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Abstract

A rapid, semiempirical method is presentsd for
calculating the atability margins of superconductors
cooled with subcooled He-II. Based on & model of
Seyfert et al.,' the method takes into account both
tipe~dependent Gorter~Mellink heat transport and the
effects of interfacisl Kapitza resistance. The method
has been compared favorably with heat transfer data of
Seyfert et al.,! stability data of Meuris,’ and stabil-
ity data of Pfotanhausr and van Sciver.?

Introduction

Consider a He-Il-cooled superconductor normalired
by a sudden heat pulse E, following which it produces a
steady Joule power 9 (see Fig. 1). (The symbols are

defined in a list at ths end of the paper. The quanti-
ties ¥ and q, sre normalized to unit area of wetted

surface and thus have units J --2 and W ‘-2, reapec-
tively.) What is the maximum value of E that still
allows recovery of the superconducting state?

Seyfert et al.' have proposed s model by which
this maxisum value may be calculated. They assume the
normalizing pulse causes a phase transition at the
vetted surface (burnout) and describe their model in
these words: °“At the onset of burnout, formation of
the thermal barrier starts. The Be=-II near the heated
surface experiences a phase transition. A He-II-Re-I
interface appears which has its temperature locked at
'r* « « « . We assumed that this barrier had a negligi~-

ble thickness and that it only affected heat transport
in He-IT by the condition of a conatant temperature,
i.e., T« T,, at the hot end of the channels in our

test gection.”

If we assume constant thermophysical properties,
we can carry out the calculations required by this
model and obtain simple formulas for E. The thermo-
physical properties that must be assumed constant are
-5/3 _-1/3

} 4 )
welxh,
P

the Gorter-Mellink conductivity X (W m and

the volumetric heat capacity S = pc

Figure 1. Schematic diagram of a superconductor cooled
by contact with a closed He-II-filled channel of length
L.
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both vary strongly with temperaturs,
80 we cannot expsct the formulas

actual fact,
sspecially near 'r’\ f

for E to have more thaen order-of-magnitude accuracy.
Bowever, there are several experimentsl measurements’:?
of E that can be used to correct the theoretical
formulas and thus convert them into the rapid method of
calculation sdvertised in the title,

Method of Calculation

I1f the normal-atate Joule power 9, is large

enough, recovery must take place before much heat has
reached the distsl end of the cooling channel. 1In this
case, the channel locks, from the proximal end, like an
infinitely long channel. Seyfert's model then gives’

1.3 2 -3
E=qKSs T -1 g . $%)

On the other hand, when q, is small enough,

Es= Eo = [h('r)) - h('l‘b)] L (2)
wvhere h is the enthalpy per unit volume of helium. 1If
we plot !/!o as ordinate and qJ/q. as abscissa, where

3.,1/2 N %

(K™S) T, b

173 ’ 3)

Ge "
(4!:0)

we find from (1) and (2) that

1 . qajq, << 1
[} (q_’/q,)-s ¢ q3/q,>> 1 )

(4a)

nln

(4b)

These two limits are shown in Pig. 2 together with
ten experimental points reported by Meuris,’ five for
Tb = 2.0 K and five for 'rb = 2.1 K. Meuris' points

have been made to fit the high-flux-dimit (4b) by

appropriately choosing KSI/B. Table 1 gives the
best-fit values together with the point values refer-
ring to the sasple temperature, The points of Seyfert
et al.,' not shown in Pig. 2, all 1lie on the limit
(4b}, which they have been made to fit jin ref. 4 also

by appropriately choosing Ks]'/3

The ratio in the fourth column of Table 1 varies
fairly smoothly with Ty - ‘rb, as shown in Fig. 3.

Applying this correction factor to the point data for
EI/B, we can rapidly estimate E as a function of q,

The ratio of the
best fit to the point values of K51/3

. 0.6
with Th as ZI..:H'I‘1 - 'rh)

with the universal curve of Fig. 2,

varies roughly

The ¥apitza Limit

The high~flux limit (4b) for E cannot be valid for
arbitrarily large Joule powers 9, For if 9, is large

enough, the cempentv.ure difference across the phase
boundary induced by the Kapitza resistance will be

SR

\\‘\

v

\

DISTRIZLTION OF THiS ngy UMENT 15 s urms



Comparison of Best-Fit and Point Values of ul

/3

Table 1.
T k23 (best-tit) ks*’3 (potnt) matio
(x) (“4/3 m-e/: '1/3 K-Z/J) (“4/3 cm-s” .1/3 K-2/3) (best-£1t/point) Experiment
1.8 5.68 7.73 0.735 Seyfert et al., ref. 1
1.9 5.68 9.52 0.596 Seyfert et al., ref. 1
2.0 .68 10.6 0.347 Meuris, ref, 2
2.1 2,30 8.62 0.267 Meuris, ref. 2
!Oo this can happen in two different ways, as shown in
Figs. 4b and dc.
what criterion distinguishes alternative 4t froe
alternative dc? The texmperature To of tangency ino
Fig. 4c is determined by the conditions
S - 97 max _(3 (6
-] T -7 T - T ar T
w ] o cs ‘er cs [
S (o Rl = -
w © MEURIS 2.0 K
G MEURIS 2.1 K ° . n
1f 'r- [SS Tae' as is usually true, we oan ignore the
second term in the expression for qK and take q,K to be
n N
€/Eqyt (qJ /q,) 3 aT) . Then () gives
-2 n
10 I T "5 -1 Tes ’ (7a)
10" e 0!
and
qQ /q,
Pigure 2. Universal curve of normalized heat pulse 9y pax s
Z/ZQ versus normalized Joule heat flux qJ/q'. S "ao1 Tcr -, . (7r)
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Pigure 3. Ratio of best fit to point values of K51/3
versus ambient helium temperature 'rb. The points are

from Table 1; the curve is the equation

0.6
1.3(1‘1-Tb) -

large enough to kez2p the metal temperature Tm above the

current-sharing threshold. When this happens the
curves of Kapitza flux
a = al1h - Th.) {s)

and the Joule power 9, plotted against metal tempera-
ture 'r_ intersect as shown in Fig. 4a, and recovery is
never possible. For small encugh Q0 9y always lies
above 9. and recovery is always possible. The limit-~

ing case occurs when qx and qJ touch at only one point;

The temperature of tangency is larger than '!‘c.: it will
be smaller than T if
cr

1> ———. (7c)

The inequality (7c) sust be fulfilled for alternative
4c to apply; otherwise alternative 4b holds. So the
Fapitza resistance puts the following limits on the
Joule power:

T
< cr
Yoeax "% P w_Tom (8a)
cr
(n - (T _-T )
- cr (%] ( n .
93 max T Y\ TT Tes/
cs
Tct
1> (8b)
(Tcr T, )n

In a typical one of Meuris' experiments, q,K -
-2
20 W em [B=8.0T, T =2.0FK, = 5.
b Tcr 5.6 K, I,r
= 1000 A, T _ = 2900 A, {1 = 0,344, T = 4.36 K, RHS of
cr 2 -q4CS
(7¢) = 0.389, . N =g, e (Tcr)

a =0.020Wem X
-2
= 19.7Wem T}, But Ay vax Y85 at most one-quarter as
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Pigure 4.
(a), and in two possible limiting cases, (b) and (c).

large, sc the Kapitza limit
Meuris® experiments.

(8a,b) played no role in

The Two-Dimensional Channel

Pfotenhauer and van Sciver®’ have studied the
stability margin of a two-dimensional channel such as
that shown achematically 4in Pig. 5. Bow might we
expect the gtability margin B to vary as a function of
the Jovle power per unit heated surface q'? When 9, is

small, the transverse temperature distribution (trans-
verse means in the x-=direction) is nearly uniform, and
the channel behaves like a one-dimensional channel in

the y~-direction of length L and Joule heat flux q; =

(v/d)q‘.

given by the universal curve of Pig. 2, shown in the
log-log plot of Fig. 6 spanning the asymptotes E = zo

-3 3 2
- [h('rk) - h('rb)]L and £ = CqJ y C =K S('l‘x - 'rb) /4.
When q, is large and d << w, the two-dimensional

The stability margin of such & channel is
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Figqure 5. Schematic diagram of a two-dimensional
channel filled with He-II. Note the placement of the
heater in the side wall.

Sketches showing the relation of the Kapitza flux q'K and the Joule power q.] in case of nonrscovery,

Eo= [MT-niT)]L

Pigure 6. A sketch of the stability margin of the
two-dimensional channel as a function of 9, vhen (a)
v << d, (b} wo>> 4.

channel behaves like a one-dimensional channel of
length d and Joule heat flux q, - [d/v)q‘,. The stabil-

ity margin of such a channel can be representsd in
Pig. 6 by the universal curve of Fig. 2, this time -1
spanning the asymptotes E = (d/L)Eo and E = Cq'
- cowar’q, 3.
faired together, we get the stepped heavy curve that
represents how we expect the stability margin of the
two-dimensional channel to behave when Q@ << w. If
d>> w, the two-dimensional channel will behave like a
one-dimensional channel only for very large 9, when 2

If these two universal curves are

approaches the asymptote Cq'-3 = Clw/d) an-s, which now

3

lies to the left of the curve E = an' . E should

depart from this asymptote when it is of the order of
(d/L)Eo. The unstepped heavy curve represents how we

expect the stability margin of the two~dimensional
channel to behave when 4 >> w. Finally, we must add
the Kapitza limits (8a) or (8b) to Fig. 6.

Figure 7 shows Pfotenhauer and van Sciver's
experimental points. In their paper, Pfotenhauer and
van Sciver noted that the Joule power per unit area did
not remain constant during the course of an experiment.
They chose to define ay in a way that caused the
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Pigure 7. The experimental points of Pfotenhauer and

van Sciver (ref. 3) and the varicus theoretical curves

described in the text.

experimental points to lie slightly to the right of the

theoretical curve of Pig. 2. 1In Fig. 7, I have nor- q

malized qJ so that the asymptote E = Cq3-3 passes J

through the cluster of experimental points near E/Eo

« 0.1, Also shown in Fig. 7 are the asymptotes E %

- q

- C(v/d)zq_’ 3 for both sets of points and the corre- q:

sponding values of E « (d/L) Eo (shown as horizontal s

line segments). Both sets of points seem to behave as T

described in the previous paragraph. )

T,

It might be arqued that the sharp drop in the Tb

s0lid points near 9, = 6 w/cxn2 signifies approach to cr

the Kapitza limit. The corresponding limit for the T°‘
2

open points would be q, = (2.5/0.7)6 = 21.4 W/cn'. :‘

Thus the open points would be unaffected by the Rapitza '1'.

limit in any case. °
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DISCLAIMER

List of Symbols

constant ir Xap:tza's law of

interfacial heat transport, Eq 5 [W --2 x'“)
specific heat at constant pressure [J kq-] l-ll

proportionality

sbbreviation for Kas('l'A - Tb)zld

width of the two-dimensional channel [m)
heat pulse energy per unit area [J n-zl

available enthalpy of He-II per uni* area, cf.
2 110

enthalpy per unit volume of helium {J n-3)
ratio of the transport current to the critical
current

Gorter-Mellink conductance (W a2 K3
length of the channel [m])

in Kapitza's

1
exponent law of interfacial heat
transport, Bg S

Joule heat flux down the length of the channel
v a2

Kapitza heat flux, cf. Eq 5 [W .-2’
Joule power per unit heated sgurface [W l-2]

a fiducial heat flux defined by Eq 3 [W m 2]

pcp, the heat capacity per unit volume [J --3 K-ll
temperature [K)

ambient helium temperature [K]

critical temperature (K]

current-sharing threshold temperature [K]

helium temperature (K]

metal temperature [K]

temperature of tangency, cf, Pig. 4c (K}

the (lambda) temperature of phase change froa
He-11 to Be-I [K]

the width of the heater i{n the two-dimensional
channel (=]

density (kg n-3]
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