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FUNCTIONAL INTEGRAL APPROACH TO CLASSICAL STATISTICAL DYNAMICS 

Roderick V. Jensen 
Plasma Physics Laboratory, Princeton University, 

Princeton, New Jersey 08544 

A functional integral method is developed for the 
statistical solution of nonlinear stochastic differential 
equations which arise in classical dynamics. The functional 
integral approach provides a very natural and elegant deri­
vation of the statistical dynamical equations that have been 
derived using the operator formalism of Martin, Siggia, and 
Rose. v More importantly, it is easily extended to a broad, 
new class of nonlinear dynamical equations with random coef­
ficients. In particular the equations of motion for the 
correlation and response functions are determined for classi­
cal systems with non-Gaussian initial conditions, multiplica­
tive random forces, and nonlinear interactions which are non­
local in time. These results have applications in the calcu­
lation of particle motion in stochastic magnetic fields, in 
the solution of stochastic wave equations, and in the descrip­
tion of electromagnetic Vlasov turbulence. As an illustra­
tion of the new results for nonlocal interactions, the elec­
tromagnetic dispersion tensor is calculated to first order in 
I DFSCLAIMtR - . 
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renormalized perturbation theory. 

KEY WORDS: classical statistical dynamics; stochastic 
differential equations; functional integral formalism; 
Schwinger equations; Dyson equations; turbulence; non­
linear electromagnetic dispersion tensor. 



1. INTRODUCTION 
The first satisfactory theory for the calculation of the 

statistical properties of classical dynamical systems was developed 
by Martin, Siggia, and Rose (MSR), who constructed a Heisenberg 
operator theory which parallels the Schwinger formalism of 
quantum field theory. They derive closed equations for the statis­
tical ccs relation and response fMictions, which can be Msed a& a 
starting point for systematic perturbation theories. Considerable 
effort has been expended in refining and extending this operator 

(3-6) theory • 
Although functional integral techniques have a long and 

successful history in quantum theory and equilibrium statistical 
mechanics they have only recently been exploited in the study of 
classical statistical dynamics. De Dominicis and Janssen 
have shown that the equations of notion for the correlation and 
response functions given by MSR can also be derived from a func­
tional inters a.1 sol-atiovi to the MTifteilfirrg stochastic 3iffereritial 
equations. 

This functional integral method is analogous to Feynman's path 
integral formalism for quantum theory. It is a more natural and 
elegant approach to the statistical dynamics of classical systems. 
Whereas MSR are required to introduce, ad hoc, an unphysical opera­
tor which is "conjugate" to the classical random field, the analog 
of this operator appears naturally in the functional integral 
method. 
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We have extended the functional integral approach to a much 
broader class of nonlinear stochastic differential equations. Be~ 
cause of the ad hoc nature of the original MSR formalism, it has 
proven difficult to extend the original method to non-Gaussian ini­
tial conditions* and multiplicative random forces* ' and impos­
sible to extend it to nonlocal interactions. However, al 1 of these 
extensions are straightforward in our functional integral formalism. 

In Section 2.A we establish our notation and define a class of 
stochastic differential equations which includes many problems of 
physical interest; and the operator formalism of MSR is reviewed in 
Section 2.B to introduce the fundamental ideas involved in the des­
cription of classical statistical dynamics. in Section 2.C we deve­
lop our functional integral formalism which provides a formal statis­
tical solution for the entire class of dynamical equations defined 
in Section 2.A. This is the primary contribution of this paper. 

Our formalism encompasses all previous work on stochastic dif­
ferential equations with arbitrary random initial conditions and 
local forces; and it provides new results for forces and interactions 
which are nonlocal in time. In Section 3.A we recover Deker's 
results for the corrections due to non-Gaussian initial conditions. 
The equations of motion for the correlation and response functions 
for a dynamical system with a multiplicative random force are derived 

(11) in Section 3.B. These results have also been derived by Phythian. 
They differ from the equations of Deker and Haake in that the sta­
tistics of the random force are decoupled from the statistics of the 
random field. This separation of the statistical averages has prac-
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tical advantages. We further note that the results of Deker and 
Haake are also easily derived using a slight modification of our 
techniques. Thus the functional integral approach serves to unify 
the different results for this problem. 

Finally, in Section 3.C we derive the statistical equations 
for nonlinear dynamical systems with non local interactions. These 
new results provide a complete formal description of the statistical 
dynamics of an important class of stochastic differential equations. 
We then use the equations for the correlation and response functions 
to derive the electromagnetic dispersion tensor in lowest order 
renormalized perturbation theory (Direct Interaction Approximation)• 
This provides a practical application of our formal results. 
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2. THE OPERATOR AND FUNCTIONAL INTEGRAL THEORIES OF CLASSICAL 
STATISTICAL DYNAMICS 
A. Stochastic Differential Equations. 

Consider the class of stochastic differential equations which 
can be written in the following generic form: 

a t i*(l) = Ui(l) + U2(12)iM2) + Ua(122)<M2)<M3) 

+ ...+ U nU...n)iHU ...iMn) (2.1) 

+ fitti-toJiMi) 

where iMD is in general a real, multicomponent classical field 
defined on JR x 3 which has a jump discontinuity at 
ti=t 0: i//(D = H(ti-to) !C(D • The index 1 = (ti,Xi...xd, n t . . .n ) = (t i , 1,) 

represents the time, space, and other variables and internal indices 
which are arguments of the field <JJ(1); and summation and integration 
over repeated indices is assumed. Moreover, the "forces" and 
interactions 0.(1...i) = U. (l...i) + tf. (l...i) are integro-
differential operators which can be decomposed into a deterministic 
piece U.(l...i) and a random piece U.(l...i) with known statistics. 
The interactions are also required to be causal. In other words, 
if U (l...n) involves time integrations, the integrals can only 
range from to to ti. Finally, the initial condition will generally 
consist of a deterministic and a random piece: I(JO = i> O + V o . 

The fundamental statistical quantities are the mean field 
(I|J(1)), the fluctuation function or cumulant function 
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/ij)(l)i>(.2)y = (ty{l) iM2)) - yHl))(<M2)) and the averaged response 
c 

function to infinitesimal external perturbations 

RU2) 
/<5iHl)\ 
\6U(2)/ _ . Here the brackets / . . . \ will be used to 

U(2}=0 X ' 
indicate averages over all random elements in the problem. 

We will develop a complete formal description of the statisti­
cal dynamics for this general class of stochastic differential 
equations. Since many interesting physical problems can be cast 
in this form, their formal solution will constitute special cases 
of our results. 

Some important problems which lead to stochastic differential 
equations o F this type are discussed below for illustration. 

(i) Navier-Stokes Turbulence with a Random Stirring Force 
The Navier-Stokes equation for a randomly stirred, incompres­

sible fluid is: 

3.y + P.:yVy = W 2 v + f (2.2) 

where g t is the transverse projection operator, v is the viscosity, 

and f is a transverse, random stirring force with known statistics. 
This is an example of a problem with a linear random force. 

The correspondence with (2.1) follows by identifying: 

(Ml) Sv ii(ti,Si) H(ti-to) i t = l,2,3 

Ui(1) = f. (ti,?i) 
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U 2 (12) = W z -6(1-2) 

U3<123) = -[P ]. . V (xj)- a(ti-t2)S(xl-x2)6(l-3) t ii13 ij - - , (2.3) 

(ii) Particle Motion in Stochastic Magnetic Fields 

Kronmes, Kleva, and Oberman have derived a stochastic 

differential equation for the evolution of the phase space density 

P(x,v,t) of charged particles moving along magnetic field lines. 

The magnetic field is assumed to be primarily in the z direction 

with weak shear in the y direction and a small random component 

b(x,t) in the x direction. Their result for x«L is 

i!P 
Tit + v 

3_ x_ d_ 
3z L 9y D5-2 - C(v}P + vb-̂ -P = 5(t-to)PD (2.4) 

where v is the particle velocity along the field lines, L is the 
shear length, D is the classical perpendicular diffusion coeffi­
cient due to particle collisions, and C{v) is a collision operator 
in velocity space. 

Equation (2.4) is an example of a stochastic differential 
equation with a multiplicative random force which can be written in 
the form of (2.1) by identifying: 

<MU = P(ti,xi,vi)H(ti-t0) 

U i ( l ) E 0 

0 2 ( 1 2 ) • f 
U z ( 1 2 ) = - V j b 

3z i 2LL _1_1 
L s 3y.J 

3 3 2 - C{v 2} -6(1-2) 

v ' b ( 1 ) 7 l x 7 " 5 t l _ 2 ) (2.5) 
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(iii) Stochastic Wave Equation 
The propagation of waves in random media is described by 

stochastic wave equations of the form 

1^- = bV (2.6) 
at 2 

where b is a random variable with known statistics. If we 
integrate (2.6) once with respect to time using Cauchy initial 
conditions ijj(to) = *D and |̂-(to) = g^ » then we get a stochastic 
differential equation with a nonlocal interaction 

.t 
f » . I If M'* * f f . (2.7) If" [ •" 

This equation can then be written in the form of (2.1) by 
identifying 

ifi(l) = Mti.xi) H(ti-to) 

U,(l) = ||°(x,) 

U 2 (12) = b(t2,xj.)v2 H{ti-t2)5(x,-x2) . (2.8) 

(iv) Electromagnetic Vlasov Turbulence 
The Vlasov-Maxwell equations describe the collisionless evolu­

tion of distributions of charged particles f<-(X/V,t) and their 
associated electric and magnetic fields: 
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3 f s + v V f + - 5 - [ E + 2 K S . ] . | _ f = o (2 9) 
~ s m I~ c J 3v s I ^ . J ; 

gf " cVxB + 4TJT. q g / d 3 v f s v = 0 (2 .10) 

4J| + cVxE = 0 (2 .11) 

where s is the charged particle species index, q is the charge, and 
m^ is the mass. Statistics enters the problem either through the 
assumption of 1) random initial conditions or 2) aome implicit ran­
domness in the distribution functions which requires ensemble 
averages to be taken to define quantities of physical interest 
(i.e., random phases). This problem can be cast into the form of 
(2.1) in two different ways. First, iMD can be defined to be a 
vector field with N+6 components where N is the number of 
charged particle species. The remaining S components arise from 
the vector electric and magnetic fields. Alternatively, (2.10) and 
(2.11) can be used to solve for E and B in terms of the particle 
distribution functions. Then ijj(l) represents only the N particle 
distributions. Although the second method introduces nonlocal 
interactions through retardation effects, it reduces the number of 
components of the vector field tjj. This reduction has computational 
advantages in the usual cases where N=l or 2. 

Here we will follow the second approach. We solve (2.10) and 
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(2.11) in the usual way by introducing the scalar jnd vector 
potentials A 0 and A . The results are 

£<£i*ti) = B(12)ij/<2) = V,x 4.(12)^(2) (2.12) 

E(x,,ti) = £(12)iH2) = -V1A('U2)il>(2) - | iL A,(12) >M2) (2.13) 

where we have defined i>(l) E £(ti,xi,virsi!. The definitions of 
the four potential operators depend on the choice of gauge. In 
the coulomb gauge V»_A=0 for exanple, we have a retarded vector 
potential and an "instantaneous" scalar potential : 

A(x,,ti) H A(12)i|)<2) 

6(tz+|Ki".&; |-t,) 
d 3x zdt 2 ~ I q^ |d3v?P.: v ? f s , 

(2.14) 

A°(xi,t,) = A"(12)i|J(2) 

J lxi-3J.2| s S l J 2f (2.15) 
S 2 

where E> is the transverse projection operator. 
The retarded four-potential gives rise to nonlinear interac­

tions which are nonlocal in time. Sines the potentials are 
retarded the interactions are also causal. The evolution of v(D 
depends only on the past, not on the future. 

The correspondence of equations (2.9), (2.10), and (2.11) with 



-12-

equation (2.1) is completed by identifying 

Ui(D 5 o 

U2(12) S -vi«V -6(1-2) 
~ xi 

Us (123) = -21 mi E(12)+ vix R(12)1 •^.6(1-3) 

" id?)-^7'6 <l-?> (2.16) 

where L(12) is the Lorentz force operator. 

B. The Operator Formalism of Martin, Siggia, and Rose. 
In order to describe the statistical properties of a classical 

dynamical system vhich is governed by a stochastic differential 
equation, we need a theory for the calculation of the correlation 
functions and response functions (avercged Green's functions). If 
we naively average stochastic differencial equations such as (2.1) 
with respect to rardom forces and interactions, random initial con­
ditions, or an ensemble of realizations, we arrive at an equation 
for the evolution Qf /i/j(l)V Unfortunately, the dynamics of A ( l A 
will depend in general upon higher order correlation functions 

/ u (1. . .n) i|i(2) . . .i|)(n)) d a e t o t n e nonlinear interactions 
U (l...n), n>3 and U (l...n), n>2. The evolution of these higher n n 
order correlation functions depends in turn upon still higher order 
correlations- The resulting hierarchy of equations can only be 

(17) closed by some truncation procedure . 
Martin, Siggia, and Rose ' developed the first satisfactory 

method for overcoming this 'j.fficulty. They succeed in deriving 
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closed, exact equations for the evolution of the first few statis­
tical correlation and response functions. Although these exact 
equations are complicated, they provide a starting point for a 
renormalized perturbation theory. In addition, the fundamental ob­
jects of the theory ̂ the mean field /t|j(lM, the fluctuation 
function (ifr(U *> (2)) , and the response function R(12) to infinitesi­
mal perturbations—are the physical "observables" of greatest 
interest. 

In order to tako advantage of the poweriul methods of quantum 
field theory, MSR treat the classical field ip(l) ?> J Heisenberg 
operator. The classical correlation functions are then defined to 
be "vacuum" expectation values of time-ordered products of these 
operators. The important contribution o.c MSR was the ad hoc intro­
duction of a. complex adjoint operator -J;(t,].) which does not commute 
with iMt,^) : 

[•5(t,l),*(t,2) J = 5(1-2) . 

<l> is defined,, moreover, such that the time-ordered vacuum ex­
pectations of products of operators vanish whenever $ is the latest 
operator: ($(1) $(2) if (3) . . -)+=0 if ti>t 2, t 3 . . . . In particular 
<$(1))=0. 

The time-orderer1 expectation value of ijj(l) and $(2) gives the 
(18} averaged response function 
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R(12) = <i('(l)lj)(2))+ t 

and the definition of time-ordered expectations of products of the 
operators I(I and $ insures the causality of R. In fact, all statis­
tical quantities of interest are determined by expectations of ,-ime-
ordered products of the operators tfi and \ji. In the theory of quantum 
fields these expectations are the Green's functions. 

The adjoint operator also makes it possible to construct a 
Hamiltonien H which generates the equations of motion for the opera­
tors i|)U) and J(l). Let <t>(l) = |tJH|, then /<M1>\ 

St,**1) = El'1) 'Hi • (2.17) 

This approach is only applicable to dynamic equations (2.1) with 
local, deterministic forces and interactions; then: 

H = $(1) [U(l) + CJ2(12) ...t^(T. ..n)iM2, ...if,(n) ] . 

Equation (2.17) has the seme fo?:m as the equations of quantum field 
theory. We can, therefore, apply the Schwinger functional formal-

(2) ism to derive closed equations for the exact Green's functions. 
The first step is to define a generating functional 

z(n} = <9xP{n(i)-*(i)}>+ = <i>^ . ( 2 1 8 ) 

The various Green's functions are determined by evaluating functional 
derivatives of z" wit.'i respect to Q at _n=D . 

It is convenient to work with the connected Green's functions 
which are generated by F(n} = la z"(T,}. The Schwinger equations for 
the evolution of the one point connected Greon's functions 
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Gi'd) = 3F /mV 
3ri(l) \ Z /+ 

a r e e a s i l y d e r i v e d from {? 17) 

= k l ( 1 ) ) + ¥ ( * ( l ) exp{ rHl>-* ( l ) }) + 

= ( [ $ , ( 1 ) , H ] ) ^ + i n 2 n ( l ) 

3 t , G l ( D 

where Oi _ /0 -W 

(2 .19) 

The t w o - p o i n t c o n n e c t e d G r e e n ' s f u n c t i o n s 

& 6 G?(12) 
6n ( l ) 6n(2) 

F{n) = < « ( D * ( 2 ) > ^ - < £ < i > > + < £ ( 2 ) > ? 
z z ?• 

are just the fluctuation and response functions. Their evolution 
is described by the Dyson equations which result from the functional 
differentiation of (2.19} with respect to n(12): 

a t G2(12) = <[*(!) ,H]$(2)>^ + io2S(l-2) - (2.20) 

The Schwinger and Dyson equations (2.19) ant1 (2.20) are the 
first in a hierarchy of equations. However, this hierarchy can be 
formally closed, exactly, by the following procedure. First, the 
Green's functions (*,(2) .. .£{n)^ on the r.h.s. of (2.19) and (2.20) 
are written in terms of the connected Green's functions. The con­
nected Green's functions Gn<l...n) are in turn written in terms of 

n 
two-point connected Green's functions Gi and the 1-particle irreduc­
ible vertex functions r (l...n). The generating functional for 
these vertex functio.is results from a Legendre transform of F: 



-1 fi-

r{G?}E F{nl - n<i)-G?(i) . 

The vertex functions are then given by functional derivatives of 

T{Gi) with respect to C-? evaluated at G : for n=0. Since 

S r 2(i 2) = —S- 2—r{c?} 
6G?(1) 6G?(2) 

we can write any vertex function as 

-Gj(12) (2.21) 

n=o 
(19) . 

r (l...n) = — ...-—$ Gj (12) . (3.,>2) 
i5Gi(3) SGi(n) 

Therefore, every Green's function on the r.h.s. of (2.19) and 

(2.20) can be formally expressed in terms of the two-point connected 

Green's functions and the vertex functions which are given by (2,22) 
-j 

as functional derivatives of G2 v.'Lth respect to Gi. Consequently, 

in the lirr̂  t n+0, the Schwinger and Dyson equations can be written 

as formally closed functional equations for the exact one-point a.nd 

two-point connected Green's functions Gi and G2. 

In their original paper MSR were primarily concerned with dy­

namical systems with a quadratic, deterministic interaction. The 

statistics appear through averages with respect to Gaussian initial 

conditions or an ensemble of realizations. This corresponds to a 

stochastic differential equation of the form of (2.1) with: 
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U i ( l ) = U i ( l ) 

U 2 ( 1 2 ) = U z ( 1 2 ) 

UB (123) = U 3 ( 1 2 3 ) 

U ( 1 . . . n ) = 0 , n > 3 
n 

The c l o s e d o p e r a t o r e q u a t i o n s ( 2 . 1 9 ) a n d ( 2 . 2 0 ) i o r t h e s t a t i s ­

t i c a l d y n a m i c s o f t h e s e s y s t e m s a r e w r i t t e n c o m p a c t l y i n MSR' s n o t a ­

t i o n a s 

[G|l] G, = -̂  y G, + 1 y Gi + Y ( 2 . 2 3 ) 
2 3 2 3 1 

G~2 = [G 2 °] - Y , G i - E ( 2 . 2 4 ) 

- i 
w h e r e we h a v e t a k e n n = 0 . !G°] (12) = - i a 3. 6 1 1 i - t ? ) - Y (12) i s 

~ 2 t 1 2 

t h e " b a r e " t w o - p o i n t p r o p a g a t o r ; a n d t h e r e s o n a n c e b r o a d e n i n g t e r m E 

i s d e f i n e d b y 

E E J y G 2 G 2 r 3 . 
2 3 ( 2 . 2 5 ) 

Finally, the three-point vertex function is given by (2.24) and 
(2.22) 

r3 = Y + •^-G 2G 2r 3 (2.26) 
3 5G2 

where we used the chain rule to write; — — = — - = G2G2r 3—— . 
6Gi <$Gi 6G2 6G2 

MSR also consider a system stirred by a random Gaussian 
force Ui(l). Although their method does not provide a direct means 
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of determining the statistical dynamics, they note that a Gaussian 
random force with vanishing mean can be represented by a determin­
istic correction to H of the form U 2 (12) HI) $(2) where 
U^2) = ^U(1)U(2)^ is the cumulant average of the random force. 
The calculation of closed dynamical equations then proceeds as 
before. 

Equations (2.23)-(2.26) can be solved approximately by sys­
tematically expanding the exact equations in some small parameter. 
This is much more satisfying than the conventional perturbation 
procedure, in which "small" corrections are added to approximate 
equations in the hope of improving the approximation. Additional 
advantages of this approach lie in the fact that the physical sym­
metries of the exact solution are manifest in the exau1: equations 
of motion but they may be absent in a method which starts from 
approximate equations. 

Although it is clear that a complete formal theory for the 
statistical dynamics of classical systems has many important advf"1-
tages, the original method developed ^y MSR is limited to a re­
stricted class of stochastic differential equations. Specifically, 
the only random processes treated had deterministic interactions, 
linear random force.s with Gaussian statistics, and Gaussian initial 
conditionb Deker and Haake and Phythian have extended the 
MSR formalism to multiplicative random forces and very recently 
Deker has refined and extended it to non-Gaussian random initial 
conditions, forces, and interactions. 

Because of the ad hoc origin of the MSR formalism the extensions 
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to more complicated statistical systems have each required a 
separate treatment. The MSR theory does not provide a general 
formalist, which naturally generates the statistical equations of 
motion for the entire class of stochastic differential equations 
described by (2.1). In fact, nonlocal interactions have proven 
to be intractable for any extension of the MSR approach. 

C. Functional Integral Formalism 
An alternative approach to the description of classical dyna­

mical systems was introduced by Janssen and De Dominicis. ' 
They discovered that a functional integral formalism, analogous to 
Feynman's theory for quantum mechanics, provides a very natural 
and elegant derivation of MSR's results for quadratic deterministic 
interactions and Gaussian random forces. Phythian has pursued 
the functional integral formalism further and shown that the sta­
tistical equations of motion for multiplicative random forces are 
also easily derived with this approach. 

We will show that the functional integral method provides a 
complete formal description of the statistical dynamics for the 
entire class of stochastic differential equations defined by equa­
tion (2.1). This is the primary contribution of this paper. Our 
work unifies all previous results and provides the formal solution 
to several new problems of physical interest. 

In this section we develop the functional integral theory and 
demonstrate how the MSR equations can be easily recovered. The 
specific results for non-Gaussian initial conditions, multiplicative 
random forces, and nonlocal interactions are discussed in later 
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sections. 
Consider a multicomponent classical field f{l) which satis­

fies a stochastic differential equation of *he type described by 
Equation (2.1). In order to define a functional integral we 
coarse-grain the multidimensional space spanned by the time, posi­
tion, and other continuous arguments of i|/(l). The coarse-graining 
procedure defines a lattice which partitions the d+1 dimensional 
<5pace into small volumes of size £ . The index 1 becomes a dis­
crete index which labels the vertices on the lattice, and the sto­
chastic differential equation is transformed into a difference 
equation. 

The functional integral is formally defined to be the multi­
ple integral over the range of i|>(i) at every lattice point in the 
limit e->0 

/
D[iH . .. = lim II it 

e-o itAa+iJ 
dijjti}... !2.27) 

where A denotes the set of vertices on the lattice. Although the 
general mathematical theory for these infinite multiple integrals is 
incomplete, they have nevertheless proven useful in generating sig­
nificant results. Consequently, we will not digress to discuss this 
technical pcint but will refer tr.c reader to the literature 

For the purpose of illustration consider a system of one de­
gree of freedom. If i|»(l) depends only on time for Lo-Stiit, then 
the interval [to,t] can be divided >.vO N segments of length e and 
Equation '2.1) can be discretized in many different ways. For 
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example: 

• ( t i ' - * ( t i - l ) a a ( t . ) + 3 u ( t . . ) + . i i i i i 1 - 1 

( 2 . 2 8 ) 

+ [ V n ( t i ' t

2 - " - t n ) + B n U n ( t i _ 1 , t t . . . t n ) ] * { 2 ) . . . g , ( n ) + S ± j t 

£ 

where a. J- g. = 1. Still other discretization schemes can be devised; 
f 21) 

however, as e-*0, all of these should be equivalent. 

The functional integral is simply 

f N f 
IDfifi] . . . = l i m II Idi 

J e-*0 ,_ J 
)l\p] ... E lim n ldy(i) ... . (2.29) 

i=CT 

The generalization of these definitions to systems with many 
degrees of freedom is straightforward 

In developing our formalism we follow the approach of Jouvet 
(23) and Phythian and consider first the formal functional integral 

representation of the solutions of deterministic equations of 
motion. Consider any functional Ffiji} of the classical field i|/(l) 
which satisfies a dynamical equation of the form of (2.1). For the 
moment we will treat all stochastic forces and interactions as if 
they were deterministic and write 

• / « F{I|J} B |0[1|)•]6(<|,•->^,)F{il•} (2.30) 

where <|> is the unique solution to the differential equation and the 
functional 5 function is defined by: S (IJJ'-IJJ) =liir. II 6 (ifi1 (i) -i/>(i) ) 

E+0 i £ A d + l 
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S i n c e iji i s d e t e r m i n e d by an a l g e b r a i c d i f f e r e n c e e q u a t i o n 

l i k e (2 .28) we can make a c o n v e n i e n t change of c o o r d i n a t e s : 

Fli>} = / D W I S U ' ( l ) - U i ( l ) - U 2 ( 1 2 ) t ( J ' ( 2 ) + . . . 

+U„(1 . ,.n)'Jj'(2) . . . iKCn)+ 6 { t i - t o ) * » ( l ) j JW)f{-i,' } (2 .31) 
n 

where Jfij.'') is the Jacobian that results from the coordinate change. 
The r.h.s. of (2.31) signifies that the integrand is non-zero only 
for \ji' which satisfies the discretized dynamical equation. 

The explicit form of the Jacobian depends on the manner in 
which the dynamical equation is discretized. Since the different 
discretizations give the same final results,it will prove, convenient 
to choose one such that J = II — is independent of ijj(i) . For 

ieA d + 1 

the one-dimensional problem this corresponds to the requirement that; 
a.=0 and B.=l in (2.28) Although J is infinite as r v0, this diver­
gence will be cancelled by another divergent constant in the final 
equations. 

The next step is to replace the <5 function by its functional 
Fourier transform which gives 

FW = c I Dfif' ]D[J]exp -|$(1) (J1 (l)-Ui (1)-U2 (12) IT (2) 
-...Dn(12.. .n)iK (2) ...ijj' (n)-6(ti-to)iJJ0]|F{iK} • (2.32) 

where c = „,, I 2ire * The Fourier transform 1(1) is an ima-
ieA d + 1 L J 

(23) ginary field. Our definition differs from Jouvet and Phythian's 
by art explicit factor of (-i) . As before this formal result can be 
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justified by returning to the discrete lattice and then taking e->0, 
where it is conventional to displace the discrete time arguments of 
A (2 4 i 
ip such that 

e. iMtJiMt) = *(t ± + |) (tj_) (2.33) 

in order to avoid time-ordering ambiguities. 
By comparing (2.32) with the functional integrals which occur 

in field theories we can identify a Lagrangian L and a Hamiltonian H 

I = i(l) [^(1)-U(1)-U2(12)*' (2)-. .. (2.34) 

-U (l...njv' (2) ...iK (n)-6(t,-tD)4)0 (1)] 

= Ml)v,(l>-«{*,,5'} 

which allows us to write (2.32) compactly as 

F{*} = c /D[y]D[i] FH')exp(-L> . (2.35) • J my 

We will see that the new field ty which occurs naturally in 
(2.32) is the exact analog of the non-commuting operator ij) which 
was introduced ad hoc by MSR. In fact, it has been shown that the 
operator theory of MSR can be derived directly from this functional 
integral formalism just as the Heisenberg operator theory of quantum 
mechanics is a consequence of Feynman's path integral 

(21 2 3 25) formalism. ' ' However, rather than emphasize the reduction 
to the earlier operator theory we will pursue the development of the 
more natural and powerful functional integral theory. 

Although ip appears in (2.32) simply as a Fourier transform 
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variable, Phythian has shown that it plays a crucial role in the 
description of dynamical systems. Consider the response of 
F{ip} to an infinitesimal linear perturbation to the dynamical equa­
tions Ui(l)+Ui(l> + f(l) . Then 

6FU} = c /D^MDI^JQ-^-^ 1'^ 1^ - ^ J F ^ , , 

= c D[H,']D[$]exp{-L) [J(l)r(l)+i(l) S U 1 ) 2+...]F'ty' f 

and the linear response function is simply 

: JDfiJv' ]D[*] e L [J(l)F(f}] , (2,36) 

4U)=0 

The linear response functions to many infinitesimal disturbances is 

in general qiven by 

- F ( l p } = c / D l g j ' ]D [$] e ^ [ ( j ) ( l ) . . . i | ) ( n ) ) F { ^ ' } ] ( 2 . 3 7 ) 
1 ...6E (n) y 65, (l1 ...65n(n) 

q=0 
We can now reintroduce the statistics. The functional integral 

representations of functionals of ty (2.35) and of the response func­
tions (2.371 are easily averaged over the random forces, interactions, 
or initial conditions. For example; 

F{i|i} = c /D[^']D[$]F{i(/,}(exp(-£)) (2.38) 

where all the random elements are contained in the Lagrangian L. 

Since the statistics are generally assumed to be known,the 
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average in (2.38) can be performed explicitly. This defines an 
averaged effective Lagrangian L and Hamiltonian H 

^exp(-i)) = exp(-L) = exp - [* (1) <\> (1) -H] . (2.39) 

This averaged Lagrangian L gives rise to the statistical equations 
of motion. 

Consider the generating functional 

: J D [ I P ' ] 0 [ ZfiljU s c / D [ f JCljlJe" 1 , e x p [ H l ) n ( l ) - * $ ( D U l ] ] . (2.-.0) 

The funct ional Z conta ins a complete s t a t i s t i c a l desc r ip t ion of the 

c l a s s i c a l dynamical system ccrresponding to the averaged Lagrangian L 

All of the co r r e l a t i on and response functions are given by func t iona l 

de r iva t ives of Z with respec t t o n arid r,, 

We w i l l formally t r e a t $ on a:; aqtial footing with i> and wr i t e 

the averaged response functions (2.37; 

5nF{iH 
5E(1) . . . 6 U n ) 

= <$U) . . .$(n)F{^}> 

C=0 

/D[l|)]D [tH [iKD . ..i|)(n)F{V(}Jexp(-L} . (2.41) 

Then the generat ing funct ional Z can be used to wr i t e the s t a t i s t i c a l 

average of any a n a l y t i c a l funct ional A of if and lji as 

<A{i|ir$}> = A{-5-, -£ -}Z{TI , ;} - (2.42) 
on oc 

If the funct ional A{0,$} depends on time for t e [ t 0 l T ] , then the r e s -
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ponse to perturbations at times ti>T vanishes. This ensures the 
causality of the response functions which implies in particular 
that 

(J;i)...) = o 

if ti is the latest time in the average. 
In general ttie functional integral representation for the 

generating functional (2.4 0) will be too complex for practical cal­
culations of statistical quantities.1 However, the equations of 
evolution for the statistical correlation and response functions 
can be easily obtained. Since L=$(1)i(1)-H the formal Schwinger 
equations for the evolution of ^{1)) and ($(l)^are derived by a 
functional integration by parts. Using the identities 

/ ' 

6iMl) 
D[iJi]D[iH| | e x p [ n < l ) H J ( l ) + £ ( l ) i M l ) - L ] = 0 (2 .43) 

6\p(U 

we g e t 

5(1) = 0 (2 .44) 
Z Z 

<Ai±>>_ I / _ ± _ H \ _ 
z z \S$U> / 

<kt!>- l / _ i _ A _ n ( 1 , = o (2.45) 
z z ViMD / 

where H is explicitly determined by 

'Various approximate techniques have been developed in quantum field 
theory for the direct evaluation of the generating- Simcbitxtal. These 
include saddle point methods, variational principles(7), and the 
Renonaalization Group(19). Using the functional integral formalism 
these powerful tools can also be applied to problems in classical 
statistical dynamics. 
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H = ln/exp $(1) [Ui(l)+U2(12)K)(2)+. ..+Un(l.. .n)iM2) .. .ij)(n) 

+6(t 1-t 0).KU)]) . (2.46) 
-> 

The principal statistical quantities of physical interest are 
the fluctuation function 

(ip(l)iM2))c = (MDf[2)) " (*(D) (if (2)) 

and the averaged response function 

R(12) s (^(1>*(2))C H (iMU*(2>) 

Note that the divergent constant c no longpj. appears in these 
physical quantities. If the fluctuation and averaged response func­
tions are rewritten as 

< y,(l)#(2)> eE_«_ <*iii> 
C 6n(2) Z 

< #,i,i ( a,> e S_5_ <MiI> 
C 6?(2) 

then the c in the numerator is cancelled by the c in the denominator. 
Moreover, a causal response function is assured since 3 VrJ-'-O =^ 
fort 2>t>. 6 ^ ( 2 ' Z 

The Dyson equations for the fluctuation and averaged response 
functions follow from (2.44) by functional d-.fferentiation with 
respect to n(2) and C(2) 

<i(l)iM2)> - [(iH2) J- H)-(I{I(2))/-^ H ) ] = 0 (2.47) 
-5 4" (1) <5iMD 
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<*(1)*(2)> - [(£(2)^—H>-<J(2))(- Ti—H>I=Ml-2) . (2.48) 

Then the system of statistical equations (2 . 44)- (2.48) can be 
formally closed, using the same procedure as in the MSR formalism. 
First, the n-point field averages are expressed in terms of the 
connected Green's functions which are generated by F(n,c} = In Z{t),rr). 

Then these connected Green's functions are written in terms of the 
two-point connected Green's functions and the vertex functions 
T (l...n) which are generated by the Legendre transform of F. Since 
all of the vertex functions are given in terms of functional deri­
vatives of two-point functions with respect to one-point functions 
as in Equation (2.22), the set of Schwinger and Dyson equations 
forms a closed set of exact statistical equations for the mean 
fields, fluctuation functions, and response functions. 

After these transformations, Equations (2 . 44)- (2.48) represent 
a complete description of the statistical dynamics of classical 
systems which are governed by stochastic differential equations of 
the type defined by (2.1). They are applicable to a much broader 
range of physical problems than the results of MSR. Although these 
equations also prove in general to be too complicated to solve 
directly, the advantages of such a description are obvious. First, 
these exact equations of motion exhibit all of the symmetries and 
conservation laws of the exact solutions. Second, these equations 
serve as a starting point for several different systematic perturba­
tion schemes. 

The functional integral approach provides a natural and direct 



-29-

derivation of the closed Schwinger and Dyson equations for determi­
nistic interactions and linear random forces. If we assume arbi­
trary random forces (2.46) gives in general 

H = 5(1) Ui (1)+U2 (12)1); (2 )+U3( 12 3) iM2) tfr (3)+... 

+Un(l...n).|)<2) ...<Hn)+6(ti-t0><|), <i> J 

+ In (axp £(l)Ui (1)) 

= H 0 + C{$1 . (2.49) 

H 0 represents the deterministic forces, interactions, and initial 
conditions and C is the cumulant functional 

C U ) = Z i[5(l) ...J,(n)] (<tT(l) ...U(n))) 
n=l ' (2.50) 

M M 

where /jf. . .NS is the cumulant average of the random force- For 
Gaussian random forces C{ijj} = 5 (1) ((u (1)^ + -$ (1) ij) (2) ^U(l) U(2)^ . 
When (2.49) is inserted into Equations (2.44), (2.45), (2.47), and 
(2.48), we can easily recover the Schwinger and Dyson equations 
derived by MSR which are written in matrix form in (2.19) and (2.20). 

In the following sections the statistical dynamical Equations 
(2.44)-(2.48) will be explicitly determined for a variety of impor­
tant physical problems. 
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3. APPLICATIONS OF THE FUNCTIONAL INTEGPAL FORMALISM 
A. Nor.-Gaussian initial conditions. 

Deker' has recently observed that the HSR procedure cannot 
describe the evolution of systems with non-Gaussian initial condi­
tions. He proposed a modification of the MSR formali-m and suc­
ceeded in deriving the "spurious" interactions which are generated 
by the cumulants of the random initial conditions. 

Deker's results are easily recovered as a special case of our 
functional integral description of general stochastic differential 
equations. Without loss of generality, consider a classical system 
described by a differential equation of the form of (2.1) with de­
terministic forces and interactions but random initial conditions. 
The random initial condition is treated like an instantaneous linear 
random force. Using Equation (2.46) for the averaged Hamiltonian 
we can write down the answer immediately 

H = i>(l) Ui (l)+...+UnU. ..n}i|/(2) . . .^(n)+<5(t,-t0)ip0 {l)\ 

+ In (exp i K D Y o U J M t i - t o ) ) 

= Ho + I ijiMlJMti-to) ...iMnJM^-t,,) « ? 0 U ) . ..#„ (n))) (3.1) 
n=l 

where we have expanded out the cumulant function in terms of the 
cumulant averages of the random initial conditions. The corrections 
to Ho are the "spurious" interactions which were derived by Deker. 
When H is inserted into (2.44), (2.45), (2.47), and (2.48) we get 
a complete description for the statistical dynamics of systems 
'.••ith arbitrary initial conditions. 
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B. Multiplicative Random Forces. 
Now consider a classical system with stochastic interactions 

U (l-..n). For the purposes of illustration we will examine the 
case with tf2(12) ^ 0. The results are easily generalized to sys­
tems with many stochastic interactions and using the results of 
Section 3.A to systems with random initial conditions as well. 

Deker and Haake were the first to modify the MSR formalism 
to deal with problems of this kind. They treat the random force 
in the interaction U2(12) as a separate field on an equal footing 
with ^ and J. 

A different approach to this problem has also been developed 
by Phythian( ' using an elegant method based on the Novikov 
theorem, ' Phythian's method avoids the mixed averages of tji, tp, 

and U2 Which result in Deker and Haake's approach since the Novikov 
theorem decouples the statistics of U 2 from the statistics of IJJ . 
Unfortunately, the Novikov theorem is restricted to Gaussian random 
forces and both methods require that the interactions be local. 

The functional integral method provides a generalization of 
the Novikov theorem to nonlccal random interactions with arbitrary 
statistics. Furthermore, Fince ĥe results of Deker and Haake are 
also easily recovered by treating the random force as an additional 
field, our method serves to unify these disparate approaches. 

Once again (2.46) enables us to write down the answer 

H = hi) |u(l)+...+Un(l...n)<M2) ...*(n) + In ̂ exp $(1) U z (12) iJ/<2)) 

= H„ + C{i(l)iM2) } (3.2) 
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where the cumulant functional ; is given by 

C{* (1)1)1(1)} = I n-/i(l)iKT) ...i>(n)*{K)yn

2UT. . .nn) (3.3) 
n==l 

and 

y"(ll...nn) 2 «U2(lT)...U2(nn)» . (3.4) 

When (3.2) is inserted into Equations (2.44), (2.45), (2.47), 
and (2.48) we arrive at a complete statistical description of the 
dynamics of systems with multiplicative random forces with arbitrary 
statistics. 

Note that the random force U* appears explicitly only inside 
the cumulant averages (3.4). Consequently, our approach decouples 
the known statistics of U? from the unknown statistics of ijj. This 
separation of the statistics has important practical advantages. 

Similar results for instantaneous (local) random interactions 
have been derived by Deker using an operator approach and by 

(11} 
Phythian using the functional integral formalism. However, Phythian 
us< - a difi^rent discretization corresponding to a 2=l and S 2=0 in 
(-.28). This gives more complicated equations of motion because 
the Jacobian is a functional of \fi. Since the different discreti­
zations are equivalenttPhythian's equations reduce to our simpler 
results. 

If the random interactions are Gaussian then the Schwinger 
and Dyson equations simplify considerably. Without loss of 
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generality we neglect the deterministic forces and interactions. 
Then the statistical equations of motion are: 

<-MU>c - <<JM1T)» <*tT]>c 

- <<JT 2 ( 1 1 ) U 2 (22))) (>j>(l)l (2 )^ (2 ) ) 
Z 

- ?(1) = <5(t 3 - ta)4T o a) . (3.5) 

"<*<«> c " <<^<Tl>>> < * ( T ) ) c 

- ((0' 2(Ti)tT 2(2 2"))) <$(T)M2)i|)(?)) 
z 

- n(l) = o . (3.6) 

- ^ -<#(D*( i , )> c - «P 2 ( i i ) » ( • ( D * ( r ) ) c 

2 

Z 2 ( 3 . 7 ) 

— ( • ( D i d ' ) ) , , - (^(iTJK'MT) *(!')>,, 

- <<Jy2(lT)U2(2 2)» (» ( ! )$ (2) iH2) $ ( ! ' ) ) 

- <iHl)iH2)K>(2>) <iii<l')) 1 = (5(1-1 •) (3.8) 
Z2 J 

These equations can be formally closed by expanding the 
three- and four-point correlations in terms of the connected Green's 
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functions and then writing the connectea Green's functions in terms 
of the two-point connected Green's functions and the three-point 
and four-point vertex functions. 

If we neglect the three- and four-point connected Green's func­
tions then this "Gaussian" approximation gives 

—0(1)'M1')> - «ua(lT)» <*{T]*<1'))_ 9tj 

- <<JT2 ( l l ) ft;, <2l)» <iMT}J (2)) Jy (?)0(1 * ) ) c = 0 . (3.9) 

~<y{i)'v{V))c - « u z ( l T ) » < I | J ( T ) 5 ( 1 ' ) ) C 

3 t ) 

- «U 2 ( l I )U 5 (22" ) )> < i K l ) i ( . ( 2 ) ) c ^ ( 2 ) f ) ( l , ) ) c = 5 ( 1 - 1 ' ) , (3 .10) 

These renormalized equations of motion for the fluctuation and res­
ponse functions are identical to those derived in the Direct Inter-

(13) action Approximation (DIA) using the methods of Deker and Haake. 
(13) Krommes, Kleva, and Oberman ' have applied the approach of 

Deker and Haake to the problem of particle motion in a stochastic 
magnetic field which was outlined in Section 2.A.(ii). Unfortunate­
ly, because of complications related to the appearance of mixed 
averages of ty and U 2 > they were unable to complete the problem be­
yond the DIA. Although the equations of motion (3.5) and (3.9) 
of both approaches are identical in lowest order renormalized per­
turbation theory (DIA), our n&w results (3.7) and (3.8) a"oid the 
complications of mixed averages to all orders in the perturbation 
theory. The problem of particle motion in stochastic magnetic 
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f.ields will be pursued further using (3.7) and (3.8) in a subsequent 
paper. 

C. Nonlocal Interactions. 
One of the distinct advantages of the functional integral forma­

lism is that there are no restrictions to local or instantaneous 
interactions. The results of Section 2.C are valid for any nonlocal 
but causal interaction U (l...n). Consequently, this theory extends 
the modern methods of renormalized perturbation theory to a large new 
class of problems. 

Many equations of this class, which originate from second or 
higher order differential equations, can also be written as a system 
of first order differential equations with local interactions by ex­
tending the number of fields. This system of differential equations 
can be formally solved using the MSR formalism. However, the 
complications of the additional fields are easily avoided by dealing 
directly with a single differential equation with nonlocal inter­
actions . 

Some examples of important problems for which formal solutions 
can be obtained using the functional integral formalism,are wave 
propagation in random mediafand the nonlinear theory of electro­
magnetic plasma turbulence. The structure of the dynamical equations 
for both prriblems was outlined in Section 2.A. In this section we 
will study the theory of electromagnetic plasma oscillations and 
derive the electromagnetic dispersion tensor in lowest order 
renormalized perturbation theory. A detailed discussion of the sto­
chastic wave equation will be reserved for a future publication. 
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(12) 
Krommes and Kleva have succeeded in calculating the dielec­

tric tensor for electrostatic oscillations in a turbulent plasma 

using the methods of MSR. However, they were unable to awply their 

theory directly to the electromagnetic problem because of the re­

striction of the MSR approach tc instantaneous interactions. Using 

the functional integral approach it is easy to extend Krommes and 

Kleva 1s results to the electromagnetic case. 

In Section 2,A. (iv) we showed that the Vlasov-Maxwell equations 

can be written in the form of (2.1) with non local deterministic in­

teractions. The statistical averages arise either from the assump­

tion of random initial conditions or random phases. The corresponding 

stochastic differential equation is 
3 t < j ( 1 ) - U2(12)i|>(2) - U 3(123)tM2)iM3> = 5 (t, -t„) *„ (1) . (3.11) 
at, 

The effective Hamiltonian is given by (2.46) 

(3.12) 
Ho, random phases 

Ho + H, random initial conditions 

where H 0=$ (1) lu 2 (12) i/i (2) +U 3 (123) i|<{2) i> ( 3) +6 (tj-to) * 0 (1) and 

H= ln^exp idjafti-to)^^)) • 

Substituting H into (2.44), (2.45), (2.47), and (2.48) we get 

the statistical equations of motion for the mean field , the fluctua­

tion function and the response function: 
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3 < M D ) - Ua(12)(i(i(2)) - IM123){i|)(2)iH3)) 
3t] Z Z Z 

( 6 (ti-to)"if"0 (1,) / random phases 
(1) = I l / 6 H\, random initial 

f ASH!) / c o n d i t i o n s • (3.13) 

_3_<0'(1)*(1 ,)> C - U2(12)(^(2)if»(l')>c 

- Uj(123) [<i|;(2)»(3)<j(ll))-(if>(l')X»(2)'j>(3))] 
Z Z 2 

0, random phases 

1 / W ' ) 6 H \ - A{l')\l/ 6 HV, 
z \ 5$(1) / \ Z / z V i M D / 

random initial conditions . (3.14) 

3 < i H l ) $ ( l ' ) ) c ~ U 2 ( 1 2 ) ( I ( . { 2 ) 5 I C 1 , ) ) C 

3 t ; 

- U3 (123) [ < i i l L M l l l I I L i > - ^ ( 1 , ) ) < ^ ( 2 ) ^ ( 3 ) > ] 
z z 2 

= 6 ( 1 - 1 ' ) . (3 .15) 
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For Gaussian random initial conditions the right hand sides of 
(3.15) and (3.16) simplify further. For n,C->"0 

1 / 6 H \ H f o ^ M t . - t o ) 
zVftd) / 2 

l A ( l ' ) 6 H \ - (y ( I 1 ) ) / 6 H \ 
Z \ 6lii(l) / Z2 \(5iMl) / 

( H I ' )'H2)) ( ( ^ ( 2 ) ^ ( 1 ) ) ) 

x 6 ( t , - t o ) 6 ( t ] - t 0 ) 

(3.16) 

where we have used (i(i(l)) =0 and Z =1. (3.17) 
n,C=0 n,?=0 

In order to close (3.13), (3.14), (3.15), and (3:16) we first 
express the three-point correlation functions in terms of the con­
nected Green's functions. The resulting equatiors for the fluctuation 
function C (12) =(y> (1) i|> (2)) and response function R(12) = (ij> (1) J (2)) c as 
HrC-O are 

_3_ C(ll') - U 2 (12)C(21') - U3(123)^(2))C{31') 

- U,(123)<iM3))c(21'> 

- U3(123)<*(2)iJJ(3)iKl,)>c 

0, random phases 
R(1'2) C(2,to;l,t0) <5(t2-t0)6(tj-t<,) , (3.18) 

random initial conditions. 
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3 R(ll') - Uz(12)R<21') - U3(123)<i|;(2))R(31t) 
3t3 

- U3(123)<<M3)) R(21*) 

- U 3(123)<^(2)I/J(3)$(1')> C 

= 6(1-1') . 
(3.19) 

The three-point connected Green's functions are in turn ex­
pressed in terms of the two-point connected Green's functions and the 
three-point vertex function T 3. Let *.= | L 1 = I 1 » then using 

functional chain rule,Equation (2.22) gives 

r^(23i) E <*i(2)»1(2)>c<*j(3)*m(3)>c<*k(l-)*n(I)>| 

*<* i(2)* j(3)$ k(l ,)) c . (3.20) 

Since only r 3
Z 1 1(231) r r 3

I 2 !(231), and r,' 12(231) are non-
vanishing, we are left with 

^(2>iM3)iM2')^ c = R(22)C(33)C(l'l)r2' ' (231) 

+ C(22)R{33)C(l'I)r^21 (231) 

+ C(22)C(33)R(l'l)r^1J(231) , (3.21) 

(ij< (2)1(1(3}$ (!')),, E R(22)Cl33)R(ll')r21'(231) 

+ C(22}R(33)R(11')r^2'(231) (3.22) 
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In lowest order renormalized perturbation theory (DIA) 
(2.22) and (3.19) give 

T2

3

ll{231) = U3(23l) + U3<213) , (3.23) 

I"J21(231) « U3(32l) + 03(312) , (3.24) 

rj12{231) = U3(132> + 03(123) . (3.25) 

(12) Following Krommes and Klevav we then identify 

E(ll) = U3(123)R(22)C(33)[03(231) + U3(213)1 

+ U3(12Z)R(33)C(22)tU (321) + U (3I2)] , (3.26) 
3 3 

Mil) = U3(12;)C(22)C(33) [0 (132) + U (123)] , (3.27) 
3 3 

[g c] _ 1(12) = 5(1-2) J)_ - U 2 (12) - U s (132)(ifi(3)) . (3.28) 
8t2 

Finally, using (3.21)-(3.28), the dynamical equations can be 
written compactly as 

[g0]_:L(12)C(21') - U3(123)(^M3))C(21,) 

- Z(lI)C(ll') - mi)R(l'l) (3.29) 

1 0, random phases C(ll')6(ti-to),random initial conditions 

[ g ^ ^ t ^ ^ U l ' ) - Us(12~! (*(3))R(21') 

- Edl)C(ll) = 6(1-1') (3.30) 
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Krommes and Kleva showed that in the electrostatic problem 
R can be considered as the renormalized propagator for a shielded 
test particle where the shielding is determined explicitly by a 
non linear, renormalized dielectric function. Analogous results 
can be shown for the electromagnetic c&se with the diel.ectric func­
tion replaced by the dispersion tensor. 

Using the explicit representation of U 3 given by (2.16), we 
can write E as the sum of two types of terms 

H I D (23)C(33) j)_ R(12)l. M13) ^ 
£» J 

+ 1(13)R(32)f 3 -L (23)C(1 

8 R(12)J -M13) 3 
I L^Vi J 3v 2 

3 6 (2-1) 
3v2 

C(32) 

+ L <13)R(32)< _3 3_ C(12) 
3vi 3v 2 

L(2l) 

'.' <ii) + j" a iii<(i 
|_3v2 

2) J-(21) (3.31) 

Using a more compact notation, Equation (3.31) for the averaged 
response function ta'.ces the form 

g - 1R + 3[(t)f «•]• IB = 1 -
3v 

(3.32) 

One piece of the nonlinear interaction term E renormalizes the bare 
propagator g , 
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S
_ 1{12) H |gj X (12) + E'(12) , v i . 3 3 ) 

and the other piece modifies the mean background distribution 

5(12) = <(-(!)) <5 (1-2) + 6^(12) . , 3 - 3 4 ) 

Solving formally for R we get 

and 

R = g[l - A" 1-3 f Lg] n . 3 6 ) 

3 v 
where the shielding is described by 

£(21) = li(:-H + M22)g(21) J_ Jul) . (3.3") 

The electromagnetic dispersion tensor relates the average elec­
tromagnetic fields inside a stochastic dispersive medium, which 
result as a response to externally applied fields, to the pprturbirv.i 
fields. Using the arguments of Krommes and Kleva it can be shown 
that & is a correct representation of the clc tromacjnetic dispersion 
tensor. 

The author has also considered this problem by extending 
the number of components of the classical field to make the inter­
actions local. This allows the methods of MSR to be used. The re­
sults of this rather tedious calculation are identical to Equation 
(3.37). 

Finally, the reduction to linear theory can be shown, if we 
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transform the dispersion tensor into a more familiar form which 
relates the total electric field to an applied external current.' 2 8' 
In an isotropic medium the longitudinal and transverse parts of 
the dispersion tensor decouple. In Fourier *-ransform space 

W wt 

where 

It 6 . . 
i] k.k. I n , i = 1,2,3 

and 

T x c • • = a • . 
ID i: s m u-7 L u 3v. Jw ?V 

s j «* -> 

(3.38) 

gk(j) is the kernel or the bare propagator (3.3 3) in Fourier space 
and f i s defined by (3.34). Equation (3.38) reduces to the linear 

(28) dispersion tensor when the nonlinear terms E' in g and <5f in 
f are neglected. 
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4. CONCLUSION 
We have developed a functional integral formalism for the des­

cription of the statistical dynamics of a broad class of stochastic 
differential equations. The functional integral approach provides 
a natural and elegant derivation of all previous results based on 
the MSR operator formalism and extends these methods to classical 

systems with non.ocal interactions. Moreover, we emphasize that 
the functional integral results decouple the known statistics of 
the random forces, interactions, and initial conditions from the 
unknown statistics of the classical random fields. 

Out' formal results are illustrated by an application in the 
theory of electromagnetic plasma turbulence. Using the functional 
integral formalism for nonlocal interactions we have extended 
Krommes and Kleva's derivation of the nonlinear dielectric function 
for electrostatic plasma turbulence to the electromagnetic case. 
The resulting nonlinear dispersion tensor provides a formal basis 

for further work on the nonlinear evolution of plasma instabilities. 
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