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SUMMARY 

Spent light-water-reactor (LWR) fuel with an average burnup of 28,000 MWd/ 
MTU was leach-tested at 25°C using a modified version of the International 
Atomic Energy Agency (IAEA) procedure. Leach rates were determined from tests 
conducted in five different solutions: deionized water, sodium chloride 
(NaCl), sodium bicarbonate (NaHC03), calcium chloride (CaC1 2) and Waste 
Isolation Pilot Plant (WIPP) "B" brine solutions. Elemental leach rates are 
reported based on the release of 90Sr + 90y, 106Ru , 137Cs , 144Ce , 
154Eu , 239+240pu , 244' Cm and total uran i urn. 

After 467 days of cumulative leaching, the elemental leach rates are high­
est in deionized water. The elemental leach rates in the different solutions 
generally decreased from deionized water to the O.03~ NaCl solution to the 
WIPP "B" brine solution to the 0.03~ NaHC03 solution and was a factor of 20 
lower in 0.015~ CaC1 2 solution than in deionized water. 

The leach rates of spent fuel and borosilicate waste-glass were also com­
pared. In sodium bicarbonate solution, the leach rates of the two waste forms 
were nearly equal, but the glass was increasingly more resistant than spent 
fuel in calcium chloride solution, followed by sodium chloride solution, 
WIPP "B" brine solution and deionized water. In deionized water the glass, 
based on the elemental release of plutonium and curium, was 50 to 400 times 
more leach resistant than spent fuel. 
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INTRODUCTION 

In 1977, the Pacific Northwest Laboratory (PNL), operated by Battelle 
Memorial Institute for the Department of Energy, started a task to study spent­
fuel leaching as a part of the Waste Isolation Safety Assessment Program 
(WISAP). Radionuclide release information from spent fuel, a candidate waste 
form for geologic disposal, is needed to evaluate the safety of repository 
storage of spent fuels. These data are used both in release-consequence model­
ing and as source terms for radionuclide migration experiments. 

There are many types of leach tests being used to evaluate solidified 
waste forms (Mendel 1973). At PNL spent fuels have been leach-tested by three 
different procedures: Paige tests, static leach tests, and the IAEA procedure. 
Paige leach tests on spent LWR fuels have been previously reported (Katayama 
1979), and results from static leach tests of spent fuel will be reported as 
radiochemical analyses of stored and ongoing leachant samples are completed. 
The static leach tests are designed to give detailed data on spent fuel solu­
bilities at 25° and 75°C. This status report presents results from leach­
testing LWR spent fuel with an average burnup of 28,000 MWd/MTU using a 
modified version of the IAEA procedure at 25°C. Release rates are discussed 
as a function of the duration of the leach tests and of the solution type. 

This and future status reports on spent-fuel leaching will be reported as 
a part of the Waste/Rock Interactions Technology Program (WRIT). The WRIT 
Program, started in FY-1980 at PNL, includes Tasks 2 and 4 of WISAP. 
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EXPERIMENTAL METHODS AND MATERIALS 

MATERIAL 

The spent fuel used in this study originated from a fuel bundle discharged 
on June 6, 1974 from the HB Robinson II Reactor and has an average burnup of 
28,000 MWd/MTU. The fuel was removed from the fuel rods at the Battelle­
Columbus Hot Laboratory and was received at PNL as a mixture of unclad fuel 
fragments. A sample of this material was submitted to the Hanford Engineering 
Development Laboratory for radiochemical analysis. These analytical values 
for the radionuclides were used as the initial concentration in the leach rate 
calculations. 

A randomly selected batch of the as-received fuel fragments was screened 
to provide a particle size distribution (see Table 1). Samples for the leach 
tests were taken from particle fractions retained on screens #5 and #10 
(greater than 2-mm particles). 

TABLE 1. Particle Size Distribution of 28,000 MWd/MTU 
Spent Fuel 

Sieve 
Number 

3 

4 

5 

10 
20 
40 
60 
80 

100 
140 
200 
200 

Sieve Opening, 
mm 

6.73 
4.73 
4.00 
2.00 
0.841 
0.420 
0.250 
0.177 
0.149 
0.105 
0.074 
0.074 

2 

Weight, 
9 

o 
192.883 
634.765 

1031.170 
35.205 
11.242 
4.979 
1.424 
1.042 
1.204 
0.769 
0.737 

Fraction Retained 

o 
1.007 x 10-1 

3.331 x 10-1 

5.384 x 10-1 

1.838 x 10-2 

5.869 x 10-3 

2.599 x 10",3 

7.434 x 10-4 

5.440 x 10-4 

6.286 x 10-4 

4.015 x 10-4 

3.848 x 10-4 



Samples of the as-received spent fuel were also mounted, polished and 
examined by metallography for microstructural characterization of the fuel. 
Metallographic examination of spent-fuel fragments from the HB Robinson II 
reactor showed the presence of closed porosity (see Figure 1). Cathodic etch­
ing of the surface showed equiaxed grains with little change in size from the 
center of the pellet to the outer edge (magnified portion in Figure 1 is typi­
cal of entire sample). 

Chemical-concentration profiles for selected radionuclides were recorded 
as fluorescence X-ray intensities on a shielded electron-beam microprobe X-ray 
analyzer. Various fuel fragments, typical of the samples in our leach tests, 
are now being analyzed. The data presented here are for a fragment of fuel 
with a burnup of 28,000 MWd/MTU. Figure 2 shows a segment of a transverse 
section. The microprobe was programmed to step-scan the sample from point A 
at the outside diameter of the pellet to point B near the center of the pellet. 
Concentration profiles for elements measured by step scanning are expressed as 
X-ray intensities in Figures 3, 4 and 5. 

Plutonium, cesium, ruthenium, technetium, barium, zirconium and cerium 
showed enrichment near the outer edge (point A). Iodine and tellurium showed 
no indication of enrichment at the outer edge. Plutonium showed the highest 
gradient from edge to center (point A to point B), with a 47% reduction in 
X-ray intensity 300 um inward from point A and an additional 28% drop over the 
next 3600 ~m to point B. 

LEACH TEST 

The modified IAEA leach test involves the immersion of a spent-fuel sample 
in a solution according to a fixed ratio of 1:10 (cm2/cm3) of exposed sur-
face area of sample to volume of solution. The solution is then left in con­
tact with the sample for progressively longer time intervals. The solution is 
changed after each time interval. Between each sampling period the system is 
not disturbed via stirring or shaking. Although the leach container is left 
static during the leaching interval, the thermal power of the spent fuel of 
about 5 cal h- 1 g-l is a source of convective (thermal) agitation at the 
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fuel-solution interface. Thus, the transfer of radionuclides to the bulk of 
the leach solution may not be wholly dependent on diffusion. Table 2 shows the 
sampling schedule for the IAEA test used. 

Approximately 15 g of fuel fragments (see Figure 6), having a geometric 
surface area of approximately 30 cm2, were used per test. Figure 7 shows the 
details of the leach-test container. For these tests the solution volume was 
300 ml. The solutions used for the spent-fuel leach tests were: 

• salt brine, WIPP IIBII salt brine (Dosch and Lynch 1978) 
• synthetic high-ionic-strength calcium groundwater (0.015~ CaC1 2) 
• synthetic high-bicarbonate groundwater (0.03~ NaHC03) 
• synthetic high-ionic-strength sodium groundwater (0.03~ NaCl) 
• deionized water. 

Table 3 shows the composition of WIPP IIBII salt brine. 

ANALYTICAL PROCEDURE 

The tests were run in triplicate, making a total of 15 tests. On each 
sample collection day, the basket holding the spent-fuel fragments was care­
fully removed, and after swirling the jar of solution, a 10-ml sample of solu­
tion was withdrawn. This sample was then acidified to approximately pH 1 using 
concentrated nitric acid to prevent radionuclides from adhering to the walls 
of the glass sample-container. The addition of nitric acid was found to be 
effective in preventing nuclide plateout in IAEA leach testing of doped glass 
beads (Bradley, Harvey and Turcotte 1979). 

After discarding the remaining leach solution, the leach-test polypropy­
lene jars (see Figure 7) were then filled with 300 ml of 5~ HN03 + 0.5~ HF. 
This solution was used to remove any radionuclides that had adhered to the 
leach-test jar walls. After one to two days, a 10-ml sample was withdrawn and 
analyzed. The result of this radionuclide concentration analysis was added to 
that from the original leach solution to arrive at a leach rate of a given 
radionuclide from the spent fuel. The measurements of radionuclides were all 
made using common radiochemical analysis methods. Gamma emitters were measured 
by gamma-energy analysis using a multi-channel analyzer with a Ge-Li detector. 
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TABLE 2. IAEA Leach-Test Schedule 

Cumu 1 at i ve Days Solution Change, Leach Solutions 
Leached Series Number to be Anal~zed 

1 1 x(a) 

2 2 x(a) 

3 3 x(a) 

4 4 x(a) 

11 5 x(a) 

18 6 x 
25 7 x(a) 

32 8 x 
39 9 
46 10 x 
53 11 

60 12 x(a) 

91 13 x 
122 14 
154 15 x(a) 

187 16 
215 17 x 
246 18 
277 19 x(a) 

310 20 
341 21 x 
374 22 
404 23 x(a) 

433 24 
467 25 x(a) 

495 26 
529 27 x 

(a) Results presented in this report. 
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FIGURE 6. Spent LWR F~el Fragments Photographed Through Hot-Cell 
Periscope(a) 

(a) each division on scale equals 1/16 in. 
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FIGURE 7. IAEA Leach-Test Container 

TABLE 3. Chemical and Ionic Composition of Salt Brine(a) 

Concentration, Concentration, 
Com~ound giL Ion molelL 

NaCl 287.0 Na+ 5.0 
Na2S04 6.2 K+ 0.00038 
Na2B407 10H 2O 0.0160 Rb+ 0.000012 
NaHC0 3 0.0140 Cs+ 0.000008 
NaBr 0.5200 Mg++ 0.00041 
KCl 0.0290 Ca++ 0.022 
KI 0.0130 Sr++ 0.00017 
MgC1 2 0.0400 Fe+++ 0.000036 
CaC1 2 2H 2O 0.0033 Cl- 4.94 

FeC1 3 0.0060 Br 0.0050 

SrC1 2 2H2O 0.0330 I 0.000079 

Rb2S04 0.0016 HCO -3 0.00016 

CsCl 0.0013 S04 0.036 

Total dissolved so 1 i ds 297.2 B (B03---) 0.00017 

(a) pH (adjusted) = 6.5 

12 



To improve the measurement of minor constituents, the majority of the cesium 
was removed by extraction with tetraphenylboron in amyl acetate (Finston 1961) 
and the sample recounted. 

Plutonium and curium analyses, with the exception of brine samples, were 
done by alpha-energy analysis of a direct mount of the sample. In brine sam­
ples, the plutonium was extracted into TTA-xylene (Moore and Hudgens 1957), 
plated and counted on an alpha proportional counter. Curium was separated by 
ion exchange, plated and alpha counted. 

Strontium was separated by ion exchange and was beta-counted. Repeat 
counts were made and the 90Sr was calculated from the 90y ingrowth (Koltoff 
and Elving 1966). Uranium analysis was done by fluorometry (Centanni and 
DeSesa 1956; Price, Perritti and Swaity et al. 1953). 

CALCULATIONS 

All the leach rates in this report are incremental leach rates and are 
average leach rates for the sampling interval. The equation used to calculate 
the incremental leach rate is as follows: 

R. = incremental leach rate, g/cm2-day 
1 

ai = acti vity of isotope in leachate, counts s -1 

Ao = specific activity of isotope in sample before leaching, counts s-l g-l 

S = geometric surface area of sample, cm2 

t = incremental leaching period, days. 

13 



RESULTS/DISCUSSION 

Figures 8 through 16 are graphs of incrementa1 leach rates for nine radio­
active e1ements p10tted as a function of time. In each figure, 1each curves 

for the five leachants are shown for one e1ement. Each data point represents 
the average of three samples, and tabulations of the data are given in the 

Appendix. The elemental leach curves for the five solutions diverge with cumu­
lative leaching time, and for the elements analyzed the spread in the leach 
rate curves is greatest at the last data point reported (467 days). The leach 
rates based on cesium, antimony and ruthenium release appear to be the least 
affected by the different leach solutions. For the other six elements, the 
leach rate curves for the five different leach solutions are spread out up to 
2-1/2 orders of magnitude. The leach rate curves in Figures 8 through 16 are 
summarized in Table 4. Table 4 contains a tabulation of the observed ranking 
of leach solutions from the highest to lowest elemental releases. Deionized 
water had the highest release for all the isotopes. The lowest release for the 
isotopes was in CaC1 2 solution except for cerium, ruthenium and europium 
where the CaC1 2 solution was next to lowest. 

Figure 17 is a graph of leach rate curves in deionized water for the nine 
elements measured. The spread in the curves at the first day of leaching 
covers two orders of magnitude and decreases to a spread of one order of magni­
tude at 467 days of cumulative leaching. Cesium has the highest initial leach 
rate and continues to exhibit a high leach rate at the last sampling period. 
Ruthenium has the lowest initial 1each rate and continues to exhibit the lowest 
leach rate after 467 days. 

Figure 18 is a graph of leach rate curves in O.03M NaCl solution for the 
nine elements measured. The spread in the leach curves at the first day of 
leaching covers about 1-1/2 order of magnitude and decreases to about one order 
of magnitude at 467 days of cumulative leaching. Cesium tends to have the 
highest leach rate and ruthenium the lowest leach rate during the 467 days, 
which is the same general behavior as in deionized water. 

14 
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TABLE 4. Results of Effects of Solution Type on Each 
Element (Figures 8 through 16) 

Observed Ranking of Solutions From 
Element Highest to Lowest Element Release {467 da~s) 

Uranium (a) . DiW, NaHC0 3, NaCl, WIPP, CaC1 2 
137Cs DiW, NaCl, WIPP, NaHC03, CaC1 2 
144Ce DiW, NaCl, WIPP, CaC1 2, NaHC03 
240 + 239pu DiW, WIPP, NaCl, NaHC0 3, CaC1 2 
244Cm DiW, NaCl, WIPP, NaHC03, CaC1 2 
90Sr + gOy DiW, NaCl, WIPP, NaHC03, CaC1 2 
154Eu DiW, NaCl, WIPP, CaC1 2, NaHC03 
125Sb DiW, NaHC03, WIPP, NaCl, CaC1 2 
106Ru DiW, NaCl, WIPP, CaC1 2, NaHC03 

(a) OiW = deionized water. 

Figure 19 is a graph of leach rate curves in a saturated WIPP "B" brine 
solution for the nine elements measured. The spread in the leach curves at the 
first day of leaching covers about 1-1/2 orders of magnitude and decreases to 
a spread of about one order of magnitude after 467 days of cumulative leaching. 
Cesium has the highest initial leach rate and continues to stay near the high­
est value for the 467 days. Ruthenium has the lowest leach rate for the first 
two days and the last 63 days during the 467 days of cumulative leaching. In 
between these two low periods, the ruthenium leach rate increases to become the 
second highest (next to cesium) at 154 days of cumulative leaching. 

Figure 20 is a graph of leach rate curves in a O.03~ NaHC03 solution for 
the nine elements measured. The spread in the leach curves at the first day 
of leaching covers about 1-1/3 order of magnitude and spreads to about two 
orders of magnitude at 467 days of cumulative leaching. Cesium has the highest 
initial leach rate and remains the highest until the antimony leach rate over­
takes cesium at 200 days. All the other elements are grouped near the lower 
portion of the spread in the leach curves. 
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Figure 21 is a graph of leach rate curves in a 0.015~ CaC1 2 solution for 
the nine elements measured. The spread in the leach curves at the first day 
of leaching covers about 1-1/2 orders of magnitude, and after 467 days of cumu­
lative leaching the spread is still about 1-1/2 orders of magnitude. After the 
first week of leaching, the uranium and ruthenium leach curves tend to follow 
the lower bounds of the spread in the leach curves and the other elements tend 
to follow the upper portion of the spread. 

The elemental leach rate curves for the five leach solutions start at 
similar values, but the general trends with cumulative time of leaching are 
lower for the NaCl, WIPP "S" brine. NaHC03 and CaC1 2 solutions than for 
deionized water. For comparison purposes, if we choose the midpoint of the 
spread in elemental leach curves after 467 days of cumulative leaching as the 
average leaching value for that solution, then the relative leachability of 
the spent fuel in the five leach solutions can be calculated. Table 5 lists 
the midpoint of the spread in leach curves after 467 days, where the relative 
leachability value is given with deionized water as a reference of 1.00. In 
WIPP "S" brine solution the leach rate of spent fuel is only 20% of the value 
in deionized water. The leachability of spent fuel in 0.015~ CaC1 2 solution 
is only 4% of the rate in deionized water. 

In Table 6 the observed ranking of element release from highest to lowest 
is tabulated based on the incremental leach rate status at 467 days. Cesium 
is the element with the highest release rate in WIPP "S" brine, 0.015~ CaC1 2 
and 0.03M NaCl. It has the second highest release rate in 0.03~ NaHC03 and 
ranks fifth in deionized water. Ruthenium is the lowest for all leachants. 
Uranium and cerium are also low-release elements in all the leachants. 

Spent-fuel leach rates measured by the Paige procedure were found to be 
comparable to the first-generation borosilicate glasses vitrified during the 
Waste Solidification Engineering Prototype demonstration at PNL (Katayama 
1976). Comparisons of spent-fuel and glass leach rates using the IAEA proce­
dures are tabulated in Table 7. The 244Cm and 239+240pu based glass leach 

rates are for a second-generation borosilicate glass coded 76-68 (Bradley, 
Harvey and Turcotte 1979). In the reference, deionized water leach solution, 
the spent-fuel leach rates for the actinides plutonium and curium were 50 to 
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TABLE 5. Relative Leachability of Spent Fuel in Various 
Leach Solutions Based on Average Trend of 
Leach Curves After 467 Days of Cumulative 
Leaching 

Midpoint of Leach 
Curves at 467 Days, Relative 

Solution g/cm2-da~ Leachabilit~ 

Deionized Water 5 x 10-6 1.00 
0.03M NaCl 2 x 10-6 0.40 
Saturated WIPP IIBII 1 x 10-6 0.20 
0.03!:! NaHC03 8 x 10-7 0.16 
0.015!:! CaC1 2 2 x 10-7 0.04 

TABLE 6. Results of Comparing Incremental Leach Rates of Elements 
for Each Solution Type (Figures 17 through 21) 

Observed Ranking of Element Release 
Solution From Highest to Lowest (467 Da~s} 

De i on i zed Water Eu, Cm, Sb, Ce, Cs, Pu, Sr+Y, U, Ru 
WI PP IIB" Cs, Sb, Pu, Sr+Y, Cm, Eu, Ce, U, Ru 
NaHC03 Sb, Cs, U, Sr+Y, Pu, Cm, Ru, Eu, Ce 
NaCl Cs, Eu, Cm, Ce, Sb, Pu, Sr+Y, U, Ru 
CaC1 2 Cs, Ru, Pu, Sr+Y, Eu, Ce, Cm, Sb, U 

TABLE 7. Comparison of IAEA Leach Rates at 25°C 

240+239pu Leach Rates(a), 244Cm Leach Rates(b) 
9/cm2-da~ g/cm2-da~ , 

Solution 76-68 Glass SQent Fue1 76-68 Glass SQent Fuel 

Deionized Water 5 x 10-8 2 x 10-5 4 x 10-7 2 x 10-5 

WIPP 118 11 Brine 2 x 10-8 2 x 10-6 1 x 10-8 3 x 10-6 

NaCl 7 x 10-8 3 x 10-6 2 x 10-7 4 x 10-6 

CaC1 2 2 x 10-8 3 x 10-6 1 x 10-7 9 x 10-8 

NaHC03 2 x 10-7 1 x 10-7 2 x 10-7 2 x 10-7 

(a) 151 days. 
(b) 454 days. 
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400 times higher than that of glass. The differences decrease as tests pro­
gress from deionized water to the WIPP "B" Brine to the 0.03M NaCl solution to 
the 0.015~ CaC1 2 solution, and nearly disappear in 0.03~ NaHC03 solution. 

The IAEA leach rates are higher than the published Paige-test leach rates 
(Katayama 1979) for the same spent fuel after 467 days of cumulative leaching. 
This comparison is given in Table 8. The IAEA test results are about one order 
in magnitude higher than the Paige-test results. In WIPP "8" brine (287 giL 
NaCl) and sodium chloride groundwater (1.76 giL NaCl), the IAEA cesium-based 
leach rates are 4 x 10-6 and 6 x 10-6 g/cm2-day, respectively, whereas the 
Paige cesium-based leach rate in sea brine (28 giL NaCl) is 6 x 10-7 g/cm2-day. 

These differences may be due to radionuclide plate-out on the Paige apparatus, 
which can not be measured. 

The pH of the deionized water used in the experiment averaged 6.6, and the 
pH at the end of the incremental leach period averaged 4.3. The net result was 
a decrease in the pH of the deionized water during the incremental leach test 
period which averaged 2.3 pH units. This decrease in the pH value is the oppo­
site of that reported by Grandstaff (1976) for the leaching of uraninite. Such 
a difference may be due to the difference of chemistry between the spent LWR 
fuel and the uraninite. Decreases in pH were also found in the WIPP IIB", 
0.015~ CaC1 2 and 0.03~ NaCl solutions. Actinide solid-induced radiolysis of 
similar synthetic groundwater solutions have been observed to cause similar pH 
drops (Rai et al. in press). However, increases in pH were found for the O.03M 
NaHC03 solution. 

There is a subtask in the WRIT program at PNL entitled "Spent-Fuel Special 
Studies." The major thrust of this task is directed toward understanding the 
mechanisms and kinetics for spent fuel release in aqueous solutions. The non­
uniform release of uranium to the leach solution (see Figure 11), the effects 
of oxygen, and solubility constraints are being investigated. The progress of 
these experiments will be presented in the next status report. 

The leach rate data presented in this report show that uranium has a lower 
leach rate than most of the elements studied. This indicates the absence of 
congruent dissolution. Preliminary results from our electrochemical experi­
ments (part of the Spent-Fuel Special Studies Subtask within WRIT) with fused, 

32 



TABLE 8. Comparison of IAEA Leach Rates to 
Paige-Test Leach Rates (467 days) 

Leach Rates (g/cm2-day) 
at 25°C 

Solution Element Paige IAEA 

Deionized water 137 Cs 2 x 10-6 1 x 10-5 

Deionized water 239+240 pu 9 x 10-7 1 x 10-5 

Deion ized water Uranium 7 x 10-7 4 x 10-6 

Dei on i zed water 244Cm 1 x 10-7 4 x 10-6 

NaCl groundwater 137 Cs 6 x 10-6 

Sea brine 137 Cs 6 x 10-7 

WIPP IIBII 137 Cs 4 x 10-6 

single crystal U02 indicates that a film forms on the surface of the U02 
in the standard WRIT leach solutions (those used in this report). If such a 
hydrolyzed, gelatinous, uranium oxide film forms on the surface of the spent 
fuel, the uranium release to the leach solution may be lower than the other 
radionuclides that may pass through this film. The fluctuations in the uranium 
leach rates presented in this report do not relate to the leach rate trends of 
the other elements studied. This incongruency in the leach rates lends support 
to the possibility of a hydrolyzed uranium oxide film forming on our spent-fuel 
samples. Thus, the observed uranium leach rate may be dependent on the forma­
tion, dissolution and partial spallation of such a film. 
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CONCLUSIONS 

The leach rates of antimony, cerium, cesium, curium, europium, plutonium, 
ruthenium, strontium + yttrium, and uranium were determined from LWR spent fuel 
(unclad) with a burnup of 28,000 MWd/MTU in five different leach solutions. 
These solutions were deionized water, 0.03~ sodium chloride solutions, 0.03~ 
sodium bicarbonate solution, 0.015~ calcium chloride solution and a saturated 
WIPP "S" brine solution. On the average, of the five solutions studied deion­
ized water produced the highest elemental leach rate. The leach rates in the 
bicarbonate solution were second lowest, with the CaC1 2 solution exhibiting 
the lowest leach rates. The two brines were intermediate. 

Cesium had the highest leach rate in three solutions (WIPP "8" brine, 
0.03M NaCl and 1.015~ CaC1 2). Europium had the highest leach rate in deion­
ized water and antimony the highest in 0.03~ NaHC03. Ruthenium had the low­
est leach rate in three solutions (deionized water, 0.03M NaCl and WIPP "8" 

brine). Cerium had the lowest elemental leach rate in 0.015~ NaHC03 and 
uranium the lowest in 0.03~ CaC1 2 solution. 

Based on the release of plutonium and curium, spent fuel has a leach rate 
comparable to 76-68 glass in sodium bicarbonate solution and is 50 to 400 times 
less leach resistant than 76-68 glass in deionized water and WIPP "8" brine 
solution. 

The spent-fuel leach rates calculated from the IAEA procedure are one 
order of magnitude higher than the values reported for the Paige procedure. 
The discrepancy may be caused by nuclide plate-out on the walls of the Paige 
apparatus, which can not be measured during testing. Thus, to be conservative 
one should perform leaching tests by the modified IAEA procedure rather than 
the Paige procedure. 

The leach rate data in this status report show that spent fuel may not 
leach congruently with uranium. 
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APPENDIX 

LEACH DATA 



Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Oa;[s Brine Solution Solution Solution Water 

1 1 1.2 E-4 3.0 E-4 3.0 E-4 1. 8 E-4 4.1 E-4 
2 2 1.2 E-5 1.9 E-5 1. 8 E-5 4.7 E-5 6.7 E-5 
3 3 2.6 E-5 1. 3 E-5 2.5 E-5 4.0 E-5 3.1 E-5 
4 4 1.1 E-5 4.3 E-6 1.1 E-5 2.0 E-5 1.4 E-5 
5 11 7.1 E-6 3.5 E-5 2.6 E-5 2.1 E-6 7.2 E-5 
7 25 2.5 E-6 2.1 E-5 1. 7 E-5 1.1 E-6 2.8 E-5 

12 60 2.3 E-6 7.6 E-6 1. 8 E-5 1.4 E-6 1. 7 E-5 
15 154 2.6 E-6 4.5 E-6 4.9 E-6 1.6 E-7 2.4 E-5 
19 277 2.8 E-6 6.2 E-6 2.3 E-6 3.5 E-7 1. 9 E-5 
23 404 1.1 E-6 6.7 E-8 6.8 E-7 6.8 E-7 1.0 E-5 
25 467 3.1 E-6 9.1 E-8 4.0 E-6 1. 5 E-7 1. 5 E-5 

IAEA LEACH RATE BASED ON U {g/cm2-da;[} 
FOR 28 z000 MWd/MTU SPENT FUEL AT 25°C 

Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Da;[s Brine Solution Solution Solution Water 

1 1 4E-5 6E-5 7E-5 1E-4 8E-5 
2 2 8E-6 1E-5 8E-6 3E-5 2E-5 
3 3 3E-5 2E-5 9E-6 4E-5 1E-5 
4 4 2E-5 1E-5 2E-6 1E-5 6E-6 
5 11 3E-6 3E-6 3E-6 2E-6 5E-6 
7 25 2E-6 2E-6 2E-6 4E-7 4E-6 

12 60 2E-7 1E-6 2E-6 3E-7 4E-6 
15 154 8E-7 6E-6 5E-6 5E-7 9E-6 
19 277 (a) (a) (a) (a) (a) 

23 404 (a) ( a) ( a) (a) (a) 
25 467 6E-7 3E-8 2E-6 1E-6 4E-6 

( a ) an a 1 ys is no t availble at time of reporting. 

A-1 



Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Dax:s Brine Solution Solution Solution Water 

1 1 1.1 E-4 1.4 E-4 1.4 E-4 4.6 E-4 2.0 E-4 
2 2 4.6 E-S 2.4 E-S S.l E-S 6.9 E-S 7.9 E-S 
3 3 2.9 E-S 2.3 E-S 3.0 E-S 4.S E-S 3.6 E-S 
4 4 1. 6 E-S 9.8 E-6 1.3 E-S 2.3 E-S 2.3 E-S 
S 11 6.2 E-6 1. 7 E-S 1. 4 E-S 1.1 E-S 3.4 E-S 
7 2S S.O E-6 1.3 E-S 1.S E-S 2.9 E-6 1.4 E-S 

12 60 3.0 E-6 2.1 E-6 S.4 E-6 S.6 E-6 1.1 E-S 
IS lS4 2.9 E-6 1.6 E-6 1. 9 E-6 2.7 E-6 1.8 E-S 
19 277 8.1 E-6 1.0 E-S 1. 8 E-6 3.7 E-6 1. 7 E-S 
23 404 8.2 E-6 1. 8 E-6 6.7 E-7 7.7 E-6 1.0 E-S 
2S 467 3.8 E-6 7.6 E-8 3.S E-6 7.0 E-6 1. 3 E-S 

IAEA LEACH RATE BASED ON 144Ce (g/cm2-dax:} 
FOR 28 2000 MWd/MTU SPENT FUEL AT 2SoC 

Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Dax:s Brine Solution Solution Solution Water 

1 1 1. S E-4 8.8 E-S 1. 3 E-4 6.3 E-S 1. S E-4 
2 2 8.2 E-6 1. 7 E-S 9.6 E-6 2.6 E-S 4.6 E-S 
3 3 2.9 E-S 7.1 E-6 1.4 E-5 2.6 E-S 2.3 E-S 
4 4 1.1 E-S 4.9 E-6 1.1 E-S 2.0 E-5 1. 8 E-S 
S 11 7.7 E-6 2.S E-S 2.2 E-S 1. 7 E-6 S.O E-S 
7 25 2.6 E-6 1. 6 E-S 1. S E-S 1. S E-6 1. 2 E-S 

12 60 3.2 E-6 4.4 E-6 1. 2 E-S 1. 7 E-6 1. S E-S 
IS lS4 S.l E-6 2.1 E-6 1. 2 E-6 1.2 E-7 1. 7 E-S 
19 277 S.6 E-7 1. 0 E-S 2.4 E-6 6.0 E-7 1. S E-S 
23 404 7.0 E-7 1. 8 E-6 8.4 E-7 9.7 E-7 1. 2 E-S 
2S 467 9.4 E-7 1.1 E-7 3.5 E-6 1.0 E-7 1. 2 E-S 

A-2 



IAEA LEACH RATE BASED ON 90Sr + 90y {g/cm2-da~} 
FOR 28 2°00 MWd/MTU SPENT FUEL AT 25°C 

Cumulative WIPP CaC12 NaCl NaHC03 Deionized 
Series Da~s Brine Solution Solution Solution Water 

1 1 1. 5 E-4 1. 5 E-4 1. 4 E-4 1. 7 E-4 2.3 E-4 
2 2 2.1 E-5 2.0 E-5 2.2 E-5 3.9 E-5 5.4 E-5 
3 3 2.5 E-5 1. 9 E-5 2.7 E-5 3.4 E-5 3.1 E-5 
4 4 1. 2 E-6 1.4 E-5 1. 5 E-5 3.4 E-5 1.4 E-5 
5 11 6.8 E-6 2.3 E-5 1. 7 E-5 2.4 E-6 3.1 E-5 
7 25 6.3 E-6 1.4 E-5 1. 9 E-5 1.1 E-6 8.1 E-6 

12 60 3.5 E-6 2.4 E-6 6.8 E-6 1. 4 E-6 8.1 E-6 
15 154 5.2 E-6 3.6 E-6 3.9 E-6 5.7 E-7 1.4 E-5 
19 277 2.8 E-6 3.4 E-6 7.6 E-7 3.5 E-7 5.8 E-6 
23 404 2.8 E-6 7.2 E-7 3.6 E-7 7.1 E-7 3.9 E-6 
25 467 3.1 E-6 1. 4 E-7 3.3 E-6 8.2 E-7 9.6 E-6 

IAEA LEACH RATE BASED ON 137Cs {9/cm2-da~) 
FOR 28 2°°0 MWd/MTU SPENT FUEL AT 25°C 

Cumulative WIPP CaC12 NaCl NaHC03 Deionized 
Series Da~s Brine Solution Solution Solution Water 

1 1 1. 2 E-3 1. 2 E-3 1.1 E-3 1.4 E-3 3.8 E-3 
2 2 5.9 E-5 8.1 E-5 6.8 E-5 1. 2 E-4 1.3 E-4 
3 3 5.1 E-5 3.8 E-5 4.8 E-5 8.9 E-5 7.5 E-5 
4 4 2.0 E-5 1.6 E-5 2.4 E-5 6.4 E-5 4.8 E-5 
5 11 1. 2 E-5 3.2 E-5 2.5 E-5 4.2 E-5 6.6 E-5 
7 25 8.9 E-6 2.1 E-5 2.4 E-5 1. 9 E-5 2.8 E-5 

12 60 6.4 E-6 6.7 E-6 1.3 E-5 1.1 E-5 1. 6 E-5 
15 154 3.8 E-6 7.5 E-6 8.8 E-6 3.7 E-6 2.1 E-5 
19 277 7.0 E-6 8.8 E-6 4.8 E-6 2.3 E-6 1. 6 E-5 
23 404 7.1 E-6 2.0 E-6 3.1 E-6 3.8 E-6 6.8 E-6 
25 467 3.8 E-6 8.9 E-7 6.1 E-6 3.3 E-6 1. 2 E-5 

A-3 



IAEA LEACH RATE BASED ON 154Eu {g/cm2-datl 
~OR 28 2000 MWd/MTU SPENT FUEL AT 25°C 

Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Da~s Brine Solution Solution Solution Water 

1 1 1.4 E-4 1. 3 E-4 1. 6 E-4 8.7 E-5 2.1 E-4 
2 2 1.0 E-5 2.0 E-5 1. 2 E-5 3.6 E-5 5.1 E-5 
3 3 3.1 E-5 1. 0 E-5 1. 8 E-5 3.4 E-5 2.5 E-5 
4 4 2.9 E-5 7.8 E-6 1. 5 E-5 2.9 E-5 1. 8 E-5 
5 11 8.0 E-6 2.8 E-5 2.2 E-5 2.6 E-6 4.9 E-5 
7 25 3.0 E-6 2.1 E-5 2.1 E-5 2.3 E-6 1. 6 E-5 

12 60 3.1 E-6 5.7 E-6 1.1 E-5 1. 8 E-6 1. 0 E-5 
15 154 3.1 E-6 4.9 E-6 5.3 E-6 2.0 E-7 2.1 E-5 
19 277 9.5 E-7 1.1 E-5 2.5 E-6 5.1 E-7 2.0 E-5 
23 404 1. 9 E-6 7.0 E-7 9.0 E-7 8.2 E-7 1. 2 E-5 
25 467 2.2 E-6 1. 2 E-7 6.9 E-6 9.9 E-6 1. 5 E-5 

IAEA LEACH RATE BASED ON 239Pu + 240pu {T/cm2-da~) 
FOR 28 2000 MWd7MTu SptNi tUt[ A 25°C 

Cumul at i ve WIPP CaC12 NaCl NaHC03 Deionized 
Series Da~s Brine Solution Solution Solution Water 

1 1 2.4 E-5 3.0 E-5 2.9 E-5 7.1 E-5 5.9 E-5 
2 2 9.2 E-6 6.5 E-6 1.4 E-5 2.4 E-5 2.1 E-5 
3 3 9.7 E-6 1.1 E-5 1. 6 E-5 2.4 E-5 2.4 E-5 
4 4 5.9 E-6 7.1 E-6 6.1 E-6 9.7 E-6 1.2 E-5 
5 11 2.3 E-6 9.7 E-6 9.2 E-6 2.1 E-6 2.6 E-5 
7 25 9.2 E-7 9.1 E-6 9.5 E-6 1.4 E-6 2.3 E-5 

12 60 1. 4 E-6 4.7 E-6 7.4 E-6 9.5 E-7 1. 5 E-5 
15 154 2.4 E-6 3.1 E-6 2.7 E-6 1.2 E-7 1. 7 E-5 
19 277 5.8 E-6 6.7 E-6 1.1 E-6 4.8 E-7 1. 3 E-5 
23 404 5.3 E-6 2.1 E-6 7.5 E-7 6.0 E-7 8.1 E-6 
25 467 3.7 E-6 1.6 E-7 3.0 E-6 2.1 E-7 1.1 E-5 

A-4 



IAEA LEACH RATE BASED ON 106Ru {9jcm2-da~) 
FOR 28 2000 MWdjMTU SPENT FUEL AT 25°C 

Gumul at i ve WIPP GaG12 NaGl NaHC03 Deionized 
Series Da~s Brine Solution Solution Solution Water 

1 1 3.1 E-5 2.8 E-5 3.5 E-5 8.7 E-5 3.7 E-5 
2 2 5.1 E-6 1. 2 E-5 4.8 E-6 1.4 E-5 1. 5 E-5 
3 3 2.0 E-5 4.2 E-6 6.0 E-6 1. 2 E-5 4.8 E-6 
4 4 8.9 E-6 2.3 E-6 4.3 E-6 7.6 E-6 3.0 E-6 
5 11 7.3 E-6 4.4 E-6 3.8 E-6 1. 8 E-6 2.1 E-6 
7 25 5.0 E-6 1. 9 E-6 2.1 E-6 1.1 E-6 2.5 E-6 

12 60 5.0 E-6 4.8 E-7 8.9 E-7 5.5 E-7 1. 5 E-6 
15 154 2.0 E-6 2.8 E-7 5.0 E-7 2.1 E-7 2.0 E-6 
19 277 7.9 E-7 6.0 E-6 3.3 E-7 3.2 E-7 1. 5 E-6 
23 404 5.4 E-7 1. 2 E-6 1.7 E-7 5.1 E-7 1.1 E-6 
25 467 3.8 E-7 3.7 E-7 5.1 E-7 1. 3 E-7 1.8 E-6 
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