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‘ABSTRACT ! ;

Al e - , '
When a light particle in a solid composed of relatively heavy atoms isfassociated
jwith substantial displacements of the equilibrium positions of the atoms immediately
'surrounding it, the composite entity may be regarded as being small polaronic. Many
\instances of self-trapping of electronic ¢harge carriers, excitons and light atomsf
lsuch as hydrogen are known. A significant contribution to the interaction between
!such particles results from interference between their atomic displacement patterns.
{As a result oppositely charged small polarons may experience an intermediate-range :

‘repulsion, while both like-signed and neutral entities may have a tendency to clus—
[ter. These effects can be very important. As examples, the recombination kinetics
of electron and hole small polarons and the ordering of defect atoms are discussed.
| i i
| | i |
| INTRODUCTION ; . : [
! : i

: i
|

The introduction of either interstitial atoms, vacancies, electronic charge carriers,
:or excitons into a solid is generally accompanied by alterations of the equilibrium
{positions of the atoms of the solid. These atomic displacements become especially
'significant if they exceed the amplitudes: of the zero-point motion of the displaced
‘atoms. This paper is concerned with that interaction between strongly coupled /|
‘particles (or quasiparticles) which results from their mutual interaction with the
'atomic displacements of the host material. | Ry

Z.

: !
E ' APPROACH : ! 4
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|

'A system of static entities which interact with each other and with the lattice
‘containing them is described by a Hamiltonian which presumes a linear interaction |
‘between the added particles (or quasiparticles) and the atoms of the lattice, in :
'addition to harmonic interactions between lattice atoms. Specifically, one has !
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where n; and Ro i =rg) respectively, the number and energy of each particle of type
fi locatéd at a site designated by the position vector g, and U;’;' is the energy of

! = - r\;’n.

'direct interaction between a pair of static particles. Creation and annihilation

loperators for phonons of mode A, wavevector g, and energy *ﬁwq ) are denoted by b
- 35 V

S Endh 4 respectively. The interaction between a particle of species i and a ;

£ racterized by V: ' j
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For any configuration of particles one can find the positions of the lattice atoms
which minimize the energy of the system. Then the energy of the system, apart from
that due to vibrational motion, is found to be '

E = Ejsolated T Edirect ~ Bp i» (2):
where Eisolated.and Edirect rep;esent the first and second terms of Eq.-(l),
respectively, and Eb is defined by
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If, for example, there were but a solitary particle of type i located in the solid;
Ey simply reduces to the small-polaron binding energy of such a particle:

1
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%However with two particles of the same type (species-i) located at sités 8o and 81 _I

ione has that ‘ : ’ ) f
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E, = z)\jg[lvq’)\lz/ﬁwi,gl{z + 2 cosl[q-(g, - 51)]}

=2 e, + Ul’l.(indirect) . f : . E (5)‘

b g’g , - . |
Here the second term represents that portion of the interaction between the two
particles which results from their mutual interaction with the displacements of the
atoms of the lattice. Finally, if the particle at sites 8o and g1 are of different
‘types (i and j,.respectively) the energy of their indirect interaction is given by

1
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In the present discussion the particle-lattice interaction is taken to ‘be of short;
range. That is, the energy of a charge carrier on an atomic site depends on the
proximity of the nearest-neighbor atoms, while the energy of an interstitlal is a ?
fynction of its distance from the atoms immediately adjacent to it. In these cases

i 3 : ' '
~Vq X has a rather weak nommonotonic dependence on q with maxima occurring far from
- ¥ : : ) ~ . )

‘the center of the Brillouin zone. Concomitantly, one finds that the indirect intef—
particle interaction falls off with separation as the oscillatory terms of Eqs. (5)
and (6) give rise to increasingly efficient cancellations in the q-summation. :

EQUIVALENT INTERSTITIALS

In solids one 1s often concerned with the strain fields surrounding defects. Here
the displacements about neutral interstitials are considered. Presuming a negli-
gilble direct interaction between these interstitials, the net interaction energy

1s eimply -E,. As the simplest example consider interstitialg placed id a.monatomic

linear chain. Minimimizing the energy, Eq. (1), yields the displacement patterns
‘depicted in Fig. 1. Namely, each interstitial occupies a space (in this case, a
linear dimension) equal to A/k, where & is the (constant) repulsive force exerted
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Fig. 1 One and three interstitials added to a monatomic chain.

The strained bonds are shown with dashed lines. !
between the interstitial and each of the two adjoining atoms, and k is'the stiffness
constant of the monatomic lattice. This constitutes a one-dimensional ‘microscopic:
:derivation of Vegard's theorem of elasticity theory: an elastic material expands
by an amount equal to the extra volume of an inclusion. ‘

‘In systems in which the added particle interacts with both optical andfacoustic

‘modes of the solid the situation becomes more complex.]' A common situation is that
.in which light atoms form cages about relatively heavy atoms. A one-dimensional i
~analogue of such a structure is that of a backbone of heavy masses to which light :
.masses are attached. In essence the motions of the heavy atoms are aséociated with
"“acoustic vibrational modes and the movements of the light masses relative to the !
heavy masses involve the optical modes. As illustrated in Fig. 2, if the inter-
‘action of an interstitial is mainly with the light atoms (optical modes), a local "
‘type of deformation pattern is produced which does not extend far from.the inter=— :
-stitial. Furthermore, with a collection of three adjacent interstitials the asso-:
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Fig. 2. Interstitials in a diatomic system. The optical-type deformations with
: one and three interstitials are shown in the top two lines. The respec-
tive acoustic-type deformations are shown in the bottom two lines for a
diatomic chain. Dashes indicate etrained Londs.



-ciated deformation patterns tend to cancel. However, if the interaction of the
interstitial is mainly with the heavy atoms, acoustic modes predominate and a long-
‘range displacement pattern is established. Here Vegard's theorem may be applied.

"Several comments are now in order. First, since Vegard's theorem is an outgrowth

of elasticity theory (which involves only long-wavelength acoustic phonons) its in-
applicability to some instances where optical-mode displacements play a role does .
not pose a contradiction for the macroscopic theory. Second, it is both obvious

and well known that in systemsof higher dimensionality the displacement patterns

at long range are altered so as to reduce the magnitude of the displacements of in-
dividual atoms at the expense of 1nvolving a greater number of atoms. Third, dimen—
sionality plays a major role in the energetics of clustering of added particles.

For example, it can be seen from the optical-mode portion of Fig. 2 that it is ener-
getically unfavorable for interstitials to cluster. However in three-dimensional
models involving optical-type displacements clustering can be energetically favor-:
~able. Similarly, three-dimensional strain fields associated with acoustic—type
.displacements favor clusterln

“Although the preceding discussion considered only neutral interstitials, analogous’
‘results apply to the strain fields and clustering of excitons, and (with the addi-!
.tion of the coulomb interaction) excess charges. Indeed, it is the possibility |

that the atomic-displacement-induced tendency of 1like charges to cluster may over—E ra

‘come their coulombic repulsion that has led to the consideration of blpolaron for-'
mation in both solids. and liquids.

+
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* ELECTRON-HOLE INTERACTIONS ; i
|

‘The lattice-mediated interaction of electron and hole small polaromns can be of ;
_critical importance in their direct recombination. For the ideal monatomic system,
illustrated in Fig. 3a the deformation (here a contraction) about an electron has
‘an opposite sense to that about a hole (here an expansion). For illustration the
distortions are taken to be local as with light masses harmonically coupled to a
rigid frame. The central point is that when the electron-hole separation is re- -
duced sufficiently so that the two distortion patterns overlap substantially the - |
" binding energy associated with each small polaron is reduced. In other words, as
shown by the curve labeled small polaron in Fig. 3b, the lattice-mediated inter-
action provides a repulsive component to the interactlon between an electron and a:
hole small polaron. Furthermore, as shown in Fig. 3b, with sufficiently strong !
polaronic binding the combination of the small—polaron and coulombic terms yields
a net energy which contains a repulsive barrier to recombination. This in effect
-screens vul Lhe strong portion ot the coulombic attraction.

The luminescence associated with recombination in such a polaronic solid has been

described'elsewhere.2 Hence it will only be noted that such a system (potentially>
~exhibits three luminescence processes: the recombination of excitons prior to lat-
tice deformation, of self-trapped excitons, and of palrs of separated small pola-

rons. These processes are associated with the positions labeled as E, STE, and GS
in Fig. 3b.

The photoconductivity of a small polaronic solid is proportional to the average
mobility of the photogenerated carriers and their lifetime. Since a finite time
is required before an optically generated charge forms a small polaron, each car-
rier's mobility is an average of its nonpolaronic (precursor) mobility I% or s

and its self-trapped mobility, U or uh, weighted by that fraction of the lifetime

each exists in the precussor state, f_and f.. The average photoconductive mo-
bility is [ﬁefe + ue(l - fe)] + [ﬁhf + uh(l - fh)]. Since often U >>y the obser-
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Fig. 3. The deformation patterns for an electron and a hole in a monatomic
; lattice are shown for three separations in (a). In (b) the net !

. energy of the system as well as the coulombic and distortional '

(small polaron) components of the energy are plotted against the %

- separation, r, measured in units of the lattice constant. ]'
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-vation of a low photoconductive mobility requires that fe’fh << 1.

‘For direct recombination of low-mobility charge carriers i1t has generally been as—:

sumed that the room—temperature recombination is diffusion limited.3 That is,’ :
electrons and holes hop together spatially and then recombine. Specifically, the.f
-probability that, once within their mutual coulomb capture radius, a pair will .- |
separate rather than recombine has been assumed to be insignificant. Nonetheless, ;
there are previously unexplained s1tuations in which the photoconducting carriers

have very low (hopping) mobilities for which the recombination coefficient does not
display the temperature dependence characteristic of diffusion controlled recom—

blnation.u The presence of a repulsive barrier provides a mechanism to ‘resolve :
this dilemma. Namely, the barrier keeps the carriers apart and thereby reduces i'
"their overlap and recombination rate. In addition, by shielding the carriers from
the steepest portion of their attractive coulomb potential, the probability of
their separation is enhanced. Thus such a barrier to the recombination of small
polarons may be significant in understanding the photoconductlng properties of
'in3ulat1n° and semiconducting glasses and crystals in which the charges form small
polarons.
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‘When a light particle in a solid composed of relatively heavy atoms islassoc1ated
|with substantial displacements of the equilibrium positions of the atoms immediately
surrounding it, the composite entity may be regarded as being small polaronic. Many
‘instances of self trapping of electronic charge carriers, excitons and :light atoms
such as hydrogen are known. A significant contribution to the interaction between
such particles results from interference between their atomic displacement patterns.

As a result oppositely charged small polarons may experience an intermediate-rangei

repulsion, while both like-signed and neutral entities may have a tendency to clus—
iter. These -effects can be very important. As examples, the recombination kinetics
i0of electron and hole small polarons and the ordering of defect atoms aﬁe discussed.
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.The introduction of either interstitial atoms, vacancies, electronic charge carriers,
;or excitons into a solid is generally accompanied by alterations of the equilibrium
positions of the atoms of the solid. These atomic displacements become especially :
'significant if they exceed the amplitudes: of the zero-point motion of the displaced
.étoms. This paper is concerned with that interaction between strongly .coupled /é
particles (ot quasiparticles) which results from their mutual interaction with the
‘atomic displacements of the host materlal. i
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A system ot:static entities which interact with each other and with thé . lattice
fcontaining them is described by a Hamiltonian which presumes a linear interaction
;between the .added particles (or quasiparticles) and the atoms of the lattice, in
taddition to harmonic interactions between lattice atoms. Specifically, one has
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where n; and et are, respectively, the number and energy of each particle of type
,i located at a ‘site designated by the position vector g, and Uy’g, ia the euergy of

direct interaction between a pair of static particles. Creation and annihilation

\operators for phonons of mode A, wavevector 4, and energy'ﬁw ) are denoted by b
,

. Q,\
‘and b X’ respectively.’ The interaction between a particle of spec1es i and a T

phono% is characterized by vl’x. L. s i
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For any configuration of particles one can find the positions of the lattice atoms
which minimize the energy of the system. Then the energy of the system, apart from
that due to vibrational motion, i1s found to be '

E =Ejsolated T Egirect ~ Ep > : o : (2);

where E. and E

isolated direct

represent the first and second terms of Eq.'(l),
respectively, and EB is defined by ‘
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ij, for example, there were but a solitary particle of type i located in the solidé
Ey, simply reduces to the small-polaron binding energy of such a particle: S

i
. ! |
i 2 | i
Ep =€y = z)\;z qu’)\l /ey - f ; (4)
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‘However with two particles of the same tybe (speciegli) located at sités 8o and glé
ione has that : ‘ : ’ . 3
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Here the second term represents that portion of the interaction between the two }
particles which results from their mutual interaction with the displacements of the
atoms of the lattice. Finally, if the particle at sites g_ and g1 are of different
‘types (i and j, respectively) the energy of their indirect interaction is given by

Vg,g' ~ 2%3% Re[vg,x Vg, ©

~

i% 19" (g,-81) ' : S
5 e, AN OB

In the preseut discussion the particle-lattice interaction is taken to be of short:
range. That is, the energy of a charge carrier on an atomic site depends on the

proximity of the nearest-neighbor atoms, while the energy of an interstitial is a :
'fpnction of its distance from the atoms immediately adjacent to it. In these cases

1 B . . . '
_Vq 3 has a rather weak nommonotonic dependence on q with maxima occurring far from
. ~, M f ~ . .

‘the center of the Brillouin zone. Concomitantly, one finds that the indirect intef—
particle interaction falls off with separation as the oscillatory terms of Eqs. (5)
and (6) give rise to increasingly efficient cancellations in the q-summation.

EQUIVALENT INTERSTITIALS

In solids one is often concerned with the strain flelds surrounding defects. Here
the displacements about neutral interstitials are considered. Presuming a negli-
gible direct interaction between these interstitials, the net interaction energy

1s simply -E,. As the simplest example conmsider interstitials placed in a monatomic

linear chain. Minimimizing the energy, Eq. (1), yields the displacément patterns
‘depicted in Fig. 1. Namely, each interstitial occupies a space (in this case, a
linear dimension) equal to A/k, where A is the (constant) repulsive force exerted

P N N O PN A IR Sl e T




o————O————0 = = == = = e OO
-— —

Ak -AlK -AlX Al2k Al2k Al2k ’

O—— BB O = — W —— -O——O

— — -— . — —_— -

S3AIK -3AM2 -AlZk Al 3AI2k 3A12K

Fig. 1 One and three interstitials added to a monatomic chain.
The "strained bonds are shown with dashed lines. f !
‘between the interstitial and each of the two adjoining atoms, and k isithe stiffne;s
~constant of the monatomic lattice. This constitutes a one—dimensional'microscopic§
‘derivation of Vegard's theorem of elasticity theory: an elastic material expands
by an amount equal to the extra volume of an inclusion.

;In systems in which the added particle iﬁteracts with both optical andfacoustic

‘modes of the solid the situation becomes more complex.l A common situation is that
.in which light atoms form cages about relatively heavy atoms. A one—dimensional
~analogue of such a structure is that of a backbone of heavy masses to which light -
‘masses are attached. In essence the motions of the heavy atoms are assoc1ated w1th
“acoustic vibrational modes and the movements of the light masses relative to the
heavy masses involve the optical modes. As illustrated in Fig. 2, if the inter-
“action of an interstitial is mainly with the light atoms (optical modes), a local “
type of deformation pattern is produced which does not extend far from.the inter—
-stitial. Furthermore, with a collection of three adjacent interstitials the asso—
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Fig. 2. Interstitials in a diatomic system. The optical-type deformations with
one and three interstitials are shown in the top two lines. The respec-

tive acoustic-type deformations are shown in the bottom two lines for a
diatomic chain., Dashes indicate strained bonds.



ciéted deformation patterﬁs tend to cancel. However,‘if.tﬁe.intéraction of the
interstitial is mainly with the heavy atoms, acoustic modes predominate and a long-
‘range displacement pattern is established. .Here Vegard's theorem may be applied.

Several comments are now in order. First, since Vegard's theorem is an outgrowth -
of elasticity theory (which involves only long-wavelength acoustic phonons) its in-
applicability to some instances where optical-mode displacements play a role does
not pose a contradiction for the macroscopic theory. Second, it is both obvious

and well known that in systemsSof higher dimensionality the displacement patterns

at long range are altered so as to reduce the magnitude of the displacements of in-
dividual atoms at the expense of involving a greater number of atoms. Third, dimen-
sionality plays a major role in the energetics of clustering of added particles.

For example, it can be seen from the optical-mode portion of Fig. 2 that it is ener-
getically unfavorable for interstitials to cluster. However in three-dimensional
models involving optical-type displacements clustering can be energetically favor-:
‘able. Similarly, three—dimensional strain fields associated with acoustlc—type :
.displacements favor clusterlno ) o g
Although the preceding discussion considered only neutral interstitials, analogous:
‘results apply to the strain fields and clustering of excitoms, and (with the addi-
,tion of the coulomb interaction) excess charges. Indeed, it is the possibility
that the atomic~displacement-induced tendency of like charges to cluster may over—:
‘come their coulombic repulsion that has led to the consideration of blpolaron for—
‘mation in both solids and liquids. ;

" ELECTRON-HOLE INTERACTIONS

‘The lattice-mediated interaction. of electron and hole small polarons can be of
_ceritical importance in their direct recombination. For the ideal monatomic system;
illustrated in Fig. 3a the deformation (here a contraction) about an electron has
‘an opposite sense to thHat about a hole (here an expansion). For illustration the
‘distortions are taken to be local as with light masses harmonically coupled to a
‘rigid frame. The central point is that when the electron-hole separation is re~ -
duced sufficiently so that the two distortion patterns overlap substantially the * |
binding energy associated with each small polaron is reduced. In other words, .as !
shown by the curve labeled small polaron in Fig. 3b, the lattice-mediated inter-
action provides a repulsive component to the interaction between an electron and a
hole small polaron. Furthermore, as shown in Fig. 3b, with sufficiently strong %
polaronic binding the combination of the small—polaron and coulombic terms yields
‘a net energy which contains a repulsive barrier to recombination. This in effect
-screens out the strong portion of the coulombic attractivu.

The luminescence associated with recombination in such a polaronic solid has been

described elsewhere, < Hence it will only be noted that such a system (potentially)
-exhibits three luminescence processes: the recombination of excitons prior to lat-
tice deformation, of self-trapped excitouns, and of pairs of separated small pola-
rons. These processes are associated with the positions labeled as E, STE, and GS
in Fig. 3b.

The photoconductivity of a small polaronic solid is proportional to the average
mobility of the photogenerated carriers and their lifetime. Since a finite time
is required before an optically generated charge forms a small polaron, each car-
rier's mobility is an average of its nonpolaronic (precursor) mobility" }J or u

and its self-trapped mobility, u or b weighted by that fraction of the lifetlme

each exists in the precussor state, f and £y The average photoconductive mo-
bility is [Ffq + He 1-f )] + [phf (- f )] Since often § >>y the obser-—
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Fig. 3. The deformation patterns for an electron and a hole in a monatomic
. lattice are shown for three separations in (a). In (b) the net
: energy of the system as well as the coulombic and distortional
(small polaron) components of the energy are plotted against the i
: separation, r, measured in units of the lattice constant.; P
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‘vation of a low photoconductive mobility requires that fe’f < < 1.

h

‘For direct recombination of low-mobility charge carriers it has generally been as— |

sumed that the room—temperature recombination is diffusion llmited.3 That 1is, ;
electrons and holes hop together spatially and then recombine. Spec1f1cally, the

separate rather than recombine has been assumed to be insignificant. Nonetheless, .
there are previously unexplained situations in which the photoconducting carriers

have very low (hopping) mobilities for which the recombination coefficient does not
display the temperature dependence characteristic of diffusion controlled recom~

bination.h The presence of a repulsive barrier provides a mechanism to resolve
this dilemma. Namely, the barrier keeps the carriers apart and thereby reduces !

‘their overlap and recombination rate. In addition, by shieldiuyg the carriers from

the stecepest portion ot their attractive coulemb potential, the probability of
their separation is enhanced. Thus such a barrier to the recombination of small
polarons may be significant in understanding the Dhotoconductlng properties of

"insulating and semiconducting glasses and crystals in which the charges form small

polarons.
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