High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null

PDF Version Also Available for Download.

Description

Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of {Lambda} {triple bond} {beta}{sub p eq} + l{sub i}/2 as large as 7, {epsilon}{beta}{sub p dia} {triple bond} 2{mu}{sub 0}{epsilon}<p{perpendicular}>/{much lt}B{sub p}{much gt}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta, {beta}{sub N dia} {triple bond} 10{sup 8}<{beta}{sub t}{perpendicular}>aB{sub 0}/I{sub p} as large as 4.7. When {epsilon}{beta}{sub p dia} {approx gt} 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, {tau}{sub E}. The largest values of {epsilon}{beta}{sub p} and plasma stored ... continued below

Physical Description

Pages: (32 p)

Creation Information

Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A. (Columbia Univ., New York, NY (United States). Dept. of Applied Physics); Bell, M.G.; Bell, R. et al. July 1, 1991.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of {Lambda} {triple bond} {beta}{sub p eq} + l{sub i}/2 as large as 7, {epsilon}{beta}{sub p dia} {triple bond} 2{mu}{sub 0}{epsilon}<p{perpendicular}>/{much lt}B{sub p}{much gt}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta, {beta}{sub N dia} {triple bond} 10{sup 8}<{beta}{sub t}{perpendicular}>aB{sub 0}/I{sub p} as large as 4.7. When {epsilon}{beta}{sub p dia} {approx gt} 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, {tau}{sub E}. The largest values of {epsilon}{beta}{sub p} and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 keV and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and {tau}{sub E} greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain. Q{sub DD}, reached a values of 1.3 {times} 10{sup {minus}3} in a discharge with I{sub p} = 1 MA and {epsilon}{beta}{sub p dia} = 0.85. A large, sustained negative loop voltage during the steady state portion of the discharge indicates that a substantial non-inductive component of I{sub p} exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of I{sup p}. Magnetohydrodynamic (MHD) ballooning stability analysis shows that while these plasmas are near, or at the {beta}{sub p} limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes. 24 refs., 10 figs.

Physical Description

Pages: (32 p)

Notes

OSTI; NTIS; INIS; GPO Dep.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE91016214
  • Report No.: PPPL-2775
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/5440464 | External Link
  • Office of Scientific & Technical Information Report Number: 5440464
  • Archival Resource Key: ark:/67531/metadc1069605

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1991

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • May 11, 2018, 5:38 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A. (Columbia Univ., New York, NY (United States). Dept. of Applied Physics); Bell, M.G.; Bell, R. et al. High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null, report, July 1, 1991; New Jersey. (digital.library.unt.edu/ark:/67531/metadc1069605/: accessed May 28, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.