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ABSTRACT 

Rayleigh-Fano theory has bean extended for the purpose of calculating the polarization anomaly of a grating having shallow grooves and finite conductivity. Simple analytic formulas are derived for predicting the position and the appearance of the anomalies. Phenomenological explanations are given to the origin of the anomalies. The valic Lty of our analysis is examined by comparing computed degree of polarization with experimental data obtained in the visible region for A1-, Ag-, and Au-coated blazed gratings. 

1.INTRODUCTION 
Grating anomalies and their associated problems have been a subject of theoretical interest. The integral and the differential method are capable of solving such problems with the aid of a large computer1. However, they have some difficulties in obtaining physical insight into the diffraction process involved. On the other hand, the surface plasmon theory2,3 gives a physical interpretation on the process, but it is lacking in capability in explaining to a large extent the effect of the groove profile. 
Despite the problems in its mathematical formalism, the classical Rayleigh-Fano theory*'* is very attractive because it provides a clear physical insight into the diffraction processes involved and permits the use of a personal computer for computation. Therefore, we have extended the Rayleigh-Fano theory and applied it to the analysis of polarization anomalies of shallow metallic gratings. 
We outline our extended Rayleigh-Fano theory7 in Sec. 2. In Sec. 3, we derive simple analytic formulas for predicting the position and the appearance of anomalies and give phenomenological explanations to the origin of the anomalies. We examine the validity of our analysis in Sec. 4 by comparing computed degree of polarization with the data measured in the visible region for A1-, Ag- and Au- coated blazed gratings. 

2. EXTENSION OF RAYLEIGH-FANO THEORY 
We define a Cartesian coordinate system and the positive direction of angles as shown 

in Fig. 1. The surface of a plane grating having a period d in the x direction and z = 
f(x) = f( x + a" ), divides the whole space into halves; the upper half, Uu is a vacuum 
and the lower half, U2, is composed of the grating material having a complex refractive 
index fi. The monochromatic plane wave of wavelength A travels in a direction 
perpendicular to the grooves and impinges on the surface at an angle 6. We approximate the 
fields on both sides of the surface, that is, the incident field iT", reflected diffraction 
field u w, and refracted diffraction field u1", by superposition of plane waves: 

u B * exp{ik{x sin 6 - z cos 6 )} , 

""' = 2 Rm exp<i*(x s in ifim + z coa ifim )} , (1) 

u"1 = 5 Dm exp{i*fi(x s in <pm - z cos #„ )} , 
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where a time dependence of the form exp(-iwt) is implied, to being the angular frequency 
of the incident wave. In Eq. (1), k = 2ir/A, <//m is the diffraction angle of the reflected isth order diffraction wave, tpm is the diffraction angle of the refracted rath order wave, 
and R„, and D m are, respectively, the complex amplitudes of the reflected and refracted 
mth order diffraction waves. 

He express the groove profile in a Fourier series 

z » fix) " S [a.cos(2pirx/d) + b.sin(2pirx/d) ] » £ f„ exp(-iklpx), (2') 

where f 0 = 0 and 1 =A/d , Using Eqa. (1) and (2), we expand Maxwell's boundary conditions 
on the grating surface to the second order in t(x). Equating the coefficients of exp(-
iklmx) on both sides of the expanded boundary conditions for a given m, we obtain 

02 m(oo»(C m+/Scoa#„)R m - (G1m+H1m)coa9-G,„jScoB$1T,-i*.Ziiiimsin0 
- fJ mRp[(G's m, +H ,j m,)coav,+G ,, m^cOB0 m+i*i(n,-p)f m l >Bin((/ |,] 
- ^^DpKG'^+H'^Jcoa^-G'^coa^-iWJm-pJf^Bin^], (3) 

G3 m(coawm+/8cos0m)D„ - (G1m+H,m)coBe+G1mcos»/m-ifciiiifmBine 

- fSmRp[(G',m,+H' 2 l w)coBV 1 1-G« 2 m pc08((/m+ifcZ(m-p)f„M JBin»/ [,] 

",&, Dpt/S<G'*™,+H',m ) 1)co8*p+G' t a wcoBWm-iia{Di-p)fm 1j8sin0pJ, (4) 

where /S « n for s component, P « 1/n for p component. The explicit expressions for G^, 
G'wp. H'kn, (i - 1. 2, 3 ) and H,„ in Eqs.(3) and (4) are 

G 1 0 • 1- Js^gtOJcos'O , 
G ) m « - i * f m c o s 6 - >jJc2g(m)coB20 , (m*0) , 

° 2 m = I" hk'gWcos1^ , 
< 5 > G' ! m P - ikf^coBt/i, - Wg(m-p)cos 2 «/ p , 

G3m = 1- Jsn 2* 2g(O)cos 20m , 

G'amp » - ixnf^cos^p - Ss/c^gfm-pjcos 2^ , 

H,m « k2lh(m)Bin6 , 

H' 2 m p » ^Ihjm-pjsintf/p , (6) 

H's™ = k7lStHm-p)aLn^l , 

where 

g(i»> - E f^f,^m , 
' (7) 

h(m) - S gf^,f,< m . 

It is noted that both R„ and D m are expressed as a linear combination of two kinds of 
terms. One is the functions of quantities associated only with the incident light (A,ff), 
diffraction order (m), groove profile (d,f p), grating material (fi), and grating mounting 
(8,<fim). The other is the terms that represent contributions from diffracted waves (both 
reflected and refracted) of the other orders. For a mirror, i.e., f„=0, the contributions 
from all the diffracted waves vanish, and Eqs.(3) and (4) are reduced to Fresnel formulas. 

To determine the complex amplitudes R„ and D m of the diffracted mth order waves from 
the grating, we employ an iterative method with the initial values given by 

" |«-d-* |0 

U 2 

(Grating Material) 

+ 1st 

<!Lz = f<x>=f(x+d) 

+ 1st 

Fig. 1. Diffraction of a plane wave 
by a plane grating. The angles are 
taken as positive when measured in 
the direction indicated by arrows. 
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(G l m+H, m) cosff-G,^cos0„-ifc2mf msine 
Rj 0' , (8) 

G2m(cosv/m+J8cos0m) 
<G,m+H,m)cose+Glmcos<pm-ifcimfmBin0 

D mio. . ( 9 ) 

Gjm(cos<pm+0cos0m) 

These initial values are the zero-order solutions obtained by neglecting the contributions 
from the diffracted p (^in)th-order waves, i.e., by neglecting the terms containing R p and 
D P (P*4") i n Eqs. ( 3) a n d (4). Iterations are carried out by successive approximation: (1) 
the 1st order solutions R j " and Dm'" are computed from Eqs.(3)and (4) by substituting the 
initial values R ^ ' s and Dm

l°''s of Eqs. (8) and.(9) computed for various nt's into Rp's and 
D p's, (2) the 2nd order solutions Rj 2 1 and D j " are computed from EqB.(3) and (4) by 
substituting Rm'"'s and Dm'"'s for R,'s and D p's, and (3) higher-order solutions are obtained 
successively by repeating steps similar to (2). Iterations are terminated by referring to 
the degree of convergence of the solution and the energy balance criterion1 

1 * L E" + =. E*m • < 1 0> 
m€Uj m£U2 

In Eq.(lO), E m and E' m are the energies of the reflected and the refracted rath-order 
diffraction waves, respectively, and are expressed by 

S„ - RmRm'cos(((m/cose , E'„ - ySDmDm*coB0m/cose , (11) 
where the asterisk means the complex conjugate. 

To examine the validity of our method, we computed P-<4 curves, the degree of 
polarization P vs. wavelength A, 

[=„{>()]. - tE mM)]„ 
P(iM) = , (12) 

[E„(-t)]. + [E„(yl)]p 

and the energy sums 

(E(^)].„ =S[Em(yl)),iP +S(E'm</i)]..p . (13) 

3. ANALYSIS OF DIFFRACTION ANOMALIES 

A physical picture of the grating anomaly can be drawn by examining the formula for the 
nth-order solution R^"1. Applying successive approximations n times, we obtain the complex 
amplitude Rj"1 of the reflected mth-order diffraction wave: 

F(/t,e,d,m,p,0) 
Kj-i = Rjo' + s f ^ + higher orders, (14) 

p , m (cos^m+/3cos0m)(cos<|/p+0cos0„) 

where F is a slowly varying function of A, 0, d, m, p, and yS and is given by 

F = -A2{(cos20-/JcosScos0p+.Zpsin0) [costyp+/?cos¥/(,cos0„1+l(m-p)sin0/p] 

-P(cos20+cos0cos#/p+2psine) [ ncos20p-ncos0pcoBpm+I (m-p) sin#p J}. (15) 
The second term in Eq. (14) represents interactions among the diffracted waves of various 
orders ( p # m ) and the grating structure. These interactions may produce an anomalous 
effect on the mth-order spectrum under observation if the pth-order wave is either 
diffracted again( by the grating) or reradiated resonantly (through momentum transfer with 
the grating) into the mth-order spectrum. This means that in order to have an anomaly, the 
pth-order wave must be nearly in the state of passing off (|sinv/„| = 1) and the factor 
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(cos([/p+/Scos0p) must take a very small value rapidly as l//c approaches ±90°. 

He observe the rath-order spectrum at a constant angle of incidence while increasing the 
wavelength A of the incident l i g h t . The factor (cosvif+ffcoB<pB) i s expressed as 

cos<pp+0cos$>p = {coB<pp+Re(jgcos$>„)} + i{Im(/?co8$ p)} for A £ AR ( | s i n v p | s 1) , (16) 

cos<pp+0cos$p = {Ret/Jcosp,,)} + i{|cos»/ p|+Im(/Scos* 1 )) J for A > AR <|sin«/ p |> 1) , (17) 

where An i s the Rayleigh wavelength of the pth-order wave and i s defined by 

pAn « d(sinfl ± 1) . (IB) 

Thus, an anomaly may occur when the real (imaginary) part of Eg. (16) (Eg. (17)) becomes 
zero at a certain A < AK ( A > An ). 

For p- ( s- ) polarized incident light, the real ( imaginary ) parts of Eqs.(16) and 
(17) are shown to be always positive and are axpacted to be slowly varying function of A. 
The imaginary part of Eq. (16) and the real part of Eg. (17) are also expected to vary 
slowly with A. Therefore, no anomaly should occur, within the framework of a shallow 
grating, at A < AK and A > An , respectively, for the p- and the s-polarized light. 

For the p-polarized light, an anomaly associated with the pth-order wave (in a trapped 
mode within the grating surface) is expected to occur at A > AK that satisfies 

|cos<pp| + Im(£cos#p) - 0 , (19) 
if the following conditions are fulfilled: 

|Re(0cos0p)| / |lm(/ffcos0p)| « 1 , (20) 
Im(/3cos<pp) < 0 and |d(cosv/p)/d>t| > |d[lm(^cos0p) ]/d/l|. (21) 

For the s-polarized light, an anomaly associated with the pth-order wave (in a 
propagating mode) may occur at A < AK that satisfies 

cos»/p + Re(£cos$p) = 0 , (22) 
if 

|lm(0cos0„)| / |Re(j9cos0„)| « 1 , (23) 
Re(0cos$c) < 0 and |d(cos«/p)/dA\ > |d[Re(0cos£p) ]/d/)|. (24) 

are satisfied. Equations (20) and (23) are the conditions of resonance with a small 
damping. The second relations in Eqs. (21) and (24) are the conditions necessary for the 
anomaly to occur in a narrow wavelength range. In the visible range, highly reflective 
metals have extinction coefficients which are larger than the respective refractive 
indices. For this reason, Eq. (23) is violated, but Eq. (20) is not. Therefore, shallow 
metallic gratings do not exhibit anomalies for s-polarized light, but they may show 
anomalies at A > AK for p-polarized light if Eqs. (20) and (21) are fulfilled. 

4. COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL DATA 
4.1. General features of anomalies 

To examine the validity of our analysis of the grating anomaly, we compare in this 
section the numerical results with some experimental data" on polarization anomalies of 
A1-, Ag-, and Au-replica concave gratings having a radius of curvature of 0.5 m, a groove 
density of 600 grooves/mm, and a blaze angle of 2°35'. Although the experimental data 
referred to here are on concave gratings, it was shown' that the concavity of the grating 
surface has no influence on the anomalies if the aperture is kept smaller than f/13, thus 
permitting us to use the data for comparison. 
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Numerical computations were carried out by using a 80386-SX based personal computer and 
Basic compiler. In the numerical computations we used the values of optical constants for 
aluminum'"'2 , silver'3 and gold'4 given in references. The groove profiles of the gratings 
were approximated by Fourier series of a finite length with |p|s 10 . The degree of 
polarization was computed for 200 wavelengths in the measured wavelength range of 300 -
700 ran at equal intervals. The energy sum was taken over spectral orders from -10 to 10 
for both the s and p components. Under these conditions, it took 6 hours to compute twenty 
P-A curves (m • ±1, ±2,---, ± 10 ) with five consecutive iterations and the respective 
energy sums. 

Figure 2 shows the measured (open circles) and the computed (solid lines) P-A curves, 
the degree of polarization P vs. wavelength A, of A1-, Ag-, and Au-coated gratings in -
1st order at a fixed incident angle of 5°. For reference, the Rayleigh wavelengths are 
indicated in Fig. 2 (a) by arrows and the associated passing-off orders by numerals. All 
the P-A curves shown here are obtained at the first iteration, which is the best 
compromise as judged by the energy balance criterion. It is clearly seen in Fig. 2 (a) 
that the general features of the observed anomalies, i.e., the position, shape, and 
appearance, are well reproduced by the computed curves. Slight discrepancies between the 
observed and the computed P-A curves may be attributed to some extent to ambiguity in the 
values of blaze angle and optical constants used for calculations. In the case of Al-
coated grating, rather large deviations seen in the dip positions at short wavelengths are 
most part due to A1203 layer formed on the grating surface. 
4.2. Position and sharpness of anomalies 

To compare the computed results with the observed data more in detail, we take up the 
P-A curves of Fig. 2 (a) as a typical example and consider the p-anomalies associated with 

300 400 500 600 700 °*° 300 400 500 600 700 °"° 300 400 500 «H) 700 
WAVELENGTH (rani WAVELENGTH Cnml WAVELENGTH Inml 

Fig. 2. Computed P-̂  curves (a) and the energy sums (b) obtained at the let iterations for 
600-grooves/mm, 2°35'-blaze, A1-, Ag- and Au-coated ruled concave gratings at a fixed 
angle of incidence of 5°. The corresponding experimental data-points(o) are shown in (a) 
for comparison. 
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passing-off orders of +3 and +4. In this example, we can separate the effect of grating 
materials from that of groove profiles because the data of Fig. 2 (a) were taken with the 
gratings replicated in succession from one and the same replica grating using different 
grating materials. 

Figure 3 shows for the A1-, Ag-, and Au-coated gratings the behavior of -|cos(i/p| and 
Im(j9cosa0p) in the vicinity of the Rayleigh wavelength, AH » 604.0 nm and 452.9 nm 
associated, respectively, with the passing-off orders of +3 and +4. Ao is seen in Fig. 3, 
the two curves -|cos0/„| and Im(jScos$p) intersect at a wavelength A0. This implies the 
fulfillment of Eq. (19), suggesting a possibility of observing an anomaly at A0 {A0'B are 
found to be 611.2, 623.1, and 631.1 nm, in Fig. 3 (a) and 462.8, 482.9, and 503.3 nm in 
Fig. 3 (b), respectively, for the A1-, Ag-, and Au-coated gratings. 

8 0.0 
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—-0.5 

AK A0[Ag) 

_ /lolAI) ^o(Au) 

, 1 _* i « . 1 • i i 

V Al 
r"~" j \ Ag 

""t" o"— Au 

V 
Im{/?cos03) 

i 1 i i i i 1 

1 COS0/3 | 

1 1 1 

600 650 
WAVELENGTH (nm) 

(a) 

450 500 
WAVELENGTH (nm) 

(b) 
Fig. 3. 
with (a) 

-|cos([/„| and Im{/Scosa0p) vs. wavelength in the vicinity of anomalies associated 
p = +3 and (b) p • +4 for the A1-, Ag-, and Au-coated gratings. 
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Fig. 4. The magnitude of of | Re (/?cos0p) | / | Im(/?cos0p) | vs. wavelength in the vicinity of 
anomalies associated with (a) p = +3 and (b) p = +4 for the A1-, Ag- and Au-coated 
gratings. 
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The damping effect due to the coating materials (cf. Eg. (20)) should be examined in 
order to judge whether the anomalies under consideration really appear or not. To do this, 
we plot |Re(/5cosi/>p) | / | Im(/?cos<£p) | against wavelength as shown in Fig. 4. As to the anomalies associated with p = +3, the damping effect are fairly small for all the gratings 
(see Fig. 4 (a)}, suggesting occurrence of anomalies. The strength of anomalies are 
estimated, from Fig. 4 (a), to be in order of the Ag-, Au-, and Al-coated gratings. This 
estimation agrees with the observed result. In the case of p = +4 (Fig. 4 (b)), the Ag-
and Al-coated gratings show fairly small damping, whereas the Au-coated grating has strong 
damping. Therefore, in the case of the Au-coated grating, no anomaly could be excited by 
the diffracted wave with the passing-off order of +4. This expectation is in agreement 
with the observed results. 

5. CONCLUSION 
An attempt has been made to analyze the diffraction anomalies of a grating having 

shallow grooves and finite conductivity by means of an extended Rayleigh-Fano theory. He 
derived simple formulas for predicting the wavelength position and the sharpness of 
anomalies. Considering the theoretical and experimental resultB obtained, it is concluded 
that the basic features of the diffraction anomalies can be easily predicted by our 
method. The theory also provides explanations about the effect of the groove profile on 
the appearance of anomalies, and this subject will be treated elsewhere. 
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