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Abstract

A rapid, seni empirical method is presented for
calculating the stability margins of superconductors
cooled with s--bcoolec He-II. Based on a model of
Seyfert et al.,' the method takes into account both
time-dependent Gorter-Mellink heat transport and the
effects of interfacial Kapitza resistance. The method
has bean conpared favorably with heat transfer data of
Seyfert et al.,1 stability data of Meuris,5 and stabil-
ity data of Pfotsr.hausr and van Sciver.'

Introduction

Consider a Be-H-cooled superconductor normalized
by a sudden heat pulse E, following which it produces a
steady Joule pover q (see Fig. 1). (The symbols are

J
defined in a list at the end of the paper. The quanti-
ties E and q are normalised to unit ar*a of wetted

-2 -2
surface and thus have units J a and W n , respec-
tively.) What is the maximum value of E that still
allows recovery of the superconducting state?

Seyfert et al. have proposed a model by which
this maximum value may be calculated. They assume the
normalizing pulse causes a phase transition at the
vetted surface (burnout) and describe their model in
these words: "At the onset of burnout, formation of
the thermal barrier starts. The He-II near the heated
surface experiences • phase transition. A Be-Il-He-I
interface appears which has its temperature locked at
T^ . . . . We assumed that this barrier had a negligi-
ble thickness and that it only affected haat transport
in Be-II by the condition of a constant temperature,
i.e., T - T^, at the hot end of the channels in our

test section."

If we assume constant thermophysical properties,
we can carry oat the calculations required by this
model and obtain simple formulas for E. The thermo-
physical properties that most be assumed constant are

the Gorter-Mellink conductivity K (W m"5'3 T~l

the voluaetric heat capacity S pc (J »"3 K"1

) and

In
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Figure 1. Schematic diagram of a superconductor cooled
by contact with a closed Be-II-filled channel of length
L.
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actual fact, both
especially near T^,

vary strongly with
so we cannot expect

temperature,
the formulas

for E to have more thin order-of-magnitude accuracy.
However, there are several experimental measurements1*1

of E that can be used to correct the theoretical
formulas and thus convert them into the rapid method of
calculation advertised in the title.

Method of Calculation

If the normal-state Joule power q, is large

enough, recovery must take place before much heat has
reached the distal end of the cooling channel. In this
case, the channel looks, from the proximal end, like an
infinitely long channel. Seyfert's model then gives'

E - i K3S

On the other hand, when q is snail enough.

E - E = [h(T.) - htT. )] L
O * D

(1)

(7)

where h is the enthalpy per unit volume of helium. If
we plot E / E Q as ordinate and qj/q. as abscissa, where

(K 3S) 1 / 3 (Tx - T b
2/3

.1/3

we find from (1) and (2) that

qyq, » 1

(3)

(4a)

(4b)

These two limits are shown in Fig. 2 together with
ten experimental points reported by Meuris,' five for
Tfa • 2.0 K and five for Tfa - 2.1 K. Meuris' points

have been made to fit the high-flux-iimit (4b) by

appropriately choosing KS . Table 1 gives the
best-fit values together with the point values refer-
ring to the sample temperature. The points of Seyfert
et al.,1 not shown in Fig. 2, all lie on the limit
(4b), which they have been made to fit in ref. 4 also

by appropriately choosing KS .

The ratio in the fourth column of Table 1 varies
fairly smoothly with T^ - T , as shown in Fig. 3.

Applying this correction factor to the point data for

KS , we can rapidly estimate E as a function of q

with the universal curve of Fig. 2. The ratio of the

best fit to the point values of KS

with T. as 1.3(T, - T. ) 0 ' 6 .
D AD

The Kapitza Limit

,1/3
varies roughly

The high-flux limit (4b) for E cannot be valid for
arbitrarily large Joule powers q^ For if q is large

enough, the temperature difference across the phase
boundary induced by the Kapitza resistance will be
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-Table 1. Comparison of Best-fit and Point Values of C£ 1/3

Tb

(K)

1.8
1.9
2 .0
2.1

KE (best-fit)

(K4/3 ctn"8/3 s I / 3 * '

5.68
5.66
3.66
2.30

KS1/3 (pointl Ratio

(best-fit/point) Experiment

7.73
9.52
10.6
8.62

0.735
0.596
0.347
0.267

Seyfert et al., ref. 1
Seyfert et al., ref. 1
Meuris, ref. 2
Heuris, ref. 2
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Figure 2. Universal curve of normalized heat pulse
E/E versus normalized Joule heat flux q./q..
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this can happen in two different ways, as shown in
Figs. 4b and 4c.

What criterion distinguishes alternative 4b free
rnative 4c? The temperature T i

o
fig. 4c i• determined by the conditions

alternative 4c? The temperature T of tangency in
o

(6)

If T n » T " , as is usually true, we oan ignore the
• de

second tern in the expression for o and take q- to be

aTn . Then (6) gives

To " n - 1 Tcs '

and

(7a)

(7t)

1/3
Figure 3. Ratio of best fit to point values of KS
versus ambient helium temperature T. . The points are

b
from Table 1; the curve is the equation

.0.6

large enough to teep the metal temperature T above the
IB

current-sharing threshold. When this happens the
curves of Kapitza flux

<h ' a ( Tm " THe' (5)

and the Joule power q plotted against metal tempera-

ture T intersect as shown in Fig. 4a, and recovery is

never possible. For small enough qj( q^ always lies

above q , and recovery is always possible. The limit-
j

Ing case occurs when q^ and q touch at only one point!

The temperature of tangency is larger than T i it will

be mailer than T if
cr

' * (Tcr " V " "
(7c)

The inequality (7c) Bust be fulfilled for alternative
4c to apply; otherwise alternative 4b holds. So the
Kapitza resistance puts the following linits on the
Joule power:

VTcr' ' (T - T )n
cr o

(8a)

(n * l)(Tcr " Tcs'
%\ —

tTcr " V »
(8b)

In a typical one of Meuris' experiments,
-2

20 W cm (B - 8.0 T, T - 2.0 K, T
b cr

5.6 K, I
T

- 1000 A, I c r - 2900 A, i - 0.344, T - 4.36 K, RHS oi

(7c) » 0.389, a - 0.020 W cm"2 i~*, n - 4, o (T )
-2 c r

- 19.7 W cm !. But qj ̂ ^ was at Host one-quarter as
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Figure 4. Sketches shoving the relation of the Kapitza flux a and the Joule power q in case of nonrecovery,
(a), and in two possible limiting cases, (b) and (c) .

Large, so the JUpitra limit (8a,bl played no role in
Heuris' experiments.

The Tvo—Dimensional Channel

Pfotenhauer and van Sciver' have studied the
stability margin of a two-dimensional channel such as
that shown schematically in Fig. 5. Bow might we
expect the stability margin E to vary as a function of
the Joule power per unit heated surface q ? When q is

small, tile transverse temperature distribution (trans-
verse Beans in the x-direction) is nearly uniform, and
the channel behaves liXe a one-dimensional channel in
the y-direction of length L and Joule heat flux q *

(w/d)q The s tab i l i t y margin of such a channel i s
given by the universal curve of Fig. 2, shown in the
log-log plot of Fig. 6 spanning the asymptotes E - E

- h(Tb)]L and E CO/ 3 K3S(T, - T. )2/4.
A D

Mien q it large and d « w, the two-dimensional

Figure 5. Schematic diagram of a two-dimensional
channel filled with Re-II. Note the placement of the
heater in the side wall.

Figure 6. A sketch of the stability margin of the
two-dimensional channel is a function of q when (a)
w « d, (b) v » d. J

channel behaves like a one-dimensional channel of
length d and Joule heat flux g • (d/w)q . The stabil-

ity margin of such a channel can be represented in
Fig. 6 by the universal curve of Fig. 2, this tine
spanning the asymptotes E - (d/L)E and t - Cq -3

C(w/d)3q "3
If these tvo universal curves are

faired together, we get the stspped heavy curvs that
represents how we expect the stability margin of the
two-dimensional channel to behave when d << w. If
d »> w, the two-dimensional channel will behave like a
one-dimensional channel only for very large q when E

-3 3 -3 *approaches the asymptote Cq • C(v/d) q , which now

lies to the left of the curve E - Cq . E should

depart from this asymptote when it is of the order of
(d/L)E The unstepped heavy curve represents how we

expect the stability margin of the two-dimensional
channel to behave when d >> w. Finally, we oust add
the Kapitza limits (8a) or (8b) to Fig. 6.

Figure 7 shows Pfotenhauer and van Sciver's
experimental points. In their paper, Pfotenhauer and
van Sciver noted that the Joule power per unit area did
not remain constant during the course of an experiment.
They chose to define o in a way that caused the
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Figure 7. The experimental points of Pfotenhauer «nd
van Sciver (ref. 3) and the various theoretical curves
described in the text.

experimental points to lie slightly to the right of the

theoretical curve of Pig. 2. In Pig. 7, I have nor-

malised q so that the asymptote E - Cq™ passes

through the cluster of experimental points near E/E
O

• 0.1. Also shown in Fig. 7 are the asymptotes E

• C(w/d) q^ for both sets of points and the corre-

sponding values of E • (d/L)E (shown as horizontal
o

line segments) . Both sets of points sees to behave as
described in the previous paragraph.

It Bight be argued that the sharp drop in the

solid points near q^ - 6 W/cm signifies approach to

the Kapitza limit. The corresponding limit for the
open points would be (2.5/0.7)6 • 21.4 W/CD 2.

Thus the open points would be unaffected by the Kapitza
limit in any case.
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List of Sywbols

a proport ional i ty constant In KApitxi's law of

interfacial heat transport, Eq 5 |W u'2 It"")

c specific heat at constant pressure [J kg"1 It"1)
3 5

C abbreviation for KS <T , - T.) /4
A Q

d width of the two-dinensional channel [m]

E heat pulse energy per unit ares |J »"2]

Eo available er.tiialpy of He-II per or.l'. area, cf.

Eq 2 U n"2)

h enthalpy per unit volume of helium [J • )

i ratio of the transport current to the critical

current

K Gorter-Hellink conductance [W »~S/3 K~1/3]

L length of the channel [»!

n exponent in Kapitza's law of interfacial h«at

transport, Eq 5

? Joule heat flux down the length of the channel

4.

s
T.

Be
T

-2,Kapitza heat flux, cf. Eq 5 [W • ]

Joule power per unit heated surface [W •"']

a fiducial heat flux defined by Eq 3 [W sT2]

-2,

pc , the heat capacity per unit wolune [J •-3 _-

temperature |K]

ambient heliux tenrperature [K]

critical temperature IK]

current-sharing threshold temperature [K]

helium temperature [K]

•etal temperature (K)

temperature of tangency, cf. Fig. 4c [K]

the (lambda) temperature of phase change froa

He-II to Be-I [K)

the width of the heater in the two-dimensional

channel [B]

density [kg m~ ]
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