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ABSTRACT

In a recently analyzed grand unified model based on the gauge group SU(15),
monopoles are automatically consistent with the cosmological mass density
bound. The Parker bound of monopole flux puts some constraints on the

model which can be easily satisfied.
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The interestiné idea of gauging symmetries like baryon number (B) and lepton.

number (L) was incorporated [1] in grand unification models based on the group
SU(16). In these models, B and L are violated spontaneously. The resulting
proton decay rate is much slower [1,2] compared to the prediction of more popular
-unification models based on SU(5) or SO(10).

Interest in such models has recently been revived by some discussion of a uni-
fication model (3] based on SU(15). The difference of this model with those based
on SU(16) is that in the fundamental representation containing the fermions, there
is no right handed neutrino. Baryon number is still part of the gauge symmetry
although lepton number is not. The spontaneous symmetry breaking process breaks
B [4,5], giving rise to baryon violating processes. It has been shown that, in a par-
ticular chain of symmetry breaking, the unification scale can be as low as 10" GeV.
This prediction is very different from those of popular grand unification models
where the unification scale is 10'* GeV or higher. However, a low unification scale
in the context of SU(15) does not conflict with data on proton stability because
proton decay is very suppressed [6] in this model, just as it is in SU(16).

Here, we want to point out another aspect of the SU(15) model which has not
been emphasized before. Because of the possibility of low unification scale, gauge
monopoles in this model can be easily consistent with cosmological bounds. This
characteristic, again, is very different from that of SU(5), where gauge monopoles
violate cosmological energy density bounds by many orders of magnitude.

We start by outlining the derivation of the cosmological bound on the monopoles
[7]. At the present era, the energy density of the monopoles is given by pp = manly,
where m) is the mass of a monopole and ni, is their present number density. This
energy density must satisfy

mynyy S107°h? GeV/ em®, (1)
where h is the Hubble parameter in units of 100 kms™'Mpc™'. We can parametrize
the monopole mass by

| ma = EV /o (2)

where £ ~ O(1), ap is the fine structure constant at the scale Vis of symmetry
breaking which gives rise to the monopoles. To estimate the number density of
the monopoles, we use Kibble’s picture [8] in which monopoles are produced when
domains of the broken symmetry phase coalesce. This picture gives rise to about
one monopole within the horizon at the time of the creation of the monopoles.
Formally, one can write the monopole number density nas at that era as:

ny = ﬂ/[BM ) ‘ (3)
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where f;w is the horizon length at the time of monopole creation, and 8 ~ O(1).
Using €y = 0.6g« # Mp /T% where g, is the effective number of relativistic degrees
of freedom and T, is the temperature at that era, we obtain

s [y = 20892 (Th [Mp)° )

since the photon number density is related to temperature by n, = 0.24T°. Since
that era, the total number of monopoles has not changed noticeably since monopole-
antimonopole annihilation cross sections are negligible [9]. Therefore, the number
density of monopoles has changed only due to the expansion of the universe. The

. photon number density, on the other hand, has changed also due to annihilations

of particle-antiparticle pairs. Denoting the increase of photon number density due
to these reheatings by a factor fru, we obtain |

208¢," (TM )3 |
0 _ M 0
= fau \Mp Ty s ()

where n &~ 400cm™ is the present number density of photons. Using these esti-
mates and introducing the parameter a,. = T /Vs, we obtain

% ,3 v 4 ‘ |
o =8 x 10754 555*),:: ( - G";V) GeV/em® . (6)
The bound in Eq. (1) then translates to
| ’
2
Vi < (%:%*a%) x 10'2 GeV . (7)

Observational limits on the value of Hubble parameter imply ; < h < 1. The
parameters £ and (3 are of order unity. The fine structure constant is typically
©O(10~?). The quantities fru and g. depend on the number of degrees of freedom in
the model, and are typically ©(10?). The factor a,. denotes the supercooling needed
below the symmetry breaking scale before monopoles can appear. For second crder
or weakly first order phase transitions, one would naturally expect this to be not
much smaller than unity. Then, Eq. (7) clearly shows why monopoles of SU(5)
unification model were inconsistent with cosmology. One has to invoke either a
large supercooling as may be possible in the case of a strongly first order transition,
or inflation, in order to make SU(5) monopoles acceptable.

For the recently discussed SU(15) model of grand unification, the situation is
very different. The symmetry breaking chain which gives low unification scale is as
follows:

v

su(s) e sU(12), x SU(3)
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Mp

— SU(G)L X SU(G)R X U(l)a X SU(3)1

M4, SU(3). x SU(2)L x U(1)y

Mo, SU(3). x U(1)q - - (8)
At the scale Mg, a U(1) factor appears, which gives rise to monopoles. Thus, the
monopole scale Vjs in the earlier discussion should be identified with the scale Mp
in this model. Renormalization group analysis of the model shows that the scale
Mgp can easily satisfy Eq. (7), as we discuss below.

Introducing the notation My = 10"X GeV for any mass scale My, one gets the

following relations connecting different mass scales [3,4]:

792nG — 264np — 308n, — 220ny = 3K {0.375 — sin’ O (Mw)}
' 792nG — 40np — 220n, — 1320y = K {0.375 — [a(Mw)/as (Mw)]} , (9)

where K = 327 /[a(Mw)In10]. Using o~ !(Mw) = 128, sin® 6w (Mw) = 0.228 and
a;! = 9.35 and putting nw = log,, 81, one can solve ng and np in terms of ny:

ng = -;-nA +534, ng= -g-nA +5.42. (10)

It was emphasized [4] that the above solution for ng, together with the constraint
Mg > M,, implies. Mg < 5 x 10'° GeV. If My is far below this upper lmit, the
monopoles are easily consistent with cosmological bounds. On the other hand, if
Mp is close the the allowed upper limit, the monopoles can constitute bulk of the
energy density in the universe and therefore can solve the dark matter problem.

We now discuss the Parker bound [10] on monopole fluxes in our galaxy, which .

derives from the consideration that the galactic magnetic field By, is not destroyed
by the acceleration of the monopoles. For monopoles with magnetic charge G,
the energy dissipation rate is of order Gn},vp Bga, Where vy denotes their average
velocity. Demanding that the energy density in the galactic magnetic field, B, /8w,
is not depleted in time T ~ 108 yr which is the time needed to regenerate the field,
one obtains

0
n’Z:M < 3;:_5221_ ~ 107 cm™2s~sr! (11)
using Bga =~ 3 x 107® Gauss and G ~ (2e)~!. The coherence length of this magnetic
field within our galaxy is ©(10* cm). For monopoles with masses in the range of
10'! GeV or less, it is easy to see that a monopole crossing one coherence length
can obtain velocities of order of the speed of light. Thus, using vy ~ 1 in Eq. (11),
we obtain

ny <107* em ™. (12)
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It should be noted that this bound on number densities is much stronger than that
obtained for SU(5) monopoles. The reason is that the SU(5) monopoles are much
heavier so that their average velocity is much smaller. In the present context, using
the estimate of n}, from Eq. (5), we obtain the bound

Y
Vi < ( fru ) x 10° GeV . (13)
~ \ Bgt a3,

This can put nontrivial constraints on the mass scales of the model. Through
renormalization group analysis aud the values of the gauge coupling constants at
the weak scale, the scales M3 and Mg can be expressed as functions of the scale M.
For example, if we take the prefactor in Eq. (13) to be unity, we get Mp < 10° GeV,
which implies M4 <2 x 10" GeV and Mg <3 x 10° GeV from Eq. (10). This is
stronger than the bounds from any other consideration. If the local density of -
monopoles is higher in our galaxy, the bound becomes stronger.

To summarize, we have shown that the monopoles appearing the course of sym-
metry breaking of SU(15) grand unified group are consistent with the cosmological
energy density bound. In sharp contrast with monopoles arising, e.g., in SU(5)
grand unified model, one does not have to invoke Jarge supercooling to achieve this.
The Parker bound on monopole flux in our galaxy can put some constraints on the
scales of the model. These constraints are consistent with renormalization group
calculations. |
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