutz Bochanky, Dresden, "Optimum Electric Power Distzibution System for New Residential Areas," ERDA-TR-228.
51. Masud, Enver, "An Interactive Procedure for Sizing and Timing Distribution Substations Using Optimization Techniques," Paper No. T 74142-6, Presented at the IEEE PES Winter Meeting, New York, New York, January 27-Feb. 1, 1974.
52. Masud, Enver, "Design for an Automatic Distribution Substation Planning Program," Proceedings, Frontiers of Power Technology Conference, Oklahoma State University, Oct., 1969.
53. Masud, Enver, "A Model for Determining the Optimal Expansion Policy for Power Distribution Substations," M.S. Thesis, University of Oklahoma, Norman, OK, 1972.
54. Merlin, d. and H. Back, "Search for a Minimal Loss Operating Spanning Tree Configuration in an Urban Power Distribution System," Power Systems Computation Coniterence, 1975.
35. Munasinghe, Mohan and Ti.G. Scott, "Long Range Distribution System Planning Based on Optimum Economic Reliability Levels," Paper No. A 78 5761 , Presented at IEEE PES Summer Meeting, Los Angeies, California,.July 16-21, 1978.

56: Munasinghe, Mohan and W.G. Scott, "Engineering Management and Control of Distribution Systems via Mini-Computers," IEEE Control of Power Systems Conference, Oklahoma City, Oklahoma, Sarch, 1978.
57. Muradyan, A.E., Y.S. Smotritskif, "Optimization of the Configuration of Power Distribution Networks with Obstacles at the Branching Points," Izv Akad Nauk Energy Transp. Vo. 5, Sept. Oct., 1973, pp. 74-80.
58. Neal, C.I.: "Long Range Distribution Planning on the OG\&G System," Power Distribution Conference, University of Texas, Ausin, Texas, Occobe 20-22, 1958.
59. Okada, T. and C. Uenosona, "Long Term Development Planning of Distribution Systems," Electrical Engineering in Japan, Vol. 90 , No. 12 , December, 1970, pp. 273-283.
60. Okada, T. and C. Uenosona, "Mathematical Models for Optimal Design of Power Distribution Systems for Long Terms," in Proc. 4th DSCC, Grenoble, France, 1972, Paper 1.1/3.
61. Oldfield, J.V. and T. Lang, "The Long Term Design of Electrical Power Distribution Systems," IEEE Power Industry Computer Applications Conference, May, 1965.
62. Querubin, R. Guervo, G., and Navas, G., "On the Optimum Design of Radial Distribution Networks," PICS Conference, Bogota, Columbia. 1975.
63. Rhoten, G.P., "A General Program Eor Processing Distribution Design," Electrical Worid, Vol. I55, December 10, 1961, pp. 45-58.
64. Rural Electrification Administration, "System Planning Guide for Electric Distribution Systems," Bulletin 60-8, June, 1957.
65. Sander, 3.M., "Forecasting Residential Energy Demand: A Key to Distribution Planning," Paper No. A77642-2, Presented at the IEEE PES Summer Meeting, Mexico City, Mexico, July 17-22, 1977.
66. Scott, N.G., "Computer Model Forecasts Future Loads," Electrical World, Vol. 178, Sept. 15, 1972, Pp. 114-115.
67. Segner, Konstantin, D. Graf, and K.E. Peter, "Planning Techniques for Distribution Networks with the Optimization of Plant Parameters," Energietechnik, Vol. 25, No. 10, Oct. 1975 , pp. 459-462.
68. Shapiro, I.2., "Probalistic-Statistical Models for Determining and Predicting Power Losses in 6-10 kV Distribution Networks," Izv Vyssh Uchebn Zaved Energy, No. 4, April, 1978, pp. 15-19.
69. Shelton, S.E., "A Direct Optimization Approach to the Economic Expansion of Distribution Substations," M.S. Thesis, Iowa State University, Ames, Iowa, 1977.
70. Shelton, S.E. and A.i. Mahmoud, "A Model Eor Economic Expansion of Distribution Substations," d Paper, presented at the IEEE Region 3 Annual Conference, Tulsa, OK, April 16-18, 1978.

7!. Shelton, S.E. and A.A. Mahmoud, "A Direct Optimization Approach to Distribution Substation Expansion," Paper No. A 78 592-8, Presented at the IEEE pes Sumer Meeting, Los Angeles, CA, July 16-21, 1978.
72. Smith, J.A., "Determination of Economical Distribution Substation Size," AIEE Iransactions Part III (Power Apparatus and Syscems). Vol. 80, Oct., 1961. pp. 663-669.
73. Snelson, J.K. and Y.J. Carson, "Logical Design of Branched L.V. Distributors," Droc. IEE, Vol. 117. So. 2, pp. 415-420, 1970.
i4. Stover, Carl N. Jr., et al., "A Financial Forecasting Model for Rural Elecrric Distriburion Systems." Paper No. C 74 352-1, Presenced at the IEEE PES Summer Meating, Ananeim, Calif., July 14-19, 1974.
75. Stover. Carl N., Jr.. "A Planning Model Analysis of Long Range Distribution System Design Alternatives," Paper No. C 73 468-6, Presenced at the IEEE PES Sumer Yeetin3. Vancouver, Conn., July 15-20, 1973.
76. Stuart, T.A., "EIectrical Distribution Planning Program VREG," Rochester Gas and Elecrric Corporation Report, July, 1973.
77. Stuart, T.A. and J. X. Cooper, "An Interactive Approach to Distribution Planning Using Computer Graphics," Paper No. C 75 095-5, Presented at IEEE PES Winter Meering, New York, NY, Jan. 2631, 1975.
78. Venikov, Va., Rv. Sinell, 'Yodeling and Automation in the Designing of the Electrical Power. Equipment," Elektrichestvo, No. 3, dug., 1970, 2p.1-6.
79. Wall, D.L., G.L. Thompson, and J.E.D. NorthcoreGreen, "An Optimization Model for Planning Radial Distribution Networks," Paper No. E 78 553-8 presented at the IfEE PES Sumner Yeering, Los ingeles, CA, July 16-21, 1978.
80. Weber, K., "Operations Research Models for Electric Distribution Systems," Bull assoc Suisse Electr, Vol. 65, No. 9, May 4, 1974, pp. 659-564.
81. Webler, R.M., et al., "Secondary System Distribution Planning for Load Growth," AIEE Transactions Part IV (Power Apparatus Systems), December, 1963, Pp. 908-927.
82. Woodley, N.H. and R.U. Benson, "Distribution System Planning Program, DSP," Westinghouse Electric Corporarion Repore No. Є8-681, July L, 1968.

3. TECHNIQUES

1. Adams, R.N. and M.A. Laughton, "Optimal Planning of Power Networks Using Mixed-Integer Programming," Proc. IEE, Vol. 121, No. 2, Feb., 1974, pp. 139148.
2. Ambrosius, C.C. and R.H. Sarikas, "Planning Rural Systems for Continuing Growth," AIEE Transactions, Part III (Power Apparatus and Syscems), Oct., 1960, pp. 623-628.
3. Baldwin, C.J., "Techniques for the Simulation of Subtransmission and Distribution System Expansion," Proc. Power Industry Computer Applications Conference, May, 1969.
4. Boardman, J.T. and B.W. Hogg, "Computer Method for Design of Electricity-Supply Necworks," Proc. IEE, Vo1. 119, No. 7, pp. 51-856, 19 i2.
5. Boardman, J.T. and R.J. Wilde, "Inceractive Design of Electricity-Distribution Networks," proc. IEE, Vol. 120, 1973, pp. 1006-1011.
6. Burstall, R.M., "Computer Design of Electricit: Supply Networks Using a Heuristic Mechod," Comput. J., Vol. 9, 1966, pp. 263-274.
7. Carson, M.J. and G. Cornifeld, "Design of Low-Yoltage Distribution Networks," Proc. IEE, Vol. 120, May, 1973, pp. 585-592.
8. Chen, M.S., W.D. Dickson, H.C. Cheng, "Simulation Technique for Rural Electric Power System." IEEE Irans. on Industrial Aoolications, Fol. 212-9. 1973. pp. 98-105.
9. Connor, R.A.W. et al. "Operational Statistics in the Management of Large Distribution Syscems," Proc. IEE, Vol. 113, No. 11, Nov., 1966, pp. 18231834 .
10. Copland, F.G., "The Economics of Low-Voltage Electricity Supplies for New Housing Estates," Proc. IEE, Vol. 99, Paper No. 12365, pp. 95-101. January, 1952.
11. Couch, G.H. and I.F. Morrison, "Substation Switch-ing--An Approach to the Determination of Optimal Sequences," in Proc. 4th PSCC, Grenoble, Erance, 1972, Paper 2.1/1.
12. Davies, M., "Design of L.V. Distributors Erom Standard Cable Sizes," Proc. IEE, Vol. 112, No. 5, pp. 949-956. 1965.
13. Economakos, E., "Distribution System Voltage Studies Using Simulation Techniques," Proc. IEE, Vol. 125, No. 2, Feb., 1978. pp. 151-152.
14. Ender, R.C., G.G. Auer, and R.A. Wylie, "Digital Calculation of Sequence Impedance and Fault Currents for Radial Primary Distribution Circuits,"

AIEE Transaczions Part III (Power ADoparacus and Systems), \%oi. 79, Feb., 1961, ?p. 1254-1277.
15. Erlandson, N.H., "Selection Design and Operation of 13.21/231 as a Distribution Voltage," AIEE Iransactions Part IIE (Power Apparacus and Sysrems), Voi. 77, OcE., 1958, pp. 775-731.
16. Fitzgerald, J.?., et al., "Evaluation of Substation Loading Using Simula=ion Teciniques," IEEE Trans. on ?AS, April, 1964.
17. Gonen, T., E.E. Eagan, J.C. Thompon, anc C.M. Council, "Toward Aucomated Distribution Systems Planning," IEEs Control of Power Systems Conference, Iexas A\&M University, College Station, Iexas, March 19-21, 1979.
18. Gordon, H., "Maximum Utilization of Distribution Substation Capacity," ${ }^{\text {Presented at the Missouri }}$ Valley Electric Association 48 th Annual Engineering Conference, dpril 13-15, 1977.
19. Grimsdale, R.L. and P.H. Sinclare, "Design of Housing Estate Distribution Systems Using a Digital Computer," Proc. Inst. Elec. Eng., Pt. A, Vol. 35, 1960.
20. Bill, O.L. and H.A. Nittenoerg, "Discribution Eeeder Planning Technique," Eransmission and Distribution, Vol. 26, Cct., 1974, pp: 66-69.
21. Hindi, K.S., and A. Brameller, "Oprimal Cable Profile of L.V. Radial Distributors: Two Mathematical Programaing Yethods," Proc. IEE, Vol. 123, No. 4, i976, PP. 331-334.
22. Hindi, K.S. and A. 3rameller, "Design of Low-Volrage Distribution Networks: A Yathematical Programming Yethod," ? Yoc. IEE, Vol. 124, Vo. 5; Jan., 1977, pp. 54-58.
23. Hopkins, D.C. and D.R. Samson, "üseful Methods for Determining ?:inary Eeeds Points in Euture Distrioution System Plamning," AIEE Eransactions, Part IU, (Power Apporatus and Svs=ems), August, 1954, pp. 856-863.
24. Juricek, Michael J., "dppiication of the Digital Computer to Substation Planning," M.S.. Thesis, The University or Texas at Arlington, Aug., 19.74.
25. Klein, K.W., "Computer Gives Economic Loading Eor Iransformer and Secondary," Electrical Norld, New York, NY, Nov. 30, 1959, pp. 83-85.
26. Knight, $\because . G . W ., ~ " T h e$ Logical Design of Electrical Networics Using Linear Programming Methods," Proc. IEE, VOI. 107A, 1960, pp. 306-316.
27. Knight, U.G.N., "Economic Design and Operation of Power Suscems," Electrical Revue, 1963, pp. 124130.
28. Knigint, U.G.W., "Economic Design and Operation of ?ower Systems," Electrical Revue, 1963, pp. 163166.
29. Kujszczyk, S., "Automatic Design of Housing-Estate Distribution Networks," ? =oc. IEE, Vol. 121. 1974. ? $0.488-490$.
30. Ladd, R.J., "How to Determine Distribution Iransformer Ütilization," Iransmission and Distribution; Cos Cob, Conn., Jan., 1960:
31. Light, Joinn, "An Economic Aporoach to Distribu-
tion Conductor size Selection," ?resented at the Missouri Vailey Electric Association 49 th Annual Engineering Conierence, Apriz 12-14, 1978.
32. Lensciaie, J.G. and G.B. Hitcinen, "Reliability Evaluation in the Planning of Distribution Systems," IEE Conference on Reliability of Power Supply System, London, England, Eebruary 21-23, 1977.
33. Ludot, J.P. and M.C. Rubinstein, "Methods pour la Pionificarion a Court Ierme des Reseaux de Distribution," in ? =oc. 4th PSCC, Grenoole, Erance, 1972, Paper 1.1/12.
34. Lutz Bocnanky, Dresden, "Optimum Elecrric Power Distribution System for New Residential dreas," ERDA-TR-228.
35. McNab, N.A. and A.J. Bode, "Lower Cost Urban Electricity-Distribution Systems by Automatic Control Application to 11 kV and 33 kV Svstems," IEE Proc. Vol. 120, 1973, pp. 445-446.
36. Morrison, C. "A Linear Approach to the Problem of Planning New Feed Points Into a Distribution System," AIEE Transactions ?art III (Power Apparatus and Systems), 1963, pp. 819-832.
37. Mysiin, D.A., "Certain Questions of Automating che Design of Regional Suobstations," Isvestiva Ikademii Nauk SSR. No. 5, ERDA-זR-233, 1973 .
38. Orth, E.J., Jr. and J.L. Redmond, "A Digital Tool for Planning Radial Distribution Sustems," Proceedings Power Industry Computer Applications Conference, April: 1963.

30: Paradis, C. and D. Mukhedkas, "Computer Aided Distribution Design," The Institution of Engineers, Australia, 1974.
40. Rhoten, G.P., "A General Program for Processing Distrioution Design," Electrical Norld, Yol. 156. Dec. 16, 1961, pp. 45-48.
41. Rural Electrification Administriation, "System Planning Guide for Electric Distrioution Systems," 3ullecin 60-8, June, 1957.
42. Sander, B.M., "Forecasting Residential Energy Demand: A Key to Distribution Planning," Paper No. A 77 642-2, Presented ar the IEEE PES Summer Meecing, Mexico City, Mexico. July 17-22, 197%.
43. Sarikas, R.H. and H.3. Thacker. "Distribution System Load Characteristics and Their use in Planning and Design," AIEE Iransactions. Part III (Power Apparatus and systems). Vol. 76, Aug., 1957, pp. 364-574.
44. Segner, Konstantin, D. Graf, and K.F. Perer, "Planning Techniques for Distribution Networks with the Optimization of Plant Parameters," Energietechnik: Vol. 25, No. 10, Oct., 1975, pp. 459-462.
45. Snelson, J.K. and M.J. Carson, "Logical Design of Branched L.V. Distribucors," ?roc. IEE, Vol. 177, 1970, pp. 415-420.
46. Strausser, E.A., "Digical Computer dpolied to Electrical Distribution System Planning," AIEE Transactions Part III (Power Apparacus and Systems), Vol. 77, 1959, pp. 1244-1252.
47. Stuart, T.A., "Electrical Distribution Planning

Program VREG," Rochescer Gas and Electric Corporation, on Report, july, 1975.
48. Stuart, T.A. and J.M. Cooper, "An Interactive Approach to Distribution Planning Using Compucer Grapinics," Paper No. C $75095-5$, Presented ac IEEE PES Nincer Meering, New York, NY, Jan. 26-31, 1975
49. Noodiey, N.H. and R.U. Benson, "Distribution System Planning Program, DSP," Nestinghouse Electric Corporation Report No. 68-681, Jily $1,1968$.

INDEX OF (FIRST-NANED) AUTHORS

Elektriches:vo

slectroteciniek
Electricity Council
Eiectrical Review
Electric Technology
Electric Times
Electric World
Hidroelectrica Espanola
Institute of Electrical Engineers
IEEE Transactions on Das
Institute of Engineers
Isvestiya Akademil Nauk
Ontario Hydro Research Quarterly
Osterreichische Zeitschrift fur
Elektrizitatswirtschaft
Proceedings of the American Power Conierence
Proceedings of the IEE
Revue Generale de L'Electricite
Transuission and Distribution
:Nescinghouse Engineer

Moscow, USSR
Netherlands London, England London, England

Moscow, USSR London, England New York, N.Y. Madrid, Spain London, England New York, N.Y.
New Delphi, India Moscow, USSR Toronto, Canada

3onn, West Germany
Chicago, IL
London, England Paris, France Cos Cob, Conn. Pittsburgh, PA

APPEVDIX 3. A SAMPIE COPV OF THE OLESTIOMNAIRE
 DEVELOPMENT OF ADVANCED YETHODS FOR PLANNING ELECTRIC ENERGY DISTRIBUTION SYSTEMS

1. Do you plan ior long range? Yes \qquad No \qquad
Is long range planning defined in terns of load levels? Yes \qquad No

If yes, what \% ajove present levels? \qquad
What other factors detemine if the plan is long range? \qquad
\qquad
\qquad
2. Do you plan for short range? Yes \qquad No

What time span would be considered short range?

What other factors besides years, determine if a plan is snort range? \qquad
\qquad
3. That iactors do you consider in determining boundaries for distribution service areas?
\qquad
\qquad
4. What factors are considered in load level projects?
\qquad
\qquad
How are the various Eactors considered in load projections cuantitatively? \qquad
\qquad
\qquad
\qquad
j. Ninat size of areas is used for load projections:

En urban areas? \qquad
In rural areas? \qquad
6. How are furure suostation sites picked? \qquad
\qquad
\qquad
7. How many years before a subscarion is constructed is the site purchased?

Average Eine \qquad Snortest time \qquad
8. If a substation exists, what are the major factors considered to determine ultimate expansion capability?
A.
B.
C.
D.
E.
E.
G.
9. What transmission voltages ara the substation planned for? \qquad
10. What distribution voltages are considered in economic expansion studies? \qquad
11. When comparative plans are made Eor serving developing areas, what are the major alternatives considered?
A.
B.
C.
D.
E.
F.
G.
12. How are results of Question 11 presented for:
A. Engineering Review \qquad
3. Operating Review \qquad
C. Implementing Plan \qquad
\qquad
\qquad
13. How do the developing load pateerns in an area feed back to the planner to cause cinanges in plans considered in Question 11 ? \qquad
\qquad

RESEARCH ADVANCES IN SOLUTION : $\operatorname{ZETHODOLOGY}$ FOR DETERMINING MINIMM COST EXPANSION OF SUBSTATION CAPACITY FOR POWER dISTRIBUTION SYSTEMS

The problem of least cost expansion of substation capacity Eor power distribution systems requires the determination of three critical factors:
(1) The identification of the particular substations that should be given additional capacity.
(2) The determination of how much additional capacity each substation should receive.
(3) The specification of when the additional capacity should become available.

These determinations must be based on constraints of cost, load, voltage, and reserve requirements. They also depend importantly on the decision concerning the distribution of loads among substations.

The complexity and interacting effects of these considerations have been captured in a marhematical nodel by Yasud (13), winch characterizes the problem as 0-1 'Multiple Choice" mathematical optimization problem with generalized upper bounding (GUB) constraints. In order to realize the porential benefits from this model, it is necessary to identify a way to solve it effectively, thereoy determining the implications of its irrelated underlying factors for realworld decisions. Specifically, as noted in our proposal*, an efzicient tailored, computer solution routine is required that operates on the model structure in a manner to determine the optimal (least cost) plan for expanding substation capacity to meet electrical power and energy needs.

This report presents the innovations that have been made in solucion tecinology under this proposal as a foundation for the full scale eifort of developing a complerely integrated, operational, computer solution routine. These innovations succeed in advancing the state-of-the-art in nathematical prosramming soiution teciniques. In particular, we repore a new compurer solusion methodology for the linear programing (I?)/generalized upper bound (GUB) knapsack problem.

The LP/GUB knapsack problem is a major subproblem of che least cost substation capacity expansion model, upon whicin the solution of the total problem crucially depends. More precisely, the LP/GUB knapsack problem is the mathematical relaxation of che substation capacity expansion problem generated by means of a surrogate constraint solution strategy. The requirement of repeated solution of this subproblem (many hundreds or even thousands of times) in the surrogate strategy dictates chat it be solved in the most efficient possible manner.

Our research provides a solution procedure for the LP/GUB knapsack problem that is notably superior co any previously known. This claim is established by the derivation of compurarional bounds (Theorem 3 and Corollaries 4 and 5, Eollowing), that dominate the best bounds in the literature. The possibility of obtaining an improved method, foresinadowed by a result reported

[^19]in the initfal proposal, becomes manifest in this new development. In fact, for the case in which each GuB set is the same, the order of complexity bound for our procedure has the same form as that for the ordinary knapsack problem. This surprising result means that the LP/GUB knapsack problem is susceptible to solution with unprecedented efficiency.

The main body of the report derails the background and significance of the LP/GUB knapsack problem. The mathematical characterizations of this problem and our results for solving the problem by a new specialization of the dual simplex algorithm are then elaborared. We develop the order of complexity bounds for two variants of our method and show that both of these variants dominate previous approaches over pracrical ranges of the parameters.

The compelling application of these new results to the substation capacity expansion problem, as previousiy noted, arises by making chem she driving mechanism benind the implementarion of surrogate constraint relaxation strategies. More specifically, since the generation and solution of surrogate constraine relaxations is identified in our proposal as a major component of a specialized solution algorithm for the substation capacity expansion proolem, the ability to solve LP/GüB knapsacks efficiently vill materially improve the ability to solve the substacion capacity expansion proolem effectively. In addition, these innovations will lead to improved applications of branch and bound exclusion rests.

Certainly, the complete effectiveness of these results must depend on the process of generating the surrogate constraints themselves, and on the manner in which the LP/GUB knapsack solutions are integrated with the other main components of the total solution procedure. This involves the development of specialized branch and bound iathoming techniques and associated list processing and labeling algorithms. In general, the algorithmic and programming procedures described in our proposai emerge as the essential efforts to take maximum advantage of the new LP/GUB knapsack solution methodology developed nere. By means of these specialized algorithmic and software development efforts, the envisioned possibility of a solution method 3 to 7 times more efficient than the best available commercial integer programing softorare stands to be realized or even surpassed, therejy vielding important cost savings in the compurer solution of the suostation capacity expansion proolen. These savings will be Eurther magnified by the ability to obtain comparable gains in efficiency in poseoptimality analyses designed to ask "what if" questions about changes in options and cost structures relating to substation capacity expansion. In chis iasiton, the present results provide a ̇oundation for an integrated solution routine of particular importance to the broader goals of planning to meet furure energy needs in cie generation and distribution of electifici power.

1. HISTORICAL BACKGROUND

A good deal of attention has been given to standard LP knapsacks for their role as relaxations in branch and bound mechods for solving inceger knapsack problems $[2,5,9]$. Such problems have been scudied as an end in themselves, and also as surrogate constraint relaxations for more general $0-1$ integer programing
(IP) problems.
Many 0-1 i? prooiems, however, are of the "multiole choice" variecy, atranded jy the requirement that the variables of partitioned subsets sum to one. Specialized I? methods for problems involving such generalized upper bound (GUB) constraincs have been proposed in sertings or varied generalify (e.3., $\{3,4$, 5]), and recently some attention has been given co integer knapsacks with GLB constraints [14, 15]. Io solve chese and more general problems using IP and surrogate relaxations, it is important so be able so solve LP/GUB knapsacks efficiently. It is also valuable to be aole to solve LP/GUB knapsack problems to accelerate the solution of ordinary L?/GUB problems by the dual simplex method, as pointed out ty Witzgall [16]. Consequently, the goal of this paper is to develop an algorichm for the LP/GUB knapsack proolem that is both easily implemented and highly efficient.

Two earlier papers dealing with this proolem (in slightly less general forn than created here) are worchy of special note. The paper by Sinha and Zoltners [15] is the first to idencify the chazacterisEics of the undominaced solution space for the case in which the knapsack is an fnequality constraint. These authors then develop a method that is reported to speed the branch and bound solution of the integer GUB knapsack problem. The second paper, due to Nitzgall [16], examines the case where the knapsack is an equality constraint spanned by the GUB sets. Witzgall's work is especially notable for its geometric characterizarions and the specification of "worst case" computational bounds for his algorichm. In particular, the algorithm of [i6] is shown to be of complexity $0(n \log n) \div$ $O(\pi(n-\pi))$, where n is the number of variables ard $\%$ is the number of GUB sets. This is the first result that bounds the complexity of the LP/GUB knapsack problem in chis manner.

In this paper we use an alternative framework that focuses directly on properties of the dual simplex method applied to the LP/GUB knapsack problem. After specifying aecessary and sufficient conditions for dual reasibie bases, we identify relationṣips that hold automatically in the application of the dual simpiex method. These relationsioips are then utilized to jevelop a specialized version of this method which is shown to be of complexity at most $0(n(\log n+\log m))$. or in the case where each GUB set contains the same number of alements, $0(n \log n$). These bounds are interesting noe only because they reduce the previous estimate of the order complexity of the LP/GUB knapsack ?roblem, but also because tiney reduce to the same form as one of the standard aigorithmic bounds for the ordinary t? knapsack problem without GUB constraints, thereby estabifshing a connection between these more and less general problems.

2. PROBLEM NOTATION

The LP/GUB knapsack problem may be written

$$
\begin{aligned}
\text { Minimize } & \sum_{j \in:}^{j} c_{j} x_{j} \\
\text { subject to } & \sum_{j \frac{j}{\varepsilon}, ~} a_{j} x_{j}=a_{0} \\
& \sum_{j}^{\frac{\varepsilon}{\varepsilon} J_{k}} x_{j}=1 ; k \leqq M=\{1, \ldots, m\} \\
& x_{j} \geq 0 ; j \quad N=1, \ldots, n
\end{aligned}
$$

where $J_{p} ? J_{q}=D$ for $p \neq q$ and $J=\underset{k \leq M}{\vdots} j_{k}=N$.
There are no restrictions on any of the problem coefficients (a_{0}, a_{j}, c_{i}), except that we exclude the rrivial situarion in which $a_{j}=0$ for $j \equiv N-J$.

Two subcases of interest included by our resules are for $N=J$ (as in Witzgall [16]) and for $: N-J=$ (n ?, where x is a slack or surplus variable (as in Sinha and Zol̇ㅡㄹ [15]). We will comment on the specializations of our results to these subcases at appropriate points.

To begin, we make a simple and well known observation concerning the structure oi basic solutions for this problem.

Remark 1. In every basic solution to the equations (2) and (3), $m-1$ of the sets $J_{k}, k \equiv M$ will have exactly one basic variable. The remaining J, set will have one basic variable if there is a basic variable in $\mathrm{N}-\mathrm{j}$, and otherwise wiil have two basic variables. (By convention we refer to a variable as "in" a set if its subscript is in the set.)

To facilitate che subsequent development, we will introduce notational conventions that will be useful for depicting the form of a cypical basic solution within the Eramerork of the dual simplex metiod. Ihroughout this paper we will let J denote the exceptional set that has two basic variables, when this situation applies, and in general, lec $x_{<}$, denote the basic variable (or one of the basic variábies) in set $I_{k}, k \quad M$. We will suppose chac $k *$ is unique for each set J_{k}, and call x_{k} the starred basic variable for j_{k}. In the case of J_{q}, we will denote the o dasic variable other than $x_{q}{ }^{*}$ by x_{q}, As will be seen, this convention will allow us to associate different formulas with $x_{q^{*}}$ and $x_{q^{\prime}}$, though of course these formulas yield equivalent expressions when $q *$ and q^{\prime} are interchanged. AddiEionally when there exists a basic variable in $N-J$ it is denoted iy x_{p}. Finally, we introduce the objective function variáole $x_{0}=-\sum_{j} \sum_{\varepsilon N} c_{j} x_{j}$ whose maximi-
zation achieves the minimization of (1), and let NB denote the index set of current nonbasic variabies. (4)

Basic solution forms

Case 1. x_{p} is basic in $N-J$.

$$
\begin{align*}
& x_{0}+\sum_{j \in N B} u_{j} x_{j}=u_{0} \\
& x_{p}+\sum_{j \in N B} v_{j} x_{j}=v_{0} \\
& x_{k *}+\sum_{j \in N B \cap J_{k}} x_{j}=1 \quad k \in M \tag{7}
\end{align*}
$$

$$
\text { (Nore, NBกJ } \left.{ }_{k}=J_{k}-(k \star\}_{.}\right)
$$

Case 2. No variables are basic in $V-J ; x_{q}$, and x_{q} are basic in J_{q}.

$$
\begin{align*}
& x_{0}+\sum_{j \varepsilon N B} u_{j} x_{j}=u_{o} \tag{8}\\
& x_{q^{\prime}}+\sum_{j \varepsilon N B} v_{j} x_{j}=v_{0} \tag{9}
\end{align*}
$$

$$
\begin{align*}
& x_{q^{*}}+\sum_{j \in N B \cap J_{q}}\left(1-v_{j}\right) x_{i} \\
& \quad+\sum_{j \in N B-J_{q}}\left(-v_{j}\right) x_{j}=1-v_{o} \tag{10}\\
& x_{k^{*}}+\sum_{j \in N B C J_{k}} x_{j}=1 \quad k \in N-(q) \tag{11}
\end{align*}
$$

For our subsequent development, we need to identify the precise connections between the coefficients of the basis representations in Case 1 and Case 2 and the coefficients of the original problem representation (1)-(4).

To reduce all formulas to the same notation for borh Case 1 and Case 2 when $N \neq J$, we define $J_{m+1}=$ ($\mathrm{N}-\mathrm{J}$) $\cup\{\mathrm{n}+1\}$, where $\mathrm{x}_{\mathrm{n}+1}$ is a "ficticious" variable, unrestricted in sign, with $a_{n+1}=c_{n+1}=0$. We further specify that x_{n+1} is always the starred basic variable for the set J^{n+1}, i.e., $n+1=(m+1)$. Although we are completely unconcerned about the value of x_{n+1}, we may view x_{n+1} as difinicionally equal to $1-\sum_{j \in N-J}^{n+1} x_{j}$ and indeed x_{n+1} will receive this value by che prescriptions we will specify. Upon defining $M_{o}=M(m+1\}$ when $N \neq J$ and $M_{0}=M$ otherwise, the GUB equations of (3) therefore hold with M replaced by M. (That is, the existence of x_{n+1} would make case 1° equivalent to Case 2 except for the fact that $\mathrm{X}_{\mathrm{n}+1}$ is unrestricted.) In particular, then, the preceding equations for the Case 2 basic solution nay be regarded as also applicable to Case 1 , for $q=m \div 1, q^{\prime}=p$ and $q^{\star}=n+1$, enabing subsequent formulas to be simplified. However, we will on occasion find it useful to discuss Case 1 and Case 2 on separate terms (when the unrestricted value of $\mathrm{x}_{\mathrm{n}+1}$ has special implicacions).

By these conventions, the connections between current basis coefficieats and the original problem coeificients are expressed in the following remark.
Remark 2. Let $\dot{L}=a_{o}-\sum_{k \varepsilon!!_{0}} a_{k *}, j=a_{q^{\prime}}-a_{q^{*}}$

$$
\text { and } d_{j}=c_{j}-v_{j}\left(c_{q},-c_{q *}\right)
$$

then the coefficients of (8) - (11) (with M replaced by M_{0}) may be expressed in cerms of those of (1)-(4) by:

$$
\begin{aligned}
& v_{0}=x / 5 \\
& v_{j}=\left(a_{j}-a_{k *}\right) / \delta \text { for } j \equiv J_{k}, k \equiv M_{o} \\
& u_{j}=d_{j}-c_{k^{*}} \text { for } j \in J_{k}, k \in M_{0}
\end{aligned}
$$

The derivation of the remark is immediate by the application or Gaussian elimination. It may be noted, incidencally, that the arbitrary designation of x, and $x_{q *}$ implies that the coefficients of equation (10$)^{\prime}$ ' an aiternately be obtained from the expression for the v coefficients in Remark 2 by interchanging q^{\prime} and $q *$ in this expression.

3. PROPERTIES OF BASIC DUAL TEASIBLE SOLUTIONS

The soal of this section is to identify special properties of basic dual feasible solutions to (1)-(4), as a foundation for initialing a dual method. The following theorem (which sifghtly generalizes results of $(15,161)$ accomplishes this by providing necessary and sufficient conditions for a basis to be dual feas-ible--i.e., to yield $u_{j} \geq 0, j \in \sqrt{B}$, in the expression

Eor x_{0} in (5) and (8). For this result we keep Case 1 and Case 2 separate.

Theorem 1. A basic solution is dual feasible for (1)(4) if and only if:
k^{*} is selected so that $d_{i^{*}}=\underset{j \in J_{k}}{M E \operatorname{mimum}}\left\{d_{j}\right\}$
$k \equiv M-\{w\}$,
(where d_{4} is as defined in Remark 2 and in Case $2,\{w\}=\{q\}$ and $\{w\}=\emptyset$, otherwise).

$$
\text { Case 1. } c_{h} / a_{n} \leq c_{i} / a_{i} \quad h \equiv H, \pm \varepsilon I
$$

where $H=\left\{h \in N-J: a_{h}<0!, I=\left\{i \in N-J: a_{i}>0\right\}\right.$ and p is selected to be an $h \in H$ that yields the maximum c_{h} / a_{n} or to be an $1 E I$ that yields the minimum c_{i} / a_{i}.

Case 2. q^{\prime} is selected so that $c_{q}, \leq c_{j}$ for all $j \leq J_{q}$ such that $a_{j}=a_{q}$, and
$\left.\begin{array}{l}\left(c_{q},-c_{r}\right) /\left(a_{q},-a_{r}\right), r \varepsilon R \\ c_{h} / a_{h} ; \\ \in H\end{array}\right\} \leq \begin{cases}\left(c_{q},-c_{s}\right) /\left(a_{q},-a_{s}\right), & s \varepsilon S \\ c_{i} / a_{i}, & 1 \varepsilon I\end{cases}$
where $R=\left\{r \subseteq J_{q}: a_{r}<a_{q},\right\}, S=\left\{s \in J_{q}: a_{s}>a_{q},\right\}$.
Then q^{*} is selected to be an $r \Xi R$ that yields the maximum value of all terms on the right of the inequality, provided this is possible in consideration of che Eeras c_{h} / s_{h} and c_{i} / a_{i}. (Othernise, the choice of q^{\prime} does not allow dual feasibility. Also, whenever H or I is empry, the inequalities involving the corresponding $h \equiv H$ or $i \subseteq I$ are not applicable.)

Proof. The stipulations about k^{*} and Case 1 are immediate from Remark 2, noting that $c_{g^{*}}=a_{g^{*}}=0$ for Case 1. The stipulations about casè 2 are derived as follows. When $x_{q^{\prime}}$, and $x_{\sigma^{*}}$ are both basic, then there are dual multipliers 0 for equation (2) and π for the J_{q} equation of (3) such that $u_{j}=c_{j}-\left(\theta_{i}+\pi\right)$ for $j^{q} \varepsilon j_{q}$. These multipliers must be selected to yield
 and hence $u_{j}=c_{j}-c_{q^{\prime}}^{\prime}+O\left(a_{q^{\prime}}^{\prime}-a_{j}\right)$. The dual Eeasibility requirement $u_{j} \geqslant 0$ yields

$$
\Theta\left(a_{q},-a_{j}\right) \geq c_{q},-c_{j}
$$

Thus, if $a_{j}=a_{q^{\prime}}$, then $c_{q} q^{\prime} \leq c_{j}$, as first stipulated under Case 2 . The alternatives $a_{j}<a_{q}$, and $a_{j}>a_{q}$, ,
identified by $j \equiv R$ and $j \in S$, respectively, yileld $\left(c_{q}-c_{r}\right) /\left(a_{q},-a_{r}\right) \leq \theta \leq\left(c_{q},-c_{s}\right) /\left(a_{q},-a_{s}\right) r \varepsilon R, s \in S$ Dual feasibility requirements $u_{j}=c_{j}-\theta_{j} \geq 0$ Eor j \mathcal{E} N - J further yield

$$
c_{h} / a_{h} \leq \theta \leq c_{i} / a_{i} \quad h \subseteq H, i \varepsilon I
$$

leading to the full set of inequalities stipulated for Case 2. Finally, the condition $u_{q *}=0$ requires that $u_{q *}=0$ requizes that q^{*} be selected so that $\Theta^{*}=\left(c_{q},-c_{q \star}\right) /\left(a_{q},-a_{q \star}\right)$. This completes the proof.

Theorem 1 discloses what may also be argued by simple dominance considerations-first, that we may throw out all elements of a set J_{k} with tied a_{j} values except for one with the smallest c_{j} value, and second,
that all elements oi H and I may be discarded except chose yielding the maximum c_{i} / a_{i} and the minimum c_{i} / a_{i}. Thus $\mathrm{N}-\mathrm{J}$ can be restricted to at most two eiements. If both these elements exist, and $c_{i} / a_{n}>c_{i} / a_{i}$, then the problem has an unbounded optimum. Otinerwise, Case 1 of Theorem 1 provides an immediate starting duel Eeasible basic solution whenever $N-J$ is nonempty, by selecting either x_{n} or x_{i} as a basic variable (according to which of these variables exist). This observation also apolies when $N=J$, because it is possible to add an artificial variable k (for n increased jy 1), yielding $N-J=\{n\}$, with $\mathfrak{a}=1$ and c large. (This variable is not to be confüsed with the 'sictitious" x_{n+1}.)

However, Theorem 1 also makes ic possible to obtain starting dual ミeasibie solutions without resorting to the elementary Case 1 situation. The following corollary indicates an easy way to do this when $N=J$ and $N-J=\{n\}$. We assume for this setting that $a_{n}=1$ for $\mathrm{N}-\mathrm{j}=\{\mathrm{n}\}$. In addition, we will suppose $\mathrm{c}=0$ for $N-J=\{n j$, using Gaussian elimination on the objective function to achieve this if necessary.

Corollary 1. When $N=J$ or $N-J=\{n\}$, a Case 2 starting basic dual feasible solution can be ootained by designating any J_{k} to be J_{q}, selecting q ' so that

$$
a_{q^{\prime}}=\underset{j \in J_{q}}{\operatorname{Minimum}}\left\{a_{j}\right\}, \quad c_{q},=\underset{j \in J_{q}: a_{j}=a_{q}}{\operatorname{Minimum}}\left\{c_{j}\right\}
$$

and selecting $q^{*} \subseteq S$ so that

If $S=0$, then $x_{q^{\prime}}=1$ (and the proolem shrinks). If $S \neq y$, but $N-J=q\{n\}$ (with $a_{n}=1$ and $c \quad=0$), then $c_{q^{*}}<\varepsilon_{q}$, or else, again $x_{q^{\prime}}{ }^{n}=1$. (For ${ }^{n}$ chis case $c_{j} \geq c_{q}$ for $j \equiv J_{q}$ allows $x_{j}=0$.)

When $N=J$ in Corollary 1 , replacing (2) by its negative leads co an aiternative application of the corollary, equivalent to picking a_{g}, to be a maximum and selecting $q^{*} \equiv R$ to yield a maximum ratio.

We now turn to the main results of this paper, characterizing the relationships of the dual sinolex method applied to (1) - (4), and developing an efficient specialization for this problem. As a bu-procuct we will also identify ways $t 0$ generate ocher starting basic solutions that accord with the conditions of Theorem 1.

4. SPECLAIIZATION OF THE DUAL SIMPLEX :IETHOD

For convenience in the Eollowing development, we outline the steps of the dual simplex method as follows.

Step 0. Begin with a dual Eeasible basis.
Step 1. Seiect any equation, other than the x_{0} equation, with a negative constant term. (If none exists, the current basic solution is optimal.) Represent this equation in the form of (9) (thereby identifying the outgoing variable as X_{q}, :

$$
\mathrm{x}_{q^{\prime}}+\sum_{j \sum_{N B}} v_{j} x_{j}=v_{0} \quad\left(v_{0}<0\right)
$$

Step 2. Let $N B^{-}=\left\{j \Xi N B: v_{i}<0\right\}$. If $N B^{-}$is empty, the problem has no feasible sólution. Otherwise, select the iacoming variable x_{i}, $i=N B$ to yield

$$
u_{i} / v_{i}=\underset{j \equiv N B}{\operatorname{Maximum}}\left\{u_{j} / v_{j}\right\}
$$

where the u_{4} coefficients are those of the current x_{0} equation (8).

Step 3. Execute a basis exchange (pivor) step that replaces x_{q}, by x_{i} in the basis. The updated form of the pivot equation (9), which becomes the new x_{i} equation, is

$$
x_{i}+\sum_{j \varepsilon N B *}\left(v_{j} / v_{i}\right) x_{j}=v_{o} / v_{i}
$$

where NB* is the new set of nonbasic variables (replacing i by q^{\prime}) and $v^{\prime}=1$ (as implicit in (9)). The updated form of alf remaining equarions is obtained by Gaussian elimination (or equivalently, direct substitution) using the x_{i} equation to remove x_{i} from the other equations. Then return to Step 1.

The foregoing description of the dual method is entirely general and not speciric to the LP/GUB hnapsack problem except for the notation linking the current pivot equation to (9) and the x_{0} equation to (8). By means of this notational link, however, we may now make additional ooservations conceming the solution path of the dual simplex method for this problem.

Note first of all that the convention of representing the pivot equation in the form of (9) is entirely permissible in the restricted setting of che LP/GUB knapsack problem since we may always interchange the roles of x_{q}, and $x_{q *} \cdot$ as necessary to allow this representation. Cleariy, too, at most one of the two equations (9) and (10) can have a negative constant term and thereoy qualify as the pivor equation. Thus, representing the pivot equation in the form of (9) serves to uniquely identify the indexes q^{\prime} and ξ^{*}. In fact, using the connections of Remark ?, we may immediarely express the conditions for identifying v; 0 and the maximum ratio of Step 2 of the dual mechod in terms of the originai problem coefficients.

Remark 3. If $a_{q^{\prime}}>a_{q^{*}}$, then

$$
\begin{equation*}
v_{j}<0 \text { if and only if } a_{j}<a_{k *} \tag{12}
\end{equation*}
$$

and if in addition $v_{j} \neq 0, v_{h} \neq 0$ for $j \equiv J_{r}, h \equiv J_{u}$ (possibly $r=u$), then

$$
\begin{equation*}
u_{j} / v_{j} \leq u_{h} / v_{h} \text { if and only if } \hat{U}_{j r^{*}} \leq \hat{H}_{h *} \tag{13}
\end{equation*}
$$

where $\theta_{f g}=\left(c_{f}-c_{g}\right) /\left(a_{f}-a_{g}\right)$. If $a_{q^{\prime}}<a_{g^{*}}$, then the direction of the second inequality ${ }^{q}$ in (i2) and in (13) is reversed.

Although this remark follows directly by suostituting the coefficient identities of Remark 2 inco Remark 3, its implications are quite useful. This is due to the somewhat surprising fact that the application of the dual simplex method assures that if $a_{q^{\prime}}{ }^{>} a_{q^{*}}$ holds at one iteration, then $a_{q},>a_{q^{*}}$ (for other ${ }^{q_{i n}} q^{q^{*}}$ dexes q^{\prime} and q^{*}) at all iterations. This relationship and others associated with it are expressed in the following main result of chis section.

Theorem 2. Let J denote the set containing the incoming variable x_{i}^{e} deremined in Step 2 of the dual simplex method. ${ }^{1}$ If $t=m+1$ (i.e., if $i \in N-j$), then the pivot must yield an optimal solution. If $t \leq \pi$, and if the pivot does not yield an optimal solution, then upon representing the next pivot equation also as
(9), all of the Eoliowing hold
(a) J_{5} becomes the new $j_{\text {. }}$
(b) $x_{C^{*}}$ becomes the new outgoing variabie x_{q}
(c) x_{i} jecomes the new x_{q} *
(d) the ratio values $\bigodot_{j k *}, j \leq J_{k}$, remain unchanged for all $k \equiv M_{0} \rightarrow\{t\}$
(e) $a_{q},>a_{q *}$ before the pivot if and only if $a_{q}{ }^{\prime}>a_{q *}$ (for the new q^{\prime} and $q *$) after the pivot.
(5) Over a series of piyots, as the index k is periodically selected as t, the elements $a_{k} *$ will only change in descendirg sequence if $a_{q},>a_{q *}$ and will only change in ascending sequence if $a_{q^{\prime}}<a_{q *}$.
Proof. Each of the assertions is a direct outcome of applying the dual simplex method. First, the x_{i} equation of step 3 of the dual method must tave ${ }^{i}$ a positive constanc tern (since boti y_{0} and v_{i} are negative), and cannot quaify: as the new pivot equation. However, this equation curzently has the form of (9.) (since $x_{\text {E* }}$ and not \dot{x}_{i}, is the current starred basic variable for the set J_{z}). Thus, equation (10) is the only possibility for the new pivot equation, in which case it may be put in the form of (9) by interchanging the roles oi i and 5^{*}. The incerchange $o \bar{i} i$ and 5^{*} is 'unnecessary $i \equiv i \equiv \pi-j$ because x_{t}. is the unrestricred variaole x_{n+1}, and an optinal solucion is atready oocained. Othernise, if the current solution is not faasible (the solution value of x_{1} exceeds l), the interchange immediareiy establishes (a), (b) and (c) of the theorem. Next, since j_{τ} is the only set j_{k} in wicin the identity of $x_{i *}$ cranges jy the pivor, it aiso Eollows that che ralues $\exists_{j k}$ change onl \because for $k=t$, estaoiisining (d). The concizion $a_{g},>a_{\text {g }}$ before the
 deration or the Eac: that $v_{i}<0$ (Remark j): Buc. siace $=^{*}$ becomes the new f^{\prime} and i becomes the new an, *, Einis そicids (e). Einaliy, () Eollows direc:ly Erom (e) anc Remark 3, compiecing che prooí.

Ve will henceforth suppose for simplicity that $\bar{a}_{g}{ }^{\prime}{ }^{>} \exists_{Q}$ on all irerations, understanding thar the jirections of inequaii=ies speciEied in the Eoilowing, discussion may have to be reversed if this is not the case. (Alternarively, it is alwavs possibie to assure a_{c}, $>a_{q}$. by the device of replacing equation (2) by its negative in case $a_{q},<{ }_{q^{*}}$.) With this understanding, Theorem 2 difectiy implies

$$
\begin{align*}
\hat{k}_{k}= & \left.\underset{j \in J_{k}}{\operatorname{Maximum}} \int_{j k \star}\right\} \tag{14}\\
& a_{j}<a_{k *}
\end{align*}
$$

is known for each set $J_{\mathcal{K}}, \dot{Z}=M_{0}$, cogether with the index $i(k)$ such that $R_{i}^{k}=1$ for $j=i(k)$, then tine incoming variable x_{i} is idencíied by

$$
\begin{equation*}
\vdots=i(t) \text { where } R_{t}=\underset{k \equiv M_{0}}{Y_{k}} \tag{15}
\end{equation*}
$$

and the pivot step leaves all R_{k} except R_{t} unchanged Eor the detemination of the new R_{t} by (lj) at the next pivot. (If $a_{q},<_{q^{*}}$, the maximum in (14) is repiaced by a minimum over $a_{\cdot j}>a_{k *}$.)

The significance of Corollary 2 is twofold. First of all, it allows the dual simplex method co be implemented for the IP/GUB knapsack proolem without ever explicitly calculating the u and v coerficients. Secondly, it allows the R_{k} values to be efficiently stored in a heap, with the maximum R_{c} at the cop. Then as R_{t} is removed, and replaced with a new value, tine unchanged values of the remaining R_{k} enable the heap to be reconstituted with minimal computation (on the order of $O(\log \pi)$).

The issue remaining before giving a detailed specification or the steps of a specialized dual algorithm, is the eificient determination of R_{k} by (14). Since each time a new R_{k}, is found, the variable $x_{i(k)}$ wili become the new $x_{n k} k$ (tie next time k is selected as c by (15)), all of the $j \in J_{k}$ such that $a_{j} \geq a_{i^{\prime}(k)}$ may immediately be dropped, since they will be of no Eurther interest. This approach by itselí, as wili je shown, Leads to a specialized merhod whose worst case compucational bound is superior to that of [16] when the number of GUB sets exceeds the number of elements in each set. (This generally occurs in practical applications of an "assignmenc" nature, where the number of items to oe assigned gererally far exceeis the number of possiole assigmments per iter.) However, an even better approach from the standpoint of worst case:bounds resulis by a simple preliminary pass througi each set $J_{\mathcal{X}}$, eliminating in advance the elements that do not qualify to"be selected as k*. Since the elements that are left will be visiced in descending order of the a_{j} values (for $a_{q},>a_{q *}$), it follows that each successively smaller a will be the ank, and the task of identifying a maximem by (14) is eliminated.

Sopecifically, cheri, we seeik to icentīy a suoset Jof j_{k}. Nose elements are linked by a predecessor/ successcr ordering, where rhe immediate successor s(j) of an index j E J_{0}^{0} identifies the next element that quai ifies to serve as k^{*} arter j, and che imediate prececessor $\rho(j)$ of j identifies the element of J_{6}^{0} that oualifies to serve as k^{*} immediately before j.
Initially, of course; $s(j)$ and $p(j)$ just arrange tine elements of J_{k} in descending (ascending) order and we will suppose that in the process or creating sucn a linking that duplicate a_{i} values are removec by recaining only tine one associačed with the smallest c value. The process of dropping an element Erom J_{k} in the conseruction of j_{k}^{0} can be accomplished simply by linking its immediate predecessor to its immediate successor.

Under Enis predecessor/successor linking, (14) can be written
$R_{k}=\overbrace{i k^{*}} \geq \theta_{j k^{*}}$ Eor all successors j of $i=i(k)$
Then i will become the re's k* (except Eor the Eirst i seiected as k*). Thus, in particular, since we may eliminate the situacion of tied maximum ratios by selecting the one with the smallest a_{i} coerficient (which has no tied successcrs), and since drocping superfluous elements wiil yield $k *=p(i)$, the identifying characeristic of j_{k}^{0} becomes

$$
\theta_{i p}(i)>\theta_{j p}(i)
$$

(16)

Eve all successors f of 1 and for all $i=\vec{J}_{k}^{0}$, where \vec{J}_{k}^{0} is j_{k}^{0} stripped of its first and last elements, which respectively have no predecessors or successors. The task of weeding out elements of $J_{\text {, }}$ to assure this relationship is made easy by the following.

Remark 4 . The inequality (16) holds for all i $E \bar{J}^{\circ}$ and for all successors j of i if and only if it nolds for all $i \in \bar{J}_{k}$ and for $j=s(i)$.
Proof. We need oniy show that for any h, i, j, r (taking the roles $h=p(i), j=s(i)$ and $I=s(i))$ such that $a_{n}>a_{1}>a_{j}>a_{5}$, the two "successive" in4 equalities $\hat{\theta}_{i n}>\theta_{j h}$ and $\theta_{j i}^{r}>\theta_{r j}$ imply $\theta_{i h}>\theta_{r h}$. First, for the coefficients as ordered, we note that $\theta_{i h}>\theta_{j h}$ is equivalent to $\theta_{j h}>\theta_{j i}$, since both or chese inequalities reduce to $c_{n} a_{i}+c_{i} a_{j}+c_{j} a_{h}>$ $c_{i} a_{n}+c_{j} a_{i}+c_{n} a_{j}$. Similariy, $\theta_{j i}>\theta_{r j}$ is equivalent to $\theta_{r j}>\theta_{r i}$. Hence we ootain $\theta_{i h}>\theta_{j h}>\theta_{j i}>$ $\theta_{r j}>\theta_{r i}$ and in particular $\theta_{j h}>\theta_{r j}$, which is equivalent to $\theta_{r i}>\theta_{r h}$. Consequently, $\theta_{i h}>\theta_{r h}$, completing the proof.

To make convenient use of this observation we introduce a dumny index 0 to "start" and "terminate" the predecessor/successor linking, where 0 is treated as immediate predecessor of the largest $a_{;}$and the immediate successor of the smallest a_{j}. The procedure Eor nodifying the initial linking on f_{k} so that it becomes a inking on J_{k}^{0} is then as follows.
0 . To start, let in, i and j be the "Eirst chrae" elements of j_{k}, that is, $h=s(0), 1=s(h), j=s(i)$. (If J_{k} has less than three elements, then $J_{k}^{0}=J_{k}$ and nothing is to be done.)

1. Compare $\theta_{i h}$ co $\Theta_{j h}$.
(a) IF $\theta_{i h}>\theta_{j n}$, set $h=i$ and go to step 2 .
(b) If $\theta_{i j}=\theta_{j h}$ or $i \neq \vartheta_{i h}<\vartheta_{j h}$ and $p(h)=0$, drop i and 30 so Step 2.
(c) If $\theta_{i \hat{i}}<\theta_{i h}$ and $p(h) \neq 0$, drop i, set $i=n$, and $\hat{n}=p(i)$. Then return $=0$ the start oi Step 1.
2. Set $i=j$ and $j=s(i)$. If $j=0$, the procedure stops and che linking correctly identifies the ordered elements of J_{k}^{0}. Otherwise, return to Step 1.

The validity of the foregoing procedure is an immediate consequence of Remark 4. Note that the index j never "backs up" to a predecessor value, but remains uncinanged in Step 1 and set to its successor ar Step 2. Consequentiy Step 2 will always be execured $\mathrm{H}_{\mathrm{K}}, 2$ times, where n is the number of elements in $J_{i k}$. Khenever the aechoí does not go to Step 2 , the index i is dropped at $1(c)$, which can occur at most $n_{k}-2$ cimes (since i is never the first or last element), for a cotal number of iteracions or the procedure equalling at mose 2(n, 2). Tins procedure is patterned after one due to firzgall [16] (who obtains a Eifferent iteration count) except that vitzgall's approach is based upon a geometric determination of the locations of points on or below line segments, rather chan on a direct comparison of ratios as afforded by Remark 4.

It should also be noted, in contrast to the less general situation examined in [16], that the elements of $J_{\hat{k}}^{0}$ may not all qualify to be basic in a dual feasible solution. If $N \neq J$, it is additionally necessary that the ratios $\Theta_{i p(i)}$ be bounded by the limiting ratios from $N-J$, as shown in Theorem 1. This means that some of the initial and final elements of j_{k}^{0} (under the predecessor/successor linking) may also drop out or consideration. Rather than botnering to check for this situation in advance, however, the first and last relevant elements of J_{k}^{0} can be determined automatically by starting from some initial basic dual Eeasible solution and simply executing the specialized dual algorithm.

In general, these observations lead to the following Corollary as an extension of the options available from Corollary I for obtaining an initial dual feasible basis.

Corollary 3. The set of Case 2 dual feasible bases, any one or which provides an acceptable starting basis for the specialized dual simplex method, can be generated by selecting an arbitrary J_{k}^{o} to be J_{g}^{0}, and selecting any element i from this sec (other than the Eirst element) such that $\mathrm{O}_{\text {ip }}(1)$ satisfies the limiting bounds from N - J (identified in Theorem 1). Then i and $p(i)$ may respectively serve as q^{\prime} and q^{*}. If no such element i exists, then some other set must serve as J_{q}^{0}, and whatever element of the "unacceptable" J_{k}° thereby enters the basis in the starfing solution is compelled to be basic in all duai feasible bases (hence, the associated variable may be fixed at the value 1).

The elements q^{\prime} and q^{*} found in Coroliary 3 nay need to be interchanged, so that the first pivot equation can be represented by (9). (In tinis case, the $a_{q},>a_{q *}$ assumption must be replaced by the $a_{q \star}>$ a_{q}, assumption, reversing the roles of the predecesisor/ successor links.) If a Case 1 basis is used as the start. then $a_{p}>0$ (for x_{p} the oasic variable in (5)) implies $\exists_{g^{\prime}}>^{?} a_{q^{*}}$ on all iterations (since p takes the initial róle of $q^{q^{\prime}}$ with $a_{q^{*}}=a_{n+1}=0$), whereas an artificial start (witi $p \stackrel{q}{=} n, a_{n}^{n+1}=1$ and c_{n} large) will select the first ("largest a_{j} ") element of each J_{k} as the initial $a_{k *}$.

The specialized dual simplex method based on the foregoing resides may now be described as follows.

The Specialized Dual Simplex Yetiod

1. Initialization.

(a) Create the predecessor/successor linkings and the J_{k}° sets, $k \equiv M_{0}$. (ror $N \neq \mathrm{J}$, define J_{m+1}^{0} to be the set containing the elements (at nost two in number) with limiting ratios identified by Theorem 1.) (This step can be deferred or applied in conjunction with Step $1(b)$, using the starting basis there to reduce the range oi elements considered for inclusion in tine j_{1}^{0} sets.)
(b) Create a starting dual feasible basis (as by Theorem 1 and Corollary 1 or Corollary 3). Compute the initial v_{o} value by computing
$\therefore=a_{0}-\sum_{k \leq M} a_{k \dot{ }}$ and $v_{o}=i /\left(a_{q},-a_{q k}\right)$
If $v_{0} \geq 0$ and either $g^{\prime} \equiv N-J$ or $v_{0} \leq 1$,
then the current basic solution (x_{q}, $=v_{0}$, $x_{q^{*}}=1-v_{0}$ and $\left.x_{i k *}=1, k \subseteq M_{o}-q_{\{q\}}\right)$ is optimal. Otherwise, interchange q^{\prime} and q^{*} if necessary so that $v_{0}<0$. For what follows we suppose $a_{q}{ }^{\prime}>^{\circ} a_{q x}$. (If not, the word "naximum" should 家e replaced by "minimum," and the successor symbol s() should be replaced by the predecessor symol p(i).)
(c) Identify the ratios $R_{k}=\theta_{S(k *)} k_{*}$ for
 r_{k} does not exist, and is bypassed. For the case $k=m+1$ where by convention $k *$ $=n+1$, we define $s\left(k^{*}\right)$ to be the first element of j_{m+1}^{0} excluding the current q^{\prime} (if $q^{\prime} \subseteq J_{m+1}$). Hence $R_{m+1}=c_{j} / a_{j}$ for $j \doteq s\left(k^{*}\right)$, if chis element j exists.) Put these ratios in a heap, with the maximum at the top.
2. Identify the incoming basic variable and the new basis composition.

Pick the maximum ratio Erom the cop of the heap and denote it $?_{r}$. (If the heap is empty, there is no feasible solution.) The current variable x_{q}, leaves the basis and $x_{s}\left(t^{*}\right)$ enters the basis. If $s\left(t^{*}\right) \cdot N-J$, the current basic solution is optimal for $q^{\prime}=$ $s\left(t^{*}\right)$ and $v_{0}=\alpha /\left(-a_{q}\right)$ (where α is unchanged fiom its previous value). Otherwise, the current x_{t} * becomes the new x_{q}, while $x_{s}(t *)$ is the new $\mathrm{t}_{q^{*}}$; i.e., set $q^{\prime}{ }^{q} t^{*}$ and $q^{*^{s}}{ }^{\left(t^{*}\right)} t^{*}$ $=s\left(t^{*}\right)$.

3. Update the curzent basic solution.

Update x and v_{o} by setting $\dot{\partial}=a_{a},-a_{q}, \alpha=$ $\alpha+s$ and $v_{0}={ }^{0} a / E$. If $v_{0} \geq 0$, the current basic solution is oorimal. Otherwise, identify the new value of $R_{t}=\Theta_{s\left(c^{*}\right) t *}$ (for the new t^{*}). If the ratio does not exist (s (t*) $=0$), feform the heap Eor the ratios still in it. Otherwise, add R back to the heap.
Then return to Step 2 .
in analysis of the maximum amount of computarion required by this method is as follows. The creation of the predecessor/successor linkings (that initially arrange the a coefficients in descending/ascending order for each J_{k}) requires on the order of $O\left(n_{s} \log n_{k}\right)$ computation for each set, or an effort of at most. $\sum_{k \leq M_{0}} 0\left(r_{k} \log n_{k}\right) \leq$ $0(n \log n)$. (For the case where each GUB set has the same number of elements, nim, we may refine =his $50(n(\log n-\log m))$.

The Jo work to modify the linking to identify. j_{k} set involves at most $?_{n}-4$ iterations of the procedure based on Remark 4 , or $2 n-4 m$ iter? ations over all sets, requizing computation or order $O(n-\mathbb{m}) \leq O(n)$ (including the effort of
generating and selecting the minimum d values) while computing the initial v value is $O(m)$. Finally, computing the R_{k} ratios requires $0(m)$ computation, while putting them in a heap is an effort of order $0(m \log n)$. Thus, the total initialization effort of Step 1 can be expressed as $O(n \log n)+O(m \log n)$.

For Steps 2 and 3, at most n - m - 1 elements (the successors of the k^{*} elements, excluding the initial q^{\prime}) remain to be examined in the J_{k}° sets, $k \Xi M$ and so these steps will require at most $\mathrm{n}-\mathrm{m}^{0}-1$ iterations. Exclusive of reforining the heap, these two steps requize a handful of "if checks," assignments, a couple of additions and 1 division. Reforming the heap requires an effort of $0(\log \mathrm{~m})$, hence in cotal the amount of effort required at Steps 2 and 3 is $0((n-m) \log m)$. Putilng these together with the effort required at initialization we can state

Theorem 3. The computational complexity of the LP/GUB knapsack problem is of order at most

$$
\begin{aligned}
& O(n \log n)+O(n \log n) \\
& \text { or } \\
& O(n(\log n+\log n))
\end{aligned}
$$

We have stated these order bounds separately instead of simply giving the $0(n(\log n+\log m))$ bound, because. of the overestimate involved in the $0(a \log n)$ term. In particular, as previously noted, this term can instead be expressed as $O(\mathrm{n}(\log n-\log m)$) for the situation in wich .each GUB set has n / m elemencs. Thus, in this case we have

Corollary 4. When each rus set contains the same number of elements, the computational complexity of the LP/GUB knapsack problem is at most $O(n \log n)$.

The bound of Nitzgall is given in [16] as $O(n \log n)+O((n-n) m)$, where the $O(n \log n)$ tem is essentially the same as that of Theorem 3, and also can be replaced by $0(n(\log n-\log n))$ for GUB sets with n / m elements. The primary difference between the bound of [16] and that of Theorem 3 is thererore the contrast between $O((n-m) m)$ and $O(n \log m)$. For easier comparison, let $g=n / m$ (so. chat g is the number or elements in each GUB set if each set has the same cardinality). Then these cerns can be respectively written $0\left((g-1) m^{-}\right)$and $0(g(m \log \pi))$. Since $g \geq 2$ in any meaningful problem (or else there are GUB sets with oniy 1 element), the latcer term clearly represents a smaller order of effort than the former, particularly as mor 3 (hence n) becomes larger. This difference appears to stem From the fact that our procedure specializes the dual simplex method directly, whereas Nitzgail's instead carries out preliminary "topological reductions" (corresponding to those obtained via Remark 4) but othervise leaves tine dual method primarily to its own devices (for the case $J=N$). (Sinha and Zolcner's procedure and witzgal:'s
procedure appear closely related in this respect.)
It is interesting to note the type of order bound that results for our method when the initialization effort of setting up the predecessor/ successor links and adapting them to the J_{k}^{0} sets is not employed.

The modifications for this approact are as E0llows.

Alrernative nethod. (Omitting the initial ordering of the a_{j} coefficients by the predecessor/ successor links, and the creation of the J_{k}^{0} sets.)

1. Initialization.
(a) Deleted
(b) As in the previous method, except that Coroilary 3 is nor used as a straregy for creating an initial basis. in addition, drop the index k^{*} from each J_{k}.
(c)
 constituted). If ${ }_{a}{ }_{j} \geq a_{k} \star$ then drop j from J_{k}, and if not compute the ratio $\theta_{i k}{ }^{*}$, Saving the minimum of these compuced ratios as k_{k}. (Then $s\left(k^{*}\right)$ denotes the j that gives Ehis minimum ratio.)
2. Identify the incoming basiz variable and the new basis composition.

As in the previous method.

3. Update che currant basic solution.

As in the previous method, except for secting

 enty constituted) carry ouc the "operation indicated in $l(c)$ for $k=t$.

The type of analyses applied to the computazions for the previous method allowis us to state

Corollar: 3. When each GUB set has she same number of elements $g=: n / n$, the computational effort required oy the Alternative Method for the LP/GUB knapsack problem is of order

$$
\begin{gathered}
0(n)+O((n-m) \log n)+0((n-m) g) \\
\text { or } \\
O(n)+0((n-m)(g+\log n)
\end{gathered}
$$

Again we have written the bound in difiarent ways to facilitate comparison with the other bounds. The $O(n)$ term here is comparable to a $O(n)$ term that was previously assimilated into $O(n \log n)$ in joth our approach and in Nitzgall's. Thus, for a clearer comparison, the bound or Corollary 4 can be rewritten

$$
O(n) \div O(n) \log g) \div O\left((n-n)_{m}\right)
$$

While the worst ease bound of Corcllary 4 appears generally superior to the other two, note that the bound for the Ilternative Method appears more attractive than that of [16] for $3=m$, and jecomes increasingly attractive as m becomes larger relative to g, due to the fact that increases in log m are dwarfed oy increases in a. (The value of m is oiten several Eoid greazer than g in practical applications. For example, in the applications oí $[8,11,12,13]$, m ranges from 4 g to 30 g .) Coupling this with the fact that the diternative Method requires less "ser up" effort than the other methods makes it an appealing alternative for problems in which worst case bounds are expected to be overly pessimistic. In this context, any attempt to consider "likely" cases instead of worst cases must also account for the advantages that may derive from initiating a specialized dual algorithm from an advanced starting basis, racher from an "extreme end" of the dual ieasible region (as in [15] and (16]).

Finally, it is interesting to consider the specialization of these bounds to the ordinary knapsack problem. In this problem, the number of variables before adding slacks to give GUB constraincs is $m=n / 2$ (i.e., the addition of slaciss vields $g=2$). Bounds of boch previously indicated verisions of che Specialized Dual Simplex Method (froin Corollary 4 and Corollary 5) zeduce to O (m $\log \mathrm{m}$) in this case, which is a standard bound for algorithms for the knapsack problem. Recently, however, Balas and Zemel [1] have developed an improved bound of $O(m)$ Eor m variable knapsacks. This raises the interesting question of whether it is possible to find a method for the general LP/GUB knapsack problem whose worst case computational effort specializes to $0(m)$, yet that maintains advantages for the general case. :Ne conjecture that tinis is not possible.

REferences

1. Balas, E. and Zemel, E. "Solving Large 0-i Knapsack Proolers," Management Sciences ?eport No. 408, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, June 1976, Revised July 1977.
2. Sarr, Richard S. and Ross, G. T. "A Linked List Data Structure for a Binary Knapsack Algorithm," Research Report CCS 232, Center for Cybernetic Studies, The University of Texas at Austin, August 1975.
3. Beale, E. M. L. and Tomlin, J.A.. "Special Facilities in a General Mathematical Programming System for Von-Convex Problems Using Special Ordered Sets of Variables," in Proceedings of the 5th IFORS Conference, London, 1970, 447-454.
4. Beale, E. M. L. and Tomlin, J. A., "An Integer Programoing Approach to a Class of Combinatorial Problems." Matnematical Programming, 3, 3, (1972), 339-344.
5. Fayard, D. and Placeau, E., 'Resolution of the 0-1 Krapsack Probien: Comparison of Metnods," "athematical Programming, (1975), 272-307.
ó. Glover, F., "Convexity Cuts for Multiple Chcice Proolems," Discrete itathematics, 6 (1973), 221-234.
6. Glover, $\overline{\text { 7. }}$, "Surrogate Constraint Duality in Machematical Programming," Operations Research, 23 (1975), 434-451.
7. Glover, E. and Klingman, D., "Net'iork Applications in Industry anc Government," AIIE Transactions, December 1977.
8. Greenberg, H. and Hegerick, ̇. I., "A Branch Search Algorithm for the Knapsack Problem," Management Science, 16 (1970), 327-332.
9. Greenberg, H. and Pierskalla, W. P., "Surrogate Mathematical Programming," Operations Research, 18 (1970), 924-939.
10. Gross, D., and Pinkus, C. E., "Optimal Allocation of Ships so Yards ior Regular Overhauls," rechnical Report 63095, George , Nasinington üniversity, Washington, D.C., 1972.
11. Klingman, D., Ross, G. T., and Soland, R. M., "Optinal Lot-5izing and Machine Loading for Multiple Products," Proceeding or Conference on the Disaggregation Proolem, Ohio State Universizy, Columbus, Ohio, March 1977.
12. Masud, Enver, "An Interactive Procedure for Sizing and Timing Distribution Suostations Using Optimization Ieciniques," paper T75 142-б, Presented at the IEEE PES Winter Meeting, New York, January 27-Feoruary 1 , 1974.
13. Nauss, Roberc M., "The 0-1 Knapsack Problem with Multiple Choice Constraints," Working Paper, University of Missouri, St. Louis, March 1975, revised May 1975.
14. Sinha, P. and Zoltners, A. A., "The Multiple Choice Knapsack Problem," Research Report No. 8-75, School of Business Administracion, University of Massachusetts, September 1976.
15. Witzgall, Christoph, "On One-Row Linear Programs," Applied Mathematics Division National Bureau of Standards, Washington, D.C., May 1973.

D.1. Introduction

In general, the distribution feeder costs can je classified as: (1) the cost of investment, (2) the cost of lost energy due to I^{2} R losses in the feeder; and (3) the cost of demand iost (i.e., the cost of lost capacity) due to the $I^{2} R$ losses. The cost of investment is the largest cost component and it includes material costs invoiving feeders. The rotal cost of a given distribution feeder can be summarized by the following equation,
where
$T A F C=A I C+A D C+A E C$
TAFC = total annuai Eeeder cost in dollars per mile,
AIC $=$ annual investnent cost in dollars per mile,
$A D C=$ annual demand cost due to lost capacity as a result of energy (or copper) losses in the feeder in dollars per uile,
$A E C=$ annual energy cost due to $I^{2} R$ losses in the feeder in dollars per mile.

D.2. Annual Investment Cost

The annual investment cost of a given Eeeder is the installed cost of the feeder times the fixed cost rate of the feeder. This fixed cost rate or so-called the carrying charge rate, of the feeder includes the cost or capital, taxes, insurance, operation and maintenance, and depreciation, etc. The annual investment costs need to be considered for rural and urian areas, separately. Tables $D .1$ and D: 2 present some of the tyoicai ACSR conduceors used, at 12.5 kV and 24.9 kV voltage levels, in the rural areas, respectively.. Tables D. 3 and D. 4 give some of the typical ACSR conductors used in the urban areas ar 12.5 kV and 34.5 kV voltage levels, respecrively.

D.3. Annual Energy Cost

The foilowing formula has been used to salculate the annual ene \quad gy cost due to I^{2} ? losses in feeders,

where

```
    cost due to I'R losses(D.2)
        annual energy cost due co I R losses in
                feeders in dollars per mile,
            I = Eurrent in Amperes,
            R = resistance of a given conducror in ohms
                per conducror per mile,
    SE = energy cost in mills per kiwh,
    EII = load location faccor.
    FIS = loss factor,
    ELSA}= loss ailowance faccor.
```

The load location Eactor is a per unit value and is considered to be that poinc on a feeder having distributed loading where the total feeder load caf be assumed to be concentrated Eor the purpose of $I^{2} R$ loss calculations.

The loss Eactor is the ratio of the average power of the average power loss over a year's period to che peak loss occurring in that period. It can also be defined as the ratio of the actual total kivh losses to what the kirh losses would have been if the peak losses had continued throughout the 8760 hours in the year. The loss factor can be approximaced by the following equation:
where

$$
\begin{equation*}
F_{\mathrm{LS}}=0.3 \mathrm{~F}_{\mathrm{ID}}+0.7 \mathrm{E}_{\mathrm{LD}}^{2} \tag{D.3}
\end{equation*}
$$

$F_{L D}=$ load factor
As losses are supplied to the primary distribu-
tion system chrough preceeding power system elements they incur additional iosses. Therefore, not only the primary feejer losises must be supplied but also the additional lesses incurred in the transmission and $t z a n s f o r m e r ~ s y s t e m s ~ m u s t ~ b e ~ s u p p l i e d ~ d u e ~ t o ~ t h e ~ f l o w ~$ through of primary feeder losses. The factor taking these losses into the consideration is cailed the loss allowance Eactor.

The annual energy cost due to $I^{2} R$ losses in the feeders have been calculated for both copper and ACSR conductors at $4.16 \mathrm{kV}, 12.5 \mathrm{kV}, 24.9 \mathrm{kV}$, and 34.5 kV voltage levels. The developed nomograpis are shown in Figures D.1- D. 20.

D.4. Annual Demand Cost

The following Eormuia has been used to calculate the annual demand cost,

$$
\begin{align*}
A D C= & 3 I^{2} \times R \times E_{L L} \times F_{D R} \times \bar{F}_{L S A} \times \\
& {\left[S_{D} \times T_{P}+S_{L} \times T_{E}+S_{D S} \times T_{D S}\right] } \tag{D.4}
\end{align*}
$$

where
$A D C=$ annual demand cost due to loss capacity as a result of energy losses in feeders in dollars per mile,
I = current in ampers,
$R=$ resiscance of a given conductor in ohms per conductor per mile,
$F_{L L}=$ load location factor,
$F_{P R}=$ peak responsibility iactor,
$\bar{F}_{R}=$ reserve factor,
$F_{\text {LSA }}=$ loss allowance factor,
$S_{p}=p r o d u c t i o n ~ c o s t$,
$T_{p}=$ production fized cost rate,
$S_{t}=$ transmission cost,
$I_{t}=$ transmission fixed cost rate,
${ }_{S}$ DS $=$ distribution substation cose,
$T_{D S}=$ distribution substation fixed cost rate.
The reserve factor is the ratio of total generation capability co the cotal load and losses supplied. The peak responsibility factor is a per unit value oi peak feeder losses which are coincident witi che system demand. But not all distribution Eeeders have their peaks at the same time as che system peak. Since at times other than at the system peak, excess capacity is available, it is only valid to charge Eor the actual capacicy necessary to serve the Eeeder losses winch occur at the time of the system peak. The annual demand cost analysis included boch $=0 p p e r$ and ACSR conducrors at $4.16 \mathrm{kV}, 12.5 \mathrm{kV}, 24.9 \mathrm{kV}$ and 34.5 kV voltage levels. The developed nomographs are shown in Figures D.21-D. 40 .

D.5. Total Annual Equivalent Cost

The coial annuai equivalent feeder cost in dollars per oile per MVA is calculated as,

TAEFC $=A E I C+A D C+A E C$
where
TAEFC = total annual equivalent Eeeder cose in dollars per mile,
AEIC = annual equivalent investment cost in dollars per mile.

The AEIC can be calculated irom

$$
\begin{equation*}
A E I C=(B-V)(a / p)_{A}^{i} \div V 1 \tag{0.6}
\end{equation*}
$$

where
$B=$ installed Eirst cost of the feede: in dollars per mile,
$V=$ net salvage value of the feeder at the end of the nth year in dollars per mile.
or

Taole J． A Troical ACSR Conductoss IJsed at 12.3 Ky in Rural Areas

$\begin{gathered} \text { conduc } \\ \text { size } \end{gathered}$	$\begin{aligned} & \text { Graunc iniza } \\ & \text { size } \end{aligned}$	Cane：ce＝ weici：	Grou:ct inter veict：	5／i	Fascaliasior ：ariwaye Cas	$\begin{gathered} \text { iosaj } \\ \text { zascaliad } \\ \text { Eseces Cos } \end{gathered}$
± 4	\％ 4	356	356	0.5	6943.5	－ 7200
1／0	42	769	565	0.6	7175.2	3900
310	$1 / 0$	1223	759	0.6	73．37．2	10400
4／0	1.0	1542	759	0.5	3563	1：300
256．3MCM	$1 / 0$	1902	769	10.6	9985	：3690
477 MC：	1.10	3462	769	0.5	$\underline{10957}$	17560

$\begin{gathered} \text { Concuc=or } \\ \text { size } \end{gathered}$	Gこound ivine size	$\left\{\begin{array}{c} \text { Conduev:2= } \\ \text { ze: } \end{array}\right.$		$\begin{gathered} \text { bnscain inon i } \\ \text { Zariwa=e } \\ \text { cost } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Tocal } \\ & \text { Irsealies } \\ & \text { Eeedor cos } \end{aligned}$
\％ 4	± 4	355	350 0.5	7505.5	3460
1／0	$\div 2$	769	566 10．6	7356.2	9560
310	110	1223	$769 \quad 10.6$	3217.2	：0330
4／0	1／0	1542	759 0.5	8293	1：
255． 3 MCX	110	$: 302$	769 0．5	9515	12320
477 YC：	10	3452	769 ．$\|0.6\|$	11547	19240

Tabie D．3．Tyoical ACSR Concuctors Used at $12.5 k \%$ in urban Areas

$\begin{gathered} \text { concuczo } \\ \text { si=e } \end{gathered}$	$\begin{gathered} G=\text { ourc } \\ \text { sin } i=e \end{gathered}$	$\begin{aligned} & \text { carecos= } \\ & \text { yeiche } \end{aligned}$	s＝ound ivze Ne：＝i：	5バ	Fistaila＝en ：a＝dwa＝e Cose	$\begin{gathered} \text { 5sy } \\ \text { zasen iod } \\ \text { Eneder Cos } \end{gathered}$
± 4	4	356	356	0.51	21． $2: 5.5$	22000
$1 / 0$	4	［69	156	0.51	22，402．2	34900
3／0	$!$	1223	355	0.5	24．335	27000
47704	$\because 10$	3452	759	0.51	29，307	25000

| Conductor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size | | Ground WireConductor
 size
 Weight |
| :---: |
| 4 |

gross salvage value oz rice feecer at end of the nth year less cost of removal and restoration in dollars per mile,
$n=$ useful life of the feeder in years,
$i=c a r r y i n g$ charge rate in percent,
$(a / p)_{n}^{i}$

- capital recovery factor for i percent carrying ciarge rate and feeder userul life of a year,
$(a / p)_{n}^{i}=u n i f o r m$ series worth of a percent sum for i percent carrying charge rate and feeder useful

05

$$
\begin{equation*}
(a / p)_{n}^{i}=\frac{1(1+i)^{n}}{(1+i)^{2}-1} \tag{D.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\text { Eore, } A E I C=(3-V) \frac{i \cdot(1+i)^{n}}{(1+i)^{n}-1} \tag{D.3}
\end{equation*}
$$

2lso

$$
\begin{equation*}
\operatorname{TAEPC}=(B-V) \frac{1(1+i)^{n}}{(1+i)^{n}-1}+V i+A D C+A E C \tag{D.9}
\end{equation*}
$$

Using a carrying charge rate of 12 percent and a useful feeder life of 30 vears, the cotal annual equivalent feeder cosṭs have been calculated for urban and rural areas. The developes nomographs are shown in Figures D.41- D.:3.
 (c) 800 cm . (d) 750 cm

\qquad (b) 500 cx (c) $500 \mathrm{ch}, 37 \mathrm{strands}$. (d) $500 \mathrm{CH}, 19 \mathrm{stzands}$

Figure D.3. Annual energy cost due to t^{2} : osses in copper feeders in hundred dollars jer fille for:
(a) 250 cm

Figure D.3. Annual energy cost due to t^{2} R iosses in copper feeders in
(b) 400 CM, (c) $350 \mathrm{cy}, 19$ strands (d) $350 \mathrm{~cm}, 12$ strands

Figure 0.3 . Annual energy cose due t^{-2} : losses in copper feeders in hundred dollars per alie for: (a) 300 Cu .19 strands , (b) $300 \mathrm{CM}, 12 \mathrm{gc}$ gands. (c) $250 \mathrm{CM}, 19 \mathrm{scrands},(d) 250 \mathrm{CM}, 12 \mathrm{seranda}$

Figure D.S. drnual energy cost due co I^{2} a losses in copper feeders in hundred sollars per mile sor: (a) A.H.C. $4 / 0.19$ strands (b)

131

$:$

(d)
Figure D.6. Annual energy cost due $=0 \mathrm{I}^{2} \mathrm{R}$ losses in copper feeders in indred doilars per mile for (a) A.W.G.3/0, 7 strands (b) A.d.G. $2 / 0$, (c) A.d.G.i/O, (d) A. W.G.ib, 7 serands

Figure D.12. Annual energy cosc due $=0$: 2 : : osses in ACSa feeders in (d) hundred dollars per mille for

$:-$

(a)

अ3 (
 (a) $795 \mathrm{CX}, 26$ scrands. (i) 3

 -

 3-2

?lgure D.13. Annual energy cose tue $=0:$

 C. 3 . 30 gerands. (c) $7: 5.5 \mathrm{CM}, 54 \mathrm{scrands}$, (d) $725.5 \mathrm{CM}, 26$ serands
3
3
!-1.............. (3)
 C. 30 setands, (b) só6.6 : (b) 5066.6 9
hundred dollars per mile for:
(a) 715.5

 CM .25 strands (b) $397.5 \mathrm{C}, 30 \mathrm{serands}(\mathrm{c}$? $336.4 \mathrm{Cy}, 25$ serands (d) 336.4 CM , 30 strands

!
(b)

(d)

1
(a)

(c) energy cost due co
 (a) A.W.G. 14 , o acrands. (b)

$\stackrel{(b)}{1}$

Flgure 0.21. Annuai demand cose due to enerzy losses in conder feeders in hundred doitars per alie for (a) 1000 CM, (b) 300 cy , (c) 300 cM , (d) i50 C.

Figure D.22. dnnual demand cost twe $=0$
(a) 100 cm, (b) 500 cm.

(b) o energy los
(c) 500 CM . 37 in copper ieeders in hundred joliarg per wile for 37 gtrands, (d) $500 \mathrm{~cm}, 19$ serands $\stackrel{1}{3}$

? (b)
(b)

-Igure 0.23. Annuai iemand cosc due co energy iosses in cooper jeedess in hundzed joliars per aile zor:

(a) 300 cy . ig scrands, (b) ener3y
300
(a) 300 CY. i9 scrands, (b)
osses in copper ieeders in hundred dollars per gile Eor:
i2 strands (c) 250 ©i, i9 scrands, (d) $250 \mathrm{CM}, 12$ strands
3

3 (b)
 (

(d)

Fizure 3.25 . dnnuai demand cost due to energy Losses in copper Eeoders fin iundred doliars per aile for

Eigure D.26. dnnual demand cost due to energy losses in copper feeders in hundred dollars per mile for: (a) A.W.G.J/0, 7 strands. (b) A.W.G.2/0, (c) A.d.G.1/0, (d) A.d.G. \#1, 7 strands

(c)

(b)

3
 3-0-0-0-0

(d)

.
(a)

Figure D.34. annual demand cost fue $=0$ energy

Pigure 0.3s.
drmual jemand sosc Jue 50 anergy $556.5 \mathrm{M} .: 0$ gerands (b) 500 my .

Pigure 0．40．Annuml deand cose dua （a）A．i．C． 14,6 scrands（b）

Yニーに
促に品
(
(d)
Pigure J．61．Tocai annual equlvalear sose of ACSR iseders for urion areas in shousand doibars per aile tor：（a） $477 \mathrm{My}, 25$ se：ands，
（b）

appendix E

A multi-c iteria evaluation approach that has the advantage of simplicity in application is the Churchman - Akoff Approach.* The approach is simply the following:

1) Deternine a set of independent, mutually exclusive objectives. For example, minimize costs and increasing reliability are two oojectives which meet the criteria. Increasing reliability and increasing redundancy do not. meet the criteria of independent and murually exclusive because fncreasing redundancy will increase reliability. It may be possible, however, to reduce cost without affecting reliability by choice of demand cencers served by substacions, etc.
2) Determine weights for the objectives. In the Churchman - Akoff merhod this is done by a decision tree approach. The basic inputs are subjective quantifications by decision makers'.
3) Determining the alternatives.
4) Find an appropriate measure of attainment of an objective.
5) Finding the eifinciency of each alternative zelative to each objective by using the measures defined in step 4.
6) Computing

$$
E_{j}=\sum_{j=1}^{n} 0_{i} \times e_{i j}
$$

where
$E_{j}=e f f i c i e n c y$ of che $j t h$ altemative,
$0_{1}=$ weight of the ith objective,
$e_{1 j}=$ efficiency of the $j t h$ alternative relative to the ith objective.

As an example, consider a session with Mr. iester Burris of OG\& E , to demonstrate the approach. Mr. Burris named four objectives:
0_{1} Minimize cost,
O2 Keet roltage requirements for several years in the future,
O_{3} Reliability,
O_{4} Meet che esthetia demands of the environment. The objectives were ranked in importance as ioliows: voltage reguirements,
cost,
esthetics,
reliability.
These objectives were shen renumbered to correspond with the ranking. The measures for each objective were determined as follows:

Cost: Annual équivaient cost of plan at interest rate i^{\prime}, labor, materials, maintenance, saxes, interest, energy losses, éc.
Reliability: : Projected load-hours lost per year.
Eschetics: An ordinal scale ranking with underground $=3$, aluminum poles $=3$, rouce change $=1$ and regular poles $=\dot{0}$.
Voltage requirements: Number of vears voltage requirement is met.
To measure efíiciency, since none of chese objectives have a well-defined efficiency as determined by the measure, efifciency curves were used.

For cost 100% efficiency would de zero, by derinition. Zero efEiciency would be an infinity cost. Iwo possible curves are concave and convex, as are in Figures E. 1 and E.2, respec=ively.

[^20]

Tigure E.1. Concave

In this case the convex curve was preferred. Paramecers can be obtained by spectfying a point (C, E) in addition to (0,1), and ($M, 0$).

The curves shown in Figures $E .3$ and E .4 were proposed for reliability and esthetics, respectively.. The voltage requirements efficiency.curve was given by Figure E.j.

Figure E.3. Efficiency curve for reliability

Figure $\Xi . \dot{S}$. Voltage requirements efficiency ciatre
Next weights w_{i} Ior each objective C_{i} were deter-- minec by posing the Eollowing type questions: Do you prefer (yes or no) O_{1} to $\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}$ which means if O_{1} is obcained at its maximum possible efficiency and 0_{2}, $\mathrm{O}_{3}, \mathrm{O}_{4}$ were at their lowest acceptable leveis of effínciency? The answer is ves then $W_{1}>W_{2}+W_{3}+W_{4}$. Otherwise $N_{1}<W_{2}+W_{3}+W_{4}$. If $W_{1}>W_{2}^{2}+N_{3}+W_{4}$ then certainiy $\mathrm{W}_{1}>\mathrm{N}_{2}+\mathrm{W}_{3} \cdot$ IE $\mathrm{W}_{1}<\mathrm{W}_{2}+\mathrm{W}_{3}+\mathrm{W}_{4}$ chen W_{1} could se s:ach tiat $W_{1}>\mathrm{N}_{2}+W_{3}$ so O_{1} vs. $\mathrm{O}_{2}, \mathrm{O}_{3}$ must be as: ase. The resultant decision eree is given by Figure E.á.

Figure E.o. The resultant decision tree
\therefore Ei:st assignaent of weight was:

roltage	100
cost	35
Esthetics	70
Reliabilicy	69

These weights satis三ied the constraints on the weights ziven by the decision tree questions. If the weights would not have satisfied the inequalities, then new weizins would have been chosen by che decision maker in orjer to satisfy the inequaiities violated. The weights were normalized to obeain more consistency and cherefore:

$$
\begin{aligned}
& N_{1}=0.31 \\
& \sim_{2}=0.26 \\
& ה_{3}=0.22 \\
& N_{4}=\frac{0.22}{1.0}
\end{aligned}
$$

The objective funcrion is then $E_{j}=.31 e_{i j}+.26 e_{2 j}+.22 e_{3 j}+.21 e_{4 j}$

The . $e_{i j}$ are deremined by evaluating the plan with the respective measures and then using the curves develooed to find the efficiencies.

A further elaboration of the efficiency curve is now appropriace. As an example, consider a source with three load centers as shown in Figure E.7.

Eigure E.i. A source with chree load cencers
ㄷ is desired that the voltage at eaci load cencer, i.e., Di, be :2i volts olus or minus 6 voits. t measure of success in meeting this requirement mignt be

$$
\begin{aligned}
& Y=\infty V_{i}:(1: 5,127) \text { for any } 2 \\
& M={\underset{i}{i=1}}_{3}^{i}\left(V_{i}-121\right)^{2}
\end{aligned}
$$

where
$y_{i}=$ actual voltage at che load cencer D_{i}. Cur voltage requirement goal is $V_{i}=121$ Volt Eor each i. Thus if a circuit design is 100 percent effective,

$$
A=(121-121)^{2}+(121-121)^{2}+(\overline{(121-121})^{2}=0
$$

If a voltage V_{i} is at the endpoint of $(1: 5,127)$ for eaci i, then further deviation wili zencer $M=\infty$, thus ziring the largest acceptaile value of M that san be tolerated. That is

$$
y=6^{2}+0^{2}+6^{2}=108
$$

Hence, for $M=108$, the design is at ics minimum acceptable eificiency level. Thus, two poincs, $(100,0)$ and (0,108), are established.

What if a circuit design gives an M value or 34 ? what is the relacive value or this plan, compared to a plan with $M=68$? It is here the concept oi an efficiency (effectiveness) curve comes in. The following can be postulated.

1) Effectiveness is measured by values Erom zero to one hundred.
2) $E=E(M)$ is a concave Eunceion, as shown in

Figure E. 3.

Figure E. 8. $E=F(M)$ concave Eunction
This arises from the fact shat subjectively values of M close to zero are really 100% effective also. Values of M close to 108 are very close to zero in effectiveness. Thus, we want a flat curve near M equal to zero and a vertical slope near $M=108$. A parabolic curve fits these needs. This leads to a third posculate. That is
3) The relative effectiveness of plans is computed by

$$
E-1=-\frac{1}{(108)^{2}}(M)^{2}
$$

If the decision maker can define a third point, for example, the point $\left(50, M_{50}\right)$ then $E=a y^{2}+b M+2$ can be fitted to the data.

From this analysis the computation of efEectiveness is based on axiomatic considerations. It is arbitrary, but so is the cypical definition of efifictency

$$
\text { efficiency }=\frac{\text { output }}{\text { input }} \times 100
$$

In these tems, the effoctiveness or effictency diagram looks like the one shown in Figure ミ.9.

Figure E.9. EEEectiveness or efficiency diagram
The measure M is the output measured in cems of percent of input. Of course, even in this case, it is possible to use a convex or concave curve. In Eact, an S-shaped curve might be more appropriace for rotating nachinary.

A second illustation is the result of an interHew with another experienced distribution engineer, Mr. Tom Litriecon, of Oklanoma Gas \& Electric Company. The purpose of the session was to test the general evaluation procedure on a cest distribution planning case. This was a large scale distribution planning case in the Arkansas River Basin area.

On chis problem after lengrhy discussion, procecrion and voltage sequizements became the most froportant constraints. Eurther, it was concluded that any olan which clears a Eaule in three seconds is acceptable and also a plan which clears in one second is no better than a plan which clears in chree second. Furchermore, all customer voltage must be within the given linits. \therefore pian winch has all sustomers at the senter of the
limit values has no real preference over a plan which has substantial variacion but no limit is violated. The following three oojectives were finally developed:

01: Minimize present worth of 30 years cost.
O_{2} : Minimize initial capital investment.
O_{3} : Maximize the reliability of the plan.
vo iomal reliajility caiculation or projection was made alchough it was Eormally recognized that one plan decreased reliability by reducing the number of substations and lengthening the line. Reliability is measured by
total ioad hours demanded - ioad hours of ontrage total load hours demanded
Since the study was not Eocused towards this method, some of che data sas estimated. However, a large amount of sumary data was availaole winch put the esEimated on a solid ground. The weignts of the objeczives we:e:

$$
\begin{array}{ll}
0_{1}: & 0.39 \\
0_{2}: & 0.31 \\
0_{3}: & 0.29
\end{array}
$$

The efiミ: i.ncy : inves were developed, as shown in Fig$\because:=ड$ E.IO, E. 11 and E.:2.

 ciency vs. present worti or costs

Sixty-four miplion was the cost of che cheapest plan. 398 tillion was the present worth or revenue projected From the project and thus the maximum allowable expenditure.

Eigure E.i: The develuped efficienc; curve: efficiency vs. short term investment costs.
Fanty-six mi:iion was the smallest initial investment or the plans and 39 miliion was based on the importance Ji the project jeing enough to use up to 70 percent of the j5 million in sapitai which OG \& E projected they couid raise for expansion.

5igure E. 12. The deveioped efficiency curve: efificiency vs. short tem investment costs.

تinery-nine percent was a subjective estimate of the iowest ratio acceptable for raiiablify. Therefore, given the foilowing jata for the aiternatives.

Plan	A	B
O_{1}	58	64
O_{2}	29	26
O_{3}	99.98	99.95

The results of the evaiuation of the altematives are

$$
\begin{aligned}
E_{A} & =.39 \tilde{I}_{1}(68)+.312(29)+.29 f_{3}(99.98) \\
& =.39(.9999)+.31(.95)+.29(.9996) \\
& \cong .9745 \\
E_{B} & =.39 f_{1}(64)+.31 f_{2}(26)+.29 f_{3}(99.95) \\
& =.39(1.0)+.31(1.0)+.29(9978) \\
& \cong .989
\end{aligned}
$$

The results show that the plan B is better and was the chosen pian. However, the resuits of the evaluation are so close that a computation of reliability that was exact might reverse the results. It was, however, felt that the estimate of reliability was conservative in favor of Plan A. The approach then did predict the decision in an accual case.

REFERENCES FOR APDENDIX E

[1] Churchman,.C.N:, Ackoff, R.L., and Amofit E.L., Introduction 50 Operations Researcin, Jonn Wiley and Sons, Inc., New York, N.Y., 1957.
[2] Saaty, L.L., "A Scaling Method for Priorities in Hierarcinical Structures", Journal of Marinematical Psychology, Vol.15, June 1977.
[3] Bammi, Deepak and Bammi, Dalip, "Deveiopment of a Comprenensive Land Use Plan by Means of a Multiple Objective Mathematical Programming Model', InterEaces, Vol. 9. 2, par= 2, Feb. 1979, pp. 50-64.
[4] Crawford, D.M., Huntzinger, B.C. and Kirkwood, C.W. " Multiobjective Decision Analysts for Transmission Conductor Selection", Management Science, Voi. 24, i6, Dec. 1978, pp. $1 ; \overline{00-1710 .}$

APPENDIX F: ELECTRIC ENERGY DISTRIBUTION PLANVLNG DATA BASE MANAGEEENT SYSTEM - PROBLEM SPECIFICATION

SECTION 1: SCOPE

This document is a functional specification of the prototype system being developed as part of the ElecEric Energy Distribution Planning Project. The specifications are not phrased in terms of specific programs. This will be done in the design phase of the Project (see the Project ?lan, 201 for an overview of the project organization). The specifications are in terms of system capabilities and as such, define the system to whici the design must lead.

This is a baseline document and its most recent edition is to be strictly adhered to by all Project personnel.

SECTION 2: APPLICABLE DOCUMENTS

(Reference codes specify documents as they are found in the Data Base Group library).

Ref.
Code
Auchor
Short Title
R20
Date,
Intro. Database Systems
P01
T01 Thompson, J.C.
Gonen, I.
Project Plan
Advantages of Relational Mode 1 Task Summary
Software Tools
R19 Kernighan \&
"Network Editor"
r03 Cubert, R.M.
R21 Fry \& Sibley
Evolution of Database
Management Systems

SECTION 3: REQUIREMENTS

The system to be designed and implemented consists of the following components:

- Database Model
- Procotype Database
- Database Management System
- Vetwork Editor
- Shell Program
- Discribution Planning Programs
- Text Editor

The programs (the last five of the above) are to perform in an interactive environment in winch the human engineer has direct control over the major suotasks in the planning process. The only program componencs of the system winich are not constrained to have response times on the order of seconds are the Discribution Planning Programs. Their performance characteristics are not subject to furcher modification by the implementation effort associated with chis project.

Because of their interactive behavior, the portions of the Problem Specification dealing with the programs will be expressed in terms of what are cailed protocols. These are expressions written in BackusNaur forn which specify the functions which each program is to possess. Xo specification below the protocol level will be presented. Ail further design will be round in the Design Specification. It should be noted that the protocols are not descriptions of the syntax of the interactive commands. They are the Eunctional specifications for the comands. Syntax will je sperified as part of the design in the design document.

3.1 Database

The database is the cotal collection of data that all of the operational programs reçuire in order to execute. In principle, che database(s) also includes
data that conceivably might be required at a later point in tine by more sopinisticated versions of the system.

The real issue however, is not so much what dara constitute the database but whether the data model (dara organization) is capable of supporting the system. It has been recognized for some time (cf. R21) that there are three distinct and well understood database organizations or data models. There are the hierarcinical model, the network model and the relational model.

For reasons not deal.t with here (see TO1), the relational model has been selected as the type system to be implemented for this project. This choice relegates the problem of actual database implementation (as opposed to database management system implementation) to the status of a simple exercise. In fact, we may say that building the database only involves selecting the schema, i.e., dividing the relevant data into relations and inputing the actual data values.

In order to do this latter task, the required data must be known. Detemining which data should be included is the responsibility of task members other chan those in the Data Base Group (see AO3). Once that is done and the data reiations defined, the task of defining the conceptual database is completed.

3.1.1 Relational Database Model

A complete discussion of relational database models will be found in the literature cited in Section 2. Here a few terms will be defined for future reference. Let $D_{1}, D_{2}, \ldots, D_{n}$ be a collection of (not necessarily distinct) sers. A relation R, on these sers is an ordered n-tuple ($d_{1}, d_{2}, \ldots, d_{7}$) where $d_{i} \in D_{i}$, for $1,2, \ldots, n$. The sets D_{i} are the domains of $\}$. The value of n is the degree of R. In a relation R, the ith attribute is associaced with D_{i} and the atcribute values for a given attribute are those values forming a subset of D_{1} in R. The domains, the attributes and their relative ordering in the tuples of a given relation are defined by the schema for the relaEion.

3. 2 Database Management Sustem

Since the early work of Codd, (see R20 for an extensive bibliograpiy) there have been two weil known descriptions or languages for manipuiating eiements of a zelational datajase. One is known as the ralational caiculus and the other as the relational algebra. A full discussion of either of these is beyond the scope of the present discussion (see TOI). Suffice it to say that the relationai algebra is expressed primarily in terms familiar from ser theory and is the more procedural of the two. It also appears tine simpler of the two to implement. For these reasons, the relational algebra approach was adopted for the present system.

In the following sections performance parameters, functional specificarions and human periormance requirements are discussed.

3.2.1 Performance Paramerers

The database management system will be designed to operare on darabases of up to 100 million characters in size. Average maximum response ine will be limited to ifve seconds. This number represents the time it takes to do a single operation on the database wnen running as a stand-alone system. Because response characteristics of different operating systems vary so much from situation to situation, this response time may not be realizable in all interactive environments. However, this is the value for which the syster will
be angineered．

3．2．2 Doerational Requirements

The operational requirements for the database man－ agement syscem are listed below in the form of proco－ cois．An index of terms appearing in the protocois will be found in Section 4 ．

3．2．2．1＜select）function

Functional specification．
〈select〉 〈input relation name〉 〈qualffication〉 soutput relation name）
＜qualification＞$::=$＜tupie relation〉＜qualification〉 ＜tuple relation＞
〈tuple relation〉：：＝〈artribute volume〉〈boolean opera－ tor〉 〈Tuple Emntion〉＊
Semantics：
The subrelation of the input relation specified by qualiEicarion is assigned to the output reiation．

3．2．2．2 〈join〉 function

Functional specifications．
〈join＞〈nput relation name ${ }_{1}$ 〉《input relation name ${ }_{2}$ 〉
＜oi－cuple boolean relarion〉＜output relation nane〉
〈bi－tuple boolean relation〉 ：：$=$ 〈attribute value $\left.{ }_{1}\right\rangle$
〈boolean operator〉
〈attribute value2〉
Semantics：
The 〈attribute value $\left.{ }_{1}\right\rangle$＇s are taken from tuples of the relation specified by＜input relation name ${ }_{1}$ 〉 while the＜attribute vaiue2〉＇s are taken from tuples of the relation speciEied by＜input relation name2〉．All such＝uples which satisiy the＜bi－typle boolean rela－ tion）are conccatenared togecher pairwise to form the relation referenced by 〈output relation name〉．

3．2．2．3 〈project〉function

Functional specifications．
（oroject）〈input relation name〉〈attribute name list〉〈Output relation name〉
〈attribute name list＞：：＝〈attribute name〉〈attribute name list＞
｜〈attribute name〉
Semanties：
3Eryibutes of 〈input relation〉included in〈aここrioure name tist〉 are used to form a new relacion teferenced by＜output relation name＞．Only one in－ stance or identical tuoles is retained．

3．2．2．4 〈divide〉 Euncrion

Functional specifications．
Áivide〉 〈input dividend relation name〉 ＜input unary divisor relarion name〉 ＜output unary quocient relation name）
Semanelcs：
Indicate the 〈divide〉 operation with the follow－ ing expression $Q=X \div Y$ ．Then $q \in Q$ impiles（ q, Y_{i} ）
ミX for all $y_{i} Y$ ．

3．2．2．5 〈minus〉 function

Functional specifications．
＜minus〉 〈input subcrahend relation name，
＜inpur minuend relation name）
（Output result relation name）
Semantics：
The relations specified by＜input suotrahend alation name〉 and 〈input minuend relation name）must

[^21]be union－compatible，i．e．，must be of the same degree n and the jth attribute of one must be drawn from the same domain as the ocher $1 \leq j \leq n$ ．The reiation spe－ cified by＜output result relation name〉 consists of those cuples of the 〈suotrahend relation〉 which are not in the＜minuend relation〉．

3．2．2．6 〈union〉function

Functional specifications．
〈union〉＜input relation－name ${ }_{1}$ 〉 input relation name ${ }_{2}$ 〉 （output relation name）
Semantics：
The input relations must be union－compatible．The〈output relation＞is the relation containing tuples which appear in either＜input relation 〉 $_{\text {〉 }}$ or input rela－ Eion 2 （or both）．

3．2．2．7＜intersect）function

Functional specifications．
〈intersect〉〈input relation name ${ }_{1}$ 〉 〈input relation name ${ }_{2}$ 〉 ＜output relation name＞
Semantics：
The input relations must be union－compatible．The relation output relation consists only of Ehose tu－ ples contained in both the relations（inpur relations ${ }_{1}$ 〉 and 〈input relations ${ }_{2}$ ．

3．2．2．8 〈multiply〉function

Funcitional specifications．
＜multiply．）＜input relation name ${ }_{1}$ 〉＜input relation name ${ }_{2}$ 〉 ＜output relation name＞

Semantics：

The relation＜output relation〉 consists of ail tu－ ples which can be formed by concatenating tuples of〈input relation ${ }_{1}$ 〉 to those of 〈input relation？in that order．

3．2．2．9 〈Invoke database management system〉 function

Functional specifications．
〈invoke database management system〉 〈database name〉〈user＿id〉
Semantics：
The database management system is invoked to per－ form transactions against the database specified by〈database name〉．The 〈user＿id〉 must be supplied．If no database by this name exists，one will be created with its database administrator（DBA）corresponding to the 〈user＿id〉．

3．2．2．10 〈destroy database〉 Eunction

Functional specifications．
〈destroy database〉 〈database name〉 〈user＿id〉
Semantics：
The database specified by database name is re－ moved from the system，provided the 〈user＿id〉 is iden－ tical to that of the database administrator．Other－ wise，an error results．

3．2．2．11 〈create relation〉 function

Functional specifications．
〈create relation〉 〈relation name〉 《schmea specification〉〈access method〉（retension status〉 （permission）
$\langle s c h e m a$ specification〉 $::=$ 〈attribute lisc〉〈key list〉〈attribute list〉 ：：＝〈attrioute name〉＜＜main specifi－ cation〉 〈attribute list〉
｜〈attribute name〉 domain specifi－ cation＞
‘key list〉 ：：＝jattribute name〉〈key list〉 ｜（atrribute name）
〈domain specification〉 $:=$（int〉｜＜float〉｜（char〉

〈field length〉 Ketension status〉：：＝＜temporary〉｜
〈rerension dace〉 〈permission＞：：＝〈write〉｜＜execute〉 Semancics：

A relation with the name＜relation name〉is crea－ ted．The schema is specified by means of the＜schema specification＞．This command is illegal uniess the user has 〈write〉 or 〈execute〉pernission（or is the DBA）．

3．2．2．12 〈destroy relation〉function

Functional specificarions

〈destroy relacion〉 〈relation name〉 〈permission〉
〈permission〉：：＝〈execute〉
Semantics：
The relation specified by 〈reiation name〉 is removed from the database．For relations whose 〈retension sta－ tus〉 is not equal to 〈temporary＞，this command is il－ legal unless the user＇s 〈permission〉 equals 〈execute〉．

3．2．2．13 〈copy〉 function

Functional specifications．

〈copy〉 〈external database name〉 〈external relation name〉 Clocal relation name〉 〈access method〉
〈recension starus〉 〈external permission〉
external permission〉 ：：$=$ 〈execute〉
Semantics：
A relation specified by＜external relation name〉 tesiding in a dataioase specified by＜external database name）is copied into the database currently under the control of the user．〈execute〉 is the only legal value for the user＇s（permission）relative to the sexternal database）．

3．2．2．14 〈modify〉．function

Functional specifications．
〈nodify〉 〈input relation name〉 〈new access mechod＞〈output relation name〉〈permission〉
〈permission〉 ：：＝〈execute〉
Semantics：
The relation specified by 〈Input relation name〉 is copied into a new relation organized according to the （access method）specified．The new relation is refe－ renced oy（output relation name）．

3．2．2．15 〈oucput relation〉 function

Funcrional specifications
〈Output relation〉（relacion name〉（format specification） Semantics：

This command coerces the relation referenced by〈relation name〉 into a form suitable for output on the system output file．The 〈format specification〉 option－ ally concrols conversion from one set of units to ano－ ther．

3．2．2．16 〈output schema〉 function

Functional specifications．
〈 $o u t$ put schema＞（relation name）juser＿1d＞
Semantics：
〈output schema＞converts the schema associated with the pair（＜relation name〉，（user＿id）into a form suit－ able for output on the system output fille．

3．2．2．17（input relation）function

Functional specifications．
〈input relation〉 〈relation name〉（format spectfication） Semantics：

Data for a predefined relation is read from the standard input file under format control．The format specificarion optionally controls conversion from one set of units to another．

3．2．2．18 〈delegate〉funcrion

Functional specifications．
〈delegate〉 〈relation name iist〉 〈access list）（user〉 relation name list）$::=$（relation name）＜relation name list）
｜（reiation name）
（access list）：：＝（schema specification＞（permission） （user＿id list）（access list）
＇schema specification；permission〉 （user＿id list）
（permission）：：＝（Fead）（＇write）（execute）

｜user group 1d）〈user＿id 1ist〉
｜〈user＿id）｜《user＿group＿id〉
〈user〉 ：：＝〈DBA〉
Semantics：
〈delegate〉 is used by the DBA to delegate certain priveledges to other users of the database．The per－ mission 〈read〉 permits the user to form queries only． ＜write〉 permission allows a user to form queries and to〈define〉 and（save〉 new relations．〈execute〉 permis－ ston，in addition to priveledges associated with the above，permits the user to 〈update）relations．Note however，that even a user with 〈execute〉 permission is not the DBA since the DBA alone has the power to ＜purge）relations and（destroy〉 databases．

A＜user＿group＿id＞is a designation that applies to a group or users．〈user＿group＿ià＇s are defined by the DBA in the system database．

3．2．2．19 〈save〉 function

Functional specifications．
（save〉 \｛relation name〉 \｛retension status〉 〈peraission〉〈retension status）：：＝〈temporary）recension date〉〈permission〉 ：：＝\｛write）〈execute〉
Semantics：
The relation spectfied by＜relation name〉 is to be retained in the database for the period of time speci－ fied by 〈retension status〉 of＜temporary＞at their time of creation unless this default value is overridden． Relations with（temporary）status are destroyed when the user＇s interactive session terminates．

3．2．2．20（purge）function

Functional specifications．
〈purge）\｛user＿id〉
（user＿id）：：$=$－${ }^{\text {（DBA }}$ ）
Semantics：
Execution of（purge）removes all zelations from the database whose iretension status）has matured．

3．2．2．21 〈assign〉Eunction

Functional specifications．
〈assign＞jnput relation name〉 jassignment list〉〈outpue relation name〉 ¡permission＞
〈assignment list＞：：＝${ }^{\text {attribute }}$ name （tuple function） \assignment list〉
｜attribute name＞¡tuple function）
〈permission）：：＝\｛write〉｜iexecute〉
Semantics：
The relation specified by（output relation name）
is formed by assigning to attribute values，the results computed according to the（tuple function）＇s．The assignment is made for every tuple in the relation re－ ferenced by（input relation name）．

For example，suppose a relation salary is defined by the schema
salary \｛employee॥，pay\} KEY (employee")
and that each employee is to receive a 10% raise．
Then（assign）could be used as follows：
（assign＞salary＂pay ：＝（1．1＊pay）＂new salary．
Attribute values not mentioned in the 〈assign〉 state－
ment are copied unchanged to the output reiation．

3．2．2．22 〈update〉 function

Functional specifications．
〈update〉 〈input old relation name〉 \input modifying rela－ tion name）（output new relation name〉 〈permission〉乡permission）：：＝〈execute〉
Semantics：
The relations referenced by（inpur old relation name）（the old relation），and input modifying rela－ tion name）（the modifier），must be union－compatible． Iuples are compared on a $1-1$ basis and those in the old relation with ：uples whose keys match those of the modifier are replaced by the corresponding tuples in the modifier to form the new relation．The new rela－ cion has the same degree and cardinality as tie old relation．

3．2．2．23 〈restore〉function

Functional specificacions．
〈estore〉 〈database name〉 〈edition identiffer〉
〈transaction Eile identifier〉（user＿id〉
〈user＿id）：：＝〈DBA〉
Semantics：
This function is used to restore the database to current status after a system failure．The transaction file contains a list of all permanent changes to a sope－ cific edition of the database over some period of time．

3．2．2．24 〈dump〉 function

Functional specifications．
〈dump＞〈database name＞〈edition identifier〉 〈output file name〉 〈user＿id〉
〈user＿id〉 $:=\langle\mathrm{DBA}\rangle$
SemanEics：
Execution of this command creates a backup copy of the database referenced by 〈database name〉．

3．2．2．25 〈help〉function

Eunctional specifications．
〈help）（command name〉（description qualifier） Semantics：

Shelp）supplies information about system capabili－ ties upon user request．The description will be more or less decailed according to the 〈description quali－ fier＞．

3．2．3 Human DerEormance

The human support for the database management sys－ tem is minimal．It consists primarily of human－ directed management of the system files on which the dbms depends for such things as＜user＿id＞＇s and＜per－ mission＞assignments made to users．

Requirements on the user are not onerous either． If the basic ideas behind a relational database are well understood and if the user has a minimum familiar－ ity with relational algebra，the system should be straightforward to use．

3．2．4 Language Soecifications

The syncax for the relational algeora－base queries will not be specified in this document．The spirit which is to be infused into this language can be iden－ tified as the same spirit manifest in the command lan－ guages exhibited in the Software Tools（R19）．It re－ mains to be seen however，precisely what form this will impart to the query language．

3． 3 Network Editor

The network editor is an inceractive subsystem
which will allow the planning engineer to creace and modify network models for processing by other planning programs．From a human engineering poinc of riew，it is much more satisfactory to allow the engineer to work directly with networ＇k concepts than to effect the same process by using the database management system．A supplementary discussion of the network edicor will be found in TO 3.

3．3．1 Performance Paramerers

Networks are scored in the system as relations in a network database．Generally，therefore，the network editor must meet the same performance goals that the database management system must meet．

3．3．2 Network Objects

Network objects are described here to the same le－ vel of derail that was supplied for the database man－ agement system．

3．3．2．1（network）

〈network〉：：＝〈object list〉
〈object list＞$::=$ 〈object〉 〈object list〉｜ebject〉
〈object）：：＝〈primitive object〉（composite object）
A network is a collection of objects or components which may be either primitive（atomic or simple）or composice，i．e．，composed of a collection of simple or composite elements．

3．3．2．2 〈primitive object〉
$\langle p r i m i t i v e ~ o b j e c t\rangle::=$（name〉 〈object class〉＜connec－ tion list）
$\langle o b j e c t$ class〉 $::=$ 〈descripeion〉 〈input port list〉〈oucput port list＞
\langle description〉 ：：＝〈paramerer list〉＜qualitative des－ cription）
〈parameter list＞：：＝parameter〉＜parameter list． ｜’paramerer〉｜＂NUL＂
\langle parameter〉 ：：＝＜constanc〉；（rartable〉｜＜numerical state var－ iable〉（booiean state variable）
\langle（nput port list〉 $::=\langle$ port \rangle input port list）\langle port〉〈output port list）：：＝〈port〉 \｛output port list？：〈port〉 ＜connection list，$::=$ 〈list for each port〉〈connecrion lisc）＜list for each port
《list for each port〉：：＝〈list〉 \｛OPEN〉
〈list〉：：＝（connection）〈iist）〈connection〉
Primitive objects consist of a name，an object class and a list of connections to other objects．An object class consists of a parametric description e．g．， values of capacitance for a capacitor，quaiitative in－ fomation such as the device ciass name，and a list of input ports and output ports．

The parametric ciescription is general enougn to permit the parameters to be variables as well as con－ stants．The variables are of two types．One type， called state variabies，are global to the entire net－ work and way assume different values resulting in dif－ ferent network configurations．This is especially true for network components such as swirches winich may be opened or closed according to the value for the boo－ lean state variable which defines their state．＊

The second type of variable，found in both primi－ tive and composite object，to be discussed below，is analogous in some respects to a subroutine in that the composite object may have formal variables，whose va－ lues are determined at instantiation rime．Parameters of primitive objects denoted as variables assume the values assigned to the formal variables of the compo－ site object in which they are embedded．
3．3．2．3（composite object）
＊cf．the discussion of switches in TO3．
 （connecrion lis：）
（二人mosite object ciass）：：＝\｛composite description）（inout porr list）〈outpue port iisc〉气́nposite jescription）：：＝paramerar lisc〉〈qualizative description〉〈nerwork〉
Composite odjects are described in the same way Shat primitive objects are except that a description of the（sub－）network connecting fheir constituient parts must be included．Pares defined in object class＇s of suonetrork components jut Eor which connection lists are unspecified are identified in the＜composite object class＞and are connected via the＜connection list＞of the 〈composite ooject〉．

3．3．3 Doerational Requirements

In this section，the funcitonal specifications for the network editor will be described．

3．3．3．1 〈invoke network editor〉

Functional specifications．
〈invoke network editor〉（network name〉 〈permission〉〈ermission〉：：＝〈write〉 〈execute〉
Semantics：
This command activates the network editor．The user must have either 〈write〉or 〈execute〉permission to invoke the edicor on a given necwork．〈write〉 per－ mission ailows the user to create and save networks， execute）peraission is required to modify a network already created．

3．3．3．2（creare object Elass；

Eunctional specificazions．
〈ourput object class＞

Semantics：

This command astablishes the paradigm for the net－ work component．No specific object is created by this command（since no cursor is recumed to point to a sopecific objecr）．This function is used to create new primitive óoject class）＇s nor inciuded in the system yocabulary and Eor juilding composite（object ciass）＇s．

3．3．3．3 ©create objec：？

Eunctional specifications．
©reate ooject？input soinct class〉（input name）
（input paranecer specification）
〈outpur odject Earsor〉
Semancics：
A zetwork sbject is created．A cursor（pointer） is returned which can be used to connect the object to the network，

3．3．3．4 〈discard object）

Func：ional specificarions．
（iiscarc zojec：）〈inpue cojec：Eursor）
Semancics：
 in jojec：winch is concsinad in a network cannor be〈iscari＞ed．it must first be removed from the necwork （using 〈ramove））．
3．3．3．5 〈adi odject〉
Functional specifications．
〈add ooject〉 〈input ooject cursor〉 〈input network cur－ sor）\｛inpus port－port descripeory \｛out－ puc network cursor：
〈 port－port descriptor〉：：＝〈ooject port name〉
\｛network oojecs pors name〉

Semancics：

An objec：not initially attached to the network is connested to the network via a connection from the ob－ jecs co an ooject aiready inciuded in the network．Ob－ jects already included in the network cannot be 〈adi eed．

2．3．3．6 〈remove object〉

Functional specifications．
〈remove ojject）〈input network cursor）〈outpue object cursor）〈output network cursor〉

Semantics：

An object contained within the network is removed from the nerwork．The object still exists（there is a poincer to it）but it is no longer included in the net－ work．The operation retums an error if the ooject is not initially in the network．

3．3．3．7 〈connect network objects＞

Functional specifications．
〈connect network objects）〈inpue network cursor ${ }_{1}$ 〉《Input network cursor？（inpue port ${ }_{1}$－port $_{2}$ descriptor〉 （output network cursor）〈 Port $_{1}$－port 2 descriptor〉：：＝inetwork object 1_{1} port name）

Semantics：

Two network objects are conrecred together．Sorh must already be included in the network and nuse have compatible port characteristics．

3．3．3．3 \｛disconnect network objects？

Functional specifications．
\｛disconnect network objects）input network cursor ${ }_{1}$ \} \＆nput zetwork cursor2）\input port ${ }_{1}$－port 2 descriptor）〈output netwrok cursor）
Semantics：
a connection berween two network oojects is bro－ ken．This command is illigal if it breaks the only connection becween an object and the network．

3．3．3．9（set state variables）

Eunctional specifications．
〈set state variables〉 〈input parameter assignment list〉
〈parameter assignment lisi〉：：：〈parameter assignment list〉〈parameter assignmenc〉
〈parameter assignmenc〉：：＝〈paramerer name〉 〈paramecer ex－ pression＞
Semantics：
State variables are assigned values with this com－ mand．A state variabie is assigned the vaiue associa－ eed with the expression comprising parameter expres－ sion ．All variables appearing in a paramecer expres－ sion must have previousiy been defined．

3．3．3．10 〈finc object〉

Functional specifications．
〈find object〉〈input network cursor〉 〈input context description）〈output network cursor〉
Semantics：
This function is anaiogous to the context search conmand Eound in high performance text editors．The ＜context description）will probabiy be defined using ＝eguiar expressions over the ojject class alphabet． The search will be done in a specifiec traversal order．

3．3．3．11 〈save ．．．）

Functional specifications．
（save necwork）〈network，name〉 〈permission）
ழenission〉：：＝〈write〉；〈execuce〉
〈save oojacts〉 〈objec：cursor list〉 〈permission〉 ऐbject cirsor list）：：＝＜odject cursor＞¢oject cursor
lisc）〈ójecr cursor）
〈save object class〉 〈object class lisc〉 jpenaission〉

〈ooject class list＞：：：＜object class〉＜object class 1 ist \rangle
〈也bject class〉
Semantics：
Each of the entities mentioned is permanencly re－ tained within che system．

3．3．3．12 〈list ．．．〉

Function specifications．
〈list network〉 〈input network cursor〉 〈input list quan－ tifier〉 〈input format specification〉＜output network text＞
〈list network objects＞〈output object list〉
¡isst network object classes〉＜output object classes＞ Semantics：

The 〈list network〉 command may be used to list the topology of a network or a subnetwork or even to list the properties of a single component in the network． These different options are controlled by the＜list quantifier）．The form of the output is determined by the 〈format specification〉．
〈list network objects＞and 〈list network object class－ es）permit the user to recall what parts and what ob－ ject classes are currently availaile．

3．3．4 Human Performance

The same remarks made in Section 3．2．3 and 3．2．4 are appropriate for the network editor as well and will not be repeated hese．

3．4 The Snell Program

The shell program is the overseer or executor pro－ gram．It is，in essence，a miniature operating system and is to be designed so as to insulate the other ma－ jor componencs of the system from a possible inhospiti－ ole environmenc which the host operacing system would otherwise provide．

The general capabilities of the shell provide a Eile system，the ability to support and invoie the dbms and the network editor as well as the distribution olanning programs，a sophisticated prompting facility and（heip〉 features．

3．4．2 Shell Eiles
There are five scandard shell files：〈INfile〉， ©OUTfile〉，〈ERRfile〉 〈EXTinfile〉 and 〈EXToutfile〉． Each is discussed below．

3．4．2．1 〈INfile〉

This is the standard input file will be associated with the terminal input device．

3．4．2．2 〈OUTfile〉

This is the standard output file and will be asso－ ciated with the cerminal output device．

3．4．2．3 〈ERRfile）

This is the standard error output file．it is associaced with tie terminal．

3．4．2．4 〈EXTinfile〉

This is the standard input file for reading bulk cara．Normaily，it will be associated with a disk or cape ille maintained by the host operating system．

3．4．2．j 〈EXToutiile〉

This is the standard output ille ior vriting julk data．Normally，it will be associated with a disk or tape Eile maintained oy the nost operating system．

3．4．2．6 Internal files

The shell program maintains its own file system． This system is logically independent of the file sys－ tem supported by the host operating system．These files are known via a catalogue internal to the sheli． The permissible operations are discussed below，begin－ ning with Section 3．4．3．6．

3．4．3 Operational Requirements

The shell commands are lisced below．

3．4．3．1 〈invoike she11〉

Functional specifications．
〈invoke shell〉 \｛user＿id〉〈database name；＇EXTinfile〉〈EXIoutfile；〈audit Eile name；
Semantics：
The shell user must supply his＜user＿id，a data－ base name to which the shell is to be connected and bulk I／0 file names．The＜database name〉idencifies the database against which all transactions are to be conducted for the duration of the shell session．All actions affecting the database are recorded on the file specified by 〈audic file name〉．This file can be post－ processed to produce itransaction file？for use by the （restore）function（see Section 3．2．2．23）．

3．4．3．2 〈execution〉

Functional specifications．
〈execute〉 iprogram name〉 froml to）
〈from〉：：＝iNfile〉｜〈file name〉
\langle＜LO：：＝〈OUFfile〉｜〈ile name〉
Semantics：
The program identified by program name is in－ voked．The input file is identified by＜irom？and the output file is identified to＇to，

3．4．3．3．pipeline）
Euncrional specificarions．
（pipeline）＇program name list）（from＞（to）
〈program name ifst〉：：（program name；’orogram name lisc；program name；
©Erom；：：＝iINfile；file name

Semantics：
（pipeline）execution allows the user to execute several programs whose output is the input for the next program in che series．．The programs identified in〈program name list＞will be executed in the order in which they appear in the list．Input to the first pro－ gram is the file identified by（from）and the output or the list program is placed in the file identiried by \langle co〉．

3．4．3．4 〈execute contral file〉

Function specifications．
〈execute control file〉 〈control file name〉
Semantics：
The file identified by control file namè is to be a control file，i．e．，a file of shell commands and processor invocations．These are executed as they are encountered．Then the ifle is exiausced，controi re－ turns to the file in which the \｛execute control file） was emoedded（if the exhausted file is the terminal file＜INfile〉，the shell waits for further inpur）．

3．4．3．5 Subsystem invocations．

The invocations for the suosystems already dis－ cussed are listed here for compleceness．One furcher system remains to be discussed，namely，the Eext edi－ tor．Its invocation is also included．
（invoke database management systemy（3．2．2．9）
〈invoke network editor）（3．3．3．1）
（invoke text editor）

3．4．3．6 jereate＞
Functional specifications．
（create）（input file name）input user＿id）（input ac－ cess list）input retension status＞\｛output file pointer？
access list）：：＝\｛permission〉 \｛user＿1d list〉 \}access list）｜permsission）（user＿id ilst）
（permission）：：\quad iread〉｜＇write〉｜〈read－write〉
〈user＿id lisc）：：＝＜user＿id〉 user＿id list〉｜〈user＿group
＿id〉〈user＿id list〉〈user＿id〉〈user －group＿id＞
〈retension status＞：：＝〈cemporary〉｜｜fetension date〉 Semantics：
create）produces a mapping from a \｛ivile aame＞to a＜́file pointer〉 which is a descriptor used by the sys－ tem to permit other system processes to access the file of interest．A file may be designated as 〈read＞－only， （write〉－only，or both 〈read〉 and 〈write〉．The result of（create）is always to produce a pointer to an empty file．

3．4．3．7 \｛open＞

Functional specifications．
〈open〉 inpur file name〉 input user＿id〉〈input mode〉 ＜output file pointer〉
mode）：：＝〈read；｜〈write〉｜〈read－write〉
Semantics：
〈open〉 returns the 〈file pointer〉 to the user pointing at the first block of the file．The mode specifies the use to which the ille will be put and must be compatible with the permission）definition made at the time the file was created．Attempting to （open）a file which is already open is an error．

3．4．3．8．©＇close’

Functional specificarion．
close）input file pointer＞
Semantics：
close〉 releases the file designated by＜file pointer）irom the user＇s control．

3．4．3．9 〈unlink〉

Bunctional specifications．
（unlink〉 〈input file name’
Semantics：
〈unlink〉removes the Eile specified by 〈Eile name〉
From the system．Fiies whose 〈retension period〉＇s have exceeded，are automatically unlinked by the sys－ cem．

3．4．3．10 〈save Eile〉

Functional specifications．
save file〉 \｛input Eile name〉（input retension period） Semantics．

The file designated oy \｛file name〉 is to be re－ tained by the system for che period specified by the retension period．

3．4．3．11 〈list Eiles〉

Eunctional specifications． \langle list files〉（inpur user io 〉 〈output file lisc〉 Semantics：

The list of files associated with（user＿d）is routed to the output file．

3． 5 Distribution Planning Programs

Because oi the necessity of performing text edi－ tion while using the system，a text editor will de in－ cluded as part of the system．The particular editor will be the one defined in R19．

[^0]: -'Churchman, C.iN., R.L. Ackoff, and E.L. Amoff, introduction to Operations Researeh, Vew York: jonn Siley a Sons, Inc., 1957
 ${ }^{2}$ Saary, L.L., "A Scaling Merhod Eor Priorities in Hierarchical Structures", journal oi Yarnematical ?svchology, Vo1. 15, June i977, ?0. 234-281.

[^1]: ${ }^{3}$ Crawford, D.M., B.C. Huntzinger, and C.iJ. Kirchwood, "Multi-objective Decision Analysis Eor Transmission Conductor Selection', The Inscitute of Yanagement Sciences, Vol. 24 , No. 15, Dec. 1078 , pp 1700-1710.
 ${ }^{4}$ Bammi, D. and D. Bammi, "Development of a Comprenensive Land Use Plan by Yeans or a Vultipie Objective Machematical Programming Model", Inceriaces, サol. 9, No. 2, Part 2, 5ed. i979. pp. j0-ú4.

[^2]: LAIEE Comittee Report, "System Planning Practices," AIEE Iransactions, ?t. III (PAS), Vol. ít, Dct. 1955, 3p. 896-900.
 J.K. Dillard and H.K. Sels, "An Introduction to the Study oi System Planning jy Uperational Gaming Models," AIEE Transactions, Pe. III (PAS), Vol. 73 , December 1959, pp. 1284-1290.

[^3]: Kairs, T.G., G.N. Nakefield, E.L. Jonnson, and K. Spieljerg, "On a Production Allocarion and Distripurion Prodem," ETMS, Vol. 24, No. 15, Nov. 1978, pp.

[^4]: Boobie L. Foote and Iuran Gonen, "Application of Mixed-Integer Programming to Reduce Sub-Optimization in Distribution Systems Planning", che 1979 Modeling and Simulation Conference, University of Pittsburgh, Pictsburgh, PA, April 25-27, 1979.

[^5]: 2^{2} John C. Thompon and Turan Gonen, "Distribution System Planning: Past, Present, and the Future-Part II: The Future", IEEE MEXICON-19 Conference, Mexico City, Mexico, Sept. 10-12, 1979.

[^6]: ${ }^{3}$ Turan Gonen and John C. Thompson, "Distribucion System Planning: Past, Present, and The Future-Part I: Past and Present", IEEE ${ }^{[E X I C O N-79}$ Conference, Mexico City, Mexico, Sept. 10-12, 1979.

 4 John C. Thompon and Turan Gonen, "An Interactive Distribution Syscem Plannirg Model", the 1979-Modeling and Simulation Conference, University of Pittsburgh, PA, April 25-27, 1979.

[^7]: * = Needs inceractive deveiopment.
 ** $=$ Designed in this research.
 *** $=$ Needs to be developed.
 $\mathrm{R}=$ Recommended for the function.

[^8]: *Oklahoma Gas and Electric Company was particularly helfful in releasing detailed infomation on their data base.

[^9]: 1Date, C.J., an Introduction to Database Syscems, 2nd Edition, Addison-Wesley, Reading Mass., 1977.
 2 Fry, J.P., and Sibley, E.H., "Evolution of Data Base Management Systems", ACM Computing Surveys 8 , No 1 , (1976), pp.
 ${ }^{3}$ Codd, E.F., "A Relational Model of Data for Large Shared Data Banks", Comm. ACM 13, No. 6 (1970), pp. 377-397.

[^10]: ${ }^{3}$ Codd，E．F．，＂Relational Aluebra＂，Courant Computer Science symposia 6，＂Data 3ase Sustems＂，Ne＇York， May i9il，Prentice Pali，New York，i9il．

[^11]: NThe syminol＂：：

[^12]: ${ }^{6}$ Stoneoraker，M．Wong，E．，Kreps，P．，＂The Design and Implemencarion of INGRES＂，ACM Transactions on Dacabase Systems 1 ，No． 3 （ 1976 ）．
 7Paiermo，F．P．，＂A＂dataiase Search Problem＂， Information Systems：Coins IV（ed．，J．T．Iou），New York，？lenum Press（1974）．

[^13]: ${ }^{Z}$ Thompson, J.C. and Atkins, G., "The Use of Generalized \mathbb{K}-romulas for the Suntac:ic Description of Data Structures," submitted to a technical fournal. 9
 Ricchie, D.M., and Thompson, K., "The UNIX TimeSharing System," Comm. ACM, 17,' (1974), po 365-375.

[^14]: $\overline{11}$ Ritchie, D.M., and Thompson, K., ibid., p. 370

[^15]: ${ }^{1}$ Kernighan, B.iN., and Ritchie, D.M., The C Programming Language, Prentice-Hall, Englewood Ciifis, N.J., 1978.
 ${ }^{2}$ Kernighan, B.W., and Plauger, Software Tools, PrenticeHall, Englewood Cliffs, N.Y. 1977.
 3^{3} Knuth, D.E., Structured Programming with goto Statements," Computer Surveys, Vol. 6(1974) pp 261-301.

[^16]: enter 2 numbers to be used as $\#$ of rows \& columns. 1.1, $\mathrm{n}=\% \mathrm{c}, \mathrm{m}=\% \mathrm{~d}$
 enter the entire ratrix 1 row for 1 input line
 m each element is 4 or less digits long, separaced by commas.

[^17]: ${ }^{6}$ Knuth, D.E., op. cit., p. 491.

[^18]: ＂ryc is．usea as an abbreviation for＂full－time equira－ lent＂

[^19]: *Proposal For Electrical Energy Distibution Systems in response to ERDA RFP No. EC-77-R-02-0034 submitted by University of Oklanoma, Ofifice of Research Adminiscration, 1000 Asp Avenue, Room 314, Norman, OK 73019.

[^20]: *Churchman, C.'N., dkoíz, R.L., and Amofi, E.L., Incroduction to Operations Research, John iiliey \& Sons, Inc., New York, N.Y., 1957.

[^21]: ＊E is incerstood that the suple function depends on
 $35 t=i b u t e$ value jeing compared．

