LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

$e^{+}-\mathrm{e}^{-}$HADRONIC MULTIPLICITY DISTRIBUTIONS: NEGATIVE BINOMIAL OR POISSON?

AUTHOR IS: P. Carruthers, Theoretical Division, Los Alamos National Laboratory

C. C. Shit, Department of Physics and Astronomy, University of Tennessee

SUBMitteD to Proceedings of the XVII International Symposium on Mulitiparticle Dynamics, Zeewinkle, Allstria, June 13-23, 1986

DISCLAIMER

Abstract

This report was prepared ss at account of work sponsored by an agency of the United States Government. Neither the limited States Government bor any agency thereof, nor any of their manuf I'meded states (invernment or aby ane me y thereof

$e^{+}-e^{-}$Hadronic Muliflicity Eistritutions Negative Binomial or Poissoñ

F Carruthers

Thérexical Divisien
Les Alames Nationai Livoralerg. Les Aiames. NM 875~5 USA
aris
C. E Shit

Deft ef Physıcs and Ascremamy Uniyersity ef Tennessee. Knexivile. TN jipyle LiSA

ABSIFALT

On the bas:s of fits to the multifintity distributions fer varıatic rafidicy tindebs ard the forward backward correlation fir the \bar{z} Jet sutiset of $e^{+} e^{-}$data it 15 1mpossitile te distinguish between a gícibal negative binomial and its generalizatien. the partially coherent distritution It is suggested that intensity interferometryy, Esferisily the Eese-Einstein correlation, gives infermacion bhieh will discriminate among dynamical model:

1 Recencly great sutcess has been otitanedin fiting lim] badronic multiflicity distritutiens arising from all types of colliding particles te the negative birimig: Astribution

$$
\begin{equation*}
P_{n}^{N E}=\frac{(n-k-1) \cdot}{n \cdot(k-1) \cdot} \frac{i N \cdot k)^{n}}{i l+N \cdot k i^{n+k}} \tag{11}
\end{equation*}
$$

ther $N=\operatorname{con}^{-1}$: Lhe mean charge multiplicity Data for symetric rapidity
 Although it is tempting ta regard illas a tiniversal empirical "lat" it if 1mportant tr. consider equally procise altrinative phenomenological possifilities \quad n farticular wo have iensidered the generalization of ill

$$
\begin{equation*}
\mathrm{P}_{\mathrm{L}}^{\mathrm{PC}}=\frac{(\mathrm{N} / \mathrm{k})^{\mathrm{n}}}{(1+N / k)^{n+k}} \exp \left(\frac{-\mathrm{S} / \mathrm{N}}{1+\mathrm{N} / k}\right) \mathrm{L}_{\mathrm{n}}^{\mathrm{k}-1}\left(\frac{-\mathrm{kS} / \mathrm{N}}{1+\mathrm{N} / \mathrm{k}}\right) \tag{2}
\end{equation*}
$$

appropriate to partially coherent emission from k sources. ${ }^{6,7]}$ Here $\langle n\rangle=S+N$ where S is the strength of the coherent emission and N that of the (Gaussian) "noise" emission. Note that (2) contains both Eq. (1) and the Poisson distribution as limits when $S / N \rightarrow 0$ and $N / S \rightarrow 0$ respectively.

Regarding $\langle n>$ as give by experiment, we parametrize Eq. (2) by the parameters k and $m \equiv(N / S)^{1 / 2}$, the magnitude of the noise to signal amplitude. Previously we have noted ${ }^{8,9]}$ that as an alternative to the very large and rapidly varying values of k resulting from fits to hadron-hadron data, we can obtain equally good X^{2} fits using (2) with small and slowly varying k; i.e. the narrowness associated with large k in the negative binomial can be equally well described by a small N / S ratio. The troadening of hadronic Koba, Nielson Olesen (KNO) plots ${ }^{10}$) is then ascribed to a decreasing coherent emission as the energy is increased, a conclusion also reached by the Marburg group. 11] Detailed documentation can be found in our forthcoming review article. 4]
2. We have previously shown ${ }^{71}$ that the narrow, KNO plots for $\mathrm{e}^{+}-\mathrm{e}^{-} \rightarrow$ hadrons can be explained by (2) with a very small N / S ratio (a few percent) and k chosen on physical grounds, specifically $k=1$ for the 1 jet subset of events, $k=2 f o r$ ihe 2 jet subset etc. Although almost Poissonian, the "wings" of the distribution (2) are very sensitive to a small amount of noise. Chou and Yang ${ }^{121}$ suggested that the $e^{+} e^{-}$multiplicities are purely Poisson. On the other hand Derrick et al. ${ }^{3]}$ showed that the new HRS data from SLAC are well fit by the negative binomial with k ranging from $\sim 10^{2}$ down to ~ 10 as the maximum accepted rapidity decreases from its maximum value down to unity. Figure 1 summarizes and compares the results of the two approaches. Clearly the statistical merit of either approach is equally good. For the indicated parameters both Eqs. 1 and 2 are nearly Poisson and difficult to distinguish.
3. The forward-backward correlation is sensitive to the difference (1) and (2) for moderate values of k, a fact we recently used ${ }^{131}$

Fig. 1 The best-fit parameters to the limited-rapidity multiplicity distributions - $\mathrm{y}_{\mathrm{c}}<0<\mathrm{y}_{\mathrm{c}}$ are shown for the partially cohereat distribution in Eq. 2 (i.e., the left hand ordingt gives m = (N/S) ${ }^{1 / 2}$ as a function of y_{c}) and for the negative hinomial formula Eq. 1 (i.e., the right hand ordiate gives k (and <n>) as a fuection of y_{c}).
to put a bound on N / S for hadron-hadron multiplicity distributions. For example if we partition the population as $n=n_{F}+n_{B}$ and assume that the conditional probability $P\left(n \mid n_{F}\right)$ ia binomial, (1) leads to a linear slope for the average of bactrward particles $\left\langle n_{B}\right\rangle_{F}$ as a function of n_{F}, while a Poisson global distribution has zero slope. In general, Eq. (2) leads to a curved $\left\langle n_{B}\right\rangle_{F}$ except that, for large or amall noise, linearity obtains with amall alope. Allowing for moving sources we write the joint probability as a composite of eaisions from k sources whose probability of forwerd (backward) emission is $p_{j}\left(q_{j}\right)$ with $p_{j}+q_{j}=1$.

$$
\begin{equation*}
P\left(n_{F}, n_{B}\right)=\prod_{j=1}^{k} P_{j}\left(n_{F j}, n_{B j}\right) \delta_{n_{F}, \sum_{i} n_{j}} \delta_{n_{B}, \sum_{j}} \tag{3}
\end{equation*}
$$

We apply this to the two-jet subset of the $H R S$ data, taking $p_{1}>q_{1}$, $q_{2}=p_{1}$ and $p_{2}=q_{1}$, writing P_{j} as the product of (1) or (2) with a binomial having parameters p_{j}, q_{j}. Similar proposals have been made
 presently unavailable theoretically, so we vary them through a range of plausible (hoices.) Figure 2 compares the negative binomial with the

(a)

(b)

Fig. 2 The forward backward correlation as measured by the quantity $\left\langle n_{B}\right\rangle_{F}$ as a function of n_{F} is given for forward emission probabilities of ${ }^{B}$ the forward quark of $\bar{F}=0.5,0.80$ and 0.95 for the negative binomial (top curve) and the partially coherent distributions.
partially coherent predictions. Noting that the experimental slope is $b \cong 0.006$ we see that although $p=1 / 2$ is excluded, both (1) and (2) easily accommodate the data given all the uncertainties.
4. We have shown that neither the KNO plot nor the F / B correlation can discriminate between (1) and (2) for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons. We can note however that P_{n} is merely the diagonal element of the density matrix, the latter having much more information (in particular phase information) in its off-diagonal elements. In order to learn about this phase information one needs to use higher order correlation information, in particular the Bose-Einstein correlations among like-sign particles. For a Gaussian ensemble of fields one expects a HanburyBrown Twiss intercept (zero detector separation) of 2 while for pure coherent it is one (no effect). If we accept the conjecture ${ }^{16 \text {) of }}$ Fowler and Weiner that the correlation formulae of quantum optics can be adapted to particle physics by substituting rapidity for time, the ; apparent fact that the $Q^{2}=0$ intercept is small for $e^{+}-e^{-} \rightarrow$ hadrons than for hadron hadron \rightarrow hadrons suggests more coherence in the $e^{+} e^{-}$ case. According to our earlier speculation ${ }^{7]}$ the fast quark emits an approximate coherent state (which is not only nearly Poisson in counting statistics but has nearly perfect coherence).

Details of our analysis will be found in a paper submitted to the Physical Review. This research was supported in part by the U.S. Department of Energy and the U.S. National Science Foundation.

references

1. UAS Collaboration, Alner G. J. et al, Phys. Lett. 160B, 199 (1985).
2. NA22 Experiment, Van Hal P., (this conference).
3. Derrick M. et al., Phys. Lett. 168B, 299 (1986); Phys. Rev. D (to be published); Derrick M., to appear in Proceedings of the 2nd International Workshop on Local Equilibrium in Strong Interaction Phycics, Santa Fe, NM, April 1986 (World Scientific, to be published); Sugano K., in Proceedings of XXI Recontre de Moriond, Les Arcs, France, March 1986 (to be published).
4. Carruthers P. and Shih C. C., J. Mod. Phys. A (to be published). Earlier work on the negative binomial and its uses may be found in this review.
5. UA5 Coilaboration, Alner G. J. et al., Phys. Lett 160B 193 (1985).
6. Biyajima M., Prog. Theo. Phys. 69, 966 (1983); see also Carruthers P., in Proc. XIV International Symposium on Multiparticle Dynamics, ed. P. Yager and J. Gunion (Work Scientific, Singapore, 1983) p. 825.
7. Carruthers P. and Shih C. C., Phys. Lett. 137B, 425 (1984).
8. Carruthers P. and Shih C. C., in Proc. of XV International Symposium on Multiparticle Dynamics, eds. G. Gustafson and C. Peterson (World Scientific Singapore, 1984) p. 174.
9. Carruthers P., LA-UR-86-1540 to appear in the Proceedings of the XXI Recontre de Moriond, Les Arcs, France, March 1986.
10. Koba Z., Nielsen H., and Olesen, P., Nuc. Phys. B40, 317 (1972).
11. Fowler G. N., Friedlander E. M., Weiner R. M., Wilk G., Phys. Rev. Letters 56, 14 (1986).
12. Chou T. T., and Yang C. N., Phys. Lett, 167B 453 (1986).
13. Carruthers P. and Shih C. C., Phys. Lett. 165B, 209 (1985).
14. Xu Cai, Wei-gin Chao, Ta-chung Meng, and Chao-shang Huang, Phys. Rev. D 331287 (1986).
15. Fialkowski K., Phys. Lett. 173B, 197 (1986).
16. Fowler G. N. and Weiner R. M., Phys. Rev. D 173118 (1978).

A. ESKREYS

Did I understand you well, that given the ratio $R_{B E}$ (of like pion pairs to the pairs from a reference sample) as defined by me a few days ago, its intercept at $Q^{2}=0$ measures the coherence of the pion source? CARRUTHERS

Yes, under certain assumptions whose validity requires further study.
L. GUTAY (Purdue)

It is explicitly stated that the Kepylov Podgoretskii Hanbery-Brown Twiss correlation is an incoherent intensity correlation. How do we observe coherence with such a technique? Also, could you explain the measuring or consequences of coherence in $\overline{\mathrm{p}}$-p collisions?

CARRUTHERS
It is known that incoherent starlight is involved in the original H-BT experiment. The experimental correlation is completely explained by assuming the radiation field to belong to an (incoherent) gaussian ensemble. For be hadronic correlation it is not a priori clear that the emitted fields lack a coherent emission component. The structure of the theory is unchanged but in particular the predicted intercept at zero momentum transfer is decreased in the presence of coherence. There are two imediate consequences of partial coherence of the hadronization fields in (non-annihilation) $p \bar{p}$ collisions. First of all the ratio intercept of like-sign pairs to all pairs should be less than two. Secondly, the forward-backward correlation will be saller than those derived from the negative binomial, in a calculable way.

