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FUNCTIONAL INTEGRAL APPROACH TQ CLASSICAL STATISTICAL DYNAMICS

Roderick V. Jensen

Plasma Physiecs Laboratory, Princeton University,
Princeton, New Jersey 08544

A functional integral method is developed for the
statistical soclution of nonlinear stochastic differential
equatione which arise in classical dynamics. The functional
integral approach provides a very naturali and elegant deri-
vation of the statistical dynamical equations that have been
derived using the operator formalism of Martin, Siggia, and
Rose.(l) More importantly, it is easily extended to a broad,
new class of nonlinear dynamical equations with random coef-
ficients. 1In particular the equations of motion for the
correlation and response functions are determined for classi-
cal systems with non-~Gaussian initial conditions, multiplica-
tive random forces, and nonlinear interactions which are non-
local in time. These results have applications in the calcu-
lation of particle motion in stochastic magnetic fields, in
the solution of stochastic wave equationsg, and in the descrip-
tion of electromagnetic Vlasov turbulence. As an illustra-
tion of the new results for nonlocal interactions, the elec-

troragnetic dispersion tensor is calculated to first order in
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renormalized perturbation theory.

KEY WORDS: classical statistical dynamics; stochastic
differential equations; functional integral formalism;
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1. INTRODUCTION

The first satisfactory theory for the calculation of the
statistical properties of classical dynamical systems was developed
by Martin, Siggia, and Rose(l) (MSR), who constructed a Heisenberg

el
operator theory which parallels the Schwinger formalism'2) of

guantum field theory. They derive closed equations for the statis-
tical correlation and respomse fuwnchbions, which can be used as 2
starting point for systematic perturbation theories. Considerable

effort has been expended in refining and extending this operator

theory-(3‘6)

Although functional integral technigues have a long and

successful history in gquantum theory and equilibrium statictical

(73 they have only recently been exploited in the study of

8 (2 and Janssen(IO)

mechanics
classical statistical dynamics. De Dominicis
have shown that the equations of notion for the correlation and
response functions given by MSR can also be derived from a fuiac-
tional integral solution to the underlying stochastic Aifferential
equations.

This functional integral method is analogous to Feynman's path
integral formalism for gquantum theory.(7) It is a more natural and
elegant approach to the statistical dynamics of classical systems.
whereas MSR are required to introduce, ad hoc, an unphysical opera-
tor which is “conjugate" to the classical random field, the analog

of this cperator appears naturally in the functional integral

method.



We have extended the functional integral approach to a much
broader class of nonlinear Stochastic differential equations. Re~
cause of the ad hoc nature of the original MSR formalism, it has
proven difficult to extend the original method to non-~Gaussian ini-
tial conditions(s) and multiplicative random forces(3~4) and impos-
sible to extend it to nonlocal interactions. However, al’ of these
extensions are straightforward in our functional integral formalism.

In Section 2.A we establish our notation and define a class of
stochastic differential equations which includes many problems of
physical interest:; and the operator formalism of MSR is reviewed in
Section 2.B to introduce the fundamental ideas involved in the des-
cription of classical statistical dynamics. 1In Section 2.C we deve-
lop our functional integral formalism which provides a formal statis-
tical sclution for the entire class of dynamical equations defined
in Section 2.A. This is the primary contribution of this paper.

Our formalism encompasses all previous work on stochastic dif-
ferential equations with arbitrary random initial conditions and
local forces; and it provides new results for forces and interactions
which are nonlocal in time. 1In Section 3.3 we recover Deker's(e)
results for the corrections due to non-Gaussian initial conditions.
The equations of motion for the correlation and response functions
for a dynarmical system with a multiplicative random force are derived

{(11)
in Section 3.B. These results have also been derived by Phythian.

They differ from the eguations of Deker and Haake(3) in that the sta-

tistics of the random force are decoupled from the statistics of the

random field, This separation of the statistical averages has prac-
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tical advantages. We further note that the results of Deker and
Haake[B) are alsc easily derived using a slight modification of our
technigues. Thus the functional integral approach serves to unify
the different results for this problem.

Finally, in Section 3.C we derive the statistical eguations
for nonlinear dynamical systems with non local interacticons, These
new results provide a complete formal description of the statistical
dynamics of an important class of stochastic differential eqguations.
We then use the equations for the correlation and response functions
to derive the electromagnetic dispersion tensor in lowest order
renormalized perturbation theory (Direct Interaction Approximation) .

This p.ovides a practical application of our formal results.

(12

}
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2. THE OPERATOR AND FUNCTIONAL INTEGRAL THEORIES OF CLASSICAL
STATISTICAIL DYNAMICS

A. Stochastic Differential Equations.

Consider the class of stochastic differential equations which

can be written in the following generic form:
3t1¢(1) = U {l) + U2012)9(2) + Ua(122)9p(2}9(3)
oot U (1) (1) .. t(n) (2.1) !
+ 6(t-to)Po(])

where $(1) is in general a real, multicomponent classical field

d+1 « 2l

defined on R which has a jump discontinuity at

ti=to: P(1) = H(t;=-te)¥(l). The index 1 = (tl,xl...xd, nl...nm)=(t1,i)

represents the time, space, and other variables and internal indices

which are arguments of the field y(1); and summation and integration

over repeated indices is assumed. Moreover, the "forces" and

interactions U {(l...i) = T, (1...i) + ‘t)’i(l...i) are integro-

differential operators which can be decomposed into a deterministic

piece ﬁi(l...i) and a randem piece Si(l...i) with known statistics. !
The interactions are also reguired to be causal. In other words, :
if Un(l...n) involves time integrations, the integrals can only

range from tg to t,. Finally, the initial condition will generally

consist of a deterministic and a random piece: Yo = Yo + Ta.

The fundamental statistical quantities are the mean field

(w(l)), the fluctuation function or cumulant function

|-
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(q;(l)w(z))C = vy - (w(l))(w(z)) and the averaged response

function to infinitesimal external perturbations

Sy (l)
R{12) = < — > . Here the brackets (...)will be used to
U2}/ | 52y =0

indicate averages over all random elements in the problem.

We will develcop a complete formal description of the statisti-
cal dynamics for this general class of stochastic differential
equations. Since many interesting physical prchblems can be cast

in this form, their formal solution will constitute special cases

of our results.

Some important problems which lead to stochastic differential

equations of this type are discussed below for illustration.

(i) Navier-Stokes Turbulence with a Random Stirring Force

The Wavier-Stokes equation for a randomly stirred, incompres-

sible fluid is:

d, v + P :yeVy = vWiv + f (2.2)

where Et is the transverse projection operator, v is the viscosity,

and f is a transverse, random stirring force with known statistics.
Thig is an example of a problem with a linear random force.

The correspondence with {(2.1) follows by identifying:
Y1) = V'ix(tl.lﬁl) H{ti~to) i,=1,2,3

U1(l1) = f-](tlygl)



Tp(12) = v¥% +§(1-2)

Ua(123) = -(P] Vi, ) dlea-te) 8 {x1-%2) §(1-3) (2.3)

iii; i,
(ii) Particle Motion in Stochastic Magnetic Fields

Krommes, Kleva, and Oberman(13) have derived a stochastic
differential equation for the evolution of the phase space density
P(ﬁ,v,t) of charged particles moving along magnetic field lines.
The magnetic field is assumed to be primarily in the z direction
with weak shear in the y direction and a small random component
b(x,t) in the x direction. Their result for x<L is
3fp

Y2 3 X 93 9 - -
- * v[ﬁ + E W}? - DWZ - civlp + vba—rp = §{t~tp)Po {2.4)

where v is the particle velocity along the field iines, Ls is the
shear length, D is the classical perpendicular diffusion coeffi-
cient due to particle collisions, and C{v} is a collision operator
in velocity space.

Equation (2.4) is an example of a stochastic differential

equation with a multiplicative random force which can be written in

the form of (2.1) by identifying:

‘P(l) = P(tlr,}sllvl)H(tl‘tD)
Ui{(1) =0 !
= = | 3 ®; 9 3?
Uz2(12) = - v-%*- + = ———]- p— -~ C{v:}{+6(1-2) {
2 ! 153z, L. 0Y:2 ay: ;
T,(12) = ~vb(L)gd- -6(1-2) . (2.5) ‘

EaL TR

-



(iii) Stochastic Wave Eguation

The propagation of waves in random media is described by

stochastic wave equations of the form

2
3% - pyzy (2.6)

where b is a random variable with known statistics. If we

integrate (2.6) once with respect to time using Cauchy initial

_ 9¢o
at

conditions ¢{(to) = ¢, and %%(tu) = then we get a stochastic

¢

differential equation with a nonlocal interaction

t
21 = ] 2 220
Tt ot' bVe + 7t . (2.7)
t.
This equation can then be written in the form of (2.1) by
identifying
(1) = ¢(t1,x1) H{ti-te)
Ui (1) = 220y
Uz (12) = Dblt2,%2) V2 H(t,-t,)8(x,-%,) . (2.8)

{iv) Electromagnetic Vlasov Turbulence

The Vlasov-Maxwell equations describe the collisionless evolu-
tion of distributions of charged particles f5(£'2't) and their

associated electric and magnetic fields:
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af q

S . S Bl. .o
W+xvfs+i[§:+¥%‘m].ag fg =0 (2.9
AL -
3% - CVxB + 4n; qsfd3vfs v =0 (2.10)
a
A+ g = 0 (2.11)

N

where s is the charged particle species index, dq is the charge, and

mg is the mass. Statistics enters the problem either through the

assumption of 1) random initial conditions or 2) some implicit ran-

domness in the distribution functions which requires ensemble
averages tc be taken to define quantities of physical interest

(i.e., random phases). This problem can be cast into the form of

(2.1) in two different ways. PFirst, y(1) can be defined to be a

vector field with N+6 components where N 1is the number of

charged particle species. The remaining 6 components arise from

the vector electric and magnetic fields. Alternatively, (2.10) and

(2.11) can be used to solve for E and B in terms of the particle

distribution functions. Then y(l) represents only the N particle

distributions. Although the second method introduces nonlocal

interactions through retardation effects, it reduces the number of

components of the vector field Y. This reduction has computational

advantages in the usual cases where N=1 or 2.

Here we will follow the second approach. We solve (2.10) and

b T .
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{(2.11) in the usual way by introducing the scalar and vecter

potentials A® and 5(16). The results are
Bixi,t1) 2 B(12)9(2) = V1x Al12) v (2) (2.12)
= . - 0 _ 12 .
Ef{xi,t1) = E(L2)${2) = -V, A (12)¥(2) < §€]A(l2)b(2) {2.13)
where we have defined ¢(1l) = f(tt,il,g],S]). The definitions of

the four potential operators depend on the choice of gauge. In
the coulomb gauge V-A=0 fcr exarmple, we have a retarded vector

motential and an "instantaneous" scalar potential :

Alxy, t1) = A(12)p(2)

sltz+|gi-xe |-t )
[d%th; < E qs?/d’wgt: yvaof
s

m

|51*§2l 5. s:
(2.14)
A%(x1,E1) = AT(L2)y(2) .
zfd’xzdtzé—(t’-——’fl—) zaq fd3vzfs (2.15)
lx1-z21 s 77 :
where gt is the tramsverse projection operator.

The retarded four-potential gives rise tvo nonlinear interac-
tions which are nonlocal in time. Sincz the potentials are
retarded the interactions are also causal. The evolution of (1)
depends only on the past, not on the future.

The correspondence of equations {2.9), (2.10), and (2.1ll) with
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equation (2.1) is completed by identifying

u;{ly 29

U2(12) = ~Y1tV, +6(1-2)
[i] z 4 el e g (1=
Us(123) = -2t [£(12)+ v;i_é_(lﬂ] T (-3

- 9
= _ i(la).ygr.g(l_g) {2.16)
where L{12) is the Lorentz force operator.

B. The Operator Formalism of Martia, Siggia, and Rose.

In order to describe the statistival properties of a classical
dynamical system which is governed by a stochastic differential
equation, we nezd a theory for the calculation of the correlation
functions and response functions (avercged Green's functions). If
we naively average stochastic differencial eguations such as (2.1)
with respect t¢ rardom forces and interactions, random initial con-
ditions, or an ensemble of realizations, we arrive at an equation
for the evolution of (w(l)>. Unfortunately, the dyramics of (w(l))
will depend in general upon higher order correlation functions
<Un(l---n)¢(2)---¢(n)) due to the nonlinear interactions
U,{1...n), nz3 anq ﬁh(l...n), nz2. The evoluticn of these higher
order correlation functions depends in turn upon still higher order
correlations. The resulting hierarchv of equations can only be
closed by some truncation procedure.(l7)

Martin, Siggia, and Rose(l) developed the first satisfactory

method for overcoming this “.fficulty. They succeed in deriving

e

e
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closed, exact equations for the evolution of the first few statis-
tical correlation and response functions. BAlthough these exact
equations are complicated, they provide a starting point for a
renormalized perturbation theory. 1In addition, the fundamental ob-
jects of the theory —the mean field (¢(1)), the fluctuation

function (w(l)w(2)>c, and the response function R(12) to infinitesi-
mal perturbations—are the physical "observables" of greatest
interest,

In order to take advantage of the poweriul methods of guantum
field theory, MSR treat the classical field {l) 23 . Heisenberg
operator. The classigal correlation functions are then defined to
be "vacuum" expectation values of time-ordered products of these
operators. The important contribution or MSR was the ad hoc intro-

duction of a complex adjoint operator i(t,l) which does not commute

with ¢{t,2):

[D0E, L, 008,2)] = §(1-2) .

@ is defined, morecover, such that the time-ordered vacuum ex-
pectations 0f products of operators vanish whenever @ is the latest
operator: <'3(l)$(2)$(3)...>+=0 if ty>tz2, ta... . 1In particular
{¥(1)=0.

The time-orderec expectation value of (1) and @(2) gives the

averaged response function(la)



-14~

R(12) = (VL@),

and the definition of time-ordered expectations of products of the

operators ¥ and @ insures the causality of R. In fact, all statis-

tical quantities of interest are determined by expectations of cime-

ordered products of the operators ¢ and @. In the theory »f quantum

fields these expectations are the Green's functions.
The adjoint operator also makes it possible to construct a

the equations of motion for the opera-

Y (1)

damiltoniarn H which generates
tors y(1) and ¥(1). Let (1) = (Wl))' then

5, $(1) = [2(1),H] . (2.17)
1

This approach is only applicable to dynamic equations (2.1) with

local, deterministic forces and interactions; then:

H = (1) ([O(D) + Tp(12) ... U (T...n) (%) .- g (n) ]

Equation (2.17) has the seme form as the eguations of quantum field

theory. We can, therefore, zapply the Schwinger functicnal formal-

ism(z) to derive closed eguations for the exact Green's functions.

The first step is to define a generating functional

n
(l)+ . (2.18)

i

Z{n} = (expin()-2(1}),
The various Green's functions are determined by evaluating functional

derivatives of Z wit" respect to n at n=0.
It is convenient to work with the connected Green's functions

which are generated by F{n} = la Z{n}. The Schwinger equations for

the evolution of the one point connected Grecn's functions

T Tt v -
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5 ul
slay = = E<9«—(£’>

an(l) Zz [+

are easily derived from (2 17)
at:G?(l) =[(§;(l)}ﬂ + (2L expin(1re(1) })J%

= {1a() H1)] + iozn(l) (2.19)

Z
o -i\

where o, =
i 0

The two-point connected Green's functions

claz) = —— 3% 7}

no_ e ()"
sn(l) snl2) (e <%(%1.)>+<5‘£§_’>+

A
are just the fluctuation and response functions. Their evolution

is described ky the Dyson equations which result from the functional

differentiation of (2.19} with respect to Q(lZ):

A GI(12) = {12(1) ,H12(2)) ] + i0,8(1-2) . (2.20)
Z

The 3chwinger and Dyson eguations {2.19) and (2.20) are the
first in a hierarchy of eguations, However, this hierarchy can be
formally closed, exactly, by the following procedure. First, the
Green's functions {2(2)...3(n))] on the r.h.s. of (2.19) and (2.20)
are written in terms of the connected Green's functions. The con-
nected Green's functions Gg(l.,.n) are in turn written in terms of
two-point connected Green's functions G? and the l-particle irreduc-
ible vertex functions Fn(l...n). The generating functional for

these vertex functioans results from a Legendre transform of F:
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MY}z F{n} - p(LGT(1) .

The vertex functions are then given by functional derivatives of

ri{cl) with respect to el evaluatea at G; for n=0. Since
(5 -]
I'>(12) = 5 ——r {6V} = -6;(12) (2.21)
£GY (1) 6G1(2)
we can write an : i (19)
1 y vertex function as :
- -1
P(ln =24 — &gz ., (2.22)
8G1(3) §G, (n)

Therefore, every Green's function on the r.h.s. of {2.19) and

in terms of the two-point ceonnected

(2,22)

(2.20) can be formally expressed

Green's functions and the vertex functions which are given by
-1
as furictional derivatives of Gz

in the lipig n+0, the Schwinger and Dyson eguations can be written

as formally closed functional equations for the exact one-point and

two-point connected Green's functions G, and Gz.

Ir. their original paper MSR were primarily concerned with dy-

deterministic interaction. Thea

namical systems with a quadratic,
statistics appear through averages with respect to Gaussian initial

conditions or an ensemble of realizations. This corresponds to a

stochastic differenticl equation of the form of (2.1) with

with respect to G:. Consequently,
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Ui(l) = U, (1)
U2(12) = T2(12}
U3 (123} = U;3(123)
Un(l...n) =0, n>3 .
The closed operator equations (2.19) and (2.20¢) for the statis-

tical dynamics of these systems are written compactly in MSR's nota-

tion as
-] 1 2 1
(G1 G, = 3 vaG-. + van Y, (2.23)
-1 -
G = [62] - v G- F (2.24)
-1
where we have taken n=0. 1631 (12) = —iczatlé(tl—tz) - Y2(12) is

the "bare" two-point propagator; and the resonance broadening term I

is defined by

£ =1y 66275 .
s Y3 2Gz2T; (2.25)
Finally, the three-point vertex function is given by (2.24) and
(2.22)
8L
I's =y + —G:GzT3 (2.26)
3 §G,
. . & 6Ga & _
where we used the chain rule to write: —— = =% —— = G;G3T, .
8Gy 8G1 48G: 8Ga

MSR also corsider a system stirred by a random Gaussian

force ﬁl(l). Although their method does not provide a direct means
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of determining the statistical dynamics, they note that a Gaussian
random force with vanishing mean can be represented by & determin-
istic correction to H of the form ﬁz(IZ)@(l)@(Z) where

842) = «ﬁ(l)ﬁ(zﬁ» is the cumulant average of the random force.
The calculation of clesed dynamical equations then proceeds as
before.

Equations (2.23)-(2.26) can be solved approximately by sys-
tematically expanding the exact eguations in some small parameter.
This is much more satisfying than the conventional perturbation
procedure, in which "small" corrections are added to approximate
equations in the hope of improving the approximation. Additional
advantages of this approach lie in the fact “hat the physical sym-
metries of the exact solution are manifest in the exzc: equations
of motion but they may be absent in a method which starts from
approximate eguations.

Although it is clear that a complete formal theory for the
statistical dynamics of classical sys?ems has many impcrtant adven-
tages, the original method developed $y MSR ig limited to a re-
stricted class of stochastic differential eguations. Specifically,
the only random processes treated had deterministic interactions,
linear random forces with Gaussian statistics, and Gaussian initial
conditions Deker and Haake(B) and Phythian(4) have extended the
MSR formalism to rultiplicative random forces and very recently
Deker(6} has refined and extended it to non-Gaussian random initial
conditions, forces, and interactions.

Because of the ad hoc origin of the MSR fermalism the extensions
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to more complicated statistical systems have each required a
separate treatment. The MSR theory does not provide a general
formalisi. which naturally generates the statistical equations of
motion for the entire class of stochastic differential equations
described by (2.1). In fact, nonlocal interactions have proven
to be intractable for any extension of the MSR approach.
C. Functional Integral Formalism

An alternative approach to the description of classical dyna-—
mical systems was introduced by Janssen(lO) and De Dominicis.(g)
They discovered that a functional integral formalism, analogous to
Feynman's theory(7) for guantum mechanics, provides a very natural
and elegant derivation of MSR's results for quadratic deterministic
(11)

interactions and Gaussian random forces. Phythian has pursued

the functional integral formalism further and shown that the sta-

tistical eguations of notion for multiplicative random forces are

also easily derived with this approach.

We will show that the functional integral method provides a
complete formal description of the statistical dynamicvs for the
entire class of stochastic differential equations defined by equa-
tion (2.1). This is the primary contribution of this paper. Our
work unifies all previous results and provides the formal soluticn
to several new problems of physical interest.

In this section we develop the functional integral theory and
demonstrate how the MSR equations can be easily recovered., The
specific results for non-Gaussian initial conditions, multiplicative

random forces, and nonlocal interactions are discussed in later
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sections.

Consider a multicomponent classical field (1) which satis-
fies a stochastic differential equation of “he type described by
Equation (2.1). 1In order to define a functional integral we
coarse~grain the multidimensional space spanned by the time, posi-
tien, and other continuous arguments of p{1). The coarse-graining
procedure defines a lattice which partitions the d+1 dimensional
space into small volumes of size £d+l. The index 1 becomes a dis-
crete index which labels the vertices on the lattice, and the sto-
chastic differential eguation is transformed into a difference
eguation.

The functional integral is formally defined to be the multi-

ple integral over the range of W(i) at every lattice point in the

limit €-+0

/D[I}I]... = 1lim 1 fdw(i}... 12.27)
£+0 iEAd+l

where Ad+l denotes the set of vertices on the lattice. Although the
general mathematical theory for these infinite multiple integrals 1is
incomplete, they have neverthéless proven useful in generating sig-
nificant results. Consequently, we Wwill not digress to discuss this
technical pcint but will refer tn: reader to the literature

For the purpose of illustration consider a system of one de-
gree of freedom. If ¢(l) depends only on time ’for Lostist, then

the interval [to,t] can be divided nilo N segments of length e and

Eguation ‘2.1) can be discretized in many different ways. For

—




-21-

example:

TS ELTC IS

= a1U1(ti) + Blul(ti-l)+"'

E

(2.28)

-_—

: +['1nUn(ti,t2...tn)+ BnUn(ti-l'tz"‘tn”“'(z) <..P(n)+ dinwo
’ [

where a; + B, =1. Still other discuietization schemes can be devised;

i
however, as e+, ail of these should be equivalent,(ZI)

The functional integral is simply

N
./;[w]... = 1lim 1 j;w(i)... . (2.29)
e=+0

i=0

The generalization cof these definitions to systems with many
degrees of freedom is strzightforward

In developing our formalism we follow the approach of Jouvet
| and Phychian(23) and consider first the formal functional integral
represent-:ion of the solutions of deterministic eguations of
motion. Consider any functional F{¢} of the classical field (1)
’ which satisfies a dynamical equation of the form of (2.1). Tor the
moment we will treat all stochastic forces and interactions as if

they were deterministic and write

Fly} E[Diw'ld(w'—wF{w'} (2.30)

where § is the unique solution to the differential equation and the

functional § function is defined by: &(¢'-y¢)=1lim I S(yp* (1) ~yp(i)).
E+0 ieAd+1
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Since ¢ 1is determined by an algebraic difference equation

like (2.2B) we can make a convenient change of coordinates:
Fly} =./Etw'16[$'(1)—Ux(1)—Uz(12)¢'(2)+...

+0 (L...npyl(2) .. Yf(n) + é(tn-to)wo(i)]J(w')F{w'} (2.31)

where J(¢'! is the Jaccbian that results from the coordinate change.
The r.h.s. of (2.31) signifies that the integrand is non-zero only
for ' which satisfies the discretized dynamical equation.

The explicit form of the Jacobian depends on the manner in
which the dynamical equation is discretized. Since the different
discretizations give the same final results, it will prove convenient

is independent of y(i). For

M-

to choose one such that J = 1II
d+l

ieh
the one-dimensional problem this corresponds to the requirement thac
ai=0 and Bi=l in (2.28). Although J is infinite as c¢=0, this diver-
gence will be cancelled by another divergent .onstant in the final
equations.

The nexc step is to replace the § function by its functional

Fourier transform which gives

Flv}= c [DLo" IDHlexp {31 (b (1) =01 (1) =0z (12) 4" (2)
e U120 ) B (2) 4t () B Emte) o1 JRLYTY L (2.32)

- 1 "
where ¢ = 1 a+l [ 27 ]‘ The Fourier transform ¢(l) is an ima-

ieh
ginary field. Our definition differs from Jouvet and Phythian's(23)

by an explicit factor of (-i). As before this formal result can be
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justified by returning to the discrete lattice and then taking e»0,

where it is conventional to displace the discrete time arguments of

¥ such that (24

Powe = e s D gD (2.33)

in order to aveid time-~ordering ambiguities.

By comparing {2.32) with the functional integrals which ccour

field theories we can identify a Lagrangian I and a Hamiltonian #

in
L = p(1) (P(1)-U(l)~U2(12) "' {2)~. .. (2.34)
-Un(l...niy'(2)...w‘(n)—ﬁ(t;~to)¢u(l))
= PV -H{p b}
which allcws us to write {(2.32) compactly as
Fly} = C-/g[$']D[$] F{¢'lexp(-£) . (2.35)

We will see that the new field @ which occurs naturally in
{2.32) is the exact analog of the non-commuting operator @ which
was introduced ad hoc by MSR. 1In fact, it has been shown that the
operator theory of MSR can be derived directly from this functional
integral formalism just as the Heisenberg operator theory of quantum

mechanics is a consequence of Feynman's path integral

. 21,23,2 .
formallsm.( ¢23,25) However, rather than emphasize the reduction
to the earlier operator theory we will pursue the development of the
more natural and powerful functional integral theory.

Although ¢ appears in (2.32) simply as a Fourier transform
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: . (11 .
variable, Phythian ! has shown that it plays a crucial role in the
description of dynamical systems. Consider the response of

F{y} tec an infinitesimal linear perturbation to the dynamical equa-

tions U:(1)-U:(1l) + £(1) . Then

CF{QJ} = C/D[w']D[J)] :e-fﬂ-(ﬁ(llﬁ(l)] _ ‘E_L;F{UJI}
= C/DW]DI\?J]&XP(—L) lﬁ»(l)g(l)+$(1)2g(1)‘*+...}Ffu,'f

and the linear response function is simply

SF{y) - C/DNJ']D[II‘] e"L [@(l)p[,‘b'}] . (2,36)
6L (1)
(L) =0

The linear response functions to many infinitesimal disturbances is

in general given by

n 7 ~ ~
¢ Flv} = c/D[qJ']D['u)] e LU ... PmNFlpTI] (2.37)
66, (1 ...86_ (n)

£,=0

We can now reintroduce the statisties. The functional integral

representations of functionals of ¢ (2.35) and of the response func-

tions (2.37) are easily averaged over the random forces, interactions,
or initial conditions. For example;

F{y} = c/nuu'w[@w{up'}(exp(—m) (2.38)

where all the random elements are contained in the Lagrangian L.

Since the statistics are generally assumed to be known, the
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average in (2.3B) can be performed explicitly. This defines an

averaged effective Lagrangian L and Hamiltonian H

exp -[9(1)¢(1)-H] . (2.39)

[H]

(exp(—L)) z exp(-L)

This averaged Lagrangian L gives rise to the statistical equations

of motion.

Consider the generating functional

Z{n,ct = c/ow'lo[@]e‘f‘ exply{l)n(1)49 (1) (1) ] . (2.20)

The functional 2 contains a complete statistical description of the
classical dynamical system ccrresponding to the averaged Lagrangian 1.
All of the correlation and response functions are given by functional
derivatives of 2 with respect to n and ¢,

We will formally treat § on an agwal footing with v and write

the averaged response functions (2.37j

n A
S 1) S Y S S R N SR T)
5£(1) .. .66 (n)

-

£=0
= c[D[MD[J»][Cu(n...ﬁ;cn)nwuexp(—m . (2.41)

Then the generating functional Z can be used to write the statistical

average of any analytical functional A of ¢ and @ as

{aly.i1) = A{%r ;—;}z{n,c} . (2.42)

If the functional 2{y,§} depends on time for te[t,,T], then the res-
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ponse to perturbations at times t;>T vanishes. This ensures the
causality of the response functions which implies in particular

itnat

¢ty =0

if t1 is the latesat time in the average.

In general the functional integral representation for the
generating functicnal (2.40) will be too complex for practical cal-
culations of statistical quantities.! However, the equations of
evolution for the statistical correlation and response functions
can be easily obtained. Since L=$(l)$(1)—H the formal Schwinger
equations for the evolution of <w(l)) and (ﬁ:(l)) are derived by a

functional integration by parts. Using the identities

8
. f s n
DIY]ID (4] expn(l)y () +z (L)y(l})-L] = 0 (2.43)
5
Sw(l}
we get
{ui1)) _1_< S aN- z(1) =0 (2.44)
Z z \&P(1)
-Gap_ 1 -0 (2.45)

8 H>— n (1)
Z Z \S¢ (1)

where H is explicitly determined by

lyarious approximate technigques have been devel?ped in qgantUm field
theory for the direct evaluation of the gene;at;ng Ffunctional. These
include saddle point methods, variational pr1nc1gles(7), and thg
Renormalization Group(l9). Using the functional 1nteg;al forméllsm
these powerful tools can also be applied to problems in classical

statistical dynamics.

A ety ey
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o
HI

ln<%xp @(1)[ultl)+Uz(12)w(2)+...+Un(1...n)¢(2)...w(n)
+6(t1—to)wo(l)i> . (2.486)

The principal statistical quantities of physical interes+ are

the fluctuation function

pww@), = @) - pa) vy
and the averaged response function
r(12) = (pde2), = {(pnv@)

Note that the divergent constant ¢ no longer appears in these
physical quantities. If the fluctuation and averaged response func-
tions are rewritten as

S T (TI Y
CISITE) e pavr -

1]

- 1
(vini@), = ﬁ <9’—(;]—)

then the ¢ in the numerator is cancelled by the ¢ in the denominator.
Mcreover, a causal response function is assured since 3 <$ill> =0
for to>t,. sctzy 2

The Dyson eguations for the fluctuation and averaged response

functions follow from (2.44) by functional d.rferentiation with

respect to n{2) and z£({2)

(

§ 4§
- = 1= -47)
,Sa(l)H) <1P(2)> (mﬁ) 0 (2.47)

Grav@) - Ko

LA
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. 47 C 5 N_/ 6 1
@y, - i@ (l)H> <U)(2))<m-ﬂ>l §(1-2) . (2.48)

3
Then the system of statistical equations (2.44)-(2.48) can he
formally closed, using the same procedure as in the MSR formalism,

First, the n-point field averages are expressed in terms of the

connected Green's functions which are generated by F{n,z} = 1ln Zin,r}.

Then these connected Green's functions are written in terms of the
two-point connected Green's functions and the vertex functions
Fn(l...n) which are generated by the Legendre transform of F. Since
all of the vertex functions are given in terms of functional deri-
vatives of two-point functions with respect to one-point functions
as in Equation (2.22), the set of Schwinger and Dyson eguations
forms a closed set of exact statistical equations for the mean
fields, Eluctuation functions, and response functions.

After these transformations, Equations (2.44)-(2.48) represent
a complete description of the statistical dynamics of classical
systems which are governed by stochastic differential equations of
the type defined by (2.1). They are applicable to a much broader
range of physical problems than the results of MSR. Although these
equations also prove in general to be too complicated to solve
directly, the advantages of such a description are obvious. First,
these exact equations of motion exhibit all of the symmetries and
conservation laws of the exact solutions. Second, these eguations
serve as a starting point for several different systematic perturba-

tion schemes.

The functional integral approach provides a natural and direct

SRR 41 e e
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derivation of the closed Schwinger and Dyson eguations for determi-
nistic interactions and linear random forces. If we assume arbi-

trary random forces (2.46) gives in general

=
]

v(lL) [U; (1) +T, (12) ¢ (2) +T5 (123) p{2) Y (3) +. ..
+0(1...0)9(2) ... ¢ (n)+8 (t1-to)¥, (1)
+ 1n{exp BT (D))

= Hy + Ccl¥} . (2.49)

Ho represents the deterministic forces, interactions, and initial
conditions and C is the cumulant functional

=% L. ...U(n)
cler =L G b @ .. T (2.50)

where «» is the cumulant average of the random force. (260 por

Gaussian random forces C{y} = ¢ (1) ((U(l)» + %w(lW(Z) «U(l)U(2)» .
When (2.49) is inserted into Equations (2.44), (2.45), (2.47), and
(2.48), we can easily recover the Schwinger and Dyson equations
derived by MSR which are written in matrix form in (2.19) and (2.20).
In the following sections the statistical dynamical pguations
(2.44)-(2.48) will be explicitly determined for a variety of impor-

tant physical prcblems.
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3. APPLICATIONS OF THE FUNCTIONAL INTEGPAL FORMALISM
A. Nor-Gaussian initial corditions.

Deker(G) has recently observed that the MSR procedure cannot
describe the evolution of systems with non-Gaussian initial condi-
tions. He proposed a modification of the MSR formalism and suc-
ceeded in deriving the "spurious" interactions which are generated
by the cumulants of the random initial conditions.

Deker's results are easily recovered as a special case of our
functicnal integral description of general stochastic differential
equations. Without loss of generality, consider a clasgsical system
described by a differential equation of the form of (2.1) with de-
terministic forces and interactions but random initial conditions.

The random initial condition is treated like an instantaneous linear

random force. Using Equation (2.46) for the averaged Hamiltonian

we can write down the answer immediately

H = $(1) [El(l)+...+ﬁn(l...n.‘11J(2)...w(n]+é(tl—to)ao (y] |‘7
+ 1n {exp $(LIT, (Lo (ti-ta))
=Hy + 1 . rl—“fu(l)a(tl—tg) cobmye (e -ty Ly (L) LT, ) (3.1 ]
n=
where we have expanded out the cumulant function in terms of the

The corrections

cumulant averages of the random initial conditions.
(6)

toc Hy are the "spurious" interactions which were derived by Deker.

When H is inserted into (2.44), (2.45), (2.47), and (2.48) we get

a complete description for the statistical dynamies of systems

with arbitrary initial conditions.
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Iy B. Multiplicative Random Forces.

Now consider a classical system with stochastic interactions
ﬁ;(l..An). For the purposes of illustration we will examine the
case with U,{12) # 0. The results are easily generalized to sys-
tems with many stochastic interactions and using the results of
Section 3.A to systems with random initial conditions as well.

Deker and Haake(a) were the first to modify the MSR formalism
to deal with problems of this kind. They treat the random farce
in the interaction U (12) as a separate field on an egual footing
with ¢ and @.

A different approach to this problem has also been developed
by Phythian(l4) using an elegant method based on the Novikov

(27) Phythian's method avoids the mixed averages of y, @,

theorem,
and U: which result in Deker and Haake's approach since the Novikov
theorem decouples the statistics of ﬁ{ from the statistics of y.
Unfortunately, the Novikov theorem is restricted to Gaussian random
forces and both methods require that the interactions be local.

The functional integral method provides a generalization of
the Novikov theorem to nonlccal random interactions with arbitrary
statistics. Furthermore, since :he results of Deker and Haake are
also easily recovered by treating the random force as an additional

field, our method serves to unify these disparate approaches.

Once again (2.46) enables us :to write down the answer

2
]

@(1) E(l)+...+ﬁn(l...n)¢(2)...w(n)]+ 1n (exp @(1}62(12)W(2)>

He + ClP(LI(2)} (3.2)
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where the cumulant functionaltzs) is given by
chamw®) = & .. d @y} al...om (3.3)
n= )

and

@ 0D ... Hmm) . (3.4)

HE

yo(1T...nn)

When (3.2) is inserted into Bguations (2.44), (2.45), (2.47), :
|
and (2.48) we arrive at a complete statistical description of the

dynamics of systems with multiplicative random forces with arbitrary

statistics.
Note that the random force U, appeprs explicitly only inside

the cumulant averages (3.4). Consequently, our approach decouples

the known statistics of ﬁ; from the unknown statistics of ¢. This

separation of the statistics has important practical advartages.

Similar results for instantaneocus {(local) random interactiZus

have been derived by Deker(s) using an operator approach and by :

(11} ,
Phythian using the functional integral formalism. ilowever, Phythian

us¢ . a difi.rent discretization corresponding to a,=1 and 8,=0 in
{(..28). This gives more complicated equations of motion because

the Jacobian is a functicnal of ¢. Since the different discreti- i

zations are eguivalent,Phythian's equations reduce to our simpler :
i

results.
If the random interactions are Gaussian then the Schwinger

and Dyson equations simplify considerably. Without loss of
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generality we neglect the deterministic forces and interactions.

Then the statistical equations of motion are:

Gy, - (am) Gm),

- aD T 2 (LM (D)
2

- g(1) = §(t1=to) Y, (1) . (3.5)

: (1) (h),

o T2 EDib2eE)
Z

-G

n{l) =0 . (3.6)

QU011 WD)y,

3
~ (v
o e

U 1DV (2 D2 e@)ypan)
Z

(:_!'D@rzwﬁa(wu')>]] =0 X
2?2 {3.7)

@ 0THG M)

a ~
— () y(l*)
Bt1< )c

&0, 1D T, (22 [(w(I)ﬁ(zw(i)@(l-))
2

IR ITENIE)) (@(1')}] = 8(1-1') = (3.8)
z2
These equations can be formally closed by expanding the

three- and four-point correlations in terms of the connected Green's
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functions and then writing the connected Green's functions in terms
of the two-point connected Green's functions and the three-point
and four-point vertex functions.

If we neglect the three- and four-point connected Green's func-

tions then this "Gaussian" approximation gives

a—i~(wc1)wc1'))c - @ ADY (HTDvan),
1

]
[=]

= DT 22 (Do) Lo(Te(en)y (3.9)

;?(w(l)a(l'))c - O an) wdiany,
1

- LaDT D) @OB@) W@DHany = s(1-1'), (3.10)

These renormalized equations of motion for the fluctuation and res-
ponse functions are identical to those derived in the Dlirect Inter-
action Approximation(13)(DIA) using the methods of Deker and Haake.
Krommes, Kleva, and Oberman(l3) have applied the approach of
Deker and Haake to the problem of particle motion in a stochastic
magnetic field which was outlined in Section 2.A.(ii). Unfortunate~
ly, because of complications }elated to the appearance of mixed
averages of y and T2, they were unable to complete the problem be-
yond the DIA. Although the equations of motion (3.35) and (3.9)
of both approaches are identical in lowest order renormalized per-
turbation theory (DIA)}, our new results (3.7) and (3.8) avoid the

complications of mixed averages tc all orders in the perturbation

theory. The problem of particle motion in stochastic magnetic



-35-

fields will be pursued further using (3,7) and (3.8) in a subsequent

paper.
C. Nonlocal Interactions.

one of the distinct advantages of the functional integral forma-
lism is that there are no restrictions to local or instantaneous
interactions. The results of Section 2.C are valid for any nonlocal
but causal interaction Un(l...n). Consequently, this theory extends
the modern methods of renormalized perturbation theory to a large new
class of problems.

Many equations of this class, which originate from second or
higher order differential equations, can also be written as a system
of first order differential equations with local interactions by ex-
tending the number of fields, This system of differential equations
can be formally solved using the MSR formalism. However, the
complications of the additional fields are easily avoided by dealing
directly with a single differential equation with nonlocal inter-
actions.

Some examples of important problems for which formal solutions
can be obtained using the functional integral formalism,are wave
propagation in random media,and the nonlinear theory of electro-
magnetic plasma turbulence. The structure of the dynamical eguations
for both proizlems was outlined in Section 2.A. In this section we

will study the theory of electromagnetic plasma oscillations and

derive the electromagnetic dispersion tensor(ZS] in lowest order

rencrmalized perturbation theory. A detailed discussion of the sto-

chastic wave equation will be reserved for a future publication.
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(12) have succeeded in calculating the dielec-

Krommes and Kleva
tric tensor for electrostatic oscillati.ns in a turbulent plasma
using the methods of MSR. However, they were unable to apply their
theory directly to the electromagnetic problem because of the re-
striction of the MSR approach tc instantaneous interactions. Using
the functional integral approach it is easy to extend Krommes and
Kleva's resuits to the electromagnetic case.

In Section 2.A. (iv) we showed that the Vlasov-Maxwell eguations

can be written in the form of (2.1} with non local deterministic in-

teractions. The statistical averages arise either from the assump-

tion of random initial conditions or random phases. The corresponding

stochastic differential equation is

L) g, 12)p(2) - T (123 9(DU(3) = 8(ti-to) ¥, (L) .  (3.11)
3ty

The effective Hamiltonian is given by (2.46)

Hy, random phases
H= (3.12)

He + E, random initial conditions
where Ha=@{l)[ﬁz(lz)w(2J+ﬁ3(123)W(2)w(3)+6(t1—tu)50(i) and
H= 1n (exp (s (t1-t)T (L)) -
Substituting H into (2.44), (2.45), (2.47), and (2.4B) we get

the statistical equations of motion for the mean field , the fluctua-

tion function and the response function:
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_8 {uil)y - Ta(12)(y (2)) - Ta(223) (v (Z)w(a))
at: Z

G(tl-to)w (1), random phases
-z (1)

, random initial
W(l) conditions .

L2 my ) - T2 (2w )
oty

- U2 (123 {2 e3P "D -G DR W3]
b4 72

0, random phases

<wt1) 5 ”’> <w(1)>,< >
Z 6!11(1) 51#[1]

random initial conditions

2 (et - T {eMB ),
ot: i

- Us(123) ({2 e3an) - G dev)]
Z z?

= §(1i-1")

(3.13)

(3.14)

(3.15)
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For Gaussian random initial conditions the right hand sides of

(3.15) and (3.16) simplify further. For n,z+0

{ ) &, (1))6(t
Bw(l) (3.16})

<Ml) 5 > e )>< >
z 87 (1) 5H(1)

= b)) €2 b (1)

X 6(t2—t0}6(t]—tg)

where we have used (@(l)) IEO and z;zl. (3.17)

n,t=0 n, =0
In order to close (3.13), (3.14), (3.15}, and (3:16) we first
express the three-point correlation functions in terms of the con-

nected Green's functions. The resulting equatiors for the fluctuation

function C(12)E<u)(l)up(2))c and response function R(lz)s(w(l)@(z))c as
n,c+0 are
3 €{11') - Tp(12)c(21') - T,y(123) {p(2)) c(31")
3t
- U3 {123y {u(3) c(21")
= U5 (123) (W (2 W (362"
= 0, random phases
{3.18)

R(1'2) C(2,t0;1l,tq) Slta=tg)b(t1~te),
random initial conditions.

 P——

-

T ey i e v——. .
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_3_ R(1l') - Uz (12)R(21'} - T3(123){y(2)) R(IL")

T,(123) (w(3) R(21")

Ts (123 U209 (1PN

§{1-1") (3.19)

it

The three-point connected Green's functions are in turn ex-

pressed in terms of the two-point connected Green's functions and the

¢1) = (U‘) , then using

b, ¥

three-point vertex func.ion I,. Let ¢i= (
functional chain rule,Equation (2.22) gives
rimn(33n) [(¢ (2)6,(2)), (o (Me 3oy (110, (D) }

{25 (20050300, (1)) (3.20)

Since only T 2"(531 » T,720(231), and T',''2(331) are non-

vanishing, we are left with
(w(z)w(3)w(1'))c = R(2Z)c{33)c(1'1)r21} (331)

+ c2Hr(3Rc1rriz1 (23N

+ C(22)C(33R(1'I)T1'7(23]) , (3.21)
(29 (39 (1N), = R R IIN(EI)
+ C(22)R(33)R(11')r}?1{23]) . (3.22)
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In lowest order renormalized perturbation theory (DIA)

(2.22) and (3.19) give

r2ti(z3n) -

]

r121(231)

rit?(23n

[H

1
3

Following Krommes and

£(1I) = 03(123)R(22)c(3D) [T (331) + T,(313)1
+ ﬁ3(12:)R(3§)c(2§)[63(551) + 63(§i§>1 . (3.
T(1I) = Us(122)C(22)c(3N (T (13D + T (123y] (3
[g,171(22) = 8(1-2) 8 - B2(12) - 05 (132){u(3)) : (3.

T3 (231) + T5(313) , t3

Us (321) + T,(312) ' (3

0: (132) + T,(1I23) . (3
(12)

Kleva

we then identify

ota

Finally, using (3.21)-(3.28), the dynamical equations can be

written compactly as

(g1 t(1230(21")

lg,17 T (12)R(21")

Us (123){w(3)pc(21")

.23)

.24)

.25)

26)

27)

28)

$(1I)c(I1") - TADRrRI'D) (3.29)

0, random phases

C(l1')8({t1-to) ,random initial conditions

Us (127 {y(3)) R(21")

Z(1I)c(1l) = &6(1-1") (3.30)
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Krommes and Kleva showed that in the electrostatic problem
R can be considered as the renormalized propagator for a shielded
test particle where the shielding is determined explicitly by a
non linear, renormalized dielectric function. Analogous results
can he shown for the electromagnetic case with the dielectric func-
tion replaced by the dispersion tensor.

Using the explicit representation of U; given by (2.16), we
can write I as the sum of twoe types of terms

(1) = - [_a_ R(lz)J.yla) L(23)c(33)
3

pA

+ g(lz)R(zz)[_a_-g(zi)t:(ﬁ)} .8 8(2-T)

V2 V2
~ L d

- [a R(lZ)]'L(13) 2 c(32)

aVZ
~

. A(IB)RHZ}'(:L 2 cuz)] - g2l

9V1 V2 J

= Iy + |3 swa2)|- LDy . (3.31)
axz
Using a more compact notation, Egquation (3.31) for the averageé
response function taxes the form
1
R+ 3[Qu)+ syle Lr =1 . (3.32)

3y

g
One piece of the nonlinear interaction term I renormalizes the bare

propagator g,

-,
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fg,17 12) + 212y V5,33

i

~1
g ~{12)
and the other piece modifies the mean background distribution
w(12) = {p(3)6(1-2) + byp(12) | {3.34)

Solving formally for R we get

-1
A‘R = ‘9‘ Ly , (3.35}
and
R = 1 - g_l. ¥
g{~ L 13 £ &g] {3.36}

where the shielding is described by
$12-1) + L (22)1g(2T) 5 T(TD) (3.37)

hl21) =
VT

1
~

The electromagnetic dispersion tensar relates the average elec-
tromagnetic fieilds inside a stochastic dispersive medium, which

result as a response to externally applied fields, to Lhe perturbing

(12) it can be shown

fields. Using the arguments of Krommes and Kleva

that % is a correct representation of the elc¢ ‘tromagnetic dispersion

tensor.

The author has also considered this problem by extending

the number of components of the classical field to make the inter-

actions local. This allows the methods of MSR to he used. The re-

sults of this rather tedious calculation are identical to Egquaticn

(3.37).

Finally, the reduction to lirear theory can be shown, if we

(L ————

" T e 11
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transform the dispersion tensor into a more familiar form which
relates the total electric field to an applied external current, (28)
In an ispotropic medium the longitudinal and transverse parts of

the dispersion tensor decouple. In Fourier transform space

= ~[ke)?
s 5 i 1

where
gt = 61] - Eifj 1 =1,2,3
kZ
and
T - n _q? . iy BF .z
€i9 = dij 4nz Ts4s }u/; V1gkwvi[(l ke x) s + ng 9 fs]. {3.38)
s m; w A avj w Sz

Iyn is the kernel of the bare propagator (3.33) in Fourier space
and f is defined by (3.34). Equation (3.38) reduces to the linear

: . ) . -
dispersion tensor(z‘) when the nonlinear terms I' in g and §f in

f are neglected.
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4. CONCLUSION

We héve developed a functional integral formalism for the des-
cription of the statistical dynamics of a brrnad class of stochastic
differential equations. The functional integral approach provides
a natural and elegant derivation of all previous results based on
the MSR operator formalism and extends these methods to classjical

systems with non.ocal interactions. Moreover, we emphasize that

the functional integral results decouple the known statistics of

the random forces, interactions, and initial conditions from the

unknown statistics of the classical random fields.
Our formal results are illustrated by an application in the
theory of electromagnetic plasma turbulence. Using the funcijional

integra) formalism for nonlocal interactions we have extendeg

kKrommes and Kleva's derivation of the nonlinear dielectric function
for electrostatic plaswa turbulence to the electromagnetic case.

The resulting nonlinear dispersion tensor provides a formal pasis

for further work on the nonlinear evolution of plasma instabilities.
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